PACKING OF SPHERES IN /j
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1. Introduction. The Banach space /,(p21) is the space of all infinite sequences

o0
X = (Xy,X;,X3,...) of real or complex numbers such that ) |x,-|" is convergent, with the
i=1

© 1/p
Il ={ % [} "

The unit sphere S of /, is the set of all points xel, with || x || £ 1 and the sphere of radius
a = 0 centred at ye/, is denoted by S,(y), so that

5.9 = {xel,: |x-y| S a).

A (finite or infinite) set of spheres S (y,), S.¥:), ... is said to form a packing in S if
each sphere S (y;) is contained in S and no two of the spheres overlap (they are, however,
allowed to touch). By taking x = (1+4/||y [))y if y # 0 and x = (/| u|))u for a non-zero u if
y = 0, it is seen that, if S,(y) S S, then xeSand ||y | £ 1—a. Conversely,if |y| <1-aand
[ x=y| S a, then | x| < | x—y| +[|y] £1, so that S,(y) = S. Also, two spheres S,(y) and
S,(z) do not overlap if and only if ||y—2z | 2 2a, so that an equivalent condition for the set of
spheres S, (y,), S.(¥,), ... to form a packing is that

lv:| S1-a foralli and |y,~y;|22a ifi#]. (L.1)

norm defined by

Let A, = (1+2'~1/?)~! and p, = (1+2'/%)"1. In [1] the following results were proved:

THEOREM 1.1. If p > 2, an infinity of spheres S,(y) of fixed radius a can be packed in S if
andonlyifa<,. If A, <a < p, any finite number of spheres S,(y) can be packed in S but an
infinite number cannot. If p, < a < 1, the maximum number of spheres of fixed radius a which
can be packed in S does not exceed

1/1—-a\"] !
wo-| {55} ]
(The square brackets denote the integral part.)

THEOREM 1.2. If 1 £ p £ 2, an infinity of spheres S,(y) of fixed radius a can be packed in
Sifand only if a< 2,. If ,<a =<1, the maximum number of spheres S,/(y) which can be
packed in S does not exceed L(a), where L,(a) =1 and

—a\plp=10) ~1
L,,(a)=[{1—%<£;—“> } ] (1<p<2).

+The contents of this paper formed part of a Ph.D. thesis submitted to Glasgow University in 1968. 1
should like to thank my supervisor, Professor R. A. Rankin, for his advice and encouragement.
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It is the purpose of this paper to prove that in the case of complex 1, space the upper
bound M (a) obtained in Theorem 1.1 is in a sense the best possible, but that in the case of

real /, space both bounds M ,(a) and L,(a) can be considerably improved.

2. Conditions for the existence of finite packings. In this section the following theorem is

proved.
THEOREM 2.1. If p = 1, n( = 2) spheres of radius a £ 1 can be packed in S if and only if
1—a\’ n~1
—) 22! , 2.1
(=) =5 ’
where
|2i-z, |°
K n)=max1s=5n (2.2)

the maximum being taken over all n-tuples of complex numbers (z,, 2., . . ., 2,) except (0,0,...,0).
The theorem is still valid when n = 1 if the right-hand side of (2.1) is interpreted as zero.

Proof. Suppose that n spheres of radius a, centred at x,,X,,...,X,, where x;=
(xi1, X;,...), can be packed in S. Then, since | x,—x; || 2 2afor 1 Si<j<nby (1),

(2a)4n(n—1) < Z Z (xik_xjk {p

15i<jsn k=1

= Z Kp(n) Z Ixjk lp
k=1 i=t

=Km 3 fx

< nK (n)(1-a)’,
from which (2.1) is obtained.
To prove the converse, we first of all note that K (n) is certainly an attained upper bound.
Suppose that it is attained at the point (z,,2,,...,2,) and consider an n x n! matrix

P=[P1P2---Pn!]=[pl'j]’

where each P; is a column vector {z;,,,2;2),...,2is} Obtained from {z,,z,,...,2,} by
considering, in turn, the n! permutations (i(1),i(2),...,i(n)) of (1,2,...,n). Points
¥1,¥2,-..,¥o€l, are chosen as follows:

bp; (1=j=n)

Yi =i, Yiz2,-..), where y;=
s ! {0 (> nh),
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the constant b being chosen in accordance with

(1—a) P c p __(_z"_f__
(n—l)!glbl ,-;IZ"I ;2(n—2)!Kp(n)'

(2.3)

This is possible, since we have, by (2.1),
(1—ay (20
(== 2(n-2)!K,(n)"

If all the permutations of (z,,2,,...,2,) are considered, each z; occupies the ith position
(n—1)! times, and consequently

n

vl =lbF@-0t T |z P (-0 asism, @4)

by (2.3). Also, if i # j, z; and z; simultaneously occupy the kth and /th positions respectively
in (n—2)! of the permutations, and so, for 1 £k <[ < n,
lye=ye]? = 2‘| blPn—2)! ¥ |zi—z;|P=2]b|"(n—-2)'K,(n) ¥ |z;|’ 2 (2a)’, (2.5)
1si<jzn i=1

by (2.3). (2.4) and (2.5) show that if the spheres of radius g are centred at y,,y,,...,¥,, then
the theorem is proved. '

We immediately deduce
COROLLARY 2.2. The maximum number of spheres of radius a that can be packed in S is
n if and only if
p—1 —a\P 1y,
2 n>1ag2 (nl).
K, (n+1) a K (n)

Proof. The proof follows immediately from Theorem 2.1.

The inequality
Km<2 ™ (p22), 26)

was first derived by Rankin in [2], while in the case 1 £ p <2 he obtained the estimate
K,(n)<n*~'(n—1)>77 in his paper [3]. These estimates were used in [1] to obtain M,(a)
and L,(a) defined in Theorems 1.1 and 1.2. We shall show in the next section that, in the
case when K (n) is defined as a maximum over #n-tuples of real numbers, it can be evaluated
explicitly and as a consequence M,(a) and L,(a) can be improved when the space /, is real.

However, by taking n=2m,z;= -1 for 1 £i<mand z;= +1 for m<i L 2m, it is
easily seen that

K,2my=2""'m (p22). 2.7

As a result we may deduce

CorOLLARY 2.3. Ifp2>2andp,<a =1 and if M(a) is even, then exactly M (a) spheres
of radius a can be packed in S.
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Proof. We first of all observe that M ,(a) = 2m if and only if

1 1 l—a)" 1
>
2m"{1 2( a }>2m+1’

2m—1é(1-—a)” 4m 28

which is equivalent to

< .
m . a 2m+1
Also, from (2.7),
2?71 2m—1) _2m-1

K(2m)y ~— m ’

and, from (2.6),
4m < 2’m
2m+1= K,(2m+1)"

Thus, from (2.8), M,(a) = 2m implies that

2""(2m—1)< l—a)"< 2’m
K@m) —\ a K@m+D)’

and an application of Corollary 2.2 yields the result.

3. Real /, space. In this section the /, spaces under consideration will be real.
Suppose that p = 1 and that » is a positive integer >1. Let

— 14
|x,- x|
18i<jgn

n
_Z | %;17
j=1

and N,(n) = maxf(x,,x;,...,X,), the maximum being taken over all n-tuples of real numbers
(x,X2,...,%,) except (0,0,...,0). Corresponding to Theorem 2.1 and Corollary 2.2
we have

b

f‘(xlast-“,xn) =

THEOREM 3.1. If p 2 1, n spheres of radius a can be packed in S if and only if
(1 —a)” > 2071 (a—1) .
. a /= Nyn)
COROLLARY 3.2. The maximum number of spheres of radius a that can be packed in S is

n if and only if
p—1 —a\P P=1(y
2P~ 1y ><1 a) 22 (n 1).
N (n+ a - N,n)
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In this section we evaluate N,(n) and have the following

THEOREM 3.3. (i) If p = 2, then

N 2P7 2, if nis even,
n)y=
4 %{(n_1)1/(P-l)+(n+l)llfp—l)}p—l, i_fn is odd.

(i) If 1Sp<2, N(n)=n-2+2°""1,
Proof. Since

n
2 |xi=x;| = X lxl+]x == X |x],
i<j i<j j=1

it is seen that N,(n) < n—1; taking x;=0 for 1 £i<n, and x, =1 shows in fact that
Ni(n) = n—1. We may therefore suppose that p > 1. Also, since the theorem is trivial when
n = 2, we may suppose that n = 3.

Clearly, because of the homogeneity, we may restrict our attention to the compact

subset Q of R” defined by < 3 |x;|° =1 and, since f is continuous on @, its maximum is
=1

attained at some point of Q which we may take to be an interior point of Q. Since p> 1, f

possesses partial derivatives at every point of Q and consequently, by the above remarks,

Ny(n) will be attained at some stationary point of f. If (a,,a,,...,a,) is any stationary point

of f, by differentiating

f(xpxg,.00,%,) Z ‘xilp= 2 lxl—lep
i=1 i<j
with respect to x;, we see that

allatlp_zf(auaz,---,an) =3 (a—a)|a—a;|*~? (1si=n).
i=1

From this it follows that, if f(a,,a,,...,a,) # 0, then

n

Y aalr?=0. (3.1)
=1
Since f(a,,a,,...,a,) =0 corresponds to the minimum value of f, we suppose that this is
not the case. Thus from (3.1) there exists an integer k(1 < k < n—1) such that

a,<a;2...24,50<a, <...Za,, (3.2)

where the g;’s have been renumbered if necessary. Then

k n
Llal™= X o™ (33)
and, for | < k, ’

!
Iallp-lf(al’ab'-"an): z |al—'aj|p_l—z ial—ajlp-l‘
j=i+1 i=t
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Hence
K k n &k I3
f(a,,az,...,a,,)2|a,|”“= PIEDY Ia:—afl""‘—Z 2 |at‘“j‘p_l
I=1 I=1 j=I+1 I=1 j=1
h "
= Y ja—at (3.4)

=1 j=k+1
We now suppose that p = 2 and apply Minkowski’s inequality to get
k n 1/(p—1) k n 1Y(p~1) k n Mo

o e e S Dol LTkl S o i T }

I=1 j=k+1 I=1 j=k+1 I=1 k+1

k 1Hp=1)
= {(n—k)‘/“"”+k”(”'”}{Z I“ lp l}
1=1
by (3.3). It follows therefore from (3.4) that
@y, 0y, ..., a) S {n—k)H om0
Since N (n) = maxfla,,a,,...,a,), (a,a,,...,4a,) being a stationary point of / satisfying (3.2),
k

we see that

™ 2P~ 2p, if n is even,

T W= )M L (n+ 1)V DY if nis odd.
That these bounds are attained can be seen by taking x, =x,=...=x,= =1, Xp41 =
e=X3,=+1, when n=2m, and x; =X, =...=Xp11 =1, Xpe2=-.. = Xopt1 =

—{(m+1)/m}*=1 when n = 2m+1. This proves part (i) of the theorem.
To prove (ii) we require the following

LEMMA 3.4. Let n be an integer 23 and let the integer k be such that 1 £k <n—1. Let

k n
gk(xpxz»"'9xn)= Z Z (xi+xj)q!

i=1 j=k+1
where 0 < g < 1. If A, is the bounded closed subset of (n— 2)-dimensional space defined by
3 n—1

k
Lxsl ¥ sl xz0  @slsne-b,

j=kt1

where, if a summation is empty, it is taken to be zero, and if

k n—1
x{=1-Yx% xi=1- Y xi,
i=2 i=k+1
then
(i) N(n,k)= max 9ix1,%2,...,X,) is attained on the boundary of A, (i.e. at least one of
the x;’s is zero), and

(ii) Ny(n, k) = n—~242%
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Proof. g, is certainly continuous on A4, and so attains its maximum value there. Since g,
is differentiable on the interior of A4,, if the maximum were attained at some interior point
(by,b,,...,b,), Lagrange’s equations would be satisfied:

k
Y (b+b) T 4D =0 if jzk+],
i=1

Y (biAb)lpbiTi =0 if i<k

i=k+1

These equations imply that b, = b, =...=b,, b4, =...=b,. For if, for example, b; < b,

when i </ £ k, then
b- 1—-g b, 1-¢g 0 )
: < <q<l),
(b,.+b,.> (b,+bj> ©O<g<D

and the above equations would not be satisfied. For these values of by, b,,...,5, we have

9ub1,ba,. ., by) = k(n—K){(k™ V- (n—k)~ 119}
= {(n— k)1 + k173,

However, this is in fact the minimum value of g, as an application of Minkowski’s inequality
shows (0 < g < 1). This contradiction establishes part (i).

(ii) is proved by induction.

When n=3,k =1 or 2 and N3,k) = max {(1+x)?+(1+y)?}, where x*+y?=1,x20
and y 2 0. By (i), at the maximum x = 0 and consequently y = 1. Thus N,(3,k) = 1+27.

Assume now that N(n—1,k") = n—3+2? for some integer » = 4 and all k' such that
1 k" £n—2. Then by (i), either

N,(n,k) = max{z Z (x;i+x)"+ 2 x“}

= j=k+1 J=k+1
k-1 n
where ) xf= ) xI=1, taking x, =0, or

i=1 j=k+1
Ny(n,k) = max{z Z (x;+x)"+ Z x“,},

i=1 j=k+2
k

where Z xi= Y, x%=1, taking x;4; =0. (If k=1 or n—1 it is clear which of the two
alterna;i=vles mu;tTl:)lzd.) In other words,
Nyn,k)=1+max{N,(n—1,k—1),N(n—1,k)}
=14n-3+29=n-2+2,

by the induction hypothesis. This completes the proof of the lemma.
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Returning to Theorem 3.3, (ii), we have, by (3.2), (3.3), and (3.4),

N,(n) £ max max{i i‘, (xi+xj)"'l},

1sksn—~1 i=1 j=k+1
n

k
where (by the homogeneity) )" xf™'= ) x?"'=1 and x,20(1 £/<n). Now apply

i=1 i=k+1
Lemma 3.4 with p—1 = g to obtain Ny(n) £ max N,_,(n,k)=n—2+2""1(n 2 3). Taking
12ksn—-1
Xy = —Xx3=1,x3=...=x, =0 shows that this upper bound is in fact attained. This com-

pletes the proof of Theorem 3.3.
Applying Theorem 3.1 and Corollary 3.2 yields

COROLLARY 3.5. If p > 2, the maximum number of spheres of radius a that can be packed
in S is 2m if and only if

2m— —a\? 1/{p—1N1-p
m 1<(1 a) <2p{1+<m+l> } ’
m a m

and the maximum number of spheres of radius a that can be packed in S is 2m—1 if and only if

1(p—1N1-p —a\? 2m-—
m—1 a m

(The left-hand side of the last inequality is to be taken to be zero when m = 1.)

m+1
m

Proof. For 2°~'2m|N,(2m+1) =2"{1 +(
2m—1)'m. -

Hp-1)1-p
) } , and 2°71(2m—1)/N,(2m) =

CoRrOLLARY 3.6. If1 < p <2 and a> A,, the maximum number of spheres of radius a that
—_ p
can be packed in S is [1+v,/(S(@)—1)], where v, =277 —1 and S,(a) =2”"/<1Ta> .

Proof. By Corollary 3.2, when 1 < p < 2 the maximum number of spheres of radius a
that can be packed in S is m if and only if

27" Im (1—a>p> 22" (m~1)

> = .
m—142°"1 a ] Tm=-242°"1
This condition is easily seen to be equivalent to

Yo

1>1
m+l> +Sp(a)—l

= m,

which completes the proof.
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