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Poles of the Standard L-function of G2 and
the Rallis–Schiffmann Lift

Nadya Gurevich and Avner Segal

Abstract. We characterize the cuspidal representations of G2 whose standardL-function admits a
pole at s = 2 as the image of the Rallis–Schiòmann li� for the commuting pair (S̃L2 ,G2) in S̃p14 .
_e image consists of non-tempered representations. _e main tool is the recent construction, by
the second author, of a family of Rankin–Selberg integrals representing the standardL-function.

1 Introduction

Let G be a reductive algebraic group deûned over a number ûeld F. In the theory
of automorphic forms, for any automorphic irreducible representation π = ⊗ν πν
of G(A) and a ûnite-dimensional complex representation ρ of the Langlands dual
complex group LG, one can associate a partial L-function L

S(s, π, ρ), where S is a
ûnite set of places of the number ûeld F outside ofwhich πν is unramiûed. It is deûned
by

L
S(s, π, ρ) = ∏

ν∉S
(det(I − ρ(tπν)qν

−s))
−1
,

where tπν is a representative of the Satake conjugacy class associated with πν and qν
is the order of the residue ûeld of Fν . Conjecturally, all suchL-functions admit mero-
morphic continuation. _e poles of the L-functions are of special interest, since im-
ages of functorial li�s can o�en be characterized in terms of these poles.

Precisely, given an algebraic reductive group H, amap of dual groups r ∶ LH → LG ,
and an irreducible automorphic representation σ = ⊗ν σν of H(A), we say that an
automorphic representation π ofG(A) is a weak li� of σ with respect to r if for almost
all places, r(tσν) is conjugate to tπν . We can now formulate the main result of our
paper.

Let G be the split exceptional group G2. In particular, its Langlands dual group
is G2(C). Let st denote the standard seven-dimensional representation of G2(C).
Consider themap r ∶ SL2(C)×SL2(C)→ G2(C),where themap restricted to the ûrst
(resp. second) copy of SL2(C) corresponds to theunipotent conjugacy class generated
by a long (resp. short) root of G2.
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_eorem 1.1 (Main _eorem) For a cuspidal irreducible representation π of G2(A),
the following are equivalent.

(i) _ere exists an irreducible square-integrable automorphic representation τ of

SO(2, 1)(A)

such that π is a weak li� of the representation τ ⊠ 1 of SO(2, 1) × SO(2, 1) with respect
to themap r.

(ii) _e partial L-function L
S(s, π, st) has a pole at s = 2.

_e pole of theL-function is simple unless π is a weak li� of 1⊠ 1, in which case the pole
is of order two.

_e direction (i)⇒ (ii) is easy. _is is the content of the following lemma.

Lemma 1.2 Let π be an irreducible representation of G2(A) that is a weak li� of a
square-integrable automorphic representation τ ⊠ 1 of SO(2, 1) × SO(2, 1). _en the
following hold.

(i) L
S(s, π, st) has a pole at s = 2.

(ii) _e pole is simple unless τ = 1, in which case the pole is of order 2.

Proof We identify the algebraic groups SO(2, 1) and PGL2. _e representation τ is
either cuspidal or of the form χ ○ det for a quadratic automorphic character χ.

In the ûrst case

L
S(s, π, st) = ζS(s − 1)LS(s − 1/2, τ)ζS(s)LS(s + 1/2, τ)ζS(s + 1).

_e factor ζS(s − 1) contributes a simple pole at s = 2, whereas the other L-functions
are non-zero at s = 2.

In the second case

L
S(s, π, st) = ζS(s − 1)LS(s − 1, χ)LS(s, χ)2ζS(s)LS(s + 1, χ)ζS(s + 1),

and hence has a simple pole at s = 2 for χ ≠ 1 and a pole of order 2 for χ = 1.

_e proof of (ii) ⇒ (i) requires both some information on the poles of the L-
function and a proof of the existence of the weak functorial li�. We use our recent
result on a Rankin–Selberg integral representation for LS(s, π, st) to achieve the in-
formation about its poles.

1.1 The Standard L-function of G2

_emeromorphic continuation ofLS(s, π, st) has been proved [Seg17,Seg16] by con-
structing a family of new-wayRankin–Selberg integrals forLS(s, π, st). _e integrals
in the family are parameterized by étale cubic algebras E over F. Precisely, for any
étale cubic algebra E there is an associated simply-connected quasi-split group HE of
type D4 with Heisenberg maximal parabolic subgroup P. Let E∗P( f , s, h) denote the
normalized Eisenstein series associated with the normalized induced representation
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IndHE
P δsP . Consider a family of integrals

(1.1) ZE(φ, f , s) = ∫
G2(F)/G2(A)

φ(g)E∗P( f , s, g) dg ,

where φ belongs to the space of a cuspidal representation π of G2(A).
For each cuspidal representation π, the integral ZE( ⋅ , ⋅ , s) either represents the

standard L-function or is identically zero, depending on whether or not π supports
the Fourier coeõcient corresponding to the étale algebra E along the Heisenberg
unipotent subgroup. See Section 2 for details on Fourier coeõcients. Wee Teck Gan
[Gan05,_eorem 3.1] showed that any cuspidal representation supports such a coef-
ûcient for at least one étale cubic algebra E. For such E one has [Seg17,_eorem 3.1]

(1.2) ZE(φ, f , s) = L
S(5s + 1/2, π, st)dS( f , φ, s)

and for any given point s0 ∈ C, the data φ and f can be chosen so that dS( f , φ, s)
is holomorphic and non-zero in a neighborhood of s0. In this case, we say that the
integral ZE(φ, f , s) represents the L-function L

S(5s + 1/2, π, st).
If ZE(φ, f , s) represents LS(5s + 1/2, π, st), then ZE(φ, f , s) can be used to study

the special values ofLS(s, π, st). In particular, for any s0, the order ofLS(s, π, st) at s0
is bounded by the order ofE∗P( f , s, g) at 1

5 (s0−
1
2 ). In the right half-plane, the poles of

E∗P( f , s, g) coincide with the poles of the unnormalized Eisenstein series EP( f , s, g).
_e poles of these Eisenstein series for Re(s) > 0 were studied in [Seg18].

_e possible poles of EP( f , s, g) in the right half-plane can occur at s = 1/10,
s = 3/10 or s = 1/2. _us for any cuspidal representation π, possible poles of the
L-functionL

S(s, π, st) are at s = 1, s = 2 or s = 3. _e possibility s = 3 does not occur,
since the residue of EP( f , s, g) at s = 1/2 is a constant function for any E, and hence
the residue of ZE(φ, f , s) is zero. Hence, LS(s, π, st) is always holomorphic at s = 3.

In this paper we describe the cuspidal representations π whose L-function
L

S(s, π, st) admits a pole at s = 2. _e order of LS(s, π, st) at s = 2 is bounded
by the order of EP( f , s, g) at s = 3/10. _e pole of EP( f , s, g) at s = 3/10 has been
studied for E = F × F × F [GGJ02] and for general E [Seg18,Seg16].

_eorem 1.3 ( [Seg16,GGJ02]) Let EP( f , s, g) be an Eisenstein series associatedwith
the representation IndHE

P δsP .
(i) Let E be a cubic ûeld extension. _en EP( f , s, g) is holomorphic at s = 3/10.
(ii) Let E = F × K, where K is a quadratic ûeld extension. _en EP( f , s, g) has at

most a simple pole at s = 3/10. _is pole is attained by the spherical section (as deûned in
item (14) of Section 3.1). _e residual representation at this point is not square integrable.

(iii) Let E = F × F × F. _en EP( f , s, g) has a pole of order at most 2 at s = 3/10.
_is pole is attained by the spherical section. _e leading term of the Laurent expansion
generates theminimal representation of the group HE .

_e integrals ZE( ⋅ , ⋅ , s) can also be used to characterize functorial li�s in terms
of poles and special values of the standard L-function.

Let us give an example. _e dual pair S3×G2 ↪ Spin8 ⋊S3 has been studied both lo-
cally [HMS98] and globally [GGJ02]. _e automorphicminimal representation Πmin
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of the split group H = HF×F×F = Spin8 is generated by functions of the form

[(s − 3/10)2EP( f , s, g)]∣ s=3/10 , f ∈ IndH
P (s).

and it can be extended to a representation of Spin8 ⋊S3. Let us denote by Θ the theta
correspondence for this dual pair. It was shown [GGJ02] that, whenever Θ(π) ≠ 0,
one has, for almost all ν,

r(diag(q1/2
ν , q−1/2

ν ), diag(q1/2
ν , q−1/2

ν )) ∼ tπν .

Here ∼ indicates that the elements are conjugate in G2(C).
An immediate corollary of [GS15,_eorem 1.1] and Lemma 1.2 is the following.

_eorem 1.4 Let π be a cuspidal representation of G2(A). _e following statements
are equivalent.
(i) _e partial L-function L

S(s, π, st) admits a double pole at s = 2.
(ii) _e theta li� Θ(π) is not zero.
(iii) π is a weak li� of 1 ⊠ 1 with respect to r.

_e explicit construction of the weak li� from any τ ⊠ 1 with respect to r is fully
realized using the Rallis–Schiòmann li� that will be described below.

Remark 1.5 _e pole of E∗P( f , s, g) at s = 1/10 is simple for all E and the residue of
E∗P( f , s, g) is described in [Sega]. _e description of the cuspidal representations π
of G2 whose L-function L

S(s, π, st) has a pole at s = 1 is a work in progress.

1.2 The Rallis–Schiffmann Lift

1.2.1 Construction

A remarkable construction of a class of cuspidal non-tempered representations of
the exceptional group G2 was obtained by Rallis and Schiòmann [RS89]. _e pair
(S̃L2 ,G2) is not a dual pair, but merely a commuting pair inside S̃p14. Indeed, the
centralizer of a certain embedding of S̃L2 in S̃p14 is the group SO(V 7)× {±1}, where
V 7 is a seven-dimensional split quadratic space. _e group G2 is naturally embedded
into the split special orthogonal group SO(V 7).

Letψ =⊗ψν be a ûxed additive complex character of F/A. For any cuspidal repre-
sentation σ of themetaplectic cover S̃L2, its theta li� θψ(σ) to SO(V 7) is a non-zero
and non-cuspidal automorphic representation. However, the restriction of functions
in θψ(σ) to the subgroupG2(A) of SO(V 7)(A) deûnes a square-integrable automor-
phic representation ofG2(A). _is representation ofG2(A) is cuspidalwhenever the
theta li� of σ to SO(2, 1) with respect to ψ is zero. _is li� is denoted by RSψ(σ). It is
not diõcult to extend the deûnition of the li� from the cuspidal spectrum to all the
summands of the discrete spectrum of S̃L2 [GG06, §12.7].

_e li� RSψ(σ) is not necessarily irreducible. _e question of reducibility was
studied in [GG06] by a complete determination of the local li�. _e local li� is used
in order to deûne certain non-tempered A-packets on G2, and the global li� is used
to prove Arthur’s multiplicity formula for these packets in most cases.
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_e construction has proved to be functorial. Although the group S̃L2 is not al-
gebraic, the Satake parameters of an irreducible automorphic representation σ of
S̃L2(A) are deûned via theWaldspurger map Wdψ , which associates, with every ir-
reducible square-integrable automorphic representation σ of S̃L2(A), an irreducible
square integrable representation τ = Wdψ(σ) of SO(2, 1)(A). _e map is ûnite-to-
one.

_us, whenever σν is spherical, the Satake parameter tψν ,σν ∈ SL2(C) is deûned to
be the Satake parameter ofWdψν(σν). Note the dependence on the character ψ.

Proposition 1.6 ( [RS89, §5,_eorem 1]) Let σ =⊗ν σν be a cuspidal representation
of S̃L2(A). Let π = ⊗ν πν be an irreducible summand of RSψ(σ). For all ν such that
σν , πν are unramiûed, denote by tψν ,σν the Satake parameter of σν , and by tπν the Satake
parameter of πν , which is a representative of a semisimple conjugacy class in G2(C).
_en r(tψν ,σν , diag(q

1/2
ν , q−1/2

ν )) ∼ tπν . Here ∼ indicates that the elements are conjugate
in G2(C).

In particular, π is a weak functorial li�, with respect to themap r, of the automor-
phic representation Wdψ(σ) ⊠ 1 of SO(2, 1) × SO(2, 1).

_e li� in the opposite direction is naturally deûned. For a cuspidal representation
π of G2(A), its li� to a representation RSψ(π) of S̃L2(A) is the span of the functions

RSψ(ϕ, φ)(g) = ∫
G2(F)/G2(A)

θψ(ϕ)(g , h)φ(h) dh,

where φ ∈ π, ϕ is a Schwartz function on V 7(A), and θψ(ϕ) is an automorphic theta
function on S̃p14 restricted to S̃L2 × G2. Computing the constant term of RSψ(π)
using the Schrödinger model, it is easy to see that RSψ(π) is necessarily a cuspidal
representation of S̃L2(A).

1.2.2 Exhaustion

In this subsection, we show how the results of [GG06] imply the following.

Proposition 1.7 Let π be an irreducible cuspidal representation of G2(A). _e fol-
lowing statements are equivalent.

(i) RSψ(π) ≠ 0.
(ii) _ere exists an irreducible square-integrable automorphic representation τ of

SO(2, 1)(A) such that π is a weak li� of τ ⊠ 1 with respect to r.

Proof We ûrst recall the structure of the space A2(S̃L2) that is the sum of all irre-
ducible representations contained in the space of square integrable genuine automor-
phic forms of S̃L2. Recall [Wal91,Wal80] the decomposition of the spaceA2(S̃L2):

A2(S̃L2) = (⊕
τ
Aτ)⊕ (⊕

χ
Aχ),

where τ runs over the cuspidal representations of SO(2, 1), and χ runs over the set of
quadraticHecke characters of F×/A×.
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For each cuspidal representation τ of SO(2, 1), the space Aτ is a sum of nearly
equivalent representations σ of S̃L2 such that Wdψ(σ) = τ. All summands appear in
Aτ with multiplicity one and form a full near-equivalence class.
For each quadratic character χ, the space Aχ is a sum of irreducible summands

of theWeil representation ωχ associated with the one-dimensional orthogonal space,
whose discriminant deûnes the quadratic character χ via class ûeld theory. Again, all
the summands appear in Aχ with multiplicity one and form a full near-equivalence
class. For each irreducible representation σ inAχ one has Wdψ(σ) = χ ○ det, consid-
ered as an automorphic representation of SO(2, 1) ≃ PGL2.
Denote by Vχ and Vτ the Rallis–Schiòman li� of the spaces Aχ and Aτ , respec-

tively.

_eorem 1.8 ( [GG06,_eorem 16.1]) Let π be an irreducible cuspidal representation
of G2(A).

(i) If π is a weak li� of (χ ○ det)⊠ 1 for some quadraticHecke character χ, then π is
contained in Vχ .

(ii) If π is a weak li� of τ ⊠ 1 for some cuspidal representation τ of SO(2, 1), then π
is not orthogonal to Vτ .

In both cases RSψ(π) ≠ 0.

Conversely, if σ is contained in RSψ(π), then π is isomorphic to an irreducible
summand of RSψ(σ) and hence is a weak li� of Wdψ(σ) ⊠ 1 with respect to r. _e
proposition follows.

Now to prove_eorem 1.1, it remains to show that ifLS(s, π, st) has a pole at s = 2,
then RSψ(π) ≠ 0. _is will be proved in _eorem 5.1.

2 Wave Front

_e Fourier coeõcients of an automorphic form on G2 along the Heisenberg unipo-
tent subgroup are parameterized by cubic algebras over F [Seg17, §2]. In this section,
we prove that if LS(s, π, st) has a pole at s = 2, then π admits a Fourier coeõcient of
type F × K, where K is an étale quadratic algebra over F. _is allows us to relate the
analytic properties of LS(s, π, st) to those of ZF×K( ⋅ , ⋅ , s).

2.1 Fourier Coefficients of S̃L2

Let B = T ⋅ N denote the Borel subgroup of SL2. We denote by α the unique positive
root of SL2 and denote by xα ∶ Ga → N the associated one-parametric subgroup. _e
torus T(F) acts on the set of non-trivial characters of N(A) that are trivial on N(F),
and the orbits are parameterized by quadratic étale algebras. Fix a non-trivial unitary
character ψ ∶ F/A → C×. For any square class a and its associated quadratic algebra
K, deûne the character ΨK ∶ N(A)→ C given by ΨK(xα(r)) = ψ(ar).

Let S̃L2(A) denote themetaplectic cover of SL2(A). _e groups N(A) and T(F)
split in S̃L2(A).
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For any automorphic form φ on S̃L2 deûne

φN ,ΨK (g) = ∫
N(F)/N(A)

φ(ng)ΨK(n) dn.

_e wave front of an automorphic representation σ of S̃L2(A) is deûned by

F̂ψ(σ) = {K ∣ ∃φ ∈ σ ∶ φN ,ΨK ≠ 0} .

Proposition 2.1 ( [GG06, §12.3]) Let σ be an irreducible summand of A2(S̃L2). If
F̂ψ(σ) = {K} , then σ is a summand ofAχ ,where the quadratic character χ is associated
with the algebra K by class ûeld theory.

2.2 Fourier Coefficients of G = G2

We shall startwith an overview ofG = G2 as a Chevalley group deûned overZ. We ûx
amaximal split torus TG and a Borel subgroup BG = TG ⋅NG . _is determines the root
datum of the group. Denote by α and β the short and long simple roots, respectively.
_ere are six positive roots: Φ+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}. With any
positive root γ we associate a one-parametric subgroup xγ ∶ Ga → NG [GGJ02,GS15,
Jia98,Seg17], and denote its image by Uγ .

We denote by P1 = M1 ⋅ U1 and P2 = M2 ⋅ U2, the maximal standard parabolic
subgroups such thatUα ⊂ U1 andUβ ⊂ U2. By [GGS02], the choice of one-parametric
subgroups induces an isomorphism between U2/ [U2 ,U2] and the space of binary
cubic forms.

_eLevi factorM2(F) actson the setofunitary charactersonU2(A) that are trivial
on U2(F), and the orbits are indexed by cubic algebras over F. _e generic orbits
correspond to étale cubic algebras. For any cubic algebra E, choose a representative
ΨE of the associated orbit.
For any automorphic form φ on G2 and étale cubic algebra E, denote

φU2 ,ΨE (g) = ∫
U2(F)/U2(A)

φ(ug)ΨE(u) du.

For any automorphic representation π of G2(A), deûne the wave front of π with re-
spect to U2 by

F̂ψ(π) = {E étale ∣ ∃φ ∈ π ∶ φU2 ,ΨE ≠ 0} .
We shall write down explicitly a character ΨF×K on U2(A) that is a representative of
the generic orbit corresponding to the étale cubic algebra F×K,whereK is a quadratic
étale algebra. Let a be the square class in F× associated with K. _en

ΨF×K(xβ(r1)xα+β(r2)x2α+β(r3)x3α+β(r4)x3α+2β(r5)) = ψ(−ar1 + r3).

A family of reductive periods is closely related to the family of Fourier coeõ-
cients corresponding to the algebras of type F × K. _e group G2 acts on the seven-
dimensional space V 7, preserving the split quadratic form. _e stabilizer of a vector
in this space, whose norm is a square class in F× corresponding to the algebra K, is
isomorphic to the special unitary group SUK

3 . In particular, when K = F × F , the
stabilizer is isomorphic to SL3.
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For an irreducible cuspidal representation π of G2(A) deûne

F̃(π) = {K ∣ ∃φ ∈ π ∶ ∫
SUK

3 (F)/SUK
3 (A)

φ(g) dg ≠ 0} .

Proposition 2.2 Let π be an irreducible cuspidal representation of G2(A). _en
RSψ(π) ≠ 0 if and only if F̃(π) ≠ ∅.

Proof _e proof is essentially contained in [RS89, §3, Lemma 2]. We repeat it here
for the convenience of the reader. Let a ∈ F× be a representative of a square class asso-
ciated with the algebra K. We use the Schrödinger model of theWeil representation,
realized on the space of Schwartz functions S(V 7(A)).
Computing the ΨK Whittaker coeõcient of RSψ(ϕ, φ) for ϕ ∈ S(V 7(A)) and φ ∈

π, we obtain

∫
N(F)/N(A)

RSψ(ϕ, φ)(nh)ΨK(n) dn

= ∫
G2(F)/G2(A)

[ ∫
N(F)/N(A)

( ∑
ξ∈V(F)

ω14
ψ (nh, g)ϕ(ξ))ΨK(n) dn]φ(g) dg

= ∫
G(F)/G(A)

( ∑
ξ∈V 7

(F),
⟨ξ,ξ⟩=a

ω14
ψ (h, g)ϕ(ξ))φ(g) dg .

_e groupG2(F) acts transitively on the setOa(F) = {ξ ∈ V 7(F), ⟨ξ, ξ⟩ = a} and the
stabilizer of each point is SUK

3 (F). Let ξa be a representative of the orbit Oa(F). _e
integral above equals

∫
G2(F)/G2(A)

( ∑
γ∈SUK

3 (F)/G2(F)
ω14

ψ (h, γg)ϕ(ξa))φ(g)dg

= ∫
SUK

3 (A)/G2(A)

ω14
ψ (h, g)ϕ(ξa)( ∫

SUK
3 (F)/SUK

3 (A)

φ(g1g) dg1)dg

In particular, if RSψ(π) ≠ 0, then there exists K ∈ F̃(π).
Conversely, assume that K ∈ F̃(π). _us there exists φ ∈ π such that

IK(φ) = ∫
SUK

3 (F)/SUK
3 (A)

φ(g1) dg1 ≠ 0.

For ξ = g−1ξa ∈ Oa(A), the function IK(φ)(ξ) = IK(g ⋅φ) is a continuous function on
Oa(A). Similarly, ωψ(g)ϕ(ξa) = ϕ(g−1ξa) = ϕ(ξ) is the restriction of ϕ to Oa(A).
SinceOa(A) is closed in V 7(A), there exists a Schwartz function ϕ on V 7(A) whose
restriction to Oa(A) is a non-negative Schwartz function and has suõciently small
support to ensure that ∫Oa(A)

ϕ(ξ)IK(φ)(ξ) dξ ≠ 0.
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Hence, for some functions ϕ ∈ S(V 7(A)) and φ ∈ π, the function RSψ(ϕ, φ) has
a non-zero ΨK-Whittaker coeõcient and hence is non-zero. It follows that RSψ(π) is
not zero.

2.3 Fourier–Jacobi Coefficients

Let P1 = M1U1 be a non-Heisenberg maximal parabolic subgroup of G2. _e unipo-
tent radical U1 is the three-step unipotent subgroup. One has U1 ⊃ Z ⊃ Z1, where
Z = [U1 ,U1] and Z1 is the center of U1. _e group U1/Z1 is a Heisenberg group
whose center is Z/Z1 ≃ Ga . We regard ψ as a character of Z/Z1. _eWeil representa-
tion ω2

ψ of U1(A)/Z1(A) is realized on the space of Schwartz functions S(Uα) and is
extended to the group M̃′1(A) ⋅[U1(A)/Z1(A)],whereM′

1 ≃ SL2 is the derived group
of M1.

_e representation ω2
ψ has an automorphic realization in the space of Jacobi forms

by
θψ(ϕ)(g) = ∑

x∈Uα(F)
ωψ(g)ϕ(x), g ∈ S̃L2(A) ⋅ [U1(A)/Z1(A)] .

For an automorphic form φ of G2, its Fourier–Jacobi coeõcient is deûned by

φZ ,ψ(g) = ∫
Z(F)/Z(A)

φ(zg)ψ(z) dz,

which is a Jacobi form on SL2(A) ⋅ [U1(A)/Z1(A)]. _e space generated by all such
coeõcients is denoted by πZ ,ψ . _is is a representation of the Jacobi group.

_e automorphic representation FJψ(π) of S̃L2(A) is deûned as the span of all the
functions

FJψ(φ, ϕ)(h) = ∫
U1(F)/U1(A)

φZ ,ψ(uh)θψ(ϕ)(uh) du, h ∈ S̃L2(A), φ ∈ π, ϕ ∈ ω2
ψ .

By the result of Ikeda [Ike94], one has the following isomorphism of

SL2(A) ⋅ [U1(A)/Z1(A)] -representations:

πZ ,ψ ≃ FJψ(π)⊗̂ω2
ψ .

An easy computation, contained in the proof of [Gan05][Lemma 3.10], shows the
following.

Proposition 2.3 Let π be an automorphic representation of G2 and K be a quadratic
étale algebra over F. _en K ∈ F̂ψ(FJψ(π))⇔ F × K ∈ F̂ψ(π).

2.4 The Pole of the L-function and Fourier Coefficients

_e next theorem gives information on the Fourier coeõcients supported by an ir-
reducible cuspidal representation π of G2(A), whose standard L-function admits a
pole at s = 2.

_eorem 2.4 Let π be an irreducible cuspidal representation of G2(A) such that the
partial L-function L

S(s, π, st) admits a pole at s = 2. _en the following hold.
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(i) _e representation π is not nearly equivalent to a generic cuspidal representation.
(ii) _ere exists a quadratic algebra K such that F × K ∈ F̂ψ(π).
(iii) If F̂ψ(π) = {F × F × F}, then RSψ(π) ≠ 0.

Proof (i) D. Ginzburg [Gin93] constructed a Rankin–Selberg integral for the stan-
dard L-function of generic cuspidal representations of G2. _e construction used
an Eisenstein series on S̃L2. In particular, it was shown that in the right half-plane
{s ∈ C ∣ Re(s) > 0} the partial L-function of a generic cuspidal representation can
have a pole only at s = 1.

(ii) Recall from [Gan05,_eorem 3.1] that any cusp form ofG2(A) supports some
generic coeõcient alongU2. No ûeld E belongs to F̂(π) by_eorem 1.3. Hence, there
exists F × K ∈ F̂ψ(π), where K is an étale quadratic algebra over F. Note that K may
be split.

(iii) _e proof is essentially contained in the proof of [GG06, _eorem 16.1] We
repeat it for the convenience of the reader.

_e proof uses a global theta li� θE6 for the exceptional dual pair (G2 ,PGL3) in
the adjoint group of type E6 [GJ01,GRS97b].

Claim Let π be an irreducible cuspidal representation of G2(A).
(i) If the Shalika functional β on π deûned by

β(φ) = ∫
SL2(F)/SL2(A)

∫
Z(F)/Z(A)

φ(zg)ψ(z) dzdg

does not vanish, then θE6(π) ≠ 0 [GJ01,_eorem 1.1].
(ii) If θE6(π) is a cuspidal representation of PGL3(A), then π is isomorphic to a

generic representation [GJ01,_eorem 3.1].
(iii) If θE6(π) is non-cuspidal, then π admits a non-zero SL3-period [GRS97b,_e-

orem A,_eorem 4.1(5)].

Assume that F̂ψ(π) = {F×F×F}. _en by Proposition 2.3 F̂ψ(FJψ(π)) = {F×F},
so that FJψ(π) ⊂ Aχ0 , where χ0 is the trivial character.

In particular, πZ ,ψ ≃ FJψ(π)⊗̂ωψ ⊂ Aχ0 ⊗̂ωψ , and hence the Shalika functional β
does not vanish on π. It follows, by part (i) of the claim that θE6(π) ≠ 0. Combining
_eorem 2.4 (i) and part (ii) of the claim,we derive that θE6(π) isnot cuspidal. Hence,
by part (iii) of the claim the representation π admits a non-zero SL3 period. It follows
by Proposition 2.2 that RSψ(π) ≠ 0.

3 The Eisenstein Series and the Siegel–Weil Identity

_e proof of_eorem 1.1 involves an identity between the leading terms of two Eisen-
stein series on the group H = HF×K . More precisely, we consider two degenerate
principal series representations: one induced from the maximal parabolic subgroup
P and the other induced from another parabolic subgroup Q and also the degenerate
Eisenstein series associated with them. We prove a Siegel–Weil type identity relating
the leading terms of the two series at certain points.
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In fact, in the proof of_eorem 1.1 we shall use the identity only when K is a ûeld.
However, in this section we formulate and prove the identity for any étale quadratic
algebra K.

3.1 Notations and Preliminaries

Let F be a local or global ûeld, and K be a quadratic étale algebra over F.
We begin with the notations on the algebraic groups involved in this paper.

(1) Let H = HF×K be a quasi-split simply-connected group over F of type D4 as-
sociated with the cubic algebra F × K.

(2) Let BH = NH ⋅TH be a Borel subgroup ofH with the unipotent radical NH and
maximal torus TH . Let TS ⊆ TH be amaximal split torus.

(3) _e simple roots in the absolute root systemofH are denoted by α i , i = 1 . . . 4.
_e Dynkin diagram has the form

α1 α2
α3

α4

Figure 1: _e Dynkin diagram of type D4

(4) Let Φ(G , TS) be a relative root systemofH,Φ+ be the set of positive roots and
∆ be the set of simple roots. For any root α ∈ Φ(G , TS), we denote by Fα the ûeld of
deûnition of α. In the split case K = F × F, the positive roots of H with respect to
TH = TS are denoted by

Φ+ = {[1, 0, 0, 0] , [0, 1, 0, 0] , [0, 0, 1, 0] , [0, 0, 0, 1] , [1, 1, 1, 1] , [1, 2, 1, 1] ,

[1, 1, 0, 0] , [0, 1, 1, 0] , [0, 1, 0, 1] , [1, 1, 1, 0] , [1, 1, 0, 1] , [0, 1, 1, 1]} .

In the casewhere K is a ûeld, the relative root systemofH with respect to TS is of type
B3 and the positive roots are denoted by

Φ+ = {[1, 0, 0] , [0, 1, 0] , [0, 0, 1] , [1, 1, 0] ,

[0, 1, 1] , [0, 1, 2] , [1, 1, 1] , [1, 2, 1] , [1, 2, 2]}

_e roots deûned over K are [0, 0, 1], [0, 1, 1], and [1, 1, 1].

(5) For any root α ∈ Φ+, we ûx a pinning, that is, a collection ofmaps

φα ∶ SL2(Fα)→ H(F).
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Deûne the unipotent subgroups

Xα(F) = {φα(( 1 r
0 1 )) , r ∈ Fα},

X−α(F) = {φα(( 1 0
r 1 )) , r ∈ Fα},

and
wα = φα(( 0 1

−1 0 )) .
_e relativeWeyl group WH of H is generated by the images of the elements wα

for the simple roots α. By w[i1 ⋅ ⋅ ⋅ ik] we denote theWeyl word wα i1
⋅ ⋅ ⋅wα ik

.

(6) We parameterize TH using coroots.

TH ∋ t =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(t1 , t2 , t3 , t4) = α∨1 (t1)α∨2 (t2)α∨3 (t3)α∨4 (t4), for t i ∈ Gm ,
if K = F × F ,

(t1 , t2 , t3) = α∨1 (t1)α∨2 (t2), α∨3 (t3), for t1 , t2 ∈ Gm , t3 ∈ ResK/F Gm ,
if K ≠ F × F .

In particular, for a local ûeld F, themodular character is given by

δBH(t) =
⎧⎪⎪
⎨
⎪⎪⎩

∣t1 t2 t3 t4∣2F if K = F × F ,
∣t1 t2∣2F ∣t3∣2K if K ≠ F × F .

(7) Let X∗(TH) denote the the lattice of F-rational characters of TH and let a∗C =
X∗(TH)⊗C. Also, let C+ denote the positiveWeyl chamber in a∗C.
For a local non-archimedean ûeld F, the space a∗C can be identiûedwith the group

of unramiûed characters of TH(F) via themap s ↦ λs given by

λs(t) =
⎧⎪⎪
⎨
⎪⎪⎩

∣t1∣s1F ∣t2∣
s2
F ∣t3∣

s3
F ∣t4∣

s4
F if K = F × F ,

∣t1∣s1F ∣t2∣
s2
F ∣t3∣

s3
K if K ≠ F × F .

(8) Let P = M ⋅ U be the Heisenberg parabolic group of H. Its Levi subgroup is
isomorphic to

M ≃ (GL2 ×ResK/F GL0
2)
det = {(g1 , g2) ∈ GL2 ×ResK/F GL0

2 ∣ det(g1) = det(g2)},

where

ResK/F GL0
2 =

⎧⎪⎪
⎨
⎪⎪⎩

{(g′ , g′′) ∈ GL2 ×GL2 ∣ det(g′) = det(g′′)} if K = F × F ,
{g ∈ ResK/F GL2 ∣ det(g) ∈ Gm} if K ≠ F × F .

Under this isomorphism it holds that

δP(g1 , g2) = ∣det(g1)∣
5 ∀g1 ∈ GL2 , g2 ∈ ResK/F GL0

2 .

(9) Let Q = L ⋅V be themaximal parabolic subgroup generated by BH , X−α2 , X−α3 ,
and X−α4 if K = F × F and by BH , X−α2 , and X−α3 if K is a ûeld.

_e Levi subgroup L ûts into a short exact sequence

1Ð→ GL1 Ð→ L Ð→ SO(V 6
K)Ð→ 1,

where V 6
K is a quadratic space of dimension 6 and discriminant K. Its modular char-

acter δQ restricted to the torus of H satisûes δQ(t) = ∣t1∣6.
(10) We denote byWM andWL theWeyl groups of M and L, respectively.
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(11) _e group H is the group of isometries of the quadratic space V 8
K of dimen-

sion eight and discriminant K. It is a group of type D4 and there is an isogeny p of
algebraic groups 1 → µ2 → H

p
→ H → 1. _e associated map p ∶ H(F) → H(F) is

not necessarily surjective but for a local ûeld F the image has ûnite index. _ere is a
bijection between the parabolic groups of H and of H. We write V 8

K = V 6
K ⊕H, where

H = Span{e0 , e∗0} is a hyperbolic plane. _e parabolic subgroup Q = L ⋅ V is the
subgroup stabilizing Span{e0}. _e Levi subgroup L is isomorphic to GL1 × SO(V 6

K),
and we have δQ(g1 , g2) = ∣g1∣

6 for all g1 ∈ GL1, g2 ∈ SO(V 6
K).

We continue with generalities on induced representations associated with para-
bolic subgroups BH , P,Q. Below, F will denote a global ûeld and Fν a local ûeld.

(12) For every place ν ûx amaximal compact subgroupKν ofH(Fν) that is special
for every ûnite place ν. Let K = Πν Kν be amaximal compact subgroup of H(A).

(13) For any place ν and λ ∈ a∗C denote by IBH ν(λ) the normalized smooth in-
duction IndH(Fν)

BH(Fν) λ. _is is a smooth admissible representation of H(Fν) for ûnite
ν and is a smooth admissible Frechet representation for inûnite ν. _us, IBH(λ) =

⊗ν IBH ν(λ) is an H(A)-module.

(14) Consider a section fλ ∈ IBH(λ).
● fλ is Standard if fλ is independent of λ when restricted to K.
● fλ is Spherical if it is standard and K invariant. We further call such a section

normalized if fλ(1) = 1. Since the space of spherical vectors in IBH(λ) is one-
dimensional the normalized spherical vector is unique.

● fλ is Holomorphic if fλ(g) is a holomorphic function of λ for any g ∈ H(A).

(15) We ûx a set of representatives W̃H in H(F) of WH so that w̃ ∈ K for any
w̃ ∈ W̃H . As in [Ste68, §6, §11], for α ∈ ∆, let w̃α = xα(1)x−α(1)xα(1). For a reduced
wordw = wα i1

⋅ ⋅ ⋅wα ik
, let w̃ = w̃α i1

⋅ ⋅ ⋅ w̃α ik
. For anyw ∈WH ,we consider the standard

global intertwining operator Mw(λ) ∶ IBH(λ)→ IBH(w−1 ⋅ λ) given by

Mw(λ)( fλ)(g) = ∫
NH(A)∩w̃−1NH(A)w̃/NH(A)

fλ(w̃ng) dn,

where fλ is a standard section of IB(λ). Note that this integral is independent of the
choice of the representative w̃. _is integral converges absolutely for Re(λ) in some
positive cone and extends to ameromorphic function on a∗C. _emain properties of
these operators are the following.
• For anyw ,w′ ∈W , the intertwining operators satisfy the following cocycle equa-

tion Mww′(λ) = Mw′(w−1 ⋅ λ) ○Mw(λ).
• _e global intertwining operator Mw(λ) decomposes as a product⊗Mw ,ν(λ) of

local intertwining operators Mw ,ν(λ) ∶ IBH ,ν(λ)→ IBH ,ν(w−1 ⋅λ) given for Re(λ) ≫ 0,
by

Mw ,ν(λ)( fλ ,ν)(g) = ∫
NH(Fν)∩w̃−1NH(Fν)w̃/NH(Fν)

fλ ,ν(w̃ng) dn.
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• (Gindikin–Karpelevich formula). _e local intertwining operator Mw ,ν(λ) de-
pends on the choice of representative w̃. However, since w̃ ∈ Kν , for the normalized
spherical vector f 0λ ,ν ∈ IBH ,ν(λ), it holds that

(3.1) Mw ,ν(λ)( f 0λ ,ν) = Jν(w , λ) f 0w−1 ⋅λ ,ν ,

where

Jν(w , λ) = ∏
α>0,

w−1α<0

ζFα ,ν(⟨λ, α
∨⟩)

ζFα ,ν(⟨λ, α∨⟩ + 1)
.

We denote by ζFα(s) a complete zeta function of Fα normalized such that ζFα(s) =
ζFα(1 − s). Moreover we denote RFα = lims→1(s − 1)ζFα(s). _e global Gindikin–
Karpelevich factor J(w , λ) = Πν Jν(w , λ) is a ratio of products of complete zeta func-
tions.

• _e induced representations IPν(s) = IndH(Fν)
P(Fν) δ

s
P and IQν(s) = IndH(Fν)

Q(Fν) δ
s
Q

(smooth normalized induction) will play a central role in this paper. We deûne

IP(s) =⊗ IPν(s), IQ(s) =⊗ IQν(s).

_eir normalized spherical sections will be denoted f 0s ∈ IP(s) and f̃ 0s ∈ IQ(s). By
induction in stages, we observe that IP(s) and IQ(s) are subrepresentations of the
following principal series: IP(s)↪ IBH(χP ,s) and IQ(s)↪ IBH(χQ ,s), where

χP ,s = δs+1/2
P δ−1/2

B , χQ ,s = δs+1/2
Q δ−1/2

B .

_e representation IQ(s) of H(A) is deûned similarly to IQ(s).
We shall make use of the following lemma.

Lemma 3.1 _emap p ∶ H(Fν)→ H(Fν) induces themap p∗ ∶ IQν
(s)→ IQν(s).

(i) p∗ ∶ IQν
(s)→ IQν(s) is an isomorphism of vector spaces and

h ⋅ (p∗( f )) = p∗(p(h) ⋅ f ) ∀h ∈ H(Fν), f ∈ IQν
(s).

(ii) If the representation IQν(s) is generated by the normalized spherical section f 0,
then IQν

(s) is generated by the normalized spherical section f
0
. If ν ∣∞, then the con-

verse is also true.
(iii) If the representation IQν(s) is irreducible, then IQν

(s) is irreducible. If ν ∣∞,
then the converse is also true.

Proof Part (i) follows from the fact that H(Fν) = Q(Fν) ⋅ p(H(Fν)). If IQν(s) is
irreducible (or generated by a spherical section), then obviously the same is true for
IQν

(s).
Let us show the converse statements for ν∣∞. _ey rely on the following decom-

positions„ that hold for archimedean local ûelds:

H(Fν) = p(H(Fν))Kν ,(3.2)

H(Fν) = Q(Fν)p(Kν).(3.3)
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_e ûrstdecomposition holds, since the group p(H(Fν)) is the topological identity
component ofH(Fν) andKν meets every connected component ofH(Fν). Similarly,
the second decomposition holds, since the group p(Kν) is the topological identity
component ofKν and Q(Fν) meets every component of H(Fν).
Assume that IQν

(s) is generated by the spherical vector f 0, and let Π be the sub-
representation of IQν(s) generated by f 0. _en (p∗)−1(Π) is a p(H(Fν))-subrep-
resentation of IQν

(s) containing f 0. It follows from (3.2) that (p∗)−1(Π) = IQν
(s)

and hence Π = IQν(s).
Assume that the representation IQν

(s) is irreducible as a representation of H(Fν).
_e restriction of IQν

(s) to p(H(Fν)) is a direct sum of irreducible representa-
tions. By (3.2) the projection of f 0 to each summand is non-trivial. Hence, every
summand has a non-zero p(Kν)-invariant vector. However, by (3.3) it follows that
dim(IQν

(s)p(Kν)) = 1. Hence the restriction of IQν
(s) to p(H(Fν)) is irreducible

and so IQν(s) is irreducible, as required.

3.2 Induced Representations

We begin with the study of the reducibility of the induced representations IP(3/10)
and IQ(1/6). Consider the following element of theWeyl group WH :

(3.4) w =

⎧⎪⎪
⎨
⎪⎪⎩

w[2342] if Kν = Fν × Fν ,
w[232] if Kν ≠ Fν × Fν .

_e following properties are checked directly using theGindikin–Karpelevich for-
mula (3.1).

Lemma 3.2 (i) For w as in (3.4), it holds that w−1(χP ,3/10) = χQ ,1/6 .
(ii) For any place ν, the factor Jν(w , χP ,3/10) is ûnite and non-zero.
(iii) _e factor J(w , χP ,s) admits a simple pole at s = 3/10 and

(3.5) Jw
def
= lim

s→3/10
(5s − 3/2)J(w , χP ,s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

RF ζF(2)
ζF(3)ζF(4) if K = F × F ,
RF ζK(2)ζF(3)

ζF(2)ζK(3)ζF(4) if K ≠ F × F .

_eorem 3.3 Let ν be any local place of F.
(i) _e representation IPν(3/10) has a unique irreducible quotient and that quotient

is spherical.
(ii) _e representations IQν(1/6) and IQν

(1/6) have a unique irreducible quotient
and that quotient is spherical. Both representations are irreducible when Kν is a ûeld.

(iii) _e restriction of Mw ,ν(χP ,3/10) to IPν(3/10) deûnes a surjective map onto
IQν(1/6).

Proof (i) _e representation IPν(3/10) is a quotient of IBHν (δ
−1/5
P δ1/2B ) which, by

induction in stages, can be written as a standard module IndHν
Rν

[δ1/3Rν
IndAν

Aν∩BHν
χ0].

Here Rν is a standard parabolic subgroup ofHν whose Levi subgroup Aν is generated
by TH ,ν , and X±α2 ,ν , χ0 denotes the trivial character. By Langlands’s classiûcation
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theorem, it admits a unique irreducible quotient Π0
ν that is the image of the oper-

ator Mw̃ ,ν(δ−1/5
P δ1/2B ), where w̃ is the shortest representative of the longest coset in

WA/WH . SinceMw̃ ,ν(δ−1/5
P δ1/2B ) f 0 ≠ 0, it follows that this quotient, Π0

ν , is a spherical
representation. _us IPν(3/10) also admits Π0

ν as its unique irreducible quotient.
(ii) _e special feature of Q and Q is that they have Abelian unipotent radical

and are conjugate to their opposite. _e degenerate principal series associated with
maximal parabolic subgroups with these properties were studied by Sahi for local
Archimedean ûelds usingK-types and by Weissman for non-Archimedean ûelds us-
ing the Fourier–Jacobi functor.
First assume that Fν is non-Archimedean local ûeld. M. Weissman proved the

statement for IQν(1/6) in case Kν = Fν ×Fν , [Wei03, §5.1]. _e casewhere Kν is a ûeld
will be dealt with in AppendixA, where we adapt his approach to the quasi-split case.
By Lemma 3.1, the claims follow for IQν

(1/6).
Now assume that Fν isArchimedean. Sahi [Sah95]studied the reducibilityof IQν

(s);
the details are given in Appendix B. Lemma 3.1 implies the result for IQν(1/6).

(iii) _is follows directly from Lemma 3.2 (i), (ii), and the fact that f 0χP ,3/10
(resp. f 0χQ ,1/6

) generates IPν(3/10) (resp. IQν(1/6)).

3.3 Eisenstein Series

_e Eisenstein seriesEBH( ⋅ , ⋅ , λ) associatedwith an induced representation IBH(λ) is
an operator thatmaps every standard section fλ ∈ IBH(λ) to an automorphic function

EBH( f , g , λ) = ∑
γ∈BH(F)/H(F)

fλ(γg).

_e series converges for λ in a positive cone and admits ameromorphic continuation
for all λ. _is is a classical result for K-ûnite sections, and for smooth sections it
follows from [Lap08]. _e constant term of EBH( f , g , λ) along NH is given by

EBH( f , g , λ)NH = ∑
w∈WH

Mw(λ)( fλ)(g).

_e Eisenstein series EP( f , g , s)(g), EQ( f , g , s)(g), and EQ( f , g , s) associated
with IP(s), IQ(s), and IQ(s), respectively are deûned similarly. For example, when
Re(s) is large, one has EP( f , g , s) = ∑γ∈P(F)/H(F) fs(γg), fs ∈ IP(s).
By a standard computation [GRS97a], the constant term of EP( f , g , s) along NH

is computed as
EP( f , g , s)NH = ∑

w∈W(M ,T)

Mw(χP ,s)( fs)(g),

where W(M , T) = {w ∈ WH ∣ w−1 ⋅ α i > 0, for all i ≠ 2} is the set of the shortest
representatives of cosets in WM/WH . Similarly

EQ( f , g , s)NH = ∑
w∈W(L ,T)

Mw(χQ ,s)( fs)(g),

where W(L, T) = {w ∈ WH ∣ w−1 ⋅ α i > 0, for all i ≠ 1} is the set of the shortest
representatives of cosets in WL/WH .
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Note also that

χP ,s =
⎧⎪⎪
⎨
⎪⎪⎩

λ(−1,5s+ 3
2 ,−1,−1) if K = F × F ,

λ(−1,5s+ 3
2 ,−1) if K ≠ F × F ,

χQ ,s =
⎧⎪⎪
⎨
⎪⎪⎩

λ(6s+2,−1,−1,−1) if K = F × F ,
λ(6s+2,−1,−1) if K ≠ F × F .

Lemma 3.4 For a general s ∈ C, it holds that

EBH( f
0 , g , χP ,s) = EP( f 0 , g , s), EBH( f

0 , g , χQ ,s) = EQ( f̃ 0 , g , s).

Proof Consider the constant term along the unipotent radical NH of the Borel sub-
group BH : EBH( f 0 , g , λ)NH = ∑w∈W Jw(λ) f 0w−1λ(g). Let λ = χP ,s . We shall show that
for Re(s) ≫ 0, the term Jw(χP ,s) is holomorphic and vanishes unless w ∈W(M , T).
Indeed, recall that J(w , χP ,s) =∏α>0,w−1α<0 Jα(χP ,s), where

Jα(χP ,s) =
ζFα(⟨χP ,s , α

∨⟩)

ζFα(⟨χP ,s , α∨⟩ + 1)
.

For α ∈ Φ, let α∨ = ∑γ∈∆ nγ(α)γ∨. For Re(s) ≫ 0 it holds that

⟨χP ,s , α∨⟩ =
⎧⎪⎪
⎨
⎪⎪⎩

−∑γ∈∆M nγ(α) if nα2(α) = 0,
has real part bigger than 1 if nα2(α) ≠ 0.

In particular, for Re(s) ≫ 0, the term Jα(χP ,s) is holomorphic for every α ∈ Φ+

and is zero if and only if ⟨χP ,s , α⟩ = −1, i.e., for α ∈ ∆/{α2}. As a result Jw(χP ,s) is
holomorphic (for Re(s) ≫ 0) and does not vanish if and only if w−1 ⋅ α ∈ Φ+ for any
α ∈ ∆ ∖ {α2}. _is exactly means that w ∈ W(M , T). Hence, EBH( f 0 , g , χP ,s)NH =
EP( f 0 , g , s)NH for Re(s) ≫ 0. By meromorphic continuation, the equality holds for
all s ∈ C.

In addition, the cuspidal components of both EBH( f 0 , g , χP ,s) and EP( f 0 , g , s)
are zero along any standard parabolic subgroup strictly containing the Borel sub-
group BH . Hence, by [MW95, Proposition I.3.4], there is an equality of the auto-
morphic forms, i.e., EBH( f 0 , g , χP ,s) = EP( f 0 , g , s). _e equality EBH( f 0 , g , χQ ,s) =
EQ( f̃ 0 , g , s) is proven similarly.

A. Segal [Seg18] studied the poles of EP( f , g , s) for Re(s) > 0 and in particular at
s = 3/10. _e result is quoted in _eorem 1.3.

Our goal is to study the behavior of EQ( f , g , s) at s = 1/6 for various K.

Proposition 3.5 (i) Let K be a ûeld. For any standard section fs ∈ IQ(s), the
Eisenstein series EQ( fs , g , s) is holomorphic at s = 1/6.

(ii) Let K = F × F. For any standard section fs ∈ IQ(s), the Eisenstein series
EQ( fs , g , s) has at most a simple pole at s = 1/6. _e pole is attained by a spherical
function.
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w ∈W(L, T) J(w , χQ ,s) Order at 1/6 w−1 ⋅ χQ , 1
6
(t)

1 1 0 ∣t1 ∣3F
∣t2 ∣F ∣t3 ∣K

w [1] ζF(6s+2)
ζF(6s+3) 0 ∣t2 ∣3F

∣t1 ∣3F ∣t3 ∣K

w [12] ζF(6s+1)
ζF(6s+3) 0 ∣t3 ∣K

∣t1 ∣F ∣t1 ∣2F

w [123] ζF(6s+1)
ζF(6s+3)

ζK(6s)
ζK(6s+1) 1 1

∣t1 ∣F ∣t3 ∣K

w [1232] ζF(6s+1)
ζF(6s+3)

ζF(6s−1)
ζF(6s)

ζK(6s)
ζK(6s+1) 1 1

∣t1 ∣F ∣t3 ∣K

w [12321] ζF(6s+1)
ζF(6s+3)

ζF(6s−2)
ζF(6s)

ζK(6s)
ζK(6s+1) 0 ∣t1 ∣F

∣t2 ∣F ∣t3 ∣K

Table 1

Proof _e proof is standard. _e order of a pole of degenerate Eisenstein series at
any point coincides with the order of a pole of its constant term along NH . Since
IQ(3/10) is generated by a spherical vector for any K, it is enough to check that
EQ( f 0 , g , s)NH is holomorphic when K is a ûeld, and admits a simple pole when
K = F × F.

(i) Let K be a ûeld. Table 1 describes the Gindikin–Karpelevich factor associated
with each w ∈W(L, T) and the exponents w−1 ⋅ χQ ,1/6.

Simple poles are attained for J(w [123] , χQ ,s) and J(w [1232] , χQ ,s) at s = 1/6.

(Mw[1232](χQ ,s) +Mw[123](χQ ,s))( f 0s )

= J(w [123] , χQ ,s) ⋅ ((
ζF(6s − 1)
ζF(6s)

) f 0w[123]−1 ⋅χQ ,s
+ f 0w[1232]−1 ⋅χQ ,s

) .

Since w[2] ûxes w[123]−1 ⋅ χQ ,1/6 and lims→1/6
ζ(6s−1)
ζ(6s) = −1, the expression above is

holomorphic at s = 1/6.
(ii) Now assume thatK = F×F. Table 2 describes theGindikin–Karpelevich factors

associated with each w ∈W(L, T) and the relevant exponent w−1 ⋅ χQ ,s .
A pole of order 2 at s = 1/6 is attained by Mw[1234] and Mw[12342]. Reasoning as

above,

(Mw[12342](χQ ,s) +Mw[1234](χQ ,s))( f 0χQ ,s)

= J(w [1234] , χQ ,s) ⋅ ((
ζF(6s − 1)
ζF(6s)

) f 0w[1234]−1 ⋅χQ ,s
+ f 0w[12342]−1 ⋅χQ ,s

)

has atmost a simple pole at s = 1/6. _e pole is attained for f 0s , sinceMw[123](χQ ,s) f 0s
contributes a simple pole that cannot be cancelled by other terms. Indeed, the expo-
nent w [123]−1

⋅ χQ ,1/6 is not equal to w−1 ⋅ χQ ,1/6 for any other w ∈W(L, T).

1144

https://doi.org/10.4153/CJM-2018-019-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-019-7


_e Standard L-function of G2 and the Rallis–Schiòmann Li�

w ∈W(L, T) J(w , χQ ,s) Order of pole at 1/6 w−1 ⋅ χQ , 1
6
(t)

1 1 0 ∣t1 ∣3
∣t2 t3 t4 ∣

w [1] ζF(6s+2)
ζF(6s+3) 0 ∣t2 ∣2

∣t31 t3 t4 ∣

w [12] ζF(6s+1)
ζF(6s+3) 0 ∣t3 t4 ∣

∣t1 t22 ∣

w [123] ζF(6s)
ζF(6s+3) 1 ∣t4 ∣

∣t1 t2 t3 ∣

w [124] ζF(6s)
ζF(6s+3) 1 ∣t3 ∣

∣t1 t2 t4 ∣

w [1234] ζF(6s)
2

ζF(6s+3) ζF(6s+1) 2 1
∣t1 t3 t4 ∣

w [12342] ζF(6s) ζF(6s−1)
ζF(6s+3) ζF(6s+1) 2 1

∣t1 t3 t4 ∣

w [123421] ζF(6s) ζF(6s−2)
ζF(6s+3) ζF(6s+1) 1 ∣t1 ∣

∣t2 t3 t4 ∣

Table 2

Corollary 3.6 For h ∈ H(A), f ∈ IQ(s), and for Re(s) ≫ 0 one has

EQ(p∗( f ), h, s) = EQ( f , p(h), s).

In particular, the Eisenstein series EQ( f , g , s) on H(A) is holomorphic at s = 1/6 when
K is a ûeld. When K = F×F, it has atmost a simple pole that is attained by the spherical
section f 0s .

3.4 Siegel–Weil Identity

Let A(H) denote the space of automorphic forms on H. Deûne

ΛQ(1/6) ∶ IQ(1/6)Ð→ A(H), ΛP(3/10) ∶ IP(3/10)Ð→ A(H)

by

ΛQ(1/6)( fs) =
⎧⎪⎪
⎨
⎪⎪⎩

lims→1/6(6s − 1)EQ( f , g , s) if K = F × F ,
EQ( f , g , 1/6) if K ≠ F × F ,

ΛP(3/10)( fs) =
⎧⎪⎪
⎨
⎪⎪⎩

lims→3/10(5s − 3/2)2EP( f , g , s) if K = F × F ,
lims→3/10(5s − 3/2)EP( f , g , s) if K ≠ F × F .

_ese operators are H(A)-equivariant. Denote by ΠQ and ΠP their images in the
space A(H) of automorphic forms. _e map ΛQ(1/6) ∶ IQ(1/6) → A(H) and the
representation ΠQ are deûned similarly to ΛQ(1/6) and ΠQ .
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Lemma 3.7 _e restriction of the global intertwining operator Mw(χP ,s) to IP(s)
admits a simple pole at s = 3/10 that is attained by the spherical section. _e operator

Xw = lim
s→3/10

(5s − 3/2)Mw(χP ,s) ∶ IP(3/10)Ð→ IQ(1/6),

where w is given as in (3.4), is H(A)-equivariant, surjective, and satisûes
Xw( f 0χP ,3/10) = Jw ⋅ f 0χQ ,1/6

,

where Jw is deûned in (3.5).

Proof For a section fs ∈ IBH(χP ,s), let S denote a ûnite set of places of F such that
fs ,ν = f 0s ,ν for all ν ∉ S. By the Gindikin–Karpelevich formula, we have

M(w , χP ,s) fs = (⊗
ν∈S

Mw ,ν(χP ,s) fs ,ν)⊗ (⊗
ν∉S

Jν(w , χP ,s) f 0s ,ν)

= J(w , χP ,s)(⊗
ν∈S

Jν(w , λP ,s)
−1Mw ,ν(λ) fλ ,ν)⊗ (⊗

ν∉S
f 0w−1 ⋅χP ,s ,ν).

_e term J(w , χP ,s) has a simple pole at s = 3/10. _e partially normalized inter-
twining operators

1
Πα>0,w−1α<0ζFα ,ν(⟨χP ,s , α∨⟩)

Mw ,ν(χP ,s)( fs)

are entire due to [Win78] for ν∤∞ and [Sha80] for ν ∣∞. _e term

Πα>0,w−1α<0ζFα ,ν(⟨χP ,s , α
∨⟩ + 1)

is holomorphic for s = 3/10. _us, the terms Jν(w , χP ,s)−1Mw ,ν(χP ,s)( fs) are holo-
morphic at s = 3/10. In particular, the operator Mw(χP ,s) has at most a simple pole
on IBH(χP ,s). Its restriction to IP(s) admits a simple pole on the normalized spherical
section and hence the residue operator is H(A)-equivariant.

_e claim now follows from Lemma 3.2 (iii), Section 3.1 (15), and_eorem 3.3 (ii).

Our goal is to prove the following.

_eorem 3.8
(i) (Siegel–Weil identity) _ere is an equality of operators

ΛP(3/10) = ΛQ(1/6) ○Xw ∶ IP(3/10)Ð→ A(H).

(ii) _ere is an equality of automorphic representations ΠP = ΠQ .

Proof Since the spherical vector f 0 generates the representation IP(3/10), it is suf-
ûcient to show the equality for f 0. Using Lemma 3.7, it remains to show that

ΛP(3/10)( f 03/10) = Jw ⋅ ΛQ(1/6)( f̃ 01/6)

holds. _e proof is similar to the proof of [Ike92, Proposition 1.8] and relies on the
properties of the normalized spherical Eisenstein series

(3.6) E♯BH(λ, g) = [ ∏
α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1)(⟨λ, α∨⟩ + 1)(⟨λ, α∨⟩ − 1)]EBH(λ, f

0
λ , g),

where f 0λ is the normalized spherical section in IBH(λ).
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Proposition 3.9 _e normalized Eisenstein series E♯B(λ, g) is entire andWH-invar-
iant in the sense that for any w ∈WH it holds that E♯B(w ⋅ λ, g) = E♯B(λ, g).

_is result is considered standard and is mentioned without proof in several pa-
pers, e.g., [Ike92]. For the sake of completeness of presentation,we prove it inAppen-
dix C.

Since w−1(χP ,3/10) = χQ ,1/6, for w as in (3.4), it follows that

E♯BH(χP ,3/10 , g) = E♯BH(χQ ,1/6 , g).

Let us prove _eorem 3.8 in the case of K = F × F. _e case where K is a ûeld
follows similarly.

One has χP ,3/10 = λ(−1,3,−1,−1). Substituting the formula for the normalizing factor
and using Lemma 3.4, one checks that

E♯BH(χP ,3/10 , g) = lim
s2→3

lim
s1 ,s3 ,s4→−1

E♯BH(λs , g)

= −21233R4 ζF(2)3 ζF(3)3 ζF(4)2 ⋅ lim
s→3

(s − 3)2 ⋅ EP( f 0 , g ,
2s − 3
10

) .

Similarly, one has χQ ,1/6 = λ(3,−1,−1,−1) and

E♯BH(χQ ,1/6 , g) = lim
s1→3

lim
s2 ,s3 ,s4→−1

E♯BH(λs , g)

= −21233R5 ζF(2)4 ζF(3)2 ζF(4) lims→3
(s − 3) ⋅ EQ( f̃ 0 , g , s − 2

6
) .

Dividing both sides by −21233R4
F ζF(2)3ζF(3)3ζF(4)2 and making a linear change of

variables, we obtain

ΛP(3/10)( f 03/10) =
RF ζF(2)

ζF(3)ζF(4)
ΛQ(1/6)( f̃ 01/6),

as required.
_e second part follows immediately, since Xw is surjective.

Remark 3.10 When K = F × F, the representation ΠP = ΠQ is the minimal
representation and is contained in the space of square integrable automorphic func-
tions. _is was proved in [GGJ02], but it also follows from Table 2 by Jacquet’s crite-
rion [MW95, p. 74]. When K is a ûeld, the image ΠP = ΠQ is a special value of an
Eisenstein series and is not contained in the space of square-integrable automorphic
functions.

4 Global Theta Lift

_e goal of this section is to show that ΠQ is a regularized theta li� of a certain non-
cuspidal representation for the dual pair SL2(A) ×H(A).

4.1 Notations and Setup

We recall the notations and the setup for the theta li�.
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(1) Let B = T ⋅N be the Borel subgroup of SL2 and let χK be a quadratic automor-
phic character of T(A) associated with the quadratic algebra K by class ûeld theory.
Let K2 =∏ν K2ν denote the standardmaximal compact subgroup of SL2(A).

(2) Let IB(χK , s) denote the smooth normalized induction IndSL2(A)

B(A)
χKδs

B . series
EB(χK , ⋅ , g , s) isholomorphicwhenK is a ûeld andhas atmost a simplepole at s = 1/2
when K = F×F. In the latter case the pole is attained by the standard spherical section
f 0( ⋅ , s) ∈ IndSL2(A)

B(A)
χKδsB and the residual representation is the trivial representation.

(3) Denote byΛB(χK , 1/2) ∶ IB(χK , 1/2)→ A(SL2) the operator that is the leading
term of the Laurent expansion of the Eisenstein series EB(χK , ⋅ , g , s) at s = 1/2. Let
ΠB(χK , 1/2) denote the image of ΛB(χK , 1/2).

(4) _e pair (SL2 ,H) is a dual pair inside Sp16. _ere is a splitting SL2(A) ×

H(A)→ S̃p16(A) that depends on the form qK on H(A). We denote the pullback of
theWeil representation ωψ to SL2(A) ×H(A) by ωψ ,qK .

(5) _e representation ωψ ,qK acts by way of the Schrödingermodel on the space of
Schwartz functions S(V 8

K(A)). _e representation ωψ ,qK is realized automorphically
via

θψ ,qK ∶ S(V
8
K(A))Ð→ A(SL2 ×H)

θψ ,qK (ϕ)(g , h) = ∑
v∈V 8

K(F)
ωψ ,qK (g , h)ϕ(v).

(6) _e space (V 8
K , qK) admits a decomposition (V 8

K , qK) = (V 7 , q) ⊕ (V 1
K , q1

K),
where (V 1

K , q1
K) is a one-dimensional quadratic space of discriminantK , and (V 7 , q7)

is the split quadratic space of dimension 7 and discriminant 1. _e associated Weil
representations of S̃L2 × SO(V 1

K) and S̃L2 × SO(V 7), realized on S(V 1
K) and S(V 7),

respectively, are denoted by ωψ ,q1
K
and ωψ ,q7 . _e space ωψ ,q7 ⊗ ωψ ,q1

K
is a dense sub-

space in ωψ ,qK and one has

(4.1) θψ ,qK (ϕ1 ⊗ ϕ2)(g , (h1 , h2)) = θψ ,q7(ϕ1)(g , h1)θψ ,q1
K
(ϕ2)(g , h2)

for any (h1 , h2) ∈ SO(V 7) × SO(V 1
K), g ∈ S̃L2, ϕ1 ∈ ωψ ,q7 , and ϕ2 ∈ ωψ ,q1

K
.

(7) For an automorphic form φ ∈ A(SL2) and a Schwartz function ϕ ∈ S(V 8
K(A)),

the global theta li� θψ ,qK (ϕ, φ) is deûned by

(4.2) θψ ,qK (ϕ, φ) = ∫
SL2(F)/SL2(A)

θψ ,qK (ϕ)(g , h)φ(g) dg ,

whenever it converges. _is deûnes an automorphic form on H(A).

In the following discussion we shall omit subscripts and write ω and θ instead of
ωψ ,qK and θψ ,qK when there is no confusion.

4.2 Regularization of the Theta Lift

For arbitrary f ∈ ΠB(χK , 1/2) the integral in (4.2) does not converge, so a regulariza-
tion of the integral is required.
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When K = F × F, in which case ΠB(χK , 1/2) is trivial, the regularization was de-
tailed in [GG06]. Although the idea of regularization is the same for the case where
K is a ûeld, we repeat the construction for the convenience of the reader.
As a ûrst step,we deûne an SL2(A)×H(A)-submoduleω0 ofω such that for ϕ ∈ ω0

the function θ(ϕ)(g , h) is rapidly decreasing as a function of g ∈ SL2(F)/ SL2(A).
_e function θ(ϕ)(g) is rapidly decreasing whenever ω(g)ϕ(0) = 0 for all g ∈

SL2(A). Fixing an Archimedean place ν0, deûne amap

T ∶ ων0 Ð→ IBν0
(χK , 3/2), T(ϕ)(g) = ω(g)ϕ(0)

and put ω0
ν0 = Ker(T). _is allows us to deûne ω0 = ω0

ν0 ⊗ (⊗ν≠ν0 ων). _at is
obviously an SL2(A) × H(A)-module. Hence, the map θ ∶ ω0 ⊗ IB(χK , s) → A(H),
given by

θ(ϕ, f )(h) = ∫
SL2(F)/SL2(A)

θ(ϕ)(g , h)EB(χK , f , g , s) dg ,

is well deûned.
Recall that the center Zν0(sl2) of the universal enveloping algebra Uν0(sl2) is iso-

morphic toC [∆],where ∆ is theCasimiroperator. _e element∆actson IBν0
(χKν0

, s)
by the constant s2 − 1/4. _e element z = ∆ − 2 ∈ Zν0(sl2) annihilates the representa-
tions IBν0

(χKν0
,±3/2) and acts by a non-zero constant s2 − 9/4 on any IBν0

(χKν0
, s)

with s ≠ ±3/2.
Clearly, z deûnes an SL2(A) ×H(A)-equivariant map from ω to itself. Moreover,

the image is contained in ω0 since z commutes with T and annihilates IB(χKν0
, 3/2).

_is allows us to extend themap θ from ω0 ⊗ IB(χK , s) to ω⊗ IB(χK , s), s ≠ ±3/2 by

θreg(ϕ, f ) = 1
s2 − 9/4 ∫

SL2(F)/SL2(A)

θ(zϕ)(g , h)EB(χK , f , g , s) dg .

_e extension is unique for all s ≠ ±3/2. Otherwise, having two possible extensions
θ1 and θ2 of θ, we notice that θ1 − θ2 vanishes on ω0 ⊗ IB(χK , s) and hence deûnes
an SL2(Fν0)-invariant functional on IB(χKν0

, 3/2)⊗ IB(χKν0
, s) that must be zero.

4.3 The Regularized Theta Lift of ΠB(χK , 1/2)

For an automorphic representation Π ⊂ A(SL2), we deûne the automorphic repre-
sentation θreg(Π) of H(A) to be generated by θreg(ϕ, f ) as ϕ ∈ ωψ ,qK and f ∈ Π.

_eorem 4.1 θreg(ΠB(χK , 1/2)) = ΠQ .

Proof Let K = F × F. _en ΠB(χ0 , 1/2) is trivial, and the result follows from
[GRS97a,_eorem 6.8].

Let K be a ûeld. _e proof of the theorem in this case will occupy the rest of this
section. We start by considering θreg(ϕ,EB(χK , f , g , s)) for Re(s) ≫ 0.

Proposition 4.2 Let Re(s) ≫ 0. For any ϕ ∈ ω0 and f ∈ IB(χK , s), one has

θ(ϕ,EB(χK , f , ⋅, s))(h) = EQ(F(ϕ, f , s), h, s/3),
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where F(ϕ, f , s)(h) = ∫N(A)/ SL2(A)
ω(g , h)ϕ(e0) f (g , s) dg, where e0 is a non-zero

isotropic vector in V 8
K(F) such that Q(F) stabilizes Span{e0}; it is deûned in Sec-

tion 3.1 (11).

Remark 4.3 For a standard section f ( ⋅ , s) ∈ IB(χK , s), the sectionF(ϕ, f , s) is not
standard, but holomorphic.

_is follows by the standard unfolding technique:

∫
SL2(F)/SL2(A)

θ 16(ϕ)(g , h)EB(χK , f , g , s) dg

= ∫
B(F)/ SL2(A)

∑
v∈V 8

K(F)
ω(g , h)ϕ(v) f (g , s) dg

= ∫
T(F)N(A)/ SL2(A)

∑
v∈V 8

K(F),
qK(v)=0

ω(g , h)ϕ(v) f (g , s) dg .

_e group H(F) acts on the set {v ∈ V 8
K(F) ∣ qK(v) = 0}. _e only non-zero orbit

is open. Let us choose the vector e0 as its representative. _e contribution of the zero
orbit vanishes since ϕ ∈ ω0. _e stabilizer of e0 satisûes

StabH(F)(e0) = SO(VK
6 )(F) ⋅ V(F) ⊂ Q(F),

GL1(F) ⋅ StabH(F)(e0) = Q(F).

_us the integral above equals

∫
T(F)N(A)/ SL2(A)

∑
γ∈Q(F)/H(F)

∑
t1∈GL1(F)

ω(g , t1γh)ϕ(e0) f (g , s) dg

= ∫
T(F)N(A)/ SL2(A)

∑
γ∈Q(F)/H(F)

∑
t∈T(F)

ω(t−1g , γh)ϕ(e0) f (g , s) dg

= ∑
γ∈Q(F)/H(F)

∫
N(A)/ SL2(A)

ω(g , γh)ϕ(e0) f (g , s) dg

= ∑
γ∈Q(F)/H(F)

F(ϕ, f , s)(γh),

as required.
It remains to check thatF(ϕ, f , s) belongs to IQ(s/3). Indeed, for (t,m) ∈ L(A) =

GL1(A) × SO(V 6
K)(A) it holds that

F(ϕ, f , s)((t,m)h) = ∫
N(A)/ SL2(A)

ω(g , (t,m)h)ϕ(e0) f (g) dg

= ∫
N(A)/ SL2(A)

ω(g , h)ϕ(t−1e0) f (g) dg .
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By the formulas of the Schrödinger model, one has

ϕ(t−1e0) = ω(t−1 , 1)∣t∣4 χK(t)ϕ(e0), f (g , s) = χK(t)∣t∣1+2s f (t−1g),
dg = ∣t∣−2d(t−1g),

and hence

F(ϕ, f , s)((t,m)g) = ∣t∣3+2sF(ϕ, f , s)(g) = δs/3+1/2
Q

(t)F(ϕ, f , s)(g),

as required.

Remark 4.4 For Re(s) ≫ 0, ϕ =⊗ν ϕν ∈ ω0, and f =⊗ν fν ∈ IB(χK , s), there is a
factorization F(ϕ, f , s)(h) =∏ν Fν(ϕν , fν , s)(hν), where

Fν(ϕν , fν , s)(h) = ∫
N(Fν)/ SL2(Fν)

ων(g , h)ϕν(e0) fν(g , s) dg .

Our goal is to deûne F(ϕ, f , s) at s = 1/2 using analytic continuation. In order to
do this, we consider the behaviour of Fν(ϕν , fν , s)(hν).

Proposition 4.5 (i) For any place ν, the map Fν admits a holomorphic continu-
ation and is non-zero for Re(s) > −3/2.

(ii) Let Kν be either Fν × Fν or the unramiûed quadratic extension of Fν . We ûx the
normalized spherical vectors ϕ0

ν ∈ ων and f 0ν ,s ∈ IB(χKν , s). _en

Fν(ϕ0
ν , f

0
ν ,s
, s) = ζν(2s + 3) f

0
ν ,s/3 ,

where f
0
ν ,s is the normalized spherical section of IQν

(s).
(iii) For any place ν, themap Fν ∶ ων ⊗ IB ,ν(χKν , 1/2)→ IQν

(1/6) is surjective.
(iv) For ν = ν0, themap Fν ∶ ω0

ν0 ⊗ IB ,ν0(χKν0
, 1/2)→ IQν0

(1/6) is surjective.

Proof (i)Recall that the section fs ,ν is standard, so that its restriction fν toK2,ν does
not depend on s. Using the Iwasawa decomposition, SL2(Fν) = N(Fν) ⋅ T(Fν) ⋅K2,
we can write Fν(ϕν , fν , s) = ∫K2 ν

L(ων(k)ϕν , s) fν(k) dk, where

L(ϕν , s) = ∫
T(Fν)

ων(t)ϕν(e0)χKν(t)δ
s+1/2
B (t)δ−1

B (t) dt = ∫
F×ν

∣t∣2s+3ϕν(te0) d×t.

Obviously, the operator L( ⋅ , s) is holomorphic for Re(s) > −3/2 and does not
vanish for any ν. _us, the operator Fν is also holomorphic for Re(s) > −3/2.

We now show that Fν is non-zero for Re(s) > −3/2. Note that for any

b ∈ B(Fν) ∩K2,ν

holds L(ων(b)ϕν , s) = χKν(b)L(ϕν , s). For s with Re(s) > −3/2, we choose ϕν such
that L(ϕν , s) ≠ 0. We can choose fν , whose support modulo B2(Fν) ∩K2,ν is small
enough, so that Fν(ϕν , fν , s) ≠ 0.
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(ii) If IBν(χKν , s) is an unramiûed representation with f 0
ν ,s

the normalized spher-

ical vector, then Fν(ϕ0
ν , f

0
ν
, s) is spherical. One checks that L(ϕ0

ν , s) = ζν(2s + 3) and

hence Fν(ϕ0
ν , f

0
ν ,s
, s) = ζν(2s + 3) f

0
ν ,s/3.

(iii) If Kν = Fν × Fν , then the representation IBν(χKν , 1/2) = IBν(χ0 , 1/2), where
χ0 is the trivial character, is generated by the spherical vector and the image of the
spherical data is not zero. _e fact that IQν

(1/6) is generated by the spherical vector
implies surjectivity. If Kν is a ûeld, then IQν

(1/6) is irreducible, as shown in _eorem
3.3, and hence the non-vanishing of Fν implies its surjectivity.

(iv) _e map Fν0 ∶ ων0 ⊗ IBν0
(χKν0

, 1/2) → IQν0
(1/6) is surjective and SL2 ×H-

equivariant. IfU = Fν0(ω0
ν0⊗IBν0

(χK , 1/2)) is a proper subrepresentation of IQ(1/6),
then themap Fν0 factors to a non-zero SL2-equivariant map

IBν0
(χKν0

, 3/2)⊗ IBν0
(χKν0

, 1/2)→ IQν0
(1/6)/U ≠ 0,

which is impossible. Hence,Fν0 ,when restricted toω0
ν0⊗IBν0

(χKν0
, 1/2), is surjective.

We deûne the holomorphic continuation of the operator F( ⋅ , ⋅ , s) for Re(s) > −1.
Let ϕ = ⊗ ϕν ∈ ω0 , f = ⊗ fν ∈ IB(χK , s) be factorizable data and let S be a ûnite set
of places of F such that Kν , ϕν , and fν are unramiûed outside of S. _en the equality

F(ϕ, f , s)(h) = ζS(2s + 3)[∏
ν∉S
f
0
ν ,s × ∏

ν∈S
Fν(ϕν , fν , s)(hν)]

holds for Re(s) ≫ 0 which allows us to deûne F(ϕ, f , 1/2). Moreover, the operator
F( ⋅ , ⋅ , 1/2) ∶ ω0 ⊗ IB(χK , 1/2)→ IQ(1/6) is surjective.

_eorem 4.1 follows since, for ϕ ∈ ω0 and f ∈ IB(χK , 1/2), one has

θ(ϕ,EB(χK , f , ⋅, 1/2)) = EQ(F(ϕ, f , 1/2), ⋅, 1/6).

5 Proof of Theorem 1.1

In this section we prove the remaining direction of_eorem 1.1.

_eorem 5.1 Let π be an irreducible cuspidal representation of G2(A) such that
L

S(s, π, st) has a pole at s = 2. _en RSψ(π) ≠ 0.

Proof Since LS(s, π, st) has a pole at s = 2, it follows from _eorem 2.4 (ii) that
either F̂ψ(π) = {F × F × F} or there exists a quadratic ûeld extension K of F so that
F × K ∈ F̂ψ(π).

In the ûrst case, RSψ(π) ≠ 0 by _eorem 2.4 (iii).
In the second case put H = HF×K and H = SO(V 8

K). We conclude from equations
(1.1) and (1.2) that there exist φ ∈ π and η ∈ ΠP = ΠQ , an automorphic formon H(A),
such that ∫G2

φ(h)η(h) dh ≠ 0.
_e embedding of G2 into H factors through H. Hence, by Corollary 3.6, there

exists η ∈ ΠQ such that ∫G2
φ(h)η(h) dh ≠ 0.
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Since the map ΛQ(1/6) ○ F( ⋅ , ⋅ , 1/2) ∶ ω0 ⊗ IB(χK , 1/2) → ΠQ is surjective, it
follows that there exist ϕ ∈ ω0, f ∈ IB(χK , 1/2) such that

∫
G2(F)/G2(A)

φ(h)( ∫
SL2(F)/SL2(A)

θψ ,qK (ϕ)(g , h)EB(χK , f , g , 1/2) dg )dh ≠ 0.

Since φ is rapidly decreasing on G2 and θψ ,qK (ϕ) is rapidly decreasing on SL2,
the integral converges absolutely and it is possible to change the order of integration.
Hence

∫
SL2(F)/SL2(A)

( ∫
G2(F)/G2(A)

φ(h)θψ ,qK (ϕ)(g , h) dh)EB(χK , f , g , 1/2) dg ≠ 0

for some choice of data. In particular, the inner integral does not vanish.
By (4.1), there exist φ ∈ π, ϕ1 ∈ ωψ ,q7 , and ϕ2 ∈ ωψ ,q1

K
such that for some g ∈ S̃L2

∫
G2(F)/G2(A)

φ(h)θ 14
ψ ,q7(ϕ1)(g , h) dh ⋅ θ2

ψ ,q1
K
(ϕ2)(g) ≠ 0

and hence RSψ(π) ≠ 0, as required.

Remark 5.2 _e argument above can be visualized by the following see-saw dia-
gram.

S̃L2 × S̃L2 H

∆S̃L2
?�

OO

G2 × SO(V 1
K)

� ?

OO

Remark 5.3 Assume that LS(s, π, st) has a simple pole at s = 2 and F × K ∈

F̂ψ(π). We can distinguish whether π is a weak li� from τ ⊠ 1 for cuspidal or for
one-dimensional τ by studying the twisted L-function L

S(s, π ⊠ χK , st⊠ st), whose
meromorphic continuation was also studied in [Seg17, _eorem 3.1]. Speciûcally,
L

S(s, π ⊠ χK , st⊠ st) has a simple pole at s = 2 if and only if π is a weak li� of
(χK ○ det) ⊠ 1. If it is holomorphic, then π is a weak li� of τ ⊠ 1 for a cuspidal τ.

A Irreducibility of IQ(1/6)When K is a Non-Archimedean Field

We ûx a ûnite place ν of F such that Kν is a ûeld and drop ν from all notations. For
any group G, we write just G for G(F).

In [Wei03], themain objectwas a degenerate principal series associatedwith a par-
abolic subgroupwith anAbelian unipotent radical of a split simply-connected simply-
laced group. One uses the Fourier–Jacobi functor to determine its reducibility. In
particular, for K = F × F, the result of [Wei03], applied to IQ(s), shows that IQ(1/6)
is of length 2 and its unique irreducible quotient is spherical. For a ûeld K, the group
HF×K is not split and the restricted root system is not simply-laced and hence the re-
sults of [Wei03] cannot be applied directly. In this section, we prove that IQ(1/6) is
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irreducible using a variation of the arguments in [Wei03]. When the statements and
their proofs can be repeated verbatim, we refer the reader to [Wei03].

A.1 The Fourier–Jacobi Functor

_is functor takes smooth representations ofH to the smooth representations of SL2.
_e unipotent radical U of P is a Heisenberg group with center Z and the polar-

ization U = A ⋅ A′ ⋅ Z, where

Z = {x[1,2,2](r) ∣ r ∈ F},
A = {x[1,1,0](r1)x[1,1,1](r2)x[1,1,2](r3) ∣ r1 , r3 ∈ F , r2 ∈ K},

A′ = {x[0,1,0](r1)x[0,1,1](r2)x[0,1,2](r3) ∣ r1 , r3 ∈ F , r2 ∈ K}.

By the Stone–vonNeumann theory, for any additive character ψ of Z ≃ Ga there is
unique irreducible representation ωψ ofU with central character ψ. It can be realized
as indU

AZ ψ, where ψ is extended trivially on A. By restriction this space is isomorphic
to the space of Schwartz functions S(A′). _eWeil representation can be extended to
a representation ωψ of S̃p(U/Z) ⋅U .

Proposition A.1 Fix an embedding φα1 ∶ SL2 ↪ M′ ↪ Sp(U/Z), where M′ is the
derived group of the Levi factor M of P. _en the image splits in ̃Sp(U/Z). In particular,
theWeil representation ωψ of U can be extended to a representation of SL2 ⋅U .

Once this proposition is proved we can deûne

Deûnition A.2 _e Fourier–Jacobi functor of a smooth representation π of H is
deûned by FJψ(π) = HomU(ωψ , πZ ,ψ), which is a smooth representation of SL2.

Note that the functor is exact as a composition of two exact functors.

Proof of Proposition A.1 _e splitting is provided by S. Kudla [Kud94], but to apply
his result we need to ûx certain isomorphisms.
Consider the four-dimensional quadratic space V = F ⊕ K ⊕ F equipped with a

quadratic form

qK(r⃗) = r1r3 + TrK/F(r22), r⃗ = (r1 , r2 , r3) ∈ V; r1 , r3 ∈ F , r2 ∈ K .

LetH = X ⊕Y be a two-dimensional symplectic space with the standard isotropic
polarization. In particular, we have Sp(H) ≃ SL2.

_e spaceW = V⊗H is equippedwith the natural symplectic form and the follow-
ing polarization W = V⊗H = V⊗ X ⊕V⊗ Y . We denote by H(W) theHeisenberg
group associated with the spaceW and we identify

U ≃ H(W), U/Z ≃W, A ≃ V⊗ X , A′ ≃ V⊗ Y .

Under this identiûcation, the subgroup φα1(SL2) of Sp(U/Z) is identiûed with
Sp(H)↪ Sp(W).

_e dual pair Sp(H) × O(V) splits in S̃p(W) and the splitting SV,H is given by
[Kud94]. By pullback, ωψ is a representation of Sp(H) ⋅H(W) = SL2 ⋅U .
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We note that, according to [Wei03, Proposition 3.1], FJψ is independent ofψ ,hence
we denote it by FJ.

Proposition A.3 Let σ be an irreducible representation of H. _en FJ(σ) = 0 if and
only if σ is trivial.

Proof If σ is trivial, then σZ ,ψ = 0 and hence FJψ(σ) = 0. Conversely, if FJ(σ) = 0,
then σZ ,ψ = 0 for any non-trivial character ψ of Z, i.e., Z acts trivally on σ . _e sub-
group generated by the conjugates of Z is a normal subgroup of H. Since H modulo
its ûnite center is simple, we deduce that σ is trivial on H.

A.2 The Effect of the Fourier–Jacobi Functor on the Principal Series

Let B denote the Borel subgroup of SL2 and let δB denote its modular character. _e
group B acts by conjugation onU normalizing AZ and commutingwith Z. Hence ev-
ery b ∈ B deûnes an endomorphism Ad(b) of indU

AZ ψ by (Ad(b)φ)(u) = φ(bub−1).
Any b ∈ B has a form b = t(a)⋅n,where t(a) = α∨1 (a), and n belongs to the unipotent
radical of B.

Proposition A.4 FJ(IQ(s)) = IB(χK , 3s).

Proof _e proof is computational. We begin with the following lemma

Lemma A.5 (i) For any b = t(a)n ∈ B, the endomorphism Ad(b) ○ ωψ(b) of
indU

AZ ψ is the scalar χK(a)∣a∣2 = χK(a)(δ1/2Q δ−1/2
B )(t(a)).

(ii) _ere is an SL2 ⋅U-equivariant isomorphism

J ∶ IB(χK , 3s)⊗ ωψ ≅ indSL2 ⋅U
B⋅AZ [δ3s

B (δ1/2Q δ−1/2
B )⊗ ψ],

deûned by J( f ⊗ φ)(mu) = f (m)ωψ(m)φ(mum−1).

Proof (i) Similarly to [Wei03, Proposition 2.6], one shows that Ad(b) ○ ωψ(b) acts
on indU

AZ ψ by a character and hence is trivial on the unipotent radical of the Borel. To
determine the character on the torus T of B,we use the Schrödingermodule S(V⊗Y)
of ωψ . _e formula of the action of t(a) in this model appears in [Pra98, §1.1].

Ad(t(a))ωψ(t(a))φ(v) = ωψ(t(a))φ(a−1v) = χK(a)∣a∣2φ(v)

= χK(a)(δ1/2Q δ−1/2
B )(t(a))φ(v).

(ii) It follows from part (i) that J(φ ⊗ f ) belongs to indSL2 ⋅U
B⋅AZ [δ3s

B (δ1/2Q δ−1/2
B )⊗ ψ] for

any f ∈ IB(χK , 3s) and φ ∈ ωψ . _e bijectivity of the map J follows similarly to that
in [Wei03,_eorem 4.3.1].

By [Wei03, Propositions 3.2, 4.2.3] we have an SL2-equivariant isomorphism
FJ(IQ(s)) ⊗ ωψ ≅ IQ(s)Z ,ψ ≅ Iw0

Q (s)Z ,ψ , where w0 = w[2132132] is the shortest rep-
resentative of the coset containing the longest element in W(M , T) = P/H/BH and
Iw0
Q (s) = { f ∈ IQ(s) ∣ Supp( f ) ⊂ Qw0P}.
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_ere is a chain of SL2 ⋅U-equivariant isomorphisms:

Iw0
Q (s)Z ,ψ ≅ indSL2 ⋅U

B⋅AZ [(δsQ ∣B(δ1/2Q δ−1/2
B ))⊗ ψ]

≅ indSL2 ⋅U
B⋅AZ [δ3s

B (δ1/2Q δ−1/2
B )⊗ ψ] ≅ IB(χK , 3s)⊗ ωψ .

_e ûrst isomorphism is realized via themap sending f ∈ Iw0
Q (s)Z ,ψ to

F(g) = ∫
Z

f (w0gz)ψ(z) dz, ∀g ∈ SL2 ⋅U .

_e integral is convergent, since for any ûxed g the function f (w0gz) is compactly
supported as a function of z. _e second isomorphism follows from the fact that

δQ(t(a)) = ∣a∣6 = δB(t(a))3 ,

and the third isomorphism is part (ii) of the lemma. Hence, FJ(IQ(s)) ⊗ ωψ =
IB(χK , 3s)⊗ ωψ and so FJ(IQ(s)) = IB(χK , 3s), as required.

Finally, we can prove the irreducibility of IQ(1/6). Inspecting the Jacquet module
IQ(1/6)U , it is easy to see that IQ(1/6) does not contain trivial constituents. Hence,
by the exactness of FJ and Proposition A.3, the length of IQ(1/6) equals the length of
FJ(IQ(1/6)) = IB(χK , 1/2), which is an irreducible representation of SL2.

B Structure of IQ(1/6) at Archimedean Places

In this section, ν is an Archimedean place, real or complex. We drop ν from all nota-
tions. We consider the structure of the representation IQ(1/6).

Proposition B.1 (i) If F = C and K = C × C, then IQ(1/6) has length two and
admits a unique irreducible quotient that is spherical.

(ii) If F = R and K = R × R, then IQ(1/6) has length three and admits a unique
irreducible quotient that is spherical.

(iii) If F = R and K = C, then IQ(1/6) is spherical and irreducible.

Proof We use the results of [Sah95] to establish the composition series of the repre-
sentation IQ(1/6). It is essential to present the relevant notations.

• Let h = Lie(H(F)), k = Lie(K), l = Lie(L(F)), and ûx a Cartan subalgebra t of
k orthogonal to k∩ l. Also, let Θk be the Cartan involution of H(F) associatedwithK

and denote by p the (−1)-eigenspace of Θk in hWe ûx a basis γ1, γ2 of the dual space
to t∗ as in [Sah95, §0].
• _e symmetric space K/K ∩ L(F) is of rank two and its root system is of type

D2 for F = R and of type C2 when F = C.
• _e half-sum of positive roots of the root system of k relative to t is given by

ρ = r1γ1 + r2γ2.
• We consider the degenerate principal series (πt , IQop(t)) as an (h,K)-module.

Since it is admissible, its structure is the same as of an H(F)-module. _e represen-
tation IQop(1/6) is denoted in [Sah95] by I(1) for F = R and I(2) for F = C. Since
the parabolic subgroups Qop

and Q are conjugate, one has ĨQ(1/6) ≃ IQop(1/6), and

1156

https://doi.org/10.4153/CJM-2018-019-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-019-7


_e Standard L-function of G2 and the Rallis–Schiòmann Li�

so the composition series of the latter determines the composition series of IQ(1/6).
_e reducibility of the representation I(t) is given in terms of the numbers r i above.
• As a representation of K, I(t) is isomorphic to L2(K/K ∩ L(F), which is, by

[Hel84, _eorem V.4.3], a multiplicity-free sum of highest weight representations,
called K-types. For each K-type, Sahi deûned its rank and proved [Sah95, _eorem
3B] that two K-types belong to the same irreducible constituent of I(t) if and only if
they have the same rank.

Now we list the relevant numbers for the cases of interest and cite the relevant
theorems from [Sah95].
Case 1: F = C,K = C×C. _e group is SO(8,C). _e root systemof the symmetric

space is of type C2. One has r1 = 5/2 and r2 = 1/2. _eorem 3C implies that I(2) has
exactly two irreducible constituents, one of rank 1 that is theminimal representation
denoted by Π1, and another of rank 2 denoted by Π2. Moreover, Π1 is a spherical
subrepresentation of I(2).
Case 2: F = R,K = R×R. _e group is SO(4, 4). _e root systemof the symmetric

space is of type D2. One has r1 = 1, r2 = 0. _eorem 3C implies that the representation
I(1) has exactly three irreducible constituents of rank 1, 2+ and 2−, respectively, all of
them unitarizable. _e constituents of rank 2± are quotients.
Case 3: F = R,K = C. _e group is SO(5, 3). _e root system of the symmetric

space is of type D2. One has r1 = 1 and r2 = 1/2. _e_eorem 3A implies that I(1) is
irreducible.

It remains to show that I(2) in Case 1 and I(1) in Case 2 are not direct sums of
their constituents, viz. they have a unique irreducible subrepresentation.

Let us do that for Case 1. Case 2 is proven similarly.
_e K types are the highest weight representations V(a1 ,a2) = Va1γ1+a2γ2 , where

a1 ≥ a2 ≥ 0. Let v(a1 ,a2) = va1γ1+a2γ2 denote the highest weight vector in V(a1 ,a2).
_e roots ±γ1, ±γ2 are the extreme t-weights of p and hence their weight-space,

p±γ1 and p±γ2 , are one-dimensional. We ûx non-zero elements X1, X2, X1, and X1 of
pγ1 , pγ2 , p−γ1 , and p−γ2 , respectively.
For any highest weight γ, πt(X i) is a K-orthogonal projection from Vγ to

Vγ+γ i sending vγ to c i(γ, t)vγ+γ i . Hence, Vγ+γ i occurs in πt(h)Vγ if and only if
c i(γ, t)vγ+γ i ≠ 0.

Similarly, πt(X i) is a K-orthogonal projection from Vγ+γ i to Vγ sending vγ+γ i to
d i(γ, t)vγ . Hence, Vγ occurs in πt(h)Vγ+γ i if and only if d i(γ, t)vγ+γ i ≠ 0.

Since V(1,0) is of rank one [Sah95, p. 10], it is a constituent of Π1. On the other
hand, V(1,1) has rank two and hence it is a constituent of Π2. Furthermore, πt(X2)

is a K-orthogonal projection from V(1,1) to V(1,0) that sends v(1,1) to d2(γ1 , 1
6 )v(1,0).

From [Sah95, _eorem 1] it follows that d2(γ1 , 1
6 ) (denoted d2(γ1 , 2) there) is non-

zero and hence V(1,0) occurs in π1/6(h)Vγ+γ i . We conclude that Π2 generates I(2)
and hence cannot be a submodule.

Taking the contragredient, we conclude that Π̃2 is a subrepresentation and Π̃1 is
the unique irreducible quotient of IQ(1/6). In particular, IQ(1/6) is generated by its
spherical vector.
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C The Normalized Eisenstein Series

Assume thatG is a quasi-split, simply-connected and simple groupdeûned over F. Let
B be a Borel subgroup ofG withmaximal torus T containing amaximal split torus TS .
Let Φ denote the relative root system of G with respect to (B, TS) with relativeWeyl
group W = W(G , TS). Let Φ+ denote the associated set of positive roots of G with
the set of simple roots ∆. _e Weyl group W is generated by the simple re�ections
wα with α ∈ ∆. For any α ∈ Φ+, we denote by Fα the ûeld of deûnition of the root
α. Finally, the space a∗C = X∗(T) ⊗ C can be identiûed with the space of totally
unramiûed automorphic characters of T(A).

Let λ ∈ a∗C. We consider the Eisenstein series EB(λ, f 0λ , g) corresponding to the
normalized spherical section f 0λ ∈ IndG

B λ (normalized induction). As in equation
(3.6), let

E♯B(λ, g) = [ ∏
α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1)l+α (λ)l−α (λ)]EB(λ, f 0λ , g),

where l±α (λ) = ⟨λ, α∨⟩ ± 1.

Proposition C.1 _enormalized Eisenstein seriesE♯B(λ, g) is entire andW-invariant.

Proof We start by proving that E♯B(λ, g) is indeedW-invariant. It suõces to prove
it for a simple re�ectionwβ for some β ∈ ∆, sinceW is generated by these re�ections.

Indeed, applying the functional equation [MW95, IV.1.10]

EB(λ, f 0λ , g) = EB(wβ ⋅ λ,M(wβ , λ) f 0λ , g),

the fact that

∏
α∈Φ+

l+α (wβ ⋅ λ)l−α (wβ ⋅ λ) = ∏
α∈Φ+

l+α (λ)l−α (λ),

∏
α∈Φ+

ζFα(⟨wβ ⋅ λ, α
∨⟩ + 1) =

ζFβ(−⟨λ, β
∨⟩ + 1)

ζFβ(⟨λ, β∨⟩ + 1)
∏
α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1),

and the functional equation ζFα(s) = ζFα(1 − s) for all α ∈ Φ+, yields

E♯B(wβ ⋅ λ, g) = [ ∏
α∈Φ+

ζFα(⟨wβ ⋅ λ, α
∨⟩ + 1)l+α (wβ ⋅ λ)l−α (wβ ⋅ λ)]EB(wβ ⋅ λ, f 0wβ ⋅λ , g)

=
ζFβ(−⟨λ, β

∨⟩ + 1)

ζFβ(⟨λ, β∨⟩ + 1)
[ ∏
α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1)l+α (λ)l−α (λ)]

× EB(λ,M(wβ ,wβ ⋅ λ) f 0wβ ⋅λ , g)
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=
ζFβ(−⟨λ, β

∨⟩ + 1)

ζFβ(⟨λ, β∨⟩ + 1)
[ ∏
α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1)l+α (λ)l−α (λ)]

×
ζFβ(−⟨λ, β

∨⟩)

ζFβ(−⟨λ, β∨⟩ + 1)
EB(λ, f 0λ , g)

= [ ∏
α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1)l+α (λ)l−α (λ)]EB(λ, f 0λ , g) = E♯B(λ, g).

We now turn to prove that E♯B(λ, g) is entire. It follows from the general theory
of Eisenstein series that E♯B(λ, g) is entire if and only if its constant term along B is
entire. We recall that

EB(λ, f 0λ , t)N = ∑
w∈W

( ∏
α∈Φ+

w−1 ⋅α∉Φ+

ζFα(⟨λ, α
∨⟩)

ζFα(⟨λ, α∨⟩ + 1)
) f 0w−1 ⋅λ(t).

We write
F(λ, t) = E♯B(λ, f 0λ , t)N = L(λ) ∑

w∈W
Fw(λ) f 0w−1 ⋅λ(t),

where L(λ) =∏α∈Φ+ l+α (λ)l−α (λ) and

Fw(λ) = ( ∏
α∈Φ+

w−1 ⋅α∈Φ+

ζFα(⟨λ, α
∨⟩ + 1))( ∏

α∈Φ+
w−1 ⋅α∉Φ+

ζFα(⟨λ, α
∨⟩)) .

While L(λ) is entire, Fw(λ, t) can possibly have simple poles along the hyper-
planes Hє

α = {λ ∈ a∗C ∣ ⟨λ, α∨⟩ = є}, α ∈ Φ+ , є = −1, 0, 1. To prove that the sum is
holomorphic, we shall show the cancellation of all the poles, either by studying the
contribution of diòerent terms or by using the zeroes of L(λ). Let

X = ⋃
є ,є′∈{−1,0,1}

α ,α′∈Φ+ ,α≠α′

(Hє
α ∩Hє′

α′), Y = ⋃
є∈{−1,0,1}
α∈Φ+

Hє
α .

_e set X is a closed subset of a∗C of codimension 2. We ûrst prove that F(λ, t) is
holomorphic on a∗C ∖ X.
For any w ∈W and α ∈ Φ+, the poles of Fw(λ) along H±1

α ∖ X cancel by the zeroes
of L(λ) along these hyper-planes. Since F(λ, t) = ∑w∈W L(λ)Fw(λ) f 0w−1 ⋅λ(t), the
function F(λ, t) is holomorphic on ⋃α∈Φ+ H±1

α ∖ X.
By W-invariance, it is enough to show that F(λ, t) is holomorphic along H0

α ∖ X
for any simple root α since any root isW-conjugate to a simple root. Let us ûx such α.

_e function Fw(λ) admits a simple pole along H0
α ∖ X for any w ∈ W . We shall

show that Fwαw(λ) + Fw(λ) is holomorphic along H0
α ∖ X for any w ∈W .

Introduce a partition of the set of positive roots as Φ+(w) ∪Φ−(w), where

Φ+(w) = {β ∶ β > 0,w−1 ⋅ β > 0}, Φ−(w) = {β ∶ β > 0,w−1 ⋅ β < 0}.

Without loss of generality, assume that l(wαw) > l(w),where l is the length func-
tion on W . Hence, one has

Φ+(wαw) = wα(Φ+(w) ∖ {α}), Φ−(wαw) = wα(Φ−(w)) ∪ {α}.

Claim For any λ ∉ Y it holds that Fwαw(λ) = Fw(w−1
α ⋅ λ).
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Indeed, using the relations above we obtain

Fw(w−1
α ⋅ λ) = ( ∏

β∈Φ+(w)

ζFβ(⟨λ,wα ⋅ β
∨⟩ + 1))( ∏

β∈Φ−(w)

ζFβ(⟨λ,wα ⋅ β
∨⟩))

= ( ∏
β∈Φ+(wαw)

ζFβ(⟨λ, β
∨⟩ + 1)) ζFα(−⟨λ, α

∨⟩ + 1)

× ( ∏
β∈Φ−(wαw)

ζFβ(⟨λ, β
∨⟩))(ζFα(⟨λ, α

∨⟩))−1 = Fwαw(λ).

We use the claim to show the cancellation of the pole along H0
α . _e residue of Fw

along the hyperplane H0
α is deûned by [ResH0

α
Fw](λ′) = limλ→λ′(⟨λ, α∨⟩)Fw(λ) for

λ′ ∈ H0
α . For any λ ∉ Y , write λ = sα + λ′, where λ′ ∈ H0

α . _us, wα ⋅ λ = −sα + λ′ and
⟨λ, α∨⟩ = 2s. Hence,

[ResH0
α
Fwαw](λ

′) = lim
s→0

2s ⋅ Fw(−sα + λ′) = − lim
s→0

2s ⋅ Fw(sα + λ′) = −[ResH0
α
Fw](λ′)

and hence the poles of Fw(λ) f 0w−1 ⋅λ(t) and F(wαw)(λ) f 0(wαw)−1 ⋅λ(t) along H0
α ∖X can-

cel each other. _us,we proved that E♯B(λ, t)N is holomorphic on a∗C∖X. ByHartogs’
theorem, [Hör90,_eorem 2.3.2], E♯B(λ, t)N is entire and so is E♯B(λ, t).
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