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We make some remarks on the Euler–Lagrange equation of energy functional
I(u) =

∫
Ω f(det Du) dx, where f ∈ C1(R). For certain weak solutions u we show that

the function f ′(det Du) must be a constant over the domain Ω and thus, when f is
convex, all such solutions are an energy minimizer of I(u). However, other weak
solutions exist such that f ′(det Du) is not constant on Ω. We also prove some results
concerning the homeomorphism solutions, non-quasimonotonicity and radial
solutions, and finally we prove some stability results and discuss some related
questions concerning certain approximate solutions in the 2-Dimensional cases.
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1. Introduction

Let n � 2 be an integer. We denote by M
n×n the standard space of real n× n

matrices with inner product

A : B =
n∑

i,j=1

Ai
jB

i
j ∀ A = (Ai

j), B = (Bi
j) ∈ M

n×n.

Also denote by AT , detA and cof A the transpose, determinant, and the cofac-
tor matrix of A ∈ M

n×n, respectively, so that the identity AT cof A = (cof A)AT =
(detA)I holds for all A ∈ M

n×n.
Let f : R → R be a C1 function; i.e., f ∈ C1(R), and Ω be a bounded domain in

R
n. We study the special energy functional

IΩ(u) =
∫

Ω

f(detDu)dx (1.1)

for functions u : Ω → R
n, where Du is the Jacobian matrix of u; that is, (Du)i

j =
∂ui/∂xj if u = (u1, . . . , un) and x = (x1, . . . , xn) ∈ Ω. Such a functional IΩ and
its Euler–Lagrange equations have been studied in [3, 5, 8, 17] concerning the
energy minimizers, weak solutions and the gradient flows. Our motivation to further
study the functional IΩ is closely related to the counterexamples on existence and
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2 B. Yan

regularity given in [13, 16, 20]. From the identity

∂ detA/∂Ai
j = (cof A)i

j ; i.e., D(detA) = cof A ∀ A = (Ai
j) ∈ M

n×n,

it follows that the Euler–Lagrange equation of IΩ is given by

div(f ′(detDu) cofDu) = 0 in Ω. (1.2)

By a weak solution of equation (1.2) we mean a function u ∈W 1,1
loc (Ω; Rn) such

that f ′(detDu) cofDu ∈ L1
loc(Ω; Mn×n) and

∫
Ω

f ′(detDu) cofDu : Dζ dx = 0 ∀ ζ ∈ C1
c (Ω; Rn). (1.3)

This is a very weak sense of solutions. Usually, under suitable growth conditions
on f, the weak solutions are studied in the space u ∈W 1,p

loc (Ω; Rn) for some 1 �
p � ∞ with f ′(detDu) cof Du ∈ Lp′

loc(Ω; Mn×n), where p′ = p/(p− 1) is the Hölder
conjugate of p. However, in this paper, we will not specify the growth conditions on
f, but may assume some higher integrability of f ′(detDu) cof Du. For example, if
a weak solution u satisfies, in addition, f ′(detDu) cof Du ∈ Lq(Ω; Mn×n) for some
q � 1, then (1.3) holds for all ζ ∈W 1,q′

0 (Ω; Rn).
It is well-known that div(cofDu) = 0 for all u ∈ C2(Ω; Rn) and thus by approx-

imation it holds that∫
Ω

cofDu : Dζ dx = 0 ∀ u ∈W 1,n−1
loc (Ω; Rn), ζ ∈ C1

c (Ω; Rn). (1.4)

Consequently, any functions u ∈W 1,n−1
loc (Ω; Rn) with f ′(detDu) being constant

almost everywhere on Ω are automatically a weak solution of equation (1.2); how-
ever, the converse is false, at least when n = 2 (see example 3.4). Some formal
calculations based on the identity div(cofDu) = 0 show that f ′(detDu) must be
constant on Ω if u ∈ C2(Ω; Rn) is a classical solution of (1.2) (see [5, 17]). We prove
that the same result holds for all weak solutions u ∈ C1(Ω; Rn) (see also [8]) or u ∈
W 1,p

loc (Ω; Rn) with f ′(detDu) ∈W 1,p̄
loc (Ω) for some p � n− 1 and p̄ = p/(p+ 1 − n).

If, in addition, f is convex, then all weak solutions u ∈W 1,n
loc (Ω; Rn) of (1.2) with

f ′(detDu) being constant almost everywhere on Ω must be an energy minimizer of
the energy IG among all W 1,n(G; Rn) functions having the same boundary value
as u on ∂G for all subdomains G of Ω.

We study further conditions under which a weak solution u of (1.2) must have
constant f ′(detDu) almost everywhere on Ω. In addition, we prove that f ′(detDu)
must be constant in the case of homeomorphism weak solutions u ∈W 1,p(Ω; Rn) for
p > n (see theorem 2.8). When the domain Ω is a ball, we study the radially sym-
metric weak solutions and establish a specific characterization about certain weak
solutions (see § 3). Finally, in the 2-Dimensional cases, equation (1.2) is reformu-
lated as a first-order partial differential relation [8, 13] and we prove some stability
results for certain approximate solutions of this relation (see § 4).
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On a class of special Euler–Lagrange equations 3

2. Some general results for all dimensions

In what follows, unless otherwise specified, we assume h ∈ C(R) is a given function.
Recall that u ∈W 1,1

loc (Ω; Rn) is a weak solution of equation

div(h(detDu) cofDu) = 0 in Ω, (2.1)

provided that h(detDu) cofDu ∈ L1
loc(Ω; Mn×n) and∫

Ω

h(detDu) cofDu : Dζ dx = 0 ∀ ζ ∈ C1
c (Ω; Rn). (2.2)

If, in addition, h(detDu) cofDu ∈ Lq
loc(Ω; Mn×n) for some q � 1, then equation

(2.2) holds for all ζ ∈W 1,q′
(Ω; Rn) with compact support in Ω, where q′ =

q/(q − 1). Since equation (2.1) and the related energy functional highly lack the
ellipticity and coercivity, there is no feasible theory of existence and regularity
for (2.1)

2.1. Formal calculations and some implications

It is well-known that div(cofDw) = 0 holds in Ω for all w ∈ C2(Ω; Rn). From
this, we easily have the following point-wise identity:

div(a cof Dw) = (cofDw)Da ∀ a ∈ C1(Ω), w ∈ C2(Ω; Rn).

Thus, for all a ∈ C1(Ω), w ∈ C2(Ω; Rn) and ζ ∈ C1
c (Ω; Rn), it follows that∫

Ω

a cofDw : Dζ dx = −
∫

Ω

(cofDw)Da · ζ dx. (2.3)

Lemma 2.1. Identity (2.3) holds for all functions

w ∈W 1,p
loc (Ω; Rn), a ∈W 1,p̄

loc (Ω; Rn), ζ ∈ C1
c (Ω; Rn),

where n− 1 � p � ∞ and p̄ = p/(p+ 1 − n) are given numbers.

Proof. Note that if w ∈W 1,p
loc (Ω; Rn) then cofDw ∈ L

p/(n−1)
loc (Ω; Mn×n). Since p̄ and

p/(n− 1) are Hölder conjugate numbers, it follows, by the standard approximation
arguments, that identity (2.3) holds for the given functions. �

Lemma 2.2. Let H(t) = th(t) − ∫ t

0
h(s) ds. Then

∫
Ω

h(detDw) cof Dw : D((Dw)φ) =
∫

Ω

H(detDw) div φ (2.4)

holds for all w ∈ C2(Ω; Rn) and φ ∈ C1
c (Ω; Rn).

Proof. First we assume h ∈ C1(R) and let a(x) = h(detDw(x)). Then a ∈ C1(Ω)
and Da = h′(detDw)D(detDw). Take ζ = (Dw)φ ∈ C1

c (Ω; Rn) in (2.3) and, from
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DwT cofDw = (detDw)I and H ′(t) = th′(t), we have∫
Ω

h(detDw) cof Dw : D((Dw)φ)

= −
∫

Ω

h′(detDw)(cof Dw)D(detDw) · (Dw)φ

= −
∫

Ω

h′(detDw)(detDw)D(detDw) · φ

= −
∫

Ω

H ′(detDw)D(detDw) · φ

= −
∫

Ω

D(H(detDw)) · φ =
∫

Ω

H(detDw) div φ.

This proves identity (2.4) for h ∈ C1(R). The proof of (2.4) for h ∈ C(R) follows
by approximating h by C1 functions. �

Proposition 2.3. Let u ∈ C2(Ω; Rn) be a weak solution of (2.1). Then h(detDu)
is constant on Ω.

Proof. Let d(x) = detDu(x); then d ∈ C1(Ω). By (2.2) and (2.4), it follows that∫
Ω
H(d(x)) div φdx = 0 for all φ ∈ C1

c (Ω; Rn); hence H(d(x)) = C is a constant on
Ω. Suppose, on the contrary, that h(d(x1)) �= h(d(x2)) for some x1, x2 ∈ Ω. Then
d1 = d(x1) �= d2 = d(x2), say d1 < d2. Since d(x) is continuous, by the intermediate
value theorem, it follows that H(t) = C for all t ∈ [d1, d2]. Solving for h(t) from the
integral equation th(t) − ∫ t

0
h(s) ds = C on (d1, d2), we obtain that h(t) is constant

on (d1, d2), contradicting h(d1) �= h(d2). �

Proposition 2.4. Let p � n− 1, p̄ = p/(p+ 1 − n), and u ∈W 1,p
loc (Ω; Rn) be a

weak solution of (2.1) such that h(detDu) ∈W 1,p̄
loc (Ω). Then h(detDu) is constant

almost everywhere on Ω.

Proof. With a = h(detDu) ∈W 1,p̄
loc (Ω) and w = u ∈W 1,p

loc (Ω; Rn) in lemma 2.1 and
by (2.2), we have

0 =
∫

Ω

h(detDu) cofDu : Dζ = −
∫

Ω

(cofDu)D(h(detDu)) · ζ

for all ζ ∈ C1
c (Ω; Rn). As a result, we have (cof Du)D(h(detDu)) = 0 a.e. on

Ω. Thus D(h(detDu)) = 0 a.e. on the set Ω0 = {x ∈ Ω : detDu(x) �= 0}. Clearly,
D(h(detDu)) = 0 a.e. on the set E = {x ∈ Ω : detDu(x) = 0} because h(detDu) =
h(0) a.e. on E. Therefore, D(h(detDu)) = 0 a.e. on the whole domain Ω; this proves
that h(detDu) is constant a.e. on Ω. �

2.2. The change of variables

The formal calculations leading to proposition 2.3 do not work for the C1 weak
solutions of equation (2.1); however, the same conclusion still holds, as has been
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On a class of special Euler–Lagrange equations 5

discussed in [8] without proof. We give a proof by choosing suitable test functions
based on change of variables.

Let us first recall the change of variables for general Sobolev functions; see, e.g.,
[14]. Let p > n and w ∈W 1,p(Ω; Rn); then w ∈ Cα

loc(Ω; Rn) with α = 1 − (n/p).
Let E be a measurable subset of Ω. Denote by N(w|E; y) the cardinality of the set
{x ∈ E : w(x) = y}. Then, for all measurable functions g : w(Ω) → R, the change
of variable formula:∫

E

g(w(x))|detDw(x)|dx =
∫

w(E)

g(y)N(w|E; y) dy (2.5)

is valid, whenever one of the two sides is meaningful (see [14, Theorem 2]).

Theorem 2.5. Let u ∈ C1(Ω; R2) be a weak solution of equation (2.1). Then
h(detDu) is constant on Ω.

Proof. Let E = {x ∈ Ω : detDu(x) = 0}, which is relatively closed in Ω. There is
nothing to prove if E = Ω; thus we assume Ω0 = Ω \ E �= ∅. Let C be a component
of the open set Ω0. Without loss of generality, we assume detDu > 0 on C. Let
x0 ∈ C and y0 = u(x0). Since y0 is a regular value of u, by the inverse function
theorem, there exists an open disc D = Bε(y0) such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
U = u−1(D) is a subdomain of C;
detDu > 0 on U ;
u : U → D is bijective with inverse v = u−1 : D → U ;
v ∈ C1(D; Rn).

Given any φ ∈ C1
c (D; Rn), the function ζ(x) = φ(u(x)) ∈ C1

c (U ; Rn) is a test func-
tion for (2.2) with Dζ(x) = Dφ(u(x))Du(x); thus, by the change of variables, we
obtain that

0 =
∫

Ω

h(detDu) cofDu : Dζ dx

=
∫

U

h(detDu(x)) cofDu(x) : Dφ(u(x))Du(x) dx

=
∫

U

h(detDu(x)) detDu(x) tr(Dφ(u(x))) dx

=
∫

D

h(detDu(v(y)) div φ(y) dy.

This holding for all φ ∈ C1
c (D; Rn) proves that h(detDu(v(y)) is constant on D;

hence h(detDu) is constant on U. Since C is connected and h is continuous, it
follows that h(detDu) is constant on the relative closure C̄ of C in Ω. If E = ∅,
we have C = Ω; hence, h(detDu) is constant on Ω. If E �= ∅, we have C̄ ∩ E �= ∅
and thus h(detDu) = h(0) on C̄, which proves that h(detDu) = h(0) on Ω0; hence
h(detDu) = h(0) on the whole Ω. �
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Corollary 2.6. Let u be a weak solution of equation (2.1). Then detDu is constant
almost everywhere on Ω if one of the following assumptions holds:

(a) u ∈ C1(Ω; Rn) and h is not constant on any intervals.

(b) u ∈W 1,p
loc (Ω; Rn), h(detDu) ∈W 1,p̄

loc (Ω), where n− 1 � p � ∞ and p̄ =
p/(p+ 1 − n) are given numbers, and h is one-to-one.

Proof. Assuming (a), by theorem 2.5, we have that h(detDu) = c is constant in
Ω and thus detDu(x) ∈ h−1(c). Since Ω is connected, detDu is continuous in Ω
and h−1(c) contains no intervals, it follows that detDu is constant in Ω. Assuming
(b), by proposition 2.4, we have that h(detDu) is constant a.e. on Ω. Since h is
one-to-one, it follows that detDu is constant a.e. on Ω. �

The following result applies to the weak solutions u of (2.1) such that u ∈
C1(Ω; Rn) or u ∈W 1,p

loc (Ω; Rn) with h(detDu) ∈W 1,p̄
loc (Ω) for some p � n and

p̄ = p/(p+ 1 − n).

Proposition 2.7. Assume h is nondecreasing and let f(t) =
∫ t

0
h(s) ds. Suppose

that u ∈W 1,n
loc (Ω; Rn) is a weak solution of (2.1) such that h(detDu) is constant

a.e. on Ω. Then for all subdomains G ⊂⊂ Ω, the inequality∫
G

f(detDu(x)) dx �
∫

G

f(detDv(x)) dx

holds for all v ∈W 1,n(G; Rn) satisfying v − u ∈W 1,n
0 (G; Rn).

Proof. Let h(detDu) = μ be a constant a.e. on Ω. Since f ′ = h is nondecreasing, it
follows that f is convex and thus f(t) � f(t0) + h(t0)(t− t0) for all t, t0 ∈ R. Let
v ∈W 1,n(G; Rn) satisfy v − u ∈W 1,n

0 (G; Rn). Then

f(detDv) � f(detDu) + μ(detDv − detDu) a.e. on Ω.

Integrating over G, since
∫

G
detDv =

∫
G

detDu, we have∫
G

f(detDv) �
∫

G

f(detDu) + μ

∫
G

(detDv − detDu) =
∫

G

f(detDu).

�

2.3. Weak solutions in W 1,p(Ω; R
n) for p � n

It remains open that whether weak solutions u ∈W 1,n
loc (Ω; Rn) of equation (2.1)

must have a constant h(detDu) a.e. on Ω without assuming h(detDu) ∈W 1,1
loc (Ω).

In fact, despite the example of very weak solutions in example 3.4, we do not know
whether a weak solution u ∈W 1,n

loc (Ω; Rn) of (2.1) satisfying h(detDu) ∈ Lq
loc(Ω)

for some q > 1 will have a constant h(detDu) a.e. on Ω.
However, we have some partial results. The following result concerns certain

homeomorphism weak solutions of equation (2.1).
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On a class of special Euler–Lagrange equations 7

Theorem 2.8. Assume h is nondecreasing. Let p > n, p̃ = p/(p− n), and let u ∈
W 1,p(Ω; Rn) be a weak solution of (2.1) with h(detDu) ∈ Lp̃(Ω) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u is one-to-one on Ω,
u(Ω) is a domain in R

n,

v = u−1 ∈ C(u(Ω); Rn) satisfies the LuzinN − property :
|v(B)| = 0 for all B ⊂ u(Ω) with |B| = 0.

(2.6)

Then h(detDu) is a constant a.e. on Ω.

Proof. Recall that div(cof(Du)) = 0. Without loss of generality, we assume
h(0) = 0; thus h(t)t = |h(t)t| � 0 for all t ∈ R. From the assumption, we have

h(detDu) cof Du ∈ Lp′
(Ω; Mn×n); p′ = p/(p− 1).

Let φ ∈ C1
c (u(Ω); Rn). Then ζ(x) = φ(u(x)) ∈W 1,p

0 (Ω; Rn) is a legitimate test func-
tion for (2.2). Since u is one-to-one on Ω, we have N(u|Ω; y) = 1 for all y ∈ u(Ω);
thus, by the change of variable formula (2.5), we obtain

0 =
∫

Ω

h(detDu) cofDu : Dζ dx

=
∫

Ω

h(detDu(x)) cofDu(x) : Dφ(u(x))Du(x) dx

=
∫

Ω

tr(Dφ(u(x)))h(detDu(x)) detDu(x) dx

=
∫

Ω

(div φ)(u(x))|h(detDu(v(u(x)))||detDu(x)|dx

=
∫

u(Ω)

div φ(y)|h(detDu(v(y))|N(u|Ω; y) dy

=
∫

u(Ω)

div φ(y)|h(detDu(v(y))|dy.

This holding for all φ ∈ C1
c (u(Ω); Rn) proves that |h(detDu(v(y))| is constant

a.e. on u(Ω); hence |h(detDu)| = λ is a constant a.e. on Ω. If λ = 0 then
h(detDu) = 0 a.e. on Ω. We now assume λ > 0. Let

Ω+={x ∈ Ω : h(detDu(x)) = λ}, Ω−={x ∈ Ω : h(detDu(x)) = −λ}.

Then |Ω+| + |Ω−| = |Ω|. Since λ > 0 and h is nondecreasing, we have detDu � 0
a.e. on Ω+ and detDu � 0 a.e. on Ω−. We claim that either |Ω+| = 0 or |Ω+| =
|Ω|, which proves the theorem. To prove the claim, we observe that, for all ζ ∈
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C1
c (Ω; Rn),

0 =
∫

Ω

h(detDu) cofDu : Dζ = λ

∫
Ω+

cofDu : Dζ − λ

∫
Ω−

cofDu : Dζ;

moreover,

0 =
∫

Ω

cofDu : Dζ =
∫

Ω+

cofDu : Dζ +
∫

Ω−
cofDu : Dζ,

and hence, ∫
Ω+

cofDu : Dζ dx = 0 ∀ ζ ∈ C1
c (Ω; Rn).

As above, we take ζ(x) = φ(u(x)) with arbitrary φ ∈ C1
c (u(Ω); Rn) to obtain

0 =
∫

Ω+

cofDu : Dζ dx =
∫

u(Ω+)

div φ(y) dy =
∫

u(Ω)

χu(Ω+)(y) div φ(y) dy.

Again, this holding for all φ ∈ C1
c (u(Ω); Rn) proves that χu(Ω+) is constant

a.e. on u(Ω); hence, either |u(Ω+)| = 0 or |u(Ω+)| = |u(Ω)|. If |u(Ω+)| = 0, then∫
Ω+

detDu dx = |u(Ω+)| = 0; thus detDu = 0 a.e. on Ω+, which proves |Ω+| = 0
because, otherwise, we would have λ = h(0) = 0. Similarly, if |u(Ω+)| = |u(Ω)| then
|Ω+| = |Ω|. This completes the proof. �

Remark 2.9. A sufficient condition for the invertibility of Sobolev functions has
been given in [1]. For example, suppose that Ω is a bounded Lipschitz domain
and u0 ∈ C(Ω̄; Rn) is such that u0 is one-to-one on Ω̄ and u0(Ω) satisfies the cone
condition. Then, condition (2.6) is satisfied provided that⎧⎪⎨

⎪⎩
u|∂Ω = u0,

detDu > 0 a.e. on Ω,∫
Ω
| cof Du|q(detDu)1−q dx <∞ for some q > n.

See [9] for recent studies and more references in this direction.

The following result concerns the weak solutions with certain linear Dirichlet
boundary conditions.

Proposition 2.10. Let h(0) = 0, p � n, p̃ = p/(p− n), and u ∈W 1,p(Ω; Rn) with
h(detDu) ∈ Lp̃(Ω) be a weak solution of (2.1) satisfying the Dirichlet boundary
condition u|∂Ω = Ax, where A ∈ M

n×n is given. Let

λ =
∫

Ω

h(detDu) detDu dx, B =
∫

Ω

h(detDu) cofDu dx.

Then BAT = λI. Moreover, if detA = 0 and h is one-to-one, then detDu = 0
a.e. on Ω, and thus B = 0.
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Proof. For P ∈ M
n×n, the function ζ(x) = P (u(x) −Ax) ∈W 1,p

0 (Ω; Rn) is a legit-
imate test function for (2.2), which, from Dζ = PDu− PA and cofDu : PDu =
(trP ) detDu, yields that

(trP )
∫

Ω

h(detDu) detDu dx =
∫

Ω

h(detDu) cofDu : PAdx.

This is simply (λI −BAT ) : P = 0. Since P ∈ M
n×n is arbitrary, we have BAT =

λI. If detA = 0, then λ = 0. Furthermore, if h is one-to-one, then λ = 0 implies
detDu = 0 a.e. on Ω and thus B = 0. �

Remark 2.11.

(i) Assume h(0) = 0 and h is one-to-one. If detA �= 0, then B = μh(detA) cof A,
where μ = λ/h(detA) detA > 0. It remains open whether μ = 1. Note that if
μ �= 1 then detDu cannot be a constant a.e. on Ω.

(ii) There are many (very) weak solutions u ∈W 1,p(Ω; Rn) of equation (2.1) sat-
isfying u|∂Ω = Ax for some p < n such that detDu is not constant a.e. on Ω.
See example 3.4.

3. Radially symmetric solutions

Let B = B1(0) be the open unit ball in R
n. We consider the radially symmetric or

radial functions

u(x) = φ(|x|)x, (3.1)

where φ : (0, 1) → R is weakly differentiable. With r = |x| and ω = x/|x|, we have

⎧⎪⎨
⎪⎩
Du(x) = φ(r)I + rφ′(r)ω ⊗ ω,

detDu(x) = φ(r)n + rφ′(r)φ(r)n−1,

cofDu(x) = α(r)I + β(r)ω ⊗ ω,

(3.2)

for a.e.x ∈ B, where α(r) = φn−1 + rφn−2φ′ and β(r) = −rφn−2φ′.

3.1. Some properties of radial functions

We study some properties of radial functions pertaining to equation (2.1).

Lemma 3.1. Let p � 1 and v ∈ Lp
loc(B \ {0}). Define ṽ = M(v) : (0, 1) → R by

setting

ṽ(r) = M(v)(r) =
∫
−

Sr

v(x) dσr =
1
ωn

∫
S1

v(rω) dσ1, (3.3)

where Sr = ∂Br(0), dσr = dHn−1 denotes the (n− 1)-Hausdorff measure on Sr,
and ωn = Hn−1(S1). Then ṽ ∈ Lp

loc(0, 1). Furthermore, if v ∈W 1,p
loc (B \ {0}), then
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ṽ ∈W 1,p
loc (0, 1) with

ṽ′(r) = 1/ωn

∫
S1

Dv(rω) · ω dσ1 = r−1M(Dv · x)(r) a.e. r ∈ (0, 1).

Since W 1,p
loc (0, 1) ⊂ C(0, 1), ṽ can be identified as a continuous function in (0, 1) if

v ∈W 1,p
loc (B \ {0}).

Proof. Note that

|ṽ(r)| �
∫
−

Sr

|v|dσr �
(∫
−

Sr

|v|p dσr

)1/p

.

Thus, for all 0 < a < b < 1,

∫ b

a

ωnr
n−1|ṽ|p dr �

∫ b

a

(∫
Sr

|v|p dσr

)
dr =

∫
a<|x|<b

|v(x)|p dx <∞.

This proves ṽ ∈ Lp
loc(0, 1). Now assume v ∈W 1,p

loc (B \ {0}) and let

g(r) = 1/ωn

∫
S1

Dv(rω) · ω dσ1 = r−1M(Dv · x)(r) ∈ Lp
loc(0, 1).

Let 0 < a < b < 1 and η ∈ C∞
c (a, b). Then

∫ b

a

ṽ(r)η′(r) dr =
1
ωn

∫ b

a

r1−nη′(r)
( ∫

Sr

v dσr

)
dr

=
1
ωn

∫
a<|x|<b

|x|1−nη′(|x|)v(x) dx

=
1
ωn

∫
a<|x|<b

D(η(|x|)) · (v|x|−nx) dx

= − 1
ωn

∫
a<|x|<b

η(|x|) div(v|x|−nx) dx

= − 1
ωn

∫
a<|x|<b

η(|x|)Dv · (|x|−nx) dx

= − 1
ωn

∫ b

a

η(r)r−n
(∫

Sr

Dv(x) · xdσr

)
dr = −

∫ b

a

g(r)η(r) dr.

This proves g = ṽ′. �
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Proposition 3.2. Assume φ ∈W 1,1
loc (0, 1) and u(x) = φ(|x|)x. Let p � 1 and p′ =

p/(p− 1). Suppose that q(r) is a measurable function on (0, 1) such that

q(|x|) cof Du ∈ Lp
loc(B \ {0}). (3.4)

Then, for all 0 < a < b < 1 and v ∈W 1,p′
loc (B; Rn), it follows that∫

a<|x|<b

q(|x|) cof Du : Dv dx = ωn

∫ b

a

q(r)(rn−2φn−1ψ)′ dr, (3.5)

where ψ(r) = M(v · x)(r) = r/ωn

∫
S1
v(rω) · ω dσ1.

Proof. Note that q(|x|) cof Du : Dv ∈ L1
loc(B \ {0}). Since cofDu : Dv = α(r) div v +

β(r)Dv : (ω ⊗ ω), we have∫
a<|x|<b

q(|x|) cof Du : Dv dx =
∫ b

a

( ∫
Sr

q(|x|) cof Du : Dv dσr

)
dr

=
∫ b

a

q(r)
(
α(r)

∫
Sr

div v dσr

+ β(r)
∫

Sr

Dv : (ω ⊗ ω) dσr

)
dr. (3.6)

We now compute the two spherical integrals. First, for all a < t < 1, by the
divergence theorem,∫ t

a

∫
Sr

div v dσr dr =
∫

a<|x|<t

div v dx

=
∫

St

v · x
t

dσt −
∫

Sa

v · x
a

dσa = ωnt
n−2ψ(t) − ωna

n−2ψ(a).

Hence ∫
Sr

div v dσr = ωn(rn−2ψ(r))′ a.e. r ∈ (0, 1).

Second, since D(v · x) · x = Dv : (x⊗ x) + v · x, we have

ψ′(r) = r−1M(D(v · x) · x) = r−1M(Dv : (x⊗ x)) + r−1M(v · x).
Thus M(Dv : (x⊗ x)) = rψ′ − ψ and hence∫

Sr

Dv : (ω ⊗ ω) dσr = ωnr
n−3M(Dv : (x⊗ x)) = ωnr

n−2ψ′ − ωnr
n−3ψ

= ωn(rn−2ψ)′ − (n− 1)ωnr
n−3ψ.

Since α+ β = φn−1 and β = −rφn−2φ′, elementary computations lead to

α(r)
∫

Sr

div v dσr + β(r)
∫

Sr

Dv : (ω ⊗ ω) dσr

= ωnα(rn−2ψ)′ + ωnβ[(rn−2ψ)′ − (n− 1)rn−3ψ] = ωn(φn−1rn−2ψ)′

for a.e. r ∈ (0, 1). Finally, (3.5) follows from (3.6). �
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Theorem 3.3. Assume h ∈ C(R) is one-to-one, p � n/(n− 1) and φ ∈W 1,p
loc (0, 1).

Let u(x) = φ(|x|)x be a weak solution of (2.1) such that

h(detDu) cof Du ∈ L
p/(p−1)
loc (B; Mn×n). (3.7)

Then either φ ≡ 0, or

φ(r) =
(
λ+

c

rn

)1/n

�= 0 ∀ 0 < r < 1,

where λ and c are constants. (When n is even, we need λ+ c/(rn) > 0 in (0, 1)
and there are two nonzero branches of the nth roots.)

Proof. Let S = {r ∈ (0, 1) : φ(r) �= 0}; then S is open. If S = ∅, then φ ≡ 0. Assume
S is nonempty. Let (a, b) be a component of S. Let η(r) ∈ C∞

c (0, 1) be any function
with compact support contained in (a, b). Define the radial function

ζ(x) =

⎧⎨
⎩

η(r)
rnφ(r)n−1

x if r = |x| ∈ (a, b),

0 otherwise.

Then ζ ∈W 1,p(B; Rn) with supp ζ ⊂ {a < |x| < b}. Let ψ = M(ζ · x); then
rn−2φn−1ψ = η. Let detDu = φn + rφ′φn−1 =: d(r). By assumption (3.7), ζ is a
legitimate test function for equation (2.1); thus, by (3.5), we obtain that

0 =
∫

B

h(detDu) cofDu : Dζ dx

=
∫ b

a

h(d(r))(rn−2φn−1ψ)′ dr =
∫ b

a

h(d(r))η′(r)dr.

This holds for all η ∈ C∞
c (a, b); thus h(d(r)) is constant a.e. in (a, b). As h is one-to-

one, we have that d(r) is constant a.e. in (a, b). Assume d(r) = φn + rφ′φn−1 = λ
in (a, b). Solving the differential equation we obtain that

φ(r) �= 0, φ(r) =
(
λ+

c

rn

)1/n

(a < r < b).

If one of a and b is inside (0, 1), then φ = 0 at this point; but in this case, φ /∈
W 1,q

loc (0, 1) for any q � n/n− 1. So (a, b) = (0, 1); this completes the proof. �

3.2. Very weak solutions

We consider some examples of (very) weak solutions of (2.1) in W 1,p(B; Rn) with
p < n/n− 1.
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Example 3.4. Let n � 2, 0 < a � b < 1 and λ1 �= λ2. Let u = φ(|x|)x, where

φ(r) =

⎧⎪⎨
⎪⎩

[λ1(rn − an)]1/n/r (0 < r � a),
0 (a < r � b),
[λ2(rn − bn)]1/n/r (b < r � 1).

(3.8)

Then u ∈W 1,p(B; Rn) for all 1 � p < n/(n− 1) and u is a weak solution of equation
(2.1) in B satisfying the Dirichlet boundary condition

u|∂B = Ax = [λ2(1 − bn)]1/nx,

but detDu is not a constant on B. Moreover, if λ2 = 0, then uχB is a weak solution
of (2.1) on the whole R

n; namely,∫
B

h(detDu) cofDu : Dζ = 0 ∀ ζ ∈ C1(Rn; Rn). (3.9)

Proof. If λ1 = 0, then only Du blows up at r = |x| = b, with |Du(x)| ≈ |φ′(r)| ≈
|r − b|1/(n)−1 and | cofDu(x)| ≈ |φ(r)|n−2|φ′(r)| ≈ |r − b|−1/n near r = b. Hence, in
this case, u ∈W 1,p(B; Rn) for 1 � p < n/(n− 1) and cofDu ∈ Lq(B; Mn×n) for all
1 � q < n.

If λ1 �= 0, then u and Du also blow up at x = 0 and Du blows up at r = a and
r = b. In this case, the similar blow-up estimates show that u ∈W 1,p(B; Rn) and
cofDu ∈ Lp(B; Mn×n) for 1 � p < n/(n− 1).

Hence, in all cases, u ∈W 1,p(B; Rn) and h(detDu) cofDu ∈ Lp(B; Mn×n)
for all 1 � p < n/(n− 1). Given any ζ ∈ C1(Rn; Rn), let ψ(t) = M(ζ · x)(t) =
t/ωn

∫
S1
ζ(tω) · ω dσ1. Then

lim
t→0+

(t−1ψ(t)) = lim
t→0+

1
ωn

∫
S1

ζ(tω) · ω dσ1 = 0.

By proposition 3.2, we have∫
B

h(detDu) cofDu : Dζ = lim
t→0+

∫
t<|x|<1

h(detDu) cofDu : Dζ

= h(λ1) lim
t→0+

∫
t<|x|<a

cofDu : Dζ

+ h(λ2)
∫

b<|x|<1

cofDu : Dζ

= −ωnh(λ1) lim
t→0+

tn−2φ(t)n−1ψ(t)

+ ωnh(λ2)(tn−2φ(t)n−1ψ(t))|1b
= ωnh(λ2)φ(1)n−1ψ(1).

If ζ ∈ C1
c (B; Rn), then ψ(1) = 0; this proves that u is a weak solution of (2.1).

Moreover, if λ2 = 0 then φ(1) = 0; in this case, we obtain (3.9). �

https://doi.org/10.1017/prm.2023.97 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.97


14 B. Yan

Example 3.5. Let Ω be any bounded domain in R
n, {B̄ri

(ci)}∞i=1 be a family of
disjoint-closed balls in Ω, and ui(x) = φi(|x|)x be the radial function on B = B1(0),
where φi(r) is defined by (3.8) with λ1 = ti �= 0, a = ai ∈ (0, 1) and λ2 = 0. By
choosing suitable ti and ai, we assume

‖ui‖W 1,p(B) + ‖ cofDui‖Lp(B) � M ∀ i = 1, 2, · · ·
for some constants M > 0 and 1 � p < n/(n− 1). Define

u(x) =

{
riui(x−ci

ri
) x ∈ Bi = Bri

(ci),
0 x ∈ Ω \ ∪∞

i=1Bi.

Then u ∈W 1,p(Ω; Rn), cofDu ∈ Lp(Ω; Mn×n) and |{x ∈ Ω : detDu(x) = ti}| �
an

i |Bi| (with equality holding if ti �= tj for all i �= j).
Moreover, u is a weak solution of (2.1) on Ω; in fact, uχΩ is a weak solution of

(2.1) on R
n. To see this, given any ζ ∈ C1(Rn; Rn), we observe that∫

Ω

h(detDu) cofDu : Dζ dx =
∞∑

i=1

∫
Bi

h(detDu) cofDu : Dζ dx

=
∞∑

i=1

rn
i

∫
B

h(detDui(z)) cofDui(z) :

(Dζ)(ci + riz) dz

=
∞∑

i=1

∫
B

h(detDui(z)) cof Dui(z) : Dζi(z) dz = 0,

where ζi(z) = rn−1
i ζ(ci + riz) ∈ C1(Rn; Rn). By (3.9), we have∫

B

h(detDui(z)) cof Dui(z) : Dζi(z) dz = 0 ∀ i = 1, 2, · · · .

Hence
∫
Ω
h(detDu) cofDu : Dζ dx = 0 for all ζ ∈ C1(Rn; Rn).

3.3. Non-quasimonotonicity

Quasimonotonicity is an important condition related to the existence and regu-
larity of weak solutions of certain systems of partial differential equations; see [2,
6, 7, 10, 11, 21].

Definition 3.6. A function σ : M
n×n → M

n×n is said to be quasimonotone at A ∈
M

n×n provided that∫
Ω

σ(A+Dφ(x)) : Dφ(x) dx � 0 ∀ φ ∈ C1
c (Ω; Rn).

(This condition is independent of the domain Ω.)

We have the following result, which holds for the model case h(t) = t; the result
also holds for a more general class of functions including h(t) = et, but we do not
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intend to dwell on the generality. There are other examples of quasiconvex functions
whose gradient map is not quasimonotone; see [2, 7].

Theorem 3.7. Let n � 2 and h ∈ C1(R) be such that

λtk1 � h′(t) � Λ(tk2 + 1) ∀ t � 0, (3.10)

where Λ > λ > 0, k1 and k2 are constants such that 0 � k1 � k2 < k1 + 1. Then
σ(A) = h(detA) cof A is not quasimonotone at I ∈ M

n×n.

Proof. Let Ω be the unit ball in R
n. We show that there exists a radial function

φ(x) = ρ(|x|)x, where ρ ∈W 1,∞(0, 1) with ρ(1) = 0, such that∫
Ω

σ(I +Dφ(x)) : Dφ(x) dx < 0. (3.11)

Using the spherical coordinates, we compute that∫
Ω

σ(I +Dφ(x)) : Dφ(x) dx = ωn

∫ 1

0

P (r) dr,

where

P (r) = h
(
(1 + ρ)n + (1 + ρ)n−1ρ′r

)(
nρ(1 + ρ)n−1 + (1 + nρ)(1 + ρ)n−2ρ′r

)
rn−1

= h(A+B)(C +D),

with A = (1 + ρ)n, B = (1 + ρ)n−1ρ′r, C = nρ(1 + ρ)n−1rn−1 and D = (1 + nρ)
(1 + ρ)n−2ρ′rn. We write h(A+B) = h(A+B) − h(A) + h(A) = EB + h(A),
where

E =
∫ 1

0

h′(A+ tB) dt.

Thus P = EBC + EBD + h(A)C + h(A)D.
Let 0 < a < 1 be fixed and b = a− ε with 0 < ε < a sufficiently small. Define

ρ = ρε(r) =

⎧⎪⎨
⎪⎩
−1, 0 � r � b,
n−1
nε (r − a) − 1

n , b � r � a,
1

n(1−a) (r − 1), a � r � 1.
(3.12)

(See Fig. 1.) Then, with P (r) = Pε(r), we have∫ 1

0

Pε(r) dr =
∫ a

b

P (r) dr +
∫ 1

a

P (r) dr,
∣∣∣ ∫ 1

a

P (r) dr
∣∣∣ � M1, (3.13)

where M1 (likewise, each of the Mk’s below) is a positive constant independent of
ε. For all b < r < a we have ρ′ = (n− 1)/nε, nρ+ 1 = (n− 1)/ε(r − a) and ρ+ 1 =
(n− 1/nε(r − b). Hence 0 < A < 1 and B > 0 on (b, a); moreover,∣∣∣ ∫ a

b

(
h(A)C + h(A)D

)
dr

∣∣∣ � M2. (3.14)
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Figure 1. The graph of ρ = ρε(r), where 0 < a < 1 is fixed and b = a − ε with ε ∈ (0, a)
sufficiently small.

Moreover,

λ

∫ 1

0

(A+ tB)k1 dt � E � Λ
(

1 +
∫ 1

0

(A+ tB)k2 dt
)
.

Since ∫ 1

0

(A+ tB)k dt = ε−k

∫ 1

0

(
εA+ (1 + ρ)n−1n− 1

n
rt

)k dt,

it follows that for all k � 0

M3ε
−k(1 + ρ)k(n−1)rk �

∫ 1

0

(A+ tB)k dt � M4ε
−k.

Thus ∣∣∣ ∫ a

b

EBC dr
∣∣∣ � M5(1 + ε−k2). (3.15)

Since BD � 0 on (b, a), we have∫ a

b

EBD dr � λ

∫ a

b

M3ε
−k1(1 + ρ)k1(n−1)rk1BD dr

= λM3ε
−k1

∫ a

b

(1 + ρ)k1(n−1)+2n−3(nρ+ 1)ρ′2rk1+n+1 dr

� bk1+n+1M6

ε2n+k1n

∫ a

b

(r − b)k1(n−1)+2n−3(r − a) dr = −M7ε
−k1−1.

This, combined with (3.13)–(3.15), proves that

lim
ε→0+

(
εk2

∫ 1

0

Pε(r) dr
)

� lim
ε→0+

(M5 −M7ε
k2−k1−1) = −∞.

Consequently,
∫ 1

0
Pε(r) dr < 0 if ε ∈ (0, a) is sufficiently small; this establishes

(3.11). �
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4. The two-dimensional case

The rest of the paper is devoted to the study of certain exact and certain
approximate Lipschitz solutions of Euler–Lagrange equation (2.1) in the 2-D case.
Throughout this section, upon replacing h(t) by h(t) − h(0), we shall always assume
h ∈ C(R) and h(0) = 0.

It is well-known [8, 13] that u ∈W 1,∞
loc (Ω; R2) is a Lipschitz weak solution of

equation (2.1) if and only if there exists a function v ∈W 1,∞
loc (Ω; R2) such that

the function U = (u, v) : Ω → R
4 is a solution of the first-order partial differential

relation:

DU(x) ∈ K =
{[

A
h(detA)JA

]
: A ∈ M

2×2

}
a.e. in Ω, (4.1)

where J =
[
0 −1
1 0

]
; note that cof A = −JAJ for all A ∈ M

2×2. In general, if U =

(u, v) ∈W 1,1
loc (Ω; R4) is a solution of relation (4.1), then we have h(detDu) cofDu =

−DvJ a.e. on Ω and thus u is a weak solution of (2.1). Let W = (u, −Jv) for
U = (u, v) : Ω → R

4. Then relation (4.1) is equivalent to the relation:

DW (x) ∈ K =
{[

A
h(detA)A

]
: A ∈ M

2×2

}
a.e. in Ω. (4.2)

We focus on certain exact and approximate Lipschitz solutions to relation (4.2).
Recall that in studying a general partial differential relation of the form

Dφ(x) ∈ S a.e. in Ω, (4.3)

where Ω ⊂ R
n, φ : Ω → R

m and S ⊂ M
m×n, various semi-convex hulls of the set S

play an important role; we refer to [4, 8] for the definitions and further properties
of these semi-convex hulls. In particular, the quasiconvex hull Sqc of S can be
equivalently defined as follows.

Definition 4.1. A matrix ξ ∈ M
m×n belongs to Sqc if and only if there exists a

uniformly bounded sequence {φj} in W 1,∞(Ω; Rm) such that φj |∂Ω = ξx and

lim
j→∞

∫
Ω

dist(Dφj ,S) dx = 0, (4.4)

where Ω is any fixed bounded Lipschitz domain in R
n and dist(η, S) is the distance

from η ∈ M
m×n to the set S.

Remark 4.2.

(i) If {φj} is uniformly bounded in W 1,∞(Ω; Rm) and satisfies (4.4), then it is
easily shown that

∫
Ω
H(Dφj) dx→ 0 as j → ∞ for all nonnegative continuous

functions H on M
m×n that vanish on S.

(ii) Any sequence {φj} in W 1,1(Ω; Rm) satisfying (4.4) is called an approximate
sequence of relation (4.3). We say that relation (4.3) is stable if the limit of
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every weakly* convergent approximate sequence in W 1,∞(Ω; Rm) is a solu-
tion of the relation. We say that (4.3) is rigid if every weakly* convergent
approximate sequence in W 1,∞(Ω; Rm) converges strongly in W 1,p

loc (Ω; Rm) for
all 1 � p <∞.

(iii) It is known that the stability of (4.3) is equivalent to the equality Sqc = S,
while the rigidity involves much stronger conditions on the set S that cannot
be generally given but can only be studied individually for a given problem.

4.1. Some algebraic restrictions on Kqc

Let K be the set defined in (4.2). In the model case when h(t) = t, it has been
proved in [8] that the rank-one convex hull Krc = K; therefore, the set K does
not support any open structures of TN -configurations [8, 18], which makes the
construction of counterexamples in [13, 16, 20] impossible by using such a set K.

The following result gives some algebraic restrictions on Kqc for the set K.

Proposition 4.3. Assume h is one-to-one. Let
[
A
B

]
∈ Kqc. Then B = μh(detA)A

for some μ > 0; in particular, B = 0 if detA = 0.

Proof. Let {un} and {vn} be uniformly bounded in W 1,∞(Ω; R2) such that

un|∂Ω = Ax, vn|∂Ω = Bx, lim
n→∞

∫
Ω

dist
([
Dun

Dvn

]
,K

)
dx = 0. (4.5)

In what follows, for any two vectors χ1 and χ2 in R
2, we define χ1 ∧ χ2 =

detX, where X is the matrix in M
2×2 having χ1 and χ2 as its first and

second rows. For η ∈ M
4×2, let ηi ∈ R

2 be its ith row vector for 1 � i � 4. Con-
sider functions:H1(η) = |h(η1 ∧ η2)(η1 ∧ η2) − (η1 ∧ η4)|,H2(η) = |h(η1 ∧ η2)(η1 ∧
η2) − (η3 ∧ η2)|, and H3(η) = |η1 ∧ η3| + |η2 ∧ η4|; they are all nonnegative contin-
uous and vanish on the set K. By (4.5) and remark 4.2(i), we have

lim
n→∞

∫
Ω

|h(detDun)Dun −Dvn|dx = 0,

lim
n→∞

∫
Ω

|h(α1
n ∧ α2

n)(α1
n ∧ α2

n) − α1
n ∧ β2

n|dx = 0,

lim
n→∞

∫
Ω

|h(α1
n ∧ α2

n)(α1
n ∧ α2

n) − β1
n ∧ α2

n|dx = 0,

lim
n→∞

∫
Ω

(|α1
n ∧ β1

n| + |α2
n ∧ β2

n|) dx = 0, (4.6)

where αi
n and βi

n are the ith row of Dun and Dvn, respectively, for i = 1, 2. Let
αi and βi be the ith row of A and B, respectively, for i = 1, 2. Then, by the
boundary conditions in (4.5) and the null-Lagrangian property of 2 × 2 minors, we
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have
∫
Ω
αi

n ∧ βk
n dx = (αi ∧ βk)|Ω| for i, k = 1, 2. Thus, it follows from (4.6) that

α1 ∧ β1 = α2 ∧ β2 = 0, β1 ∧ α2 = α1 ∧ β2 = λ, (4.7)

where

λ = lim
n→∞

∫
−

Ω

h(α1
n ∧ α2

n)(α1
n ∧ α2

n) dx.

Case 1: λ = 0. Since h(0) = 0 and h is one-to-one, we have that either h(t)t > 0
for all t �= 0 or h(t)t < 0 for all t �= 0. In this case,

lim
n→∞

∫
−

Ω

|h(α1
n ∧ α2

n)(α1
n ∧ α2

n)|dx = |λ| = 0.

Via a subsequence of n→ ∞, we have h(α1
n ∧ α2

n)(α1
n ∧ α2

n) → 0; thus α1
n ∧

α2
n = detDun → 0 a.e. on Ω. Hence detA = 1/|Ω| ∫

Ω
detDun → 0 and detA = 0.

Moreover, since h(detDun) → 0 a.e. on Ω, we have

|B| = lim
n→∞

∣∣∣∫−
Ω

Dvn dx
∣∣∣ � lim

n→∞

∫
−

Ω

|h(detDun)Dun −Dvn|dx = 0.

So, in this case, we have detA = 0, B = 0, and thus B = μh(detA)A for all μ > 0.
Case 2: λ �= 0. In this case, by (4.7), both α1 and α2 are nonzero, and

we have β1 = tα1 and β2 = sα2 for some constants t, s ∈ R; thus α1 ∧ β2 =
β1 ∧ α2 = tα1 ∧ α2 = sα1 ∧ α2 = λ �= 0. It follows that detA = α1 ∧ α2 �= 0 and
t = s = λ/detA. Therefore, in this case, we have B = tA = μh(detA)A, where
μ = λ/h(detA) detA > 0, because the signs of h(t)t and λ are the same for all
t �= 0.

Finally, from the two cases above, we see that detA = 0 if and only if λ = 0.
Thus B = 0 if detA = 0. �

The quasiconvex hull Kqc would be completely determined if, for given detA �= 0
and positive μ �= 1, we know whether there exist sequences {un} and {vn} uniformly
bounded in W 1,∞(Ω; R2) such that⎧⎨

⎩ lim
n→∞

∫
Ω

|h(detDun)Dun −Dvn|dx = 0,

un(x)|∂Ω = Ax, vn(x)|∂Ω = μh(detA)Ax.
(4.8)

However, a complete answer to this question is at present out of reach. In the final
two remaining subsections, we discuss some related partial results.

4.2. A related Dirichlet problem

Assume h is one-to-one. Let detA �= 0 and μ > 0. Closely related to the
approximation problem (4.8), we study the exact Dirichlet problem:{

h(detDu)Du = Dv a.e. Ω,
u(x)|∂Ω = Ax, v(x)|∂Ω = μh(detA)Ax.

(4.9)

The main question is whether (4.9) has a Lipschitz solution for positive μ �= 1.
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Remark 4.4. Let Ω be the unit open disc in R
2. Given any μ > 1, let λ > 1 be the

unique number such that h(λ) = μh(1). Define the radial functions u(x) = φ(|x|)x
and v(x) = h(λ)u(x), where

φ(r) =

⎧⎪⎨
⎪⎩

0 if 0 � r �
√

λ−1
λ ,√

λ− λ−1
r2 if

√
λ−1

λ � r � 1.

It follows from example 3.4 that (u, v) ∈ C(Ω̄; R4) ∩W 1,p(Ω; R4) for all 1 � p < 2
and is a solution of (4.9) with A = I, but (u, v) /∈W 1,p(Ω; R4) for any p � 2.

However, it remains open whether problem (4.9) has a Lipschitz or even a
W 1,2(Ω; R4) solution (u, v) for some positive μ �= 1.

We have the following partial result.

Theorem 4.5. Assume h is one-to-one and detA �= 0. Let μ > 0 and suppose that
(u, v) : Ω̄ → R

4 is a Lipschitz solution to problem (4.9) such that (detA)detDu � 0
a.e. in Ω. Then, detDu = detA a.e. on Ω, μ = 1, and v = h(detA)u on Ω̄.

Proof. Write g = h(detDu). Since gDu = Dv, we have

g2 detDu = detDv, 2g detDu = Dv : cofDu a.e. Ω.

Integrating over Ω and using the null-Lagrangian property of 2 × 2 minors, we have∫
−

Ω

detDu = detA,
∫
−

Ω

g detDu = μh(detA) detA,
∫
−

Ω

g2 detDu = (μh(detA))2 detA,

and thus∫
Ω

(g − μh(detA))2(detA)detDu dx

= (detA)
∫

Ω

(
g2 detDu− 2μh(detA)g detDu+ (μh(detA))2 detDu

)
dx = 0.

Since (detA)detDu � 0 a.e. in Ω, it follows that g = h(detDu) = μh(detA)
a.e. on the set E = {x ∈ Ω : (detA) detDu(x) > 0}. As h is one-to-one, we have
detDu = λχE , where λ �= 0 is the unique number such that h(λ) = μh(detA).
Thus Dv = h(λ)(Du)χE and detDv = (h(λ))2λχE . Let ṽ(x) = Pv(x), where P =
diag(1, 1/(h(λ))2λ) is a diagonal matrix. Then ṽ is Lipschitz on Ω, Dṽ =
h(λ)P (Du)χE , and detDṽ = χE ; thus,

|Dṽ(x)|2 � LdetDṽ(x) a.e. on Ω,

where L = ‖Dṽ‖2
L∞(Ω). Since detDu = λχE , we have λ|E| =

∫
Ω

detDu =
|Ω|detA �= 0; thus |E| > 0. Hence ṽ is not constant on Ω. This proves that ṽ
is a non-constant L-quasiregular map on Ω. It is well-known (see [12, 15]) that
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any non-constant L-quasiregular mapping cannot have its Jacobian determinant
equal to zero on a set of positive measure; hence |Ω \ E| = 0, which implies
that detDu = λ, h(λ)Du = Dv a.e. on Ω, and λ = 1/|Ω| ∫

Ω
detDu = detA. Thus,

from h(λ) = μh(detA), we have μ = 1. Finally, since Dv = h(λ)Du a.e. on Ω and
v = h(λ)u on ∂Ω, it follows that v = h(λ)u on Ω̄. �

4.3. Stability of certain restricted subsets of K
We now study some restricted subsets of K that are more suitable for problems

in nonlinear elasticity. For each ε > 0, let

Kε =
{[

A
h(detA)A

]
: A ∈ M

2×2, detA � ε

}
. (4.10)

Theorem 4.6. Let h be one-to-one. Then Kqc
ε = Kε for all ε > 0.

Proof. Let
[
A
B

]
∈ Kqc

ε . Then there exist sequences {un} and {vn} uniformly

bounded in W 1,∞(Ω; R2) such that

un|∂Ω = Ax, vn|∂Ω = Bx, lim
n→∞

∫
Ω

dist
([
Dun

Dvn

]
,Kε

)
dx = 0. (4.11)

Since Kε is closed, it follows that there exist measurable functions An : Ω → M
2×2

with detAn(x) � ε a.e.x ∈ Ω such that

dist
([
Dun

Dvn

]
,Kε

)
=

[|Dun −An|2 + |Dvn − h(detAn)An|2
]1/2

.

It is easily seen that {An} is uniformly bounded in L∞(Ω; M2×2). Thus, we have

detA = lim
n→∞

∫
−

Ω

detDun dx = lim
n→∞

∫
−

Ω

detAn dx � ε,

lim
n→∞

∫
Ω

|h(detDun)Dun −Dvn|dx = 0. (4.12)

By proposition 4.3, we have B = tA for some number t. Note that
1/|Ω| ∫

Ω
detDun = detA and, as in the proof of proposition 4.3,

lim
n→∞

∫
−

Ω

h(detDun) detDun dx = tdetA;

furthermore,

lim
n→∞

∫
−

Ω

(h(detDun))2 detDun dx = lim
n→∞

∫
−

Ω

detDvn dx = t2 detA.

Hence

lim
n→∞

∫
−

Ω

(h(detDun) − t)2 detAn dx = lim
n→∞

∫
−

Ω

(h(detDun) − t)2 detDun dx = 0.
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Since detAn � ε, we obtain

lim
n→∞

∫
−

Ω

(h(detDun) − t)2 dx = 0,

Via a subsequence nj → ∞, we have h(detDunj
(x)) → t for a.e.x ∈ Ω. Since h is

continuous and one-to-one, this implies detDunj
(x) → h−1(t) for a.e.x ∈ Ω. Thus,

detA =
∫
−

Ω

detDunj
(x) dx→ h−1(t)

and t = h(detA). This proves B = h(detA)A; thus
[
A
B

]
∈ Kε, as detA � ε. �

Proposition 4.7. Let h be one-to-one. Suppose that sequences {un} and {vn}
converge weakly* to ū and v̄ in W 1,∞(Ω; R2) as n→ ∞, respectively, and satisfy

lim
n→∞

∫
Ω

dist
([
Dun

Dvn

]
,Kε

)
dx = 0. (4.13)

Then
[
Dū(x)
Dv̄(x)

]
∈ Kε for a.e.x ∈ Ω; moreover, detDun → detDū strongly in Lp(Ω)

for all 1 � p <∞.

Proof. Note that the stated inclusion follows from theorem 4.6 by a general theorem
on quasiconvex hulls; however, we give a direct proof without using such a result.
As in the proof of theorem 4.6, let {An} be a uniformly bounded sequence in
L∞(Ω; M2×2) with detAn(x) � ε for a.e.x ∈ Ω such that

lim
n→∞

∫
Ω

[|Dun −An|2 + |Dvn − h(detAn)An|2
]1/2

dx = 0. (4.14)

Thus, for all measurable sets E ⊂ Ω,

∫
E

detDū dx = lim
n→∞

∫
E

detDun dx = lim
n→∞

∫
E

detAn dx � ε|E|.

From this it follows that

detDū(x) � ε a.e. x ∈ Ω.

As before, let αi and βi be the ith row of Dū and Dv̄, respectively, and let αi
n

and βi
n be the ith row of Dun and Dvn, respectively, for i = 1, 2. Then all the

limits listed in (4.6) above still hold. By the weak* convergence of minors, for all
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measurable sets E ⊂ Ω, we have∣∣∣ ∫
E

α1 ∧ β1
∣∣∣ =

∣∣∣ lim
n→∞

∫
E

α1
n ∧ β1

n

∣∣∣ � lim
n→∞

∫
Ω

|α1
n ∧ β1

n| = 0,

and similarly, ∣∣∣ ∫
E

α2 ∧ β2
∣∣∣ � lim

n→∞

∫
Ω

|α2
n ∧ β2

n| = 0,

∣∣∣ ∫
E

(α1 ∧ β2 − β1 ∧ α2)
∣∣∣ � lim

n→∞

∫
Ω

|α1
n ∧ β2

n − β1
n ∧ α2

n| = 0.

So α1 ∧ β1 = α2 ∧ β2 = 0 and α1 ∧ β2 = β1 ∧ α2 a.e. on Ω. Since α1 ∧ α2 =
detDū � ε, it follows that β1 = gα1 and β2 = gα2, where g = α1 ∧ β2/α1 ∧ α2 ∈
L∞(Ω). Again by (4.6) and the weak* convergence of 2 × 2 minors, we have

lim
n→∞

∫
Ω

g2 detDun dx =
∫

Ω

g2 detDū dx,

lim
n→∞

∫
Ω

gh(detDun) detDun dx = lim
n→∞

∫
Ω

gβ1
n ∧ α2

n dx =
∫

Ω

g2 detDū dx,

lim
n→∞

∫
Ω

(h(detDun))2 detDun dx = lim
n→∞

∫
Ω

detDvn dx =
∫

Ω

g2 detDū dx.

Therefore,

lim
n→∞

∫
Ω

(h(detDun) − g)2 detAn dx = lim
n→∞

∫
Ω

(h(detDun) − g)2 detDun dx = 0.

Since detAn � ε, it follows that h(detDun) → g strongly in L2(Ω). We assume,
along a subsequence nj → ∞, that h(detDunj

(x)) → g(x) for a.e.x ∈ Ω. Since h is
continuous and one-to-one, we have detDunj

(x) → h−1(g(x)) for a.e.x ∈ Ω. But,
since detDun ⇀ detDū weakly* in L∞(Ω), it follows that h−1(g(x)) = detDū(x)
a.e.x ∈ Ω, which proves g = h(detDū) and hence Dv̄ = h(detDū)Dū. Finally, the
strong convergence of h(detDun) → h(detDū) in L2(Ω) and the weak* convergence
of {un} and {vn} in W 1,∞(Ω; R2) establish the strong convergence of detDun →
detDū in Lp(Ω) for all 1 � p <∞. �
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