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Differential Equations and Variational Methods on Graphs 1

1 Introduction
The Element you are about to read tells a tale that shrank in the writing. The
opposite is true for its companion volume [190]. When we were asked to
write a contribution to what would become the Elements in Non-local Data
Interactions: Foundations and Applications series in April 2021,1 quickly the
idea took hold to provide an overview, a snapshot of the field of differential
equations and variational methods on graphs and their applications to machine
learning, image processing, and image analysis. But this is a very active field,
being developed in a variety of different directions, and so the story we wanted
to tell outgrew the format of a contribution to the Cambridge Elements ser-
ies. We are grateful to Cambridge University Press and the editors for deeming
our full contribution worthy enough of its own publication [190] and allow-
ing us to extract and adapt some introductory sections for publication in the
Elements series. This Element provides an introduction to differential equa-
tions and variational methods on graphs seen through the lenses of the authors.
It focuses on some areas to which we ourselves have actively contributed, but
at the same time aims to give sufficient background to equip the interested
reader to explore this fascinating topic. We have aimed to make this Elem-
ent a satisfyingly comprehensive read in itself, while also allowing it to be a
teaser for its more extensive companion volume. Those who compare both vol-
umes will find that the companion volume contains, besides additional details
in some of the sections that correspond to those in the current Element, chap-
ters on applications of differential equations on graphs and their computational
implementation, as well as chapters on further theoretical explorations of the
relationships between various graph-based models and of the continuum limits
of such models when the number of nodes of the underlying graph is taken to
infinity.

Differential equations, both ordinary differential equations (ODEs) and par-
tial differential equations (PDEs), have a long history in mathematics and we
assume they need no introduction to the reader. Slightly younger, yet still of
a venerable age, is the study of graphs.2 By a differential equation on a graph

1 The idea for this Element and its companion book owes a great debt to the Nonlocal Methods
for Arbitrary Data Sources (NoMADS) project funded by the European Union’s Horizon 2020
research and innovation programme (Marie Skłodowska-Curie grant agreement No. 777826).

2 In this Element, by ‘graph’ we mean the discrete objects consisting of vertices and (potentially
weighted) edges connecting the vertices that are studied in graph theory. Where we want to
talk about the graph of a function, this is made explicit. As is quite common, we tend to use
‘graph’ and ‘network’ [78] interchangeably, although somemight prefer to distinguish between
networks in the real world and the mathematical graphs that can be used to model them. We
also use related terminology, such as vertices and nodes [15, box 2.1], interchangeably.
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2 Non-Local Data Interactions: Foundations and Applications

we mean a discretization of a differential equation, usually a PDE, on a graph:
if we can write the PDE as F(u(x, t)) = 0, for a differential operator F and a
function u defined on (a subset of) Rm × R, then we obtain a differential equa-
tion3 on a graph by replacing the (spatial) derivatives with respect to x in F by
finite difference operators based on the structure of the graph and replacing u
by a function defined on (a subset of) V × R, where V is the set of nodes of the
graph.

Variational models in the calculus of variations are typically formulated in
terms of minimization of a function(al). To consider such a model on a graph,
we discretize the functional by replacing integrals with the appropriate sums
and differential operators with the corresponding finite difference operators
on graphs. This process also turns finite-dimensional the space of admissible
functions over which the functional is minimized. The line between calculus
of variations and mathematical optimization becomes blurry here, or is even
crossed. Because the authors of this Element approach these models from the
point of view of variational calculus, wewill include them under the umbrella of
variational models (on graphs), even if the originators of any particular model
may have had a different inspiration when proposing that model.

The field of machine learning is concerned with the development of meth-
ods and algorithms to analyse data sets. ‘Learning’ in this context refers to
leveraging the properties of some collection of ‘training data’ (which may or
may not be a part of the data set which is to be analysed) to draw conclusions
about the data set. Machine learning has undertaken an enormous flight in the
twenty-first century. Terms like ‘big data’, ‘machine learning’, and ‘artificial
intelligence’ are now commonplace for many people, both because of the com-
mercial successes of the many tech companies that exist by the grace of data
availability and the methods to learn from the data, and because of the enor-
mous speed with which deep-learned algorithms have transformed many areas
of science, industry, and public and private life. Scientific curiosity goes hand
in hand with a societal need to understand the methods that play such a big role
in so many sectors.

But what is the role of differential equations in all of this? After all, many of
the advances in machine learning, both in terms of development of new meth-
ods and analysis of existing ones, come from statistics, computer science, and
the specific application fields – scientific or industrial – where the methods are
used. One might argue for the general notion that increased diversity in the
points of view from which a particular topic is scrutinized leads to different
and complementary insights that all strengthen the full picture. There certainly

3 Or a difference equation, if u does not depend on the variable t.
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Differential Equations and Variational Methods on Graphs 3

is validity in that notion when it comes to the study of machine learning; in this
case, though, there are stronger ties that go beyond generalities.

A substantial part of the root system of differential equations in machine
learning lies in the field(s) of mathematical image processing and image
analysis.4 Not only do (the ingredients of) many differential-equation-based
machine learning methods have roots in the mathematical imaging literature
and many machine learning methods have applications in imaging problems,
but there is also a substantial overlap in the communities active in these fields.

Despite the success of artificial neural networks, they are not central objects
in this Element. The main focus in the current Element is on those methods
that represent the data (e.g., the image) in terms of a graph in order to apply a
graph-based variational model or differential equation.

These methods have many desirable properties, which have made them
popular in recent years. Because the graph-based models and equations have
close connections to well-established models and equations in the continuum
setting, there is a wealth of ideas to pursue and techniques to apply to study and
understand them. Moreover, the development of numerical methods for differ-
ential equations has a long and rich history, yielding many algorithms that can
be adapted to the graph-based setting. Another key difference between most
machine learning methods discussed in this Element compared to deep learn-
ing methods is that the latter are mostly data-driven,5 which usually means
many training data are required to obtain well-performing networks, while the
former are explicitly model-driven and so tend to require fewer training data
(but also are less likely to discover patterns for which the models are not built
to look).

The scope of this Element is broad in some parts and narrow in others. On the
one hand, we wish to provide an overview of an exciting, ever-broadening, and
expansive field. Thus, in the general literature overview in Section 2 we have
taken a very broad view of the topic of differential equations on graphs and their
applications with the aim of placing it in its historical context and pointing the
reader to the many aspects and fields that are closely related to it. On the other
hand, in the remainder of this Element, we focus on very specific models with
a certain amount of bias in the direction of those models with which the authors
have close experience themselves, yet not to the complete exclusion of other
models. These models revolve around the graph Ginzburg–Landau functional,

4 We sometimes refer to these two fields collectively as ‘imaging’ or ‘mathematical imaging’,
or just ‘image analysis’ for brevity.

5 Although there are recent trends to incorporate (physical) models into the data-driven
machinery.
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4 Non-Local Data Interactions: Foundations and Applications

which is introduced in this Element in Section 5 and which plays a central role
in a number of graph-based clustering and classification methods.

Graph clustering and classification are similar tasks that both aim to use the
structure of the graph to group its nodes into subsets called clusters or classes
(or sometimes communities or phases, depending on the context or applica-
tion). In most of the settings that we discuss here, these subsets are required to
be pairwise disjoint, so that mathematically we can speak of a partition of the
node set (assuming nonempty subsets) and we obtain non-overlapping clusters
or classes. A key guiding principle of both tasks is to have strong connec-
tions (i.e., many edges or, in an edge-weighted graph, highly weighted edges)
between nodes in the same class or cluster and few between nodes in differ-
ent clusters or classes.6 This is not the only requirement for a good clustering
or classification – in the absence of any other desiderata, a trivial partition of
the node set into one cluster would maximize intra-cluster connectivity and
minimize inter-cluster connectivity – and so additional demands are typically
imposed. Two types of constraints that will receive close attention in this Elem-
ent are constraints on cluster sizes and constraints that encourage fidelity to a
priori known class membership of certain nodes. The presence of such a priori
known labels is what sets classification apart from clustering.

There are mathematical imaging tasks that can be formulated in terms of
graph clustering or classification, most notably image segmentation, which
can be viewed as the task of clustering or classifying the pixels of a digital
image based on their contribution to (or membership of) objects of interest in
the image. Other imaging tasks, such as image denoising, reconstruction, or
inpainting, can be formulated in ways that are mathematically quite closely
related to graph clustering and classification.

We hope this Element may serve as an overview and an inspiration, both for
those who already work in the area of differential equations on graphs and for
those who do not (yet) and wish to familiarize themselves with a field rich with
mathematical challenges and abundant applications.

1.1 Outline of This Element
We give a brief overview of the history of and literature in the field of differen-
tial equations and variational methods on graphs with applications in machine
learning and image analysis in Section 2. For a more extensive overview, we
refer to section 1.2 of the companion volume [190]. In Section 3 we lay the

6 There may be deviations from or additions to this general requirement. For example, in Mac-
gregor and Sun [135] (see also Macgregor [133, chapter 6]) the goal is to find two clusters
(with an algorithm that is local, in the sense that its run time is independent of the size of the
graph) that are densely connected to each other, but weakly to the rest of the graph.
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Differential Equations and Variational Methods on Graphs 5

mathematical foundations that we require to formulate differential equations
and variational models on graphs. For example, we define spaces of node func-
tions and important operators and functionals on these spaces, such as the graph
Laplacian operators and the graph total variation functional.

In most of this Element we consider undirected graphs, but in Section 4 we
discuss very briefly works that generalize some of the concepts from Section 3
to directed graphs, in particular graph Laplacians.

Besides the graph total variation functional, another very important graph-
based functional, which we have already mentioned, is the graph Ginzburg–
Landau functional. It deserves its own place in the spotlight; thus, in Section 5
we introduce it and discuss some of its variants and properties, including its
connection to the graph total variation functional.

The spectrum of an operator gives insight into its behaviour. In Section 6
indeed we see that the spectra of graph Laplacians shed some light on their
usefulness in graph clustering and classification problems.

The role of functionals in variational models is as ‘energy’ or an ‘object-
ive function’ that needs to be minimized. Two important dynamical systems
that (approximately) accomplish this minimization for the graph Ginzburg–
Landau functional are described by the graph Allen–Cahn equation and the
graph Merriman–Bence–Osher scheme, respectively. The former, which is
an ordinary differential equation obtained as a gradient flow of the graph
Ginzburg–Landau functional, is the topic of Section 7, while the latter is the
focus of Section 8.

Closely related to the graph Allen–Cahn and Merriman–Bence–Osher
dynamics are the graph mean curvature flow dynamics that are described in
Section 9. Although exactly how closely these are related is still an open ques-
tion, one property most of them have in common is a threshold on the parameter
of the model below which the dynamics trivializes. This freezing phenomenon
is discussed in Section 10.

The main focus in this Element is on models that cluster or classify the node
set of the graph into two subsets. In Section 11 we take a look at multiclass
extensions of some of these models.

In Section 12 we discuss some finite difference methods on graphs, namely
Laplacian learning and Poisson learning. Finally, Section 13 provides a brief
conclusion to this Element as we look forward (or sideways) to additional topics
that appear in the companion volume [190].

2 History and Literature Overview
Any area of mathematical enquiry will have its roots in what came before.
The field of differential equations on graphs for clustering and classification

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009346641
Downloaded from https://www.cambridge.org/core. IP address: 3.141.38.172, on 13 Mar 2025 at 13:43:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009346641
https://www.cambridge.org/core


6 Non-Local Data Interactions: Foundations and Applications

problems is no exception, so there is always the risk that the starting point
of any historical overview may feel somewhat arbitrary. It is inescapably per-
sonal too; the priorities and narratives generated by our own research inevitably
have influenced our departure point for this story and the route we will follow
afterwards. As such, the references given in this section are not meant to be
exhaustive, nor are all contributions from the references that are given always
exhaustively described. One reason this field has generated such enthusiastic
interest is that it brings together ideas from many different directions, from
statistics and machine learning to discrete mathematics and mathematical ana-
lysis. We encourage any attempts to understand the history of this field from
perspectives different from the one we provide here, shining more light on the
exciting diversity of viewpoints differential equations on graphs have to offer.

For a fuller overview of the literature, we refer to section 1.2 of the com-
panion volume [190]. Neither the current section nor the literature section in
the companion volume are exhaustive overviews, if such a thing is even a pos-
sibility, but they should provide enough starting points for someone who is
eager to learn about this active field of research. We apologize for the undoubt-
edly many important works in their respective areas that are missing from our
bibliography.

As a double ignition point for the growing interest in differential equa-
tions on graphs by the (applied) mathematical analysis community in the
late noughties and early tens of the twenty-first century, especially in rela-
tion to image processing and data analysis applications, we mention works by
Abderrahim Elmoataz and collaborators such as [63, 75, 131] – which have
a strong focus on p-Laplacians, ∞-Laplacians, and morphological operations
such as dilation and erosion on graphs, as well as processing of point clouds
in three dimensions – and works by Andrea L. Bertozzi and collaborators, like
[21, 22, 144, 189, 191] – which deal with the Ginzburg–Landau functional on
graphs and derived dynamics such as the Allen–Cahn equation and Merriman–
Bence–Osher (MBO) scheme on graphs. This is not to say there were no earlier
investigations into the topic of differential operators and equations on graphs,
for example in [160, 195] or in the context of consensus problems [150, 164],
or variational ‘energy’ minimization problems on graphs, such as in the con-
text of Markov random fields [181], but the two groups we mentioned earlier
provided a sustained drive for the investigation of both the applied and theor-
etical aspects of differential equations on graphs in the setting on which we are
focusing in the current Element.

We note that in the current Element, when we talk about differential equa-
tions on graphs, we typically mean partial differential equations whose spatial
derivatives have been replaced by discrete finite difference operators on graphs
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Differential Equations and Variational Methods on Graphs 7

(see Section 3.2), leading to ODEs or finite-difference equations. A priori this
is different from the systems of PDEs formulated on the edges of a network that
are coupled through boundary conditions on the nodes, which are also studied
under the name ‘differential equations on graphs (or networks)’ [192].

New research directions tend not to spring into being fully formed, and also
the works mentioned earlier have had the benefit of a rich pre-existing literature
in related fields. In particular, many of the variational models and differential
equations that are studied on graphs have been inspired by continuum cousins
that came before and by the, often sizeable, literature that exists about those
models and equations. Examples are the Allen–Cahn equation [5], the Cahn–
Hilliard equation [40], theMerriman–Bence–Osher scheme [146, 147], flow by
mean curvature [6, 30, 167], total variation flow [9], and the Mumford–Shah
and Chan–Vese variational models [47, 159].

Inspiration has also come from other directions, such as discrete calculus
[101] and numerical analysis and scientific computing [18]. The latter fields not
only provide state-of-the-art methods that allow for fast implementations of the
graph methods on graphs with many nodes – something which is very import-
ant in modern-day applications that deal with large data sets or high-resolution
images – but also offer theoretical tools for dealing with discretizations of con-
tinuum equations, even though the specifics may differ substantially between
a discretization designed with the goal of approximating a continuum problem
as accurately as possible and a discretization which is a priori determined by
the graph structure that is given by the problem or inherent in the application
at hand.

Some of the most prominent applications that have been tackled by differ-
ential equations and variational models on graphs, especially by the models
and methods central to the current Element, are graph clustering and classifica-
tion [174], and other applications that are – or can be formulated to become –
related, such as community detection [171], image segmentation [46], and
graph learning [200]. For an extensive look at these, and other, applications,
we refer to chapter 4 of the companion volume [190]. In the current Element
we focus on the core graph clustering and classification applications.

Since the early pioneering works we mentioned at the start of this section,
differential equations on graphs have enjoyed a lot of attention from applied
analysts and researchers from adjacent fields. As a very rough attempt at clas-
sification of these different research efforts, we distinguish between those
papers that study differential equations and variational models purely at the
discrete-graph level and those that are interested in continuum limits of those
discrete equations and models as a way to establish their consistency. (Some
papers may combine elements of both categories.) The focus of this Element
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8 Non-Local Data Interactions: Foundations and Applications

is on the first category. For a closer look at the second category, we refer to
chapter 7 of [190].

In this first category, we encounter papers that study particular graph-based
differential operators or graph-based dynamics, such as the eikonal equa-
tion (and the related eikonal depth), p-eikonal equation, p- and ∞-Laplacians
[38, 42, 76, 138, 206], semigroup evolution equations [153], dynamics [121]
such as mean curvature flow and morphological evolution equations (related to
morphological filtering and graph-based front propagation) [70, 182] or advec-
tion [172], or discrete variational models such as trend filtering on graphs [194]
and the graph Mumford–Shah model [106, 168].

Of special interest in the context of the current Element are the graph
Allen–Cahn equation, graph MBO scheme, and graph mean curvature flow
[33, 144, 187, 191], which are discussed in much greater detail in Sections 7, 8,
and 9. For details about applications in which these graph-based dynamics have
been used, we refer to chapter 4 of [190]. Some of the applications that are con-
sidered in that volume require an extension of the classical two-phase versions
of the Allen–Cahn and MBO dynamics to a multiclass context [94, 95]; other
variations on multiclass MBO have been developed, such as an incremental
reseeding method [31] and auction dynamics [110].

The publications focusing on the discrete level also include papers that study
connections between graph-based differential operators or dynamics on the
one hand, and on the other hand graph-based concepts that are useful for
studying graph structures, which sometimes already had a history outside of
the differential-equations-on-graphs literature. For example: the modulus on
graphs [3], Cheeger cuts and ratio cuts [141], ranking algorithms and cen-
trality measures such as heat kernel PageRank [142], nonconservative alpha-
centrality (as opposed to conservative PageRank) [98], centrality measures
and community structure based on the interplay between dynamics via param-
eterized (or generalized) Laplacians and the network structure [201], random
walks and SimRank on uncertain graphs (i.e., graphs in which each edge has
a probability of existence assigned to it) [209], distance and proximity meas-
ures on graphs [12, 48], and a hubs-biased resistance distance (based on graph
Laplacians) [79].

We also draw attention here to graph-based active learning [148], Laplacian
learning [211], Poisson learning [44], and results on the Lipschitz regularity
of functions in terms of Laplacians on point clouds [45]. For overview articles
about graph-basedmethods inmachine learning and image processing, we refer
to [20, 23, 51].

In the continuum setting, the dynamics of both the Allen–Cahn equation and
the MBO scheme are known to approximate flow by mean curvature, in a sense
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Differential Equations and Variational Methods on Graphs 9

that has been made precise through convergence analysis [16, 32, 39, 80, 125,
126]. Rigorous connections between the graph Allen–Cahn equation and graph
MBO scheme have been established in [33, 35, 36, 37]; their connections with
graph mean curvature flow are open questions. Details about these established
connections and open questions, as well as a closer look at the various dynamics
in the continuum setting, can be found in chapter 6 of [190].

In many of the works just cited, the graphs under consideration on which the
variational models or differential equations are formulated are finite, undirected
graphs, with edges that connect nodes pairwise and that, if weighted, have a
positive weight. Moreover, the graphs are unchanging – also, for the continuum
limits that we briefly mentioned, even though the limit |V| → ∞ is considered,
typically at each fixed |V|, the graph structure is static.

This leaves a lot of room for generalizations and extensions. In this Element
we refrain from delving into these generalizations in too much detail, although
in Section 4 we do briefly discuss Laplacians on directed graphs [17, 87, 104,
207]. Other possible generalizations are to multislice networks [151], hyper-
graphs (in which edges can connect more than two nodes) [26, 108], metric
graphs and quantum graphs (in which edges are represented by intervals of
the real line) [118], signed graphs that can have positive and negative edge
weights [60], metric random walk spaces (of which locally finite positively
edge-weighted connected graphs are a special case) [139, 140]7, and graphs
changing in time [25].

Of interest also is the connection between methods on graphs and the con-
structions used to build the graphs, as is considered in, for example, [97]. Some
more details about building graph models for specific applications are given in
section 4.2 of [190].

3 Calculus on Undirected Edge-Weighted Graphs
3.1 Graphs, Function Spaces, Inner Products, and Norms

Except where explicitly stated otherwise, in this Element we consider finite,8

simple (i.e., without multi-edges9 andwithout self-loops10), connected,11 edge-
weighted graphs G = (V,E,ω) – if a graph G is mentioned without further

7 In [139] heat flow on metric random walk spaces is studied, in [140] total variation flow.
8 This means |V | < ∞.
9 Given two nodes i, j ∈ V, there is at most one edge (i, j) ∈ E, as is already implied by
E ⊆ V × V.

10 Each edge connects two distinct nodes, that is, for all i ∈ V, (i, i) ∈ (V × V \ E). For a
preprint discussing Laplacians (which we will introduce later) on graphs with self-loops see
Açıkmeşe [2].

11 The definition of connectivity is given later in this section.
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10 Non-Local Data Interactions: Foundations and Applications

Figure 3.1 An example of a finite, simple, connected, and undirected graph.

specification, it is assumed to have these properties. Figure 3.1 shows an
example of such a graph. Here V is the set of nodes or vertices of the graph,
E ⊆ V×V is the set of edges,12 and ω : V×V → R is the edge weight function
which vanishes on Ec := (V×V) \E; thus ω|Ec = 0. Unless otherwise specified,
we assume that ω|E > 0. In this framework, an unweighted graph G = (V,E)
can be viewed as an edge-weighted graph G = (V,E,ω) with ω|E = 1.

We will assume that |V| ≥ 2. It will often be useful to identify the nodes
in V with the numbers 1 to n ∈ N,13 and we write V = [n] := {1,2, . . . ,n}.
Unspecified nodes fromVwe denote by i, j,k, . . .. The edge from i to j is denoted
by (i, j); the nodes i and j are endpoints of this edge. For any node function
u, that is, a function u whose domain is (a subset of) V, we write ui for u(i).
Similarly, for any function φ whose domain is (a subset of) V × V, we write
φij for φ(i, j). Any such function which vanishes on Ec we will call an edge
function. We define the function spaces of node and edge functions,

V := {u : V → R}, E := {φ : V × V → R : φ|Ec = 0}.

We use subscripts to indicate alternative codomains: if A is a set, then

VA := {u : V → A}, EA := {φ : V × V → A : φ|Ec = 0}.

In particular, V = VR and E = ER.

12 In this particular case, since we do not allow self-loops, E is always a strict subset of V × V.
13 To avoid ambiguity, we note that we write N for the strictly positive natural numbers and
N0 := N∪ {0}. Also, to avoid ambiguity regarding zero, we call the numbers in the sets (0,∞)
and (−∞, 0) strictly positive and strictly negative, respectively.
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Differential Equations and Variational Methods on Graphs 11

When it is not explicitly stated differently (as in Section 4), we consider
undirected graphs, namely graphs for which (i, j) ∈ E if and only if ( j, i) ∈ E.
Two nodes i, j ∈ V in an undirected graph are called adjacent, or neighbours, if
(i, j) ∈ E. The condition that j , i, which is sometimes explicitly included in the
definition of neighbour, is superfluous under our assumption of absence of self-
loops. The matrix A with entries Aij := ωij is called the (weighted) adjacency
matrix, or weight matrix of the graph. In an undirected graph, we require ω to
be symmetric in its arguments, that is, for all i, j ∈ V, ωij = ωji. Some authors
demand their edge functions φ ∈ E to be skew-symmetric, namely φij = −φji.
We do not require this assumption and so will not impose it.

Since we consider graphs without self-loops, for all i ∈V, ωii = 0. The
degree of node i is di :=

∑
j∈V ωij. A graph is connected if, for all i, j ∈ V with

i , j, there exist finitely many nodes i1, i2, . . . , ik such that i1 = i, ik = j, and
ωi1i2 · · ·ωik−1ik > 0. A graph which is not connected is called disconnected.
Since our graphs are assumed to be connected (unless stated otherwise), we
have, for all i ∈ V, di > 0.

In some situations it will be useful to have a shorthand notation to indicate
adjacency of nodes (in an undirected graph): for i ∈ V, we write j∼ i if and only
if j ∈ V and (i, j) ∈ E. Equivalently under our assumption that ω|E > 0, we have
that j∼ i if and only if j ∈ V and ωij > 0.

Our first step to defining a calculus on node and edge functions is to
define an inner product structure14 on V and E . Let15 r ∈ [0,1], q ∈ [1/2,1]
(see Remark 3.9), u,v ∈ V , and φ,ψ ∈ E . Then

〈u,v〉V :=
∑
i∈V

d r
i uivi and 〈φ,ψ〉E := 1

2

∑
(i, j)∈E

ω
2q−1
ij φijψij. (3.1)

We note that the factor 1
2 compensates for the ‘double count’ of edges (i, j) and

( j, i) in an undirected graph. In this and other circumstances it can be convenient
to rewrite the sum over (i, j) ∈ E as a double sum over i, j ∈ V. This can be done
since φij = ψij = ωij = 0 if (i, j) < E. In this case we have to interpret ω0

ij to be
0 (not 1!) if (i, j) < E.

14 At first glance it may seem that the bilinear forms defined here are not inner products, since
〈u, u〉V may be zero, even if u , 0, if there is an i ∈ V such that d r

i = 0, and similarly 〈φ, φ〉E
may be zero, even if φ , 0, if there are i, j ∈ V such that ω2q−1

ij = 0. However, the possibility

d r
i = 0 is excluded by our assumption of connectedness and, while ω2q−1

ij = 0 will be true for
some i, j ∈ V for all graphs except complete graphs, the definition of E requires φij = 0 for such
i and j.

15 The intervals [0, 1] and [1/2, 1] from which r and q are chosen, respectively, are mostly
intervals of convenience: they cover the most common values that appear in the literature –
r ∈ {0, 1} and q ∈ {1/2, 1} – and allow for interpolation between them. We do not expect
major, or possibly any, changes to be necessary if we allow r, q ∈ R instead.
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12 Non-Local Data Interactions: Foundations and Applications

These inner products induce norms in the usual way: ‖u‖V :=
√
〈u,u〉V and

‖φ‖E :=
√
〈φ, φ〉E . Other commonly used norms on V and E are the p-norms

(for p ∈ [1,∞)) and ∞-norms:

‖u‖V ,p :=
(∑
i∈V

d r
i |ui |p

) 1
p

, ‖φ‖E ,p := ©«12
∑
i, j∈V

ω
2q−1
ij |φij |p

ª®¬
1
p

,

‖u‖V ,∞ := max{|ui | : i ∈ V}, ‖φ‖E ,∞ := max{|φij | : i, j ∈ V}.

We note that the p = 2 norms are the norms induced by the inner products.
If r = 0, then ‖u‖V is the Euclidean 2-norm of the vector with components

ui. To avoid specifying r = 0, we may write ‖u‖2 in this case, with ℓ2 inner
product 〈·, ·〉2. We also use this notation for vectors not (necessarily) meant to
be interpreted as node functions. Similarly, if r = 0, then ‖u‖V ,p is equal to the
p-norm for the vector with components ui and we may write ‖u‖p instead.

If S ⊆ V, we define χS to be its indicator (or characteristic) function, that is,

(χS)i :=
1, if i ∈ S,

0, if i ∈ Sc := V \ S.

In particular χV = 1 ∈ V (and we may write 1 for χV, or c for cχV, if c ∈ R is a
constant) and χ∅ = 0 ∈ V . Similarly, we define indicator functions χE′ for edge
subsets E′ ⊆ E. We will also need a variant indicator function ıA for A ⊆ R,
defined to be ıA(x) = 0 if x ∈ A and ıA(x) = +∞ if x ∈ R \ A.

The volume of a node subset S ⊆ V and volume of an edge subset E′ ⊆ E
are defined to be (for any p ∈ [1,∞)), respectively,

vol (S) := ‖ χS‖pV ,p =
∑
i∈S

d r
i , vol (E′) := ‖ χE′ ‖pE ,p =

1
2

∑
(i, j)∈E′

ω
2q−1
ij . (3.2)

Lemma 3.1. In this lemma we interpret 1
∞ = 0. Let u,v ∈ V and φ,ψ ∈ E . For

all p,p′ ∈ [1,∞] such that 1
p +

1
p′ = 1, these Hölder inequalities hold:

‖uv‖V ,1 ≤ ‖u‖V ,p ‖v‖V ,p′ and ‖φψ‖E ,1 ≤ ‖φ‖E ,p ‖ψ‖E ,p′ .

Moreover, these embedding estimates are satisfied, if s, t ∈ [1,∞] with s ≤ t:

‖u‖V ,s ≤ (vol (V)) 1s − 1
t ‖u‖V ,t and ‖φ‖E ,s ≤ (vol (E)) 1s − 1

t ‖φ‖E ,t.

Furthermore,

lim
p→∞

‖u‖V ,p = ‖u‖V ,∞ and lim
p→∞

‖φ‖E ,p = ‖φ‖E ,∞.

In fact, for all p ∈ [1,∞) we have

min
i∈V

d
r
p
i ‖u‖V ,∞ ≤ ‖u‖V ,p ≤ (vol (V))

1
p ‖u‖V ,∞
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Differential Equations and Variational Methods on Graphs 13

and

2−
1
p min
(i, j)∈E

ω
2q−1
p

ij ‖φ‖E ,∞ ≤ ‖φ‖E ,p ≤ (vol (E))
1
p ‖φ‖E ,∞.

Proof. For a proof we refer to lemma 2.1.1 of [190].

Instead of interpreting φ ∈ E in the standard way as a function from V × V
to R, we may also view it as a function from V to V: for all i ∈ V, φi· ∈ V .
This prompts the following definitions of a node-dependent inner product and
p- and ∞-norms: for all φ,ψ ∈ E , all i ∈ V, and all p ∈ [1,∞),

(φ,ψ)i := 1
2

∑
j∈V

ω
2q−1
ij φijψij,

‖φ‖i,p := ©«12
∑
j∈V

ω
2q−1
ij |φij |p

ª®¬
1
p

,

‖φ‖i,∞ := max{|φij | : j ∈ V}.

(3.3)

Corollary 3.2. In this corollary we interpret 1
∞ = 0. Let φ,ψ ∈ E and i ∈ V.

For p,p′ ∈ [1,∞] such that 1
p +

1
p′ = 1, a Hölder inequality holds:

‖φψ‖i,1 ≤ ‖φ‖i,p ‖ψ‖i,p′ .

Moreover, an embedding estimate is satisfied, if s, t ∈ [1,∞] with s ≤ t:

‖φ‖i,s ≤
©«12

∑
j∈V

ω
2q−1
ij

ª®¬
1
s −

1
t

‖φ‖i,t.

Furthermore, for all φ ∈ E and for all p ∈ [1,∞),

2−
1
p min

j∈V
ωij>0

ω
2q−1
p

ij ‖φ‖i,∞ ≤ ‖φ‖i,p ≤ ©«12
∑
j∈V

ω
2q−1
ij

ª®¬
1
p

‖φ‖i,∞,

and thus in particular,

lim
p→∞

‖φ‖i,p = ‖φ‖i,∞.

Proof. We refer to corollary 2.1.2 in [190].
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14 Non-Local Data Interactions: Foundations and Applications

3.2 Graph Gradient, ( p-)Dirichlet Energy, ( p-)Laplacian,
and Total Variation

To be able to do calculus on graphs, we require a discrete analogue of the
derivative: the graph gradient. For u ∈ V the gradient ∇u ∈ E is defined by16

(∇u)ij := ω1−q
ij (uj − ui).

Remark 3.3. The graph gradient provides a good motivation for defining the
node-dependent inner product and norms in (3.3). The continuum gradient ∇u
of a function u : Rm → R is a vector-valued function with length ‖∇u‖2 – or,
in general, p-norm – a real-valued function on Rm. Analogously, in the graph
setting the node-dependent norms from (3.3) are real-valued functions on V.

In Ta et al. [183] a connection is made between the node-dependent∞-norms
and morphological dilation and erosion operators, if q = 1 orω(V×V) ⊆ {0,1}.
Using superscripts + and − to denote the positive part x+ := max(0,x) and
negative part x− := −min(0,x) of a number x ∈ R, respectively, we compute

‖(∇u)+‖i,∞ = max
j∼i

max(0,uj − ui)

= max
{
uj : j = i or j ∼ i

}
− ui =: (δa(u))i − ui,

‖(∇u)−‖i,∞ = max
j∼i

(−min(0,uj − ui)) = −
[
min

{
uj : j = i or j ∼ i

}
− ui

]
= ui − min

{
uj : j = i or j ∼ i

}
=: ui − (εa(u))i.

In [183] the operators δa and εa are called the dilation and erosion operators,
respectively, in analogy to similar operators in the continuum setting. We can
understand these names, if we apply the operators to the indicator function
u = χS of a node subset S ⊆ V. Then δa(u) = χSδ and εa(u) = χSε , where the
dilated set Sδ consists of Swith all the nodes that have at least one neighbour in
S added, and the eroded set Sε consists of S with all the nodes that have at least
one neighbour in Sc (i.e., V \ S) removed. In El Chakik et al. [70] on weighted
graphs the nonlocal dilation operator and nonlocal erosion operator,

(NLD(u))i := ui + ‖(∇u)+‖i,∞ and (NLE(u))i := ui − ‖(∇u)−‖i,∞,

respectively, are introduced. The preceding computation shows that in the case
of an unweighted graph, δa = NLD and εa = NLE.

We define the graph divergence div : E → V to be given by

(div φ)i := 1
2
d−r
i

∑
j∈V

ω
q
ij(φji − φij),

16 Recall the convention that ω0
ij = 0 if ωij = 0.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009346641
Downloaded from https://www.cambridge.org/core. IP address: 3.141.38.172, on 13 Mar 2025 at 13:43:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009346641
https://www.cambridge.org/core


Differential Equations and Variational Methods on Graphs 15

since this is the adjoint of the graph gradient: it can be checked that, for all u ∈ V
and all φ ∈ E , 〈∇u, φ〉E = 〈u,div φ〉V . We thus define a graph Laplacian17

∆ : V → V as the divergence of the gradient:

(∆u)i := (div ∇u)i = d−r
i

∑
j∈V

ωij(ui − uj). (3.4)

We note that ∆ is independent of q. If r = 0, ∆ is called the combinatorial (or
unnormalized) graph Laplacian, while if r = 1, it is called the random walk (or
asymmetrically normalized) graph Laplacian. We note that ∆ is self-adjoint:

〈u,∆v〉V = 〈∆u,v〉V . (3.5)

Remark 3.4. Since we consider finite graphs with |V| = [n], there is a bijective
correspondence between functions in u ∈ V and (column) vectors in Rn with
entries ui. It follows that linear operators on V can be represented by matri-
ces. In particular, the graph Laplacian ∆ has associated matrix D−r(D − A) =
D1−r − D−rA, where D is the diagonal degree matrix with Dii := di and, as
in Section 3.1, the matrix A is the weighted adjacency matrix with entries
Aij = ωij. In particular, the matrix associated to the combinatorial graph Lapla-
cian is D−A, and to the random walk graph Laplacian18 is I−D−1A, where by
I we denote the identity matrix of the appropriate size. To avoid complicating
the notation and text, we will freely use both kinds of representation without
always explicitly noting any switches or changing notation; for example, u can
denote a function or vector and ∆may be the Laplacian operator or matrix. We
note that the multiplication of two node functions uv becomes a matrix-vector
multiplication Uv in vector notation, with U the diagonal matrix with Uii = ui.

Remark 3.5. The name random walk Laplacian for ∆ with r = 1 comes from
the fact that theD−1A term in the associated matrix I−D−1A (see Remark 3.4) is
a right-stochastic matrix, that is, its rows sum to one, and can thus be interpreted
as the transition matrix of a discrete-timeMarkov chain with (D−1A)ij = d−1

i ωij

being the probability of the transition from state i to state j in a single time
step. Associating the states with nodes of a graph, the Markov chain describes
a random walk on that graph. The (negative) unnormalized graph Laplacian

17 These graph Laplacians can also be defined in terms of an incidence matrix of the graph, i.e., a
matrix that has nonzero entry in the ith row and kth column, if and only if node i is an endpoint
of edge k (under some arbitrary, yet fixed, ordering of the edges, where in an undirected graph
(i, j) and ( j, i) are treated as being a single edge); see for example [55, section 1.2]. We do not
explicitly use this characterization of graph Laplacians in this work.

18 The randomwalk graph Laplacian is sometimes also called the left-normalized graph Laplacian
to distinguish it from the right-normalized graph Laplacian that has associated matrix I−AD−1.
This latter Laplacian does not fit into the framework of (3.4), but can be represented as member
of the two-parameter family of graph Laplacians in (3.7).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009346641
Downloaded from https://www.cambridge.org/core. IP address: 3.141.38.172, on 13 Mar 2025 at 13:43:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009346641
https://www.cambridge.org/core


16 Non-Local Data Interactions: Foundations and Applications

−∆ (with r = 0) is the (infinitesimal) generator of a continuous-time Markov
chain,19 as described in detail in remark 2.1.5 in [190].

Remark 3.6.Wewould be remiss not to mention the symmetrically normalized
Laplacian, which is represented in matrix form as

∆
sym := D− 1

2 (D−A)D− 1
2 = Dr− 1

2 (D1−r −D−rA)D− 1
2 = I−D− 1

2AD− 1
2 . (3.6)

This graph Laplacian appears frequently in the literature, for example, Chung
[55], but is not captured in the preceding framework, as it would require
a different scaling for each term in the gradient ∇u. We refer to Zhou and
Schölkopf [206, section 2.3] for details. We note that ∆sym is self-adjoint, with
respect to 〈·, ·〉V for r= 0. More generally, the two-parameter normalized graph
Laplacian

∆
(s,t) := D−s(D − A)D−t (3.7)

is self-adjoint with respect to 〈·, ·〉V for20 r = s − t. Furthermore, for all a ∈ R

D−a
∆
(s,t)Da = ∆(s+a,t−a)

and so ∆(s,t) and ∆(s′,t′) are similar whenever s+ t = s′+ t′. In particular, ∆(s,t) is
similar to the symmetric matrix ∆((s+t)/2,(s+t)/2) and thus ∆ and ∆sym are similar
when r = 1. For further details, we refer to Budd [34, chapter 2].

In Smola and Kondor [180, theorem 3] it is shown that graph Laplacians
are, in a sense, invariant to vertex permutations. It is also shown that they are,
in some sense, the only linear operators that depend linearly on the graph’s
adjacency matrix to be so.

In Zhou and Belkin [208] a geometry graph Laplacian is used, defined as

Lgeom := I − (Dgeom)−1Ageom,

where Ageom := D−1AD−1 and Dgeom is the corresponding degree matrix. We
also mention that inMerkurjev et al. [145] a multiscale Laplacian is introduced.

The graph Dirichlet ‘energy’ of u ∈ V (as defined in e.g. Van Gennip and
Bertozzi [189, appendix A]) is

1
2
‖∇u‖2E =

1
2
〈u,∆u〉V =

1
4

∑
i, j∈V

ωij(ui − uj)2

= max{〈div φ,u〉V : φ ∈ E and ‖φ‖E ≤ 1}.
(3.8)

We observe that ‖∇u‖2E does not depend on q.

19 The authors thank Jonas Latz for this observation.
20 We can allow any s, t ∈ R, so in this context r is not restricted to [0, 1].
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Differential Equations and Variational Methods on Graphs 17

For Poincaré inequalities [61, 66, 81] involving the Dirichlet energy on
(infinite) graphs, we refer to [58, 129]. Computing the Gateaux derivative of
the Dirichlet energy, we recognize the graph Laplacian:

d
dα

1
2
‖∇(u + αv)‖2E

����
α=0
=

1
2

d
dα

[
〈∆u,u〉V + 2α〈∆u,v〉V + α2〈∆v,v〉V

]
α=0

= 〈∆u,v〉V, (3.9)

where α ∈ R, u,v ∈ V , and we have used the self-adjointness of ∆ from (3.5).
In [34, theorem 4.1.2] it is shown that the two-parameter normalized graph

Laplacian from (3.7) also is the first variation of a Dirichlet-type functional:

d
dα

1
2
‖∇D−t(u + αv)‖2E

����
α=0
= 〈∆(s,t)u,v〉V,

where (D−tu)i = d−t
i ui and in the V-inner product r = s − t.

Changing the edge function norm in the maximum formulation in (3.8) to a
maximum norm leads to a definition of graph total variation:

TV(u) := max{〈div φ,u〉V : φ ∈ E and ‖φ‖E ,∞ ≤ 1}

=
1
2

∑
i, j∈V

ω
q
ij |ui − uj | = ‖∇u‖E ,1.

(3.10)

The second equality in (3.10) follows since the maximum in the definition
is achieved at φ = sgn(∇u) (where the signum function acts elementwise:
φij = sgn(uj − ui)), where sgn can be any representative of the signum func-
tion equivalence class in L1loc(R), that is, sgn(x) = 1 if x > 0, sgn(x) = −1 if
x < 0, and sgn(0) may be defined to equal any arbitrary, but determined, real
number.21 This can be seen by rewriting 〈div φ,u〉V = 〈φ,∇u〉E . This will play
a role again when we consider curvature in Section 9. For the final equality in
(3.10) we used that the edge weights ωij are nonnegative.

If u ∈ V{0,1}, then (ui − uj)2 = |ui − uj | and thus by (3.8), if q = 1, then

‖∇u‖2E =
1
2

∑
i, j∈V

ωij(ui − uj)2 =
1
2

∑
i, j∈V

ωij |ui − uj | = TV(u).

Analogously to the ‘anisotropic’ total variation in (3.10), an isotropic total
variation can be defined. See Van Gennip et al. [191, remark 2.1].

21 The usual definition includes sgn(0) = 0. Some of the works we cite use a different definition
at x = 0 or do not specify the value in x = 0.
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18 Non-Local Data Interactions: Foundations and Applications

The graph p-Dirichlet energy – so called in analogy to the Dirichlet energy
in (3.8) – is

1
p
‖∇u‖pE ,p =

1
2p

∑
i, j∈V

ω
2q−1
ij |ω1−q

ij (uj − ui)|p

=
1
2p

∑
i, j∈V

ω
(2−p)q+p−1
ij |ui − uj |p.

(3.11)

We note that for p = 2 indeed we recover the graph Dirichlet energy from (3.8)
and for p = 1 we obtain the graph total variation from (3.10).

For p ∈ [1,∞), the graph p-Laplacian ∆p : V → V is defined22 via the
Gateaux derivative of the p-Dirichlet energy by requiring that, for all u,v ∈ V ,

〈∆pu,v〉V =
d
ds

1
p
‖∇(u + sv)‖pE ,p

����
s=0

=
1
2

∑
i∈V

∑
j∈V
uj,ui

ω
(2−p)q+p−1
ij |ui − uj |p−2(ui − uj)(vi − vj)

=
∑
i∈V

∑
j∈V
ui,uj

ω
(2−p)q+p−1
ij |ui − uj |p−2(ui − uj)vi.

(3.12)

(We note that we used the symmetry of ω.) Thus, for all u ∈ V and for all
i ∈ V,

(∆pu)i := d−r
i

∑
j∈V
uj,ui

ω
(2−p)q+p−1
ij |ui − uj |p−2(ui − uj). (3.13)

From (3.9) we see that we recover our standard graph Laplacian if we choose
p = 2. For other values of p, the operator ∆p is not linear. We note that (for
general p), if q = 1, then the exponent of ωij in ∆p equals 1 (see Remark 3.9).

By splitting the sum in (3.13), we obtain

(∆pu)i = d−r
i

∑
j∈V
ui>uj

ω
(2−p)q+p−1
ij (ui − uj) p−1 − d−r

i

∑
j∈V
uj>ui

ω
(2−p)q+p−1
ij (uj − ui) p−1

= 2d−r
i ‖ω

1−q
p (∇u)−‖p−1i,p−1 − 2d−r

i ‖ω
1−q
p (∇u)+‖p−1i,p−1.

In particular, ∆pu = 0 if and only if, for all i ∈ V, ‖ω
1−q
p (∇u)−‖i,p−1 =

‖ω
1−q
p (∇u)+‖i,p−1. From the final inequalities in Corollary 3.2, we know that

22 Another graph p-Laplacian does appear in the literature, for example in [75, 76, 206], inspired
by the p-Laplacian in the continuum (about which section 3.7.5 in [190] contains some
information). For further details we refer to footnote 40 in [190].
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Differential Equations and Variational Methods on Graphs 19

lim
p→∞

‖ω
1−q
p (∇u)−‖i,p−1 = ‖(∇u)−‖i,∞,

lim
p→∞

‖ω
1−q
p (∇u)+‖i,p−1 = ‖(∇u)+‖i,∞.

This inspires the following definition23 of the graph ∞-Laplacian from
Elmoataz et al. [73], for all u ∈ V and for all i ∈ V:

(∆∞u)i := ‖(∇u)−‖i,∞ − ‖(∇u)+‖i,∞.

Then∆∞u = 0 if and only if, for all i ∈ V, ‖(∇u)−‖i,∞ = ‖(∇u)+‖i,∞. The results
in Lemma 3.7 give further justification for this definition of∆∞. In order to state
the lemma, we need the concept of lexicographic ordering of edge functions
(we refer to Kyng et al. [123, section 2]): given functions φ,ψ ∈ E , we define
φ � ψ if and only if, after reordering the values of φ and ψ in nonincreasing
order, the first value of φ that is different from the corresponding value of ψ is
smaller than this corresponding value, or no such value exists (i.e., φ and ψ are
equal after the reorderings).

Lemma 3.7. Let S ⊆ V be a nonempty subset and let u0 : S → R. The
minimization problem

argmin
u∈V

‖∇u‖E ,∞ s.t. u|S = u0

has a solution. Out of all minimizers, there is a unique one u∗, which satisfies,
for all u ∈ V with u|S = u0, ∇u∗ � ∇u. Moreover, if u ∈ V with u|S = u0, then
u = u∗ if and only if, for all i ∈ V \ S, (∆∞u)i = 0. Furthermore, for p ∈ (1,∞),
the minimization problem

argmin
u∈V

‖∇u‖E ,p s.t. u|S = u0

has a unique solution up. If q = 1
2 , then limp→∞ up = u∗.

Proof. We refer to lemma 2.1.7 in [190].

Because it is the first variation of the graph p-Dirichlet energy (see
(3.12)), the graph p-Laplacian in (3.13) is sometimes also called the

23 The definition of the graph∞-Laplacian is not fully consistent throughout the literature. Some
definitions differ by an overall sign change or an overall factor 1

2 , for example in [72, 74]. In
Flores et al. [90] it is defined at node i to be minj∈V(∇u)ij +minj∈V(∇u)ij inspired by equation
(2.18) in [190]. As we can see in the proof of Lemma 3.7, which is given in lemma 2.1.7
of [190], the solution set of the important equation (∆∞u)i = 0 is the same under all these
definitions. The choice of q in ∇umay also differ between papers, with q = 1

2 and q = 1 being
common choices.
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20 Non-Local Data Interactions: Foundations and Applications

variational graph p-Laplacian to distinguish it from the game-theoretic graph
p-Laplacian24

∆
game
p := 1

p
∆ + α

(
1 − 2

p

)
∆∞, (3.14)

for some constant α > 0; see Flores et al. [90].25 A similar operator is used
in Elmoataz et al. [72], where it is called the graph normalized p-Laplacian
and where the constants in the linear combination of ∆ and ∆∞ are kept as
parameters that can be chosen depending on the application.

For a generalization of the discrete calculus presented in these past few
sections to (undirected and directed) hypergraphs, that is, ‘graphs’ whose
(hyper)edge set E is a subset ofP(V )\ {∅},26 we refer to [26, 88, 89, 108, 112].

Remark 3.8. Hypergraphs do not receive much attention in this work, but we
do want to mention a string of recent works by Mulas, Jost, and collaborators,
which define graph Laplacians [112] and p-Laplacians [113] on hypergraphs,
study their spectra27 [92, 155, 157], investigate random walks [156] and other
hypergraph dynamics [24], and generalize concepts such as the Cheeger cut
[154], independence number (i.e., the maximum size of a subset S ⊆ V such
that, for all distinct i, j ∈ S, there is no hyperedge to which they both belong),
and colouring number (i.e., the fewest colours needed to colour all vertices
such that no hyperedge contains two vertices with the same colour) [1] to
hypergraphs.

We note that Mulas et al. [155] also provides generalizations of graph Lapla-
cians to signed graphs (which are graphs in which edge weights can be positive
and negative), graphs with self-loops, and directed graphs. For the latter case,
the graph Laplacian from Bauer [17] is used; see Section 4.

For extensions to hypergraphs of the graph limit theories of graphons and
graphops (see chapter 7 of [190]) we refer to Elek and Szegedy [71] and Zhao
[203] (hypergraphons), and Zucal [212] (hypergraphops), respectively.

Methods on hypergraphs have been applied to problems related to our
interests in this work, for example hypergraph signal processing in Zhang
et al. [202], heat diffusion on hypergraphs for finding bipartite components in
Macgregor and Sun [134] (see also Macgregor [133, chapter 7]), and semi-
supervised learning (see section 4.1.2 in [190]) on hypergraphs for early
diagnosis of Alzheimer’s disease in Aviles-Rivero et al. [11].

24 The definition of the game-theoretic graph p-Laplacian is not consistent throughout the
literature. For more details we refer to footnote 43 of [190].

25 See also Peres and Sheffield [170] for the game-theoretic Laplacian in the continuum setting.
26 Here P(V ) denotes the power set of V, namely, the set of all subsets of V.
27 We refer to Section 6 for information about the spectrum of (non-hyper)graph Laplacians.
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Differential Equations and Variational Methods on Graphs 21

3.3 Miscellaneous Considerations
To define the distance dG

ij between two nodes i and j on a graphG, we first need
the concept of a path on V. If i, j ∈ V are distinct nodes, a path γij from i to j is
a tuple of ℓ ∈ N distinct vertices γij = (i1, . . . , iℓ) such that i1 = i, iℓ = j, and,
for all k ∈ [ℓ − 1], ik+1 ∼ ik. The length of the path γij is defined to be

|γij | :=
ℓ∑

k=1
ω
q−1
ikik+1 .

The reasons for this choice of scaling of ω are explored in some more detail in
Remark 3.9. We now define the graph distance between nodes i , j as

dG
ij := min

γij : a path from i to j
|γij |. (3.15)

We also define dG
ii := 0. We note that the path of minimal length between two

neighbouring nodes, is not necessarily the ‘direct’ path (i, j). If S ⊆ V is not
empty, we define the distance from i ∈ V to S as

d S
i := min

j∈S
dG
ij .

For S = ∅ we define, for all i ∈ V, d ∅
i := +∞. By Manfredi et al. [138, section

3.1, example 2], if S , ∅, u = d S is the unique solution to an eikonal equation:minj∼i(∇u)ij = −1, if i ∈ V \ S,
ui = 0, if i ∈ S.

That d S is a solution can be understood as follows. If i ∈ V \ S, the minimum
value of (∇d S)ij among all neighbours j of i will be achieved at a j that lies on
a shortest path from i to S, in which case d S

j − d S
i = −dG

ij = −ωq−1
ij and thus

(∇d S)ij = −1. If i ∈ S, then d S
i = 0. For a proof of uniqueness we refer to [138,

section 6.2]. We note that the eikonal equation, while inspired by a differential
equation from the continuum setting, is a difference equation on graphs.

It is useful to note that we can rewrite the eikonal equation. Let i ∈ V \ S.
Since the equation requires minj∼i(∇u)ij = −1, we can replace ∇u by −(∇u)−
without changing the equation. Since minj∼i[−(∇u)−ij ] = −maxj∼i(∇u)−ij =
−‖(∇u)−‖i,∞, we rewrite the eikonal equation as‖(∇u)

−‖i,∞ = 1, if i ∈ V \ S,
ui = 0, if i ∈ S.
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22 Non-Local Data Interactions: Foundations and Applications

Remark 3.9. The parameter q, introduced in the definition of the E-inner prod-
uct and used in the definition of the gradient, does not appear in the Laplacian
and Dirichlet energy, but it does impact the definition of total variation.

There are two common choices for q. If we imagine the graph gradient to be a
generalization of the finite-difference discretization of the continuum gradient
from a regular grid to a general graph, it is natural to associate ω1−q

ij with the
length scale h−1, where h is the mesh size of the ‘grid’. Reasoning similarly for
the graph Laplacian, which ‘should’ be analogous to a finite-difference discret-
ization of the continuum Laplacian, d−r

i ωij = h−2. If the weights ωij are scaled
by a constant factor, the degree di scales with the same factor, thus ω1−r

ij ∝ h−2.
Hence ω1−r

ij /ω1−q
ij = ω

q−r
ij ∝ h−2/h−1 = h−1. As both ωq−r

ij and ω1−q
ij scale with

h−1, we might choose q by q − r = 1 − q, that is, q = 1
2 (1 + r). The common

picks r = 0 and r = 1 then correspond to q = 1
2 and q = 1, respectively.

This numerical-analysis-based analogy cannot be extended indefinitely. If
we want to interpret the summations in the Dirichlet energy and total variation
as discrete quadratures approximating integrals, then the volume of the grid
cells of the discretization will have to be incorporated into ωij. Since this vol-
ume depends on the dimension of the space over which it is being integrated,
this cannot be made consistent with our preceding considerations.

In the remainder of this work (except in Sections 4, 5.3, and 9 where q
returns very briefly) we will make the choice q = 1, even when r , 1. This is
inspired by Theorem 5.1, which states that the graph Ginzburg–Landau func-
tional (which we will define in Section 5) Γ-converges to graph total variation
with q = 1 in the relevant parameter limit ε ↓ 0. The graph Ginzburg–Landau
functional, which is at the heart of much that is discussed in this Element, is
independent of q; the fact that in the limit total variation with q = 1 appears
can thus be viewed as a selection criterion for our parameter choice.

Another advantage of choosing q = 1 is that the exponent of ωij in the graph
p-Dirichlet energy in (3.11) is independent of p (and equal to 1) if and only
if q = 1. The graph p-Dirichlet energy is a common choice of regularizer in
graph-based variational models (see section 12 and section 4.1 in [190]) and
gave rise to the graph p-Laplacian in (3.13).

If G = (V,E) is an unweighted graph, we call the graph G′ = (V′,E′) a
subgraph ofG if V′ ⊆ V, E′ ⊆ E, and (i, j) ∈ E′ implies i, j ∈ V′. If, additionally,
i, j ∈ V′ and (i, j) ∈ E implies (i, j) ∈ E′, then G′ is called an induced subgraph
(or vertex-induced subgraph, or subgraph induced by V′) of G. A subgraph G′

of G is connected if for all distinct nodes i, j ∈ V′, there exists a path from i to
j. A subgraph G′ is a component (or connected component) if it is connected
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Differential Equations and Variational Methods on Graphs 23

and it is maximal in the sense that ifG′′ is a connected subgraph of G and G′ is
a subgraph of G′′, then G′′ = G′. Any connected component of G necessarily
is an induced subgraph of G.

These notions straightforwardly carry over to the case in which G̃ = (V,E,ω)
is an edge-weighted graph; that is, we call G̃′ = (V′,E′, χE′ω|V′×V′)28 a subgraph
of G̃, a (vertex-)induced subgraph of G̃, connected, or a connected component
of G̃′, if (V′,E′) is a subgraph of (V,E), a (vertex-)induced subgraph of (V,E),
connected, or a connected component of (V,E), respectively.

4 Directed Graphs
In most of this Element we restrict our attention to undirected graphs – which
we defined in Section 3.1 as graphs for which (i, j) ∈ E if and only if ( j, i) ∈ E –
as that is the setting in which most of the work has been done on the topics we
cover. In this section we will take a brief detour to directed graphs – that is,
graphs in which (i, j) ∈ E and ( j, i) < E may both be true for given nodes
i, j ∈ V – and we give a brief overview of (a priori different) approaches to
defining graph Laplacians on such graphs. Each of these approaches uses a
different aspect of Laplacians on undirected graphs as a starting point to define
a Laplacian on a directed graph.

For an edge-weighted directed graph, the edge weights ω need not be sym-
metric, that is, it is possible thatωij , ωji. We still assumeωij ≥ 0, withωij > 0
if and only if (i, j) ∈ E.

Figure 4.1 shows an example of a directed graph, where an arrow on an edge
pointing from node i to node j indicates the edge (i, j). In particular, the graph
in Figure 4.1 is an oriented graph, namely a directed graph in which (i, j) ∈ E
implies ( j, i) < E. We do not require the directed graphs to be oriented.

A direct adaptation of the random walk graph Laplacian to directed graphs
is given in Bauer [17]. In Zhou et al. [207] the authors make use of the one-to-
one correspondence between directed graphs and bipartite graphs29 to define
new undirected graphs on the two independent vertex classes of the bipartite
graph and combine the Laplacians on those new graphs into a Laplacian on
the directed graph. In Chung [52] the author recalls the connection between
graph Laplacians and random walks to define a graph Laplacian via a random
walk on a directed graph. In Hein et al. [104] a similar approach is followed as

28 In a slight abuse of notation χE′ is viewed here as a function on V′ × V′ instead of E, such
that χE′ωV′×V′ is the weight function that assigns ωij to (i, j) ∈ V′ × V′ if (i, j) ∈ E′ and that
assigns 0 to (i, j) ∈ V′ × V′ otherwise.

29 That is, graphs where the the vertex set can be partitioned into disjoint sets V1 and V2, the
partite sets, such that every edge has exactly one endpoint in V1 and one in V2.
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24 Non-Local Data Interactions: Foundations and Applications

Figure 4.1 An example of a directed graph; specifically, an oriented graph.

we used30 for our undirected Laplacian in Section 3, that is, the authors start
by defining inner product structures on the spaces of node and edge functions
and a discrete gradient, then find a divergence as the adjoint of the gradient
and define the Laplacian as the divergence of the gradient. In Shubin [177] a
magnetic Laplacian is introduced for physical reasons; in [86, 87, 100] it is used
for community detection, visualization, and detection of hierarchical structures
in directed graphs (see chapter 4 in [190]). In MacKay et al. [137] and Gong et
al. [100] the trophic Laplacian is introduced, in Klus and Djurdjevac Conrad
[119] the forward-backward Laplacian, and in Jost et al. [114] and Mulas et
al. [158] the non-backtracking Laplacian. We refer to section 2.5 of [190] for
more details on these approaches.

5 The Graph Ginzburg–Landau Functional
A central object in this work is the graph Ginzburg–Landau functional31

GLε : V → R, which was first introduced in Bertozzi and Flenner [21, 22].
It consists of the Dirichlet energy plus a potential term:

GLε(u) := 1
2
α(ε)‖∇u‖2E +

1
ε
W(u).

30 More accurately, our Section 3 is mainly based on the setup in [189, 191] which in turn was
based on [104].

31 Not to be confused with the Ginzburg–Landau model for superconductivity. Other names
for the (continuum version of the) functional may be encountered, especially in the con-
tinuum literature, such as Allen–Cahn, Cahn–Hilliard, Van der Waals–Cahn–Hilliard, or
Modica–Mortola functional.
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Differential Equations and Variational Methods on Graphs 25

There are some variations in the literature regarding the choice of the ε-
dependent factor α(ε) and the choice of potential term, which we briefly discuss
here.

In [21, 22] the authors choose α(ε) = ε in analogy to the continuum
Ginzburg–Landau functional (see section 3.7 in [190]). In Van Gennip and
Bertozzi [189, section 3.1], however, the authors argue that, if one is interested
in the limit ε ↓ 0, then α(ε) = 1 is a better choice. The reason for this is (in
brief) that the divergence of the Dirichlet energy for which ε is meant to com-
pensate in the continuum case, does not occur for the discrete graph Dirichlet
energy, which remains bounded. Thus instead of compensating for divergent
behaviour, a factor ε would completely remove the influence of the Dirichlet
term in the limit ε ↓ 0, leading to a trivial (and uninteresting) limit.

When considering the variational properties of GLε at a fixed ε > 0, the
difference between α(ε) = ε and α(ε) = 1 is minimal, since ε−1/2 GL√

ε with
α(ε) = ε equals GLε with α = 1. Moreover, if we consider gradient flows
derived from GLε (see Section 7), going from α(ε) = ε to α(ε) = 1 involves
only a time rescaling tnew = told/ε.

The different choices in the potential term W concern two different issues.
The first choice involves the factor d r

i in the V-inner product. In [21, 22] the
authors useW(u) = ∑

i∈VW(ui), whereW : R→ R := R ∪ {+∞} is a potential
function, which we will consider in much more detail shortly. In Budd and Van
Gennip [35] it is noted thatW(u) = 〈W ◦ u,1〉V =

∑
i∈V d r

i W(ui) is a preferable
choice when studying the V-gradient flow ofGLε (see Section 7), as it removes
the factor d r

i (which, for r , 0, could be considered a node-dependent time
rescaling) from the gradient flow.32

The second choice in W concerns the potential function W : R → R. In
the classical continuum Ginzburg–Landau functional, this is a smooth double-
well potential, whose graph resembles (a smooth variant of) the letter ‘W’.
An example is shown in Figure 5.1(a). Such a function has three import-
ant properties: smoothness, a global minimum which is achieved in exactly
two locations (two ‘wells’), and some kind of coercivity which implies that
W(x) → ∞ if |x| → ∞. In some papers, such as in [189, section 2.3], no specific
choice is made for W, but precise conditions are given for the smoothness,
wells, and coercivity properties of W. Other papers choose a specific (quar-
tic) potential from the class of potentials that satisfy these conditions, such as
W(x) = 1

4 (x2 − 1)2 in [21, 22] or Van Gennip et al. [191, section 5] with wells
at x ∈ {−1,1} or W(x) = 1

4x
2(x − 1)2 in Calatroni et al. [41] with wells at

32 In fact, in [21, 22] this factor is also not present in the gradient flow, since in that paper a
Euclidean inner product is used, that is, the V-inner product with r = 0.
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26 Non-Local Data Interactions: Foundations and Applications

x ∈ {0,1}. For most purposes, the location of the wells is not important.33 A
significant exception is the case of the signless Ginzburg–Landau functional,
which we discuss in Section 5.3, and the graph Cahn–Hilliard equation (which
requires a mass condition), which is addressed in Section 7.4.

When GLε is minimized, the potential term drives ‘phase separation’, that
is, minimizers (especially at small ε > 0) will take values which are close to
the values at whichW has its wells (thus typically 0 and 1, or −1 and 1).

A significant departure from the standard double-well potential can be found
in Budd et al. [35, 36, 37]. In those papers the double-obstacle potential is used
(since it will be clear from the context which potential we are using at any given
time in this Element, we use the same symbolW to denote it):

W(x) =

1
2x(1 − x), if 0 ≤ x ≤ 1,

+∞, otherwise.
(5.1)

Figure 5.1 (b) shows a visualization of the double-obstacle potential. We note
that the double-obstacle potential also achieves its minimum in two wells,
located at x ∈ {0,1}, but the coercive nature of the potential is stronger than that
of the double-well potential, with W attaining finite values only in the interval
[0,1]. We also call attention to the quadratic, rather than quartic, nature of the
potential on [0,1]. This is convenient when considering gradient flows in which
the ‘derivative’ of W appears, which is linear on (0,1). A potential difficulty
when using the double-obstacle potential compared to the double-well poten-
tial is that W is not differentiable outside of (0,1). We discuss these issues in

(b)(a)

Figure 5.1 Two types of potentialW that are commonly used in the
Ginzburg–Landau functional: the double-well potentialW(x) = 1

4x
2(x − 1)2

(a) and the double-obstacle potential from (5.1) (b).

33 The transformation v = 2u−1 turns u2(u−1)2 into 1
16 (v2−1)2, and thus GLε (u)with potential

u2(u − 1)2 into 1
4 GLε (v) with potential 1

4 (v2 − 1)2.
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more detail in Section 7 and in section 6 in [190], where we outline the results
from [35, 36, 37].

5.1 Constraints
Minimizing GLε (in any of its variants that we have discussed) over V without
imposing any further constraints, leads to constant minimizers u = c, where c
can be the location of any of the wells ofW.34 Besides being necessary to avoid
trivial minimizers, in applications constraints are often suggested naturally by
a priori known information about the required solutions. In this Element we
consider two common constraints:

• a ‘hard’ mass (or volume) constraint:35 M(u) := 〈u,1〉V = M, for a fixed
and given M ≥ 0;

• a ‘soft’ fidelity constraint, where a fidelity term of the form 1
p ‖µ

1
p (u− f )‖pV ,p

is added to to GLε(u), where µ ∈ V[0,∞) \ {0} is a node-dependent fidelity
parameter function with support equal to some subset Z ⊆ V and f ∈ V is a
reference function to which fidelity should be ‘softly’ enforced on Z.

These constraints are discussed in more detail in [189, section 2.5] and play
an important role in [35] (mass constraint) and [37] (fidelity constraint with
p = 2).

The hard mass constraint can be directly included in the functional that has
to be minimized by adding a term ı{0} (M(u) −M) to GLε(u). In [13, 110] in
related contexts relaxed mass constraints are used, in which upper and lower
bounds are imposed for the mass instead of a precise value.

A graph functional consisting of the Dirichlet energy term and a fidelity
term (or, in other words, a Ginzburg–Landau functional with fidelity term, but
without potential term) is studied in Zhou and Schölkopf [205].

From an application-based point of view, the presence of a fidelity constraint
usually differentiates graph classification from clustering (we refer to chapter 4
of [190] for more details).

5.2 Graph Cuts and Γ-Convergence to Total Variation
One important reason why minimization of GLε can be useful in applications
that require clustering or classification of the node set of a graph, is that at small

34 So c ∈ {−1, 1} or c ∈ {0, 1} for the specific double-well and double-obstacle potentials we
have just discussed.

35 Here, we use ‘mass’ and ‘volume’ interchangeably, as, if S ⊆ V, then M(χS) = vol (S).
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28 Non-Local Data Interactions: Foundations and Applications

ε > 0 the functional GLε captures an (approximate) notion of perimeter of a
node subset. To understand this, we first note that, for S ⊆ V,

TV(χS) =
∑
i∈S

∑
j∈Sc

ωij =: Cut (S) .

This quantity is called the graph cut of S and can be understood as a discrete
perimeter (length) of S.

Since the graph cut is a measure for the strength of the connections between
the sets S and Sc, it is a candidate for the objective function that is to be minim-
ized in graph clustering. In practice it turns out that minimizing the graph cut
subject only to the constraints that S and Sc are nonempty sets, often leads to an
unbalanced clustering in which one of the two sets contains the vast majority
of the graph nodes. In many applications this is not what is required, which has
led to many ‘balanced’ (graph) cuts, such as the ratio cut [102], normalized cut
[176], min-max cut [64], edge expansion (related to the sparsest cut problem)
[10], and Cheeger cut36 (or conductance) [49, 55]:

RCut(S) := Cut (S)
|S| +

Cut (S)
|Sc | , NCut(S) := Cut (S)

vol (S) +
Cut (S)
vol (Sc) ,

MCut(S) := Cut (S)∑
i∈S
j∈S

ωij
+

Cut (S)∑
i∈Sc
j∈Sc

ωij
, ECut(S) := Cut (S)

min(|S|, |Sc |) ,

and CCut(S) := Cut (S)
min(vol (S) ,vol (Sc)) ,

respectively, where r = 1 is used in the computations of the volume. Since the
main interest in these cuts is as objective functions in minimization problems,
different versions of the cuts that are equivalent for minimization purposes
may be encountered, such as Cut(S)

|S | |Sc | for the ratio cut, which differs from the
preceding definition above only by a constant factor 1

|V | .
These balanced cuts have been normalized by factors which, uponminimiza-

tion, avoid one of the sets S and Sc being much larger than the other, where
‘large’ is to be interpreted according to the specific measure used in the nor-
malizing factors. Intuitively, these normalization factors play a role similar to
the mass constraint from Section 5.1. Minimization of such balanced cuts is
NP-hard (see, for example, [176, 193] and references therein). For more infor-
mation about relaxations of some of these minimization problems in terms of
eigenvalue problems for graph Laplacians, we refer to von Luxburg [193].

36 The minimal value minS⊆V CCut(S) is called the Cheeger constant (see also (6.1)). Some
sources, such as [55, section 2.3], also speak of the edge expansion in this context.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009346641
Downloaded from https://www.cambridge.org/core. IP address: 3.141.38.172, on 13 Mar 2025 at 13:43:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009346641
https://www.cambridge.org/core


Differential Equations and Variational Methods on Graphs 29

Multiclass extensions of the preceding cuts for a partition {Si}i∈I of V are
straightforward to construct:

∑
i∈I

Cut(Si)
|Si | for the ratio cut,

∑
i∈I

cutSi
min( |Si |, |Sci |)

for
the edge expansion, and similarly for the other balanced cuts.

For more details about graph cuts, we refer to Izenman [109, chapter 11].
The following theorem shows the connection between the graph cut and

GLε . It uses the language of Γ-convergence [28, 62].

Theorem 5.1. Assume that W is either a smooth double-well potential with
wells37 at x ∈ {0,1}, satisfying the coercivity condition lim |x |→∞W(x) = ∞, or
is the double-obstacle potential. LetW be defined in either of the two ways that
are introduced near the beginning of (the current) Section 5 and let α(ε) = 1.
When ε ↓ 0, the sequence (GLε) Γ-converges to the functional:

GL0 : V → R, GL0 : u 7→
TV(u), if u ∈ V{0,1},

+∞, otherwise.

Moreover, the following compactness result holds: if (εk) is a sequence of
strictly positive real numbers converging to zero and (uk) is a sequence in V
for which GLεk(uk) is bounded uniformly in k, then there exists a subsequence
of (uk) which converges to a u∞ ∈ V .

Proof. In the double-well case, the proof can be found in [189, theorems 3.1
and 3.2]. In the double-obstacle case, the proof of Γ-convergence is very similar
and given in [35, theorem 6.1]. The proof of the compactness result is not given
there, but it is simpler than the one in [189, theorem 3.2]: the double-obstacle
potential forces the functions uk to lie in the compact set V[0,1]. Compactness
of V[0,1] is a consequence of the Heine–Borel theorem, if we identify the set
with the closed and bounded set of vectors [0,1]n ⊆ Rn.

The proof in [189] works with W(u) = ∑
i∈VW(ui), while the proof in [35]

has W(u) = 〈W ◦ u,1〉V .

As a consequence of Theorem 5.1, by the fundamental theorem of Γ-
convergence (see [28, 62]), if (uk) is a sequence such that uk minimizes GLεk

over V , then any cluster point of the sequence minimizes GL0. Of course, that
in itself is not very interesting, as we already know that the minimizers of GLε

over V are constant functions. In [189, theorem 3.6] it is shown that the results
of Theorem 5.1 remain true (mutatis mutandis) if any one of the constraints
fromSection 5.1 is implemented in the double-well case and [33, theorem 7.2.4,

37 The specific placement of the wells is not crucial, but the domain on which GL0 is finite, as
well as the multiplicative factor in GL0(u) (currently ‘1’) needed to turn |ui−uj | into (ui−uj)2
at the values in the wells, would have to be adapted to reflect any alternative choice.
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30 Non-Local Data Interactions: Foundations and Applications

corollary 7.2.5] shows the same for the double-obstacle case with a fidelity con-
straint. The double-obstacle case with a mass constraint can be tackled with
similar techniques as the other cases.

5.3 Signless Laplacians and Signless Ginzburg–Landau
Functional

A variant of the graph Ginzburg–Landau functional is the signless graph
Ginzburg–Landau functional GLσ

ε : V → R:

GLσ
ε (u) := 1

2
α(ε)‖∇σu‖2E +

1
ε
W(u),

where the signless graph gradient is defined to be (∇σu)ij := ω
1−q
ij (uj + ui).

We note that the only difference with the standard graph gradient and graph
Ginzburg–Landau functional is the sum rather than the difference of uj and ui in
the gradient. In Keetch and Van Gennip [117] and Keetch [116], minimization
of GLσ

ε is used to find approximate solutions to the Max-Cut problem, which
consists of finding a partition of the node set V into S ⊆ V and Sc, in such a
way that Cut (S) is maximized. As before near the beginning of Section 5, we
note that the choice between α(ε) = 1 and α(ε) = ε is not relevant for this
minimization problem. The choice of W , however, is important. In particular,
the wells ofW should be placed symmetrically with respect to the origin, other-
wise the constant function u = 0 would be the unique minimizer. In [116, 117]
the authors use W(x) = (x2 − 1)2, W(u) = ∑

i∈VW(ui), α(ε) = 1, and q = 1.
We note that no additional constraints, such as a mass or fidelity constraint, are
required to avoid trivial minimizers of GLσ

ε .
As for the standard graph gradient, we can define the signless graph diver-

gence as the adjoint of the signless gradient. Having those ingredients, we then
define the signless graph Laplacian as the signless divergence of the signless
gradient, the signless graph Dirichlet energy as in (3.8), but using the sign-
less gradient instead, and signless graph total variation as in (3.10), but using
the signless divergence instead. In each of these cases, this simply translates
to replacing the difference in the divergence or Laplacian by a summation. In
particular,

(∆σu)i := d−r
i

∑
j∈V

ωij(ui + uj) and TVσ(u) := 1
2

∑
i, j∈V

ωij |ui + uj |. (5.2)

We note that the signless Laplacian has matrix representation ∆σ=D−r(D+A)
(see Remark 3.4). Besides the combinatorial (r= 0) and random walk (r= 1)
versions, the symmetrically normalized signless Laplacian ∆σ,sym =D− 1

2 (D +
A)D− 1

2 also appears in the literature. It is a special case of the signless variant
of the two-parameter graph Laplacian in (3.7) (see also Remark 3.6).
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The signless analogue of Theorem 5.1 holds, with GLε , TV, and V{0,1}
replaced by GLσ

ε , TVσ , and V{−1,1}, respectively, as proven in [117, lem-
mas 4.3 and 4.4]. This justifies the use of GL+ε as an approximate objective
function for the Max-Cut problem, since, for S ⊆ V, TVσ(χS − χSc) =
2
∑

i, j∈V ωij−4Cut (S) [117, lemma 4.1]. Thus minimization of TVσ(χS− χSc)
over S maximizes the cut. We note that, given that the wells of W are located
at x ∈ {−1,1}, the relevant set ‘indicator’ function is here χS − χSc , not χS.

6 Spectrum of the Graph Laplacians
Indicators of the usefulness of the graph Laplacians for clustering problems can
be found in their spectrum, particularly the property that is stated in the follow-
ing lemma. In this section (Section 6), we temporarily drop the assumption that
our graphs are connected. We begin with a very important result.

Lemma 6.1. All eigenvalues of ∆ and ∆sym are real and nonnegative. The
smallest eigenvalue of each of these operators is 0 and its algebraic and
geometric multiplicities are both equal to the number k ∈ N of connected
components G1, . . . ,Gk of the graph G. The associated eigenspace for ∆ is
spanned by the set of indicator functions (on V) {χSi }i∈[k], where Si ⊆ V is
the set of nodes that induces the subgraph Gi. The associated eigenspace for
∆sym is spanned by { f i}i∈[k] where f i : V → R is defined by, for all j ∈ V,
f ij := d 1/2

j (χSi )j.
Proof. This well-known result has been proven and reproven in many
places, for example Chung [55, lemma 1.7] and von Luxburg [193, propositions
1–4].

This lemma shows that if the clustering problem is trivial, in the sense
that each cluster is its own connected component, then the number of clus-
ters is given by the multiplicity of the zero eigenvalue and the corresponding
eigenspace contains information about the nodes belonging to each cluster. The
expectation that graph Laplacians are also useful in nontrivial clustering prob-
lems, in which the graph itself may be connected, but certain induced subgraphs
have a high edge volume (see (3.2)) and low connectivity to other parts of the
graph, is based on the hope that small perturbations to the edge structure of the
trivial case will preserve the important information in the first (in ascending
order) eigenvalues of the graph Laplacian and their corresponding eigenfunc-
tions (or eigenspaces). This hope is (non-rigorously) justified in practice by the
success of Laplacian-based clustering techniques, such as spectral clustering
[109, 161, 176, 193] or the ones discussed in [190].
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32 Non-Local Data Interactions: Foundations and Applications

This hope can also be given some rigorous support, for example through
higher-order Cheeger inequalities (see Lee et al. [128, theorem 1.1])38 of the
form (for K ∈ N ∩ [2,n]),

1
2
λK ≤ min

{Sk }Kk=1
max

{
Cut (Sk)
vol (Sk)

: k ∈ [K]
}
≤ C(K)

√
λK, (6.1)

where λK denotes the Kth eigenvalue (in nondecreasing order) of the random
walk graph Laplacian and C(K) = O(K2) as K → ∞.39 The minimum in (6.1)
is taken over all partitions of V into K (per definition of partition nonempty
and pairwise disjoint) subsets Sk of V. These inequalities tell us that, if there
is a large gap between the Kth and (K + 1)st eigenvalues, then the value of the
Cheeger constant, that is, the value in between the inequalities in (6.1) (see also
footnote 36), will be significantly higher if we partition V into K + 1 subsets,
than if we partition it into K subsets.

For further details about the eigenvectors that support their use in cluster-
ing, we refer to the structure theorems of Peng et al. [169] and Macgregor and
Sun [136] (see also Macgregor [133, chapter 4]). In Macgregor and Sun [136]
(see also Macgregor [133, chapter 5]) it is shown that in some cases the use of
fewer than K eigenvectors (specifically, in the spectral clustering method; see
section 4.1.2 in [190]) to find K clusters can be beneficial.

More rigorous support is given by the results of Hoffmann et al. [105], whose
paper looked at graph Laplacians ∆(s,t) (see (3.7)) that are built upon data sam-
pled from a probability density which is a perturbation of perfectly separated
clusters, and the continuum limit of these Laplacians obtained as the number
of data points tends to infinity (more details on this continuum object and this
random setting can be found in section 7.2 in [190]). It was shown in [105,
theorem 3.2] that if s+ t = 1 (as is the case for the random walk and symmetri-
cally normalized Laplacians), then this continuum operator has a spectral gap
between its second and third eigenvalue which is independent of the size of the
perturbation (refer to [190] for more details).

The second smallest eigenvalue of a graph Laplacian40 is called the algebraic
connectivity or Fiedler value. By Lemma 6.1, for a connected graph this

38 These inequalities are generalizations of the Cheeger (constant) inequality for K = 2; see for
example Alon and Milman [8], Alon [7], Sinclair and Jerrum [178], or Chung [55, chapter 2].
We note that if K = 2, then the maximum in (6.1) is the Cheeger cut CCut from Section 5.2.

39 This means that there exist constants C1, C2 > 0 such that for all K ≥ C1, |C(K) | ≤ C2K2.
40 Commonly the combinatorial graph Laplacian is used to define the Fiedler value and Fiedler

vector, yet in practical (clustering) applications other Laplacians are used as well, often with
greater success. See, for example, Bertozzi and Flenner [21, 22, section 2.4]). In Le Gorrec
et al. [127] it is argued that the eigenvector corresponding to the second-largest eigenvalue of
the adjacency matrix, where the latter is first scaled (for example, by way of Knight and Ruiz
[120]) into the double-stochastic formD1AD2 (i.e., each row and each column ofD1AD2 sums
to one) with D1 and D2 diagonal matrices, has a structure that more clearly indicates cluster
structure than Fiedler vectors.
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(b)(a)

Figure 6.1 An example of a disconnected graph (a) and that same graph with
nodes coloured according to the value of the Fiedler vector at that node (b).

(b)(a)

Figure 6.2 The graph from Figure 6.1 with an extra edge added to make it
connected (a) and that same connected graph with nodes coloured according

to the value of the Fiedler vector at that node (b).

value is strictly positive. The associated eigenvector is called the Fiedler
vector.41

We illustrate these properties in Figures 6.1, 6.2, and 6.3. Figure 6.1 shows
a disconnected graph, and Figure 6.1 (b) shows how the Fiedler vector distin-
guishes between the connected components of the graph. Figure 6.3 (a) shows
the spectrum of the associated unnormalized graph Laplacian, and we observe
that the first two eigenvalues are zero, in accordance with Lemma 6.1. Next, in
Figure 6.2 we make this graph connected by adding a single extra edge. Fig-
ure 6.2 (b) shows how the Fiedler vector still distinguishes between the two
clusters. Figure 6.3 (b) shows the spectrum of the associated graph Laplacian,
and we observe that the second eigenvalue is now non-zero – in accordance
with Lemma 6.1 – but the other eigenvalues are largely unchanged.

41 The associated eigenspace can have dimension two or higher, yet the literature typically speaks
about the Fiedler vector.
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(b)(a)

Figure 6.3 The spectra of the (unnormalized) graph Laplacians of the graphs
from Figure 6.1 (a) and Figure 6.2 (b), plotted on a (crunched) log scale to

emphasize the change in the second eigenvalue, indicated by a square marker.

One key feature of the Laplacian spectrum is its stability with respect to
noise. In El Karoui andWu [115, lemmas 3.1 and 3.2] it was shown that if there
exist (αi)ni=1 and ε > 0 such that for all i, j ∈ V, αi > 0 and |ωi, j−αiω̃i, j | ≤ ε,42

then the corresponding random walk Laplacians built from ω and ω̃ differ in
spectral norm43 by at most an O(ε) term which is independent of the αi. For a
more comprehensive discussion of this stability, we refer to Ding and Wu [65]
and the references therein. This property is of practical importance, as it allows
(spectral) graph Laplacian methods to be applied robustly to noisy data.

There are other properties of the spectrum that can be proven rigorously.
Sincewewill not directly use them in the current work, we refer to other sources
such as [55, 191, 193] for more information.

An analogous result to Lemma 6.1 also holds for the signless graph Lapla-
cians (see Section 5.3). We recall the definition of bipartite graphs from
footnote 29.

Lemma 6.2. All eigenvalues of ∆σ and ∆σ,sym are real and nonnegative.
Assume the graph G has k ∈ N connected components G1, . . . ,Gk induced
by the subsets Si ⊆ V (i ∈ [k] ) and let k′ ∈ N∩ [0,k]. Then both ∆σ and ∆σ,sym

have eigenvalue 0 with algebraic and geometric multiplicity each equal to k′ if
and only if k′ of the connected components are bipartite graphs.
In that case we may assume (possibly after relabelling) that, for all i ∈ [k′],

Gi is bipartite. Denote the partite sets of Gi by T i ⊆ Si and Si \ T i. Then the
eigenspace corresponding to the eigenvalue 0 for ∆σ is spanned by the set of

42 And mini∈V 1
n
∑

j∈V,j,i ωij > ε. We note that here we have taken G = G̃ = 1 in [115, lemmas
2.1, 2.2, and 2.3] to align their setting with ours.

43 The spectral norm of a matrix is its largest singular value, namely the square root of the largest
eigenvalue of the product of the transpose (or conjugate transpose for complex matrices) of the
matrix and the matrix itself (in either order).
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indicator functions (on V) {χTi − χSi\T i }i∈[k′]. The eigenspace corresponding
to the eigenvalue 0 for ∆σ,sym is spanned by { f i}i∈[k′] where the functions f i :
V → R are defined by, for all j ∈ V, f ij := d 1/2

j
[
(χT i )j − (χSi\T i )j

]
.

Proof. A proof is provided in Keetch and Van Gennip [117, proposition 4].

Similar to how the result fromLemma 6.1 helps interpreting the usefulness of
graph Laplacians for clustering, so the result from Lemma 6.2 clarifies the use-
fulness of signless graph Laplacians for Max-Cut problems, as in [116, 117].
The objective in a Max-Cut problem is to find a partition of the node set V
of a given graph into two disjoint nonempty subsets T and V \ T such that
Cut (T) = maxT̃⊆V Cut

(
T̃
)
(see Section 5.2). In the trivial case, that is, for

a graph in which all k connected components are bipartite) the maximum cut
can be achieved by setting T =

⋃k
i=1 Ti (using the notation from Lemma 6.2)

and the information about each Ti is encoded in the eigenspace corresponding
to the eigenvalue 0. Analogously to the clustering case, the hope (justified by
numerical tests in [116, 117]) is that, if the connected components are perturba-
tions of bipartite graphs, enough of this information remains encoded in those
eigenfunctions (or eigenspaces) that correspond to the smallest eigenvalues of
the signless graph Laplacians, such that it can be used to construct a partition
of V that, in a sense,44 is the closest to an actual bipartition as is possible in the
given graph (or a good approximation thereof).

For information about the (nonlinear) spectrum of graph p-Laplacians, we
refer to Bühler and Hein [38].

7 Gradient Flow: Allen–Cahn
Starting from this section, we only consider undirected graphs. In the definition
of GLε , we make the choices α(ε) = 1 and W(u) = 〈W ◦ u,1〉V .45 We will
specify whether W is a double-well or double-obstacle potential where this is
relevant. Also, we recall from Remark 3.9 that we choose q = 1.

In Section 5 we have argued that minimizing GLε under a mass or fidelity
constraint gives constrained approximate minimum cuts. This raises the ques-
tion of how a minimizer can be found. We introduce three different options
aimed at minimizing (or approximately minimizing) GLε: a gradient flow (in
the current section), a threshold dynamics scheme (Section 8), and flow by

44 Namely in the sense that it leads to (a good approximation of) the maximum cut value for that
graph.

45 Some of the sources that are cited throughout maymake different choices. Unless these choices
strongly impact the claims and results we present here, we will not draw attention to such
differences.
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36 Non-Local Data Interactions: Foundations and Applications

mean curvature (Section 9). It should be noted that none of these options prov-
ably leads to global minimizers of GLε , but in many cases it can be shown that
the scheme in question decreases GLε (or a closely related functional).

This work focuses on graphmodels, not the continuummodels that were their
inspiration, and so we will not delve deeply into those models. In section 3.7 of
[190] we give a short (and very much not exhaustive) overview of some of the
important literature on the continuum models that inspired many of the graph
models we discuss in this work.

7.1 Smooth Double-Well Potential
First we consider the V-gradient flow of GLε [21, 22, 191]. The equation
describing this flow is of the form du

dt = − gradV GLε(u), where for all u ∈ V ,
the V-gradient of GLε at u is the unique function gradV GLε(u) ∈ V such that,
with s ∈ R and for all v ∈ V ,

d
ds

GLε(u + sv)
����
s=0
= 〈gradV GLε(u),v〉V .

In analogy to the continuum case (see section 3.7.2 of [190]), the resulting
equation is called the graph Allen–Cahn equation:

du
dt
= −∆u − 1

ε
W′ ◦ u. (7.1)

We have assumed here that the double-well potentialW is chosen to be smooth
(in the sense of Section 5) and, as is standard practice for gradient flows, we
have introduced an ‘artificial time’ variable t, such that at each time t, u(t) ∈ V .
To be precise, borrowing notation from Budd and Van Gennip [35], we define
the following spaces, given an interval T ⊆ R and subset A ⊆ R:

Vt∈T := {u : T → V}, VA,t∈T := {u : T → VA},
L2(T;V) := {u ∈ Vt∈T : ‖u‖t∈T < ∞},

H1(T;V) := {u ∈ L2(T;V) : du
dt

∈ L2(T;V)},

H1
loc(T;V) := {u ∈ Vt∈T : ∀a,b ∈ T u|(a,b) ∈ H1((a,b);V)}.

The norm ‖ · ‖t∈T in the definition of L2(T;V) is induced by the inner product

(u,v)t∈T :=
∫
T
〈u(t),v(t)〉V dt

and du
dt ∈ L2(T;V) denotes the generalized time derivative of u, that is, the

function which satisfies, for all v ∈ C∞
c (T;V),

(
u,
dv
dt

)
t∈T
= −

(
du
dt
,v

)
t∈T

.
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Remark 7.1. If we were not to choose α(ε) = 1, but leave α(ε) unspecified,
then (7.1) would be

du
dt
= −α(ε)∆u − 1

ε
W′ ◦ u

instead. Rescaling by α(ε) gives
1

α(ε)
du
dt
= −∆u − 1

εα(ε)W
′ ◦ u or

du
d̃t
= −∆u − 1

ε̃
W′ ◦ u,

if we define t̃ = α(ε)−1t and ε̃ = εα(ε). So, even though the choice of α(ε)
matters when considering the limiting behaviour of GLε as ε ↓ 0 (see The-
orem 5.1), when considering the graph Allen–Cahn equation we can assume,
without loss of generality, that α(ε) = 1, as indeed we did earlier in this sec-
tion and as will be our default choice except where it is relevant to specify
otherwise.

The choice ofW has more influence on the Allen–Cahn equation. Choosing
W(u) = ∑

i∈VW(ui) (rather thanW(u) = 〈W◦u,1〉V ) leads to a term− 1
εD

−rW′◦
u (if we interpretW′◦u as the vector with componentsW′(ui) for i ∈ V) instead
of − 1

εW
′ ◦ u. To the authors’ knowledge, there are currently no studies that

focus on the influence that the extra scaling D−r (if r , 0) has in practical
applications. In our discussion of applications in chapter 4 of [190], we will
mostly ignore this difference.

Remark 7.2. If we wish to similarly obtain a graph Allen–Cahn equation with
the two-parameter normalization of the graph Laplacian ∆(s1 ,s2) (which, we
recall from (3.7), is defined to be D−s1 (D − A)D−s2 ), that is,

du
dt
= −∆(s1 ,s2)u − 1

ε
W′ ◦ u,

as a V-gradient flow of a Ginzburg–Landau-like energy, then we must modify
the Ginzburg–Landau energy to

1
2
‖∇(D−s2u)‖2E +

1
ε
W(u),

and take the V-gradient flow (and inner products in the energy) with r=s1−s2.
The same modification mutatis mutandis applies to all of the Allen–Cahn
equations in (this) Section 7. For further details, we refer to Budd [34].

Remark 7.3. Since the right-hand side of (7.1) is locally Lipschitz continu-
ous, by the Picard–Lindelöf theorem (see Hale [103, chapter I, theorem 3.1]),
for every u0 ∈ V there exists a unique continuously differentiable solution u
locally in time of the initial-value problem with Equation (7.1) and initial con-
dition u(0) = u0. Since (7.1) is the V-gradient flow of GLε , we have, for all

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009346641
Downloaded from https://www.cambridge.org/core. IP address: 3.141.38.172, on 13 Mar 2025 at 13:43:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009346641
https://www.cambridge.org/core
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t ≥ 0 in the domain of u, GLε(u(t)) ≤ GLε(u0) < ∞. Since W satisfies a coer-
civity condition (i.e., W(x) → ∞ if |x| → ∞; see Section 5), this implies that
‖u(t)‖V ,∞ is bounded for all t ≥ 0 in the domain of u (there is no finite-time
blowup). A standard continuation result for ODEs [103, chapter I, theorem 2.1]
tells us that the solution u exists for all t ∈ [0,∞).

Remark 7.4. As discussed in some more detail in section 3.7.6 of [190],
solutions of the continuum Allen–Cahn equation converge to solutions of con-
tinuum mean curvature flow (in some sense that can be made precise) as ε ↓ 0.
For more details about the expectations this raises for the graph variants, we
refer to Section 9.2.

Remark 7.5. In Keetch and Van Gennip [117] (see also Keetch [116]) the
signless graph Allen–Cahn equation is derived, based on the signless graph
Ginzburg–Landau functional from Section 5.3. It differs from the equation in
(7.1) in that it uses the signless graph Laplacian ∆σ from (5.2) rather than ∆.

7.2 Double-Obstacle Potential
Instead of using a smooth double-well potential W, we can also consider the
V-gradient flow of GLε using the nondifferentiable double-obstacle poten-
tial. In that case gradV GLε(u) is no longer uniquely determined at each u.
Instead we require the use of subgradients [67, definition 5.1] and the differen-
tial equation describing the gradient flow is replaced by a differential inclusion,
du
dt ∈ −∂V GLε(u), where the subdifferential ∂V GLε(u) of GLε at u ∈ V (with
respect to the V-inner product) is the set46{β ∈ V : ∀w ∈ V 〈w − u, β〉V +GLε(u) ≤ GLε(w)} , if GLε(u) < +∞,

∅, if GLε(u) = +∞.

Using the double-obstacle potential in GLε then gives us the following
gradient flow differential inclusion:47

46 Per the general definition of the subdifferential in Ekeland and Temam [67, definition 5.1], β
should be in the topological dual of V . Since V is a finite-dimensional inner product space (and
thus also a Hilbert space), it is reflexive and we identify V with its topological dual.

47 The (negative) subdifferential is given by

−∂R ı[0,1](ui(t)) =


[0,∞), if ui(t) = 0,
{0}, if 0 < ui(t) < 1,
(−∞, 0], if ui(t) = 1,
∅, if ui(t) < 0 or ui(t) > 1.
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du
dt
= −∆u+ 1

ε

(
−1
2
+ u + β

)
, where, ∀i ∈ V, βi(t) ∈ −∂R ı[0,1](ui(t)). (7.2)

We define a solution of (7.2) on an interval T ⊆ R to be a pair (u, β) ∈ V[0,1],t∈T×
Vt∈T with u ∈ H1

loc(T;V) ∩ C0(T;V) such that (7.2) is satisfied at a.e. t ∈ T and
for all i ∈ V.48 In Budd and Van Gennip [35, theorem 3.2] it is proven that if
(u, β) is a solution to (7.2), then β is determined at all i ∈ V and a.e. t ∈ T to be

βi(t) =


1
2 + ε(∆u(t))i, if ui(t) = 0,

0, if ui(t) ∈ (0,1),
− 1

2 + ε(∆u(t))i, if ui(t) = 1.

This means that the differential inclusion above is actually a differential
equation.

When discussing the Allen–Cahn equation with the double-obstacle poten-
tial from (7.2), we have stated the result for a.e. t ∈ T. This contrasts with
the Allen–Cahn equation with the double-well potential from (7.1), for which
we have seen in Remark 7.3 that, for every initial condition, a unique solution
exists on [0,∞). In [35, theorems 3.9 and 3.10] it is shown that, for all initial
conditions u0 ∈ V[0,1] there exists a pair (u, β) ∈ V[0,1],t∈T×Vt∈T which satisfies
(7.2) for a.e. t ∈ T with u(0) = u0 and u ∈ H1

loc(T;V) ∩ C0,1(T;V). Moreover,
u is uniquely determined for all t ∈ T and β for a.e. t ∈ T.

The choice for the double-obstacle potential makes it possible to connect the
graph Allen–Cahn equation with the graph Merriman–Bence–Osher (MBO)
scheme, which we introduce in Section 8. This connection is looked at in more
detail in chapter 6 of [190].

Also, (numerical) practice is influenced by the choice for the double-obstacle
potential, as argued in Bosch et al. [26], where the (fidelity-forced; see Sec-
tion 7.3) graph Allen–Cahn equation with a non-smooth potential outperforms
the one with a smooth potential on image segmentation tasks (for more detail
on image segmentation, we refer to section 4.1.3 of [190]).

7.3 Allen–Cahn with Constraints
We can incorporate the mass constraint or fidelity constraint from Section 5.1
into the gradient flow. Starting with the latter, recall that the fidelity term
1
p ‖µ1/p(u − f )‖pV ,p is added to GLε(u), where µ ∈ V[0,∞) \ {0} has support
Z ⊆ V. For simplicity we restrict ourselves here to the case p = 2. This is
also most commonly used in the literature, for example, Bertozzi and Flenner

48 We may sometimes simply refer to u as a solution, implying the existence of a corresponding
β.
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[21, 22] (double-well potential) and Budd et al. [37] (double-obstacle poten-
tial). At the level of the V-gradient flow equation, this adds a term −µ(u − f )
(i.e., minus the first variation of the fidelity term in the functional) to the right-
hand side of (7.1) or (7.2), leading to the fidelity-forced Allen–Cahn equation
on graphs:

du
dt
= −∆u − 1

ε
g(u, β) − µ(u − f ), (7.3)

where g(u, β) = W′ ◦ u for the double-well potential case (see (7.1)) and
g(u, β) = 1

2 − u − β for the double-obstacle potential case (see (7.2)).
To instead impose a mass constraint M(u) = M, we recall from Section 5.1

that we can do so by adding the term ı{0}(M(u) −M) to the functional. In the
gradient flow this leads to an additional term [67, proposition 5.6] which should
be an element of the subdifferential ∂Vm(u), where m(u) := ı{0}(M(u) −M).

Lemma 7.6. Let u ∈ V and M ∈ R, then

∂Vm(u) =
{v ∈ V : ∃c ∈ R ∀i ∈ V vi = c}, ifM(u) = M,

∅, ifM(u) , M.

Proof. The proof is found in lemma 3.1.6 in [190].

Lemma 7.6 shows that, if amass constraint is imposed, an additional constant
term is added to the gradient flow. The value of this constant is determined by
the requirement that the resulting equation conserves mass. To be explicit, if
du
dt = −∆u− 1

ε g(u, β)+ c (recall the definition of g(u, β) from its introduction in
the fidelity-forced case), then we require

0 =
d
dt
〈u,1〉V = −1

ε
〈g(u, β),1〉V + c vol (V) = −1

ε
M(g(u, β)) + c vol (V) ,

where we used that M(∆u) = 0. Hence c = 1
εvol(V)M(g(u, β)) and the mass-

conserving Allen–Cahn equation is

du
dt
= −∆u − 1

ε
g(u, β) + 1

εvol (V)M(g(u, β)). (7.4)

We emphasize that c is constant as function in V , that is, it has the same value
at each node, but may (and does) depend on u.

We may also impose the fidelity and mass constraints simultaneously. Either
by explicit computation of the subdifferential of the sum of the fidelity term
and m, or by using the fact that this subdifferential of the sum is equal to
the sum of the respective subdifferentials [67, proposition 5.6], we find that
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the resulting mass-conserving fidelity-forced (p = 2) Allen–Cahn equation
(version 1) is

du
dt
= −∆u − 1

ε
g(u, β) − µ(u − f ) + c,

for some constant c ∈ R. As before, we can determine the value of c by requir-
ing that 〈 dudt ,1〉V = 0, which leads to c = 1

vol(V)
[ 1
εM(g(u, β)) + 〈µ,u − f 〉V

]
.

In Calder et al. [44] a different approach is taken. Instead of the fidelity
term from Section 5.1, a term −〈u, µf 〉V is added to the mass-conserving
Ginzburg–Landau functional.49 We note the minus sign. In the minimization
of the functional, this term encourages ui to be large whenever µi fi is large
and to be small whenever µi fi is small. The corresponding mass-conserving
fidelity-forced Allen–Cahn equation (version 2) is

du
dt
= −∆u − 1

ε
g(u, β) + µf + c,

where again c is determined by the requirement of mass conservation:
c = 1

vol(V)
[ 1
εM(g(u, β)) − 〈µ, f〉V

]
.

As was the case for the Allen–Cahn equation without constraints (see
Remark 7.3), if we use the double-well potential in the constrained equation
in (7.3) or (7.4), then the right-hand side of the equation is locally Lipschitz
continuous and thus existence and uniqueness of solutions locally in time for
any given initial condition follow from the Picard–Lindelöf theorem of ODE
theory (see Hale [103, chapter I, theorem 3.1]). A gradient flow argument as
in Remark 7.3, this time using the constrained Ginzburg–Landau functionals,
again rules out finite-time blowup50 and thus the solution can be extended to
[0,∞) (see [103, chapter I, theorem 2.1]).

In the double-obstacle potential case (as for (7.2)), we define a solution of
(7.3) (or (7.4)) on an interval T ⊆ R to be a pair (u, β) ∈ V[0,1],t∈T × Vt∈T with
u ∈ H1

loc(T;V) ∩C0(T;V) such that (7.3) (or (7.4)) is satisfied at a.e. t ∈ T and,
for all i ∈ V and a.e. t ∈ T, βi(t) ∈ −∂Rı[0,1](ui(t)). (We will sometimes simply
refer to u as a solution, implying the existence of a corresponding β.)We refer to
Budd and Van Gennip [36, theorems 3.8 and 3.9] and Budd et al. [37, theorem
2.7] for proofs of existence and uniqueness of solutions for the initial-value
problems corresponding to the mass-constrained and fidelity-forced graph
Allen–Cahn equations, respectively. The function u is uniquely determined for
all t. In the fidelity-forced case the function β is uniquely determined for a.e.

49 In [44] a multiclass functional is used; see Section 11.
50 Alternatively, for solutions of (7.4), we can also use the fact that the (finite) mass of the solution

is conserved to rule out finite-time blowup.
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t; in the mass-conserving case β is uniquely determined up to a constant for
almost every time t. Moreover, this constant is zero if there exists such a time
t and a node i such that ui(t) ∈ (0,1) (for more details, we refer to [36, theorem
3.8]).

7.4 Different Metrics
A gradient flow is determined by the functional of which the gradient is taken
and the metric structure with respect to which the gradient is constructed. Earl-
ier we used the metric induced by the V-inner product. Other choices lead
to other gradient flows. In Van Gennip [188, definition 4.1], for example, the
H−1-inner product for functions u,v ∈ V withM(u) =M(v) = 0 is introduced:

〈u,v〉H−1 := 〈∇φ,∇ψ〉E = 〈∆φ,ψ〉V = 〈φ,∆ψ〉V,

where φ,ψ ∈ V solve the graph Poisson equations ∆φ= u and ∆ψ = v, respect-
ively. In [188, section 3.4] it is proven that the zero-mass conditions on u and
v are necessary and sufficient to ensure that these Poisson equations have solu-
tions. Moreover, these solutions are unique up to an additive constant, which
does not influence the inner product. In [188, Supplementary Materials section
4] the graph Cahn–Hilliard equation (named thus, in analogy to the continuum
H−1-gradient flow of the Ginzburg–Landau functional; see section 3.7.3 in
[190]) is derived as the H−1-gradient flow of GLε:

du
dt
= −∆∆u − 1

ε
∆(W′ ◦ u).51

SinceM(∆w)= 0 for any w ∈ V , we see that the Cahn–Hilliard equation auto-
matically conserves mass. It may appear restrictive that we required u to have
zero mass, but if M(u) , 0, then we can easily transform u into a function
with zero mass: v = u − M(u)

vol(V) . This addition of a constant (as a function in V)
term does not affect the Dirichlet term in GLε and effectively shifts the graph
of W (and thus its wells) by M(u)/vol (V) to the right. We note that this shift
does depend on u, but if we restrict ourselves to functions u ∈ V with pre-
scribed mass M (not necessarily zero), we get a constant shift M/vol (V). This
restriction is natural, since the Cahn–Hilliard equation preserves mass.

Other choices for the metric are possible, but have not yet been explored in
the literature, to the best current knowledge of the authors.

51 In [188, Supplementary Materials section 4] an extra term appears, because the gradient flow
is taken not of GLε , but of GLε plus an additional term. Choosing γ = 0 in [188] returns us
to the GLε case. Moreover, an additional factor D−r appears in the potential term in [188],
since W(u) = ∑

i∈V W(ui) is used instead of W(u) = 〈W ◦ u, 1〉V .
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8 Merriman–Bence–Osher Scheme
In this section we take a look at a threshold dynamics scheme called the
Merriman–Bence–Osher (MBO) scheme.

8.1 Definition of the MBO Scheme
The MBO scheme in the continuum was originally introduced in Merriman et
al. [146, 147] as a method to approximate the flow by mean curvature (we refer
to section 3.7.5 of [190] for more information about continuummean curvature
flow and to Section 9 of this Element for graph variants), but has found its way
into the ‘differential equations on graphs’ literature in recent years mostly as an
alternative way to (approximately) minimize GLε . Before we consider some
reasons why it is not unreasonable to use the scheme for this purpose, we will
first give its recursive definition on graphs:

Graph MBO Scheme (without Constraints)
• Initialize. Choose an initial condition u0 = χS0 with S0 ⊆ V and a ‘time
step’52 τ > 0.

• Step k + 1: diffusion. Solve the diffusion/heat equation du
dt = −∆u on (0, τ]

with initial condition u(0) = uk.

• Step k + 1: threshold. Define, for all i ∈ V, uk+1i :=
0, if ui(τ) < 1

2 ,

1, if ui(τ) ≥ 1
2 .

• Stop. Stop the scheme when a stopping condition or predetermined number
of steps has been achieved.53

By standard methods for linear ODEs (see Hale [103, section III.1]), it
follows that the diffusion step has a unique outcome u(τ), given an initial
condition uk.

The output of this scheme is a sequence of functions u0,u1,u2, . . . ∈ V{0,1},
or equivalently a sequence of subsets S0,S1,S2, . . . ⊆ V, where uk = χSk . We
will freely move between both representations as is convenient.

A potential, minor, source of ambiguity in the literature concerns the value
of uk+1i if ui(τ) is exactly at the threshold: if ui(τ) = 1

2 , we can decide to set
uk+1 = 0 or uk+1 = 1. We have decided on the latter for the algorithm given
earlier, but in other literature the other choice may have been made. In practice,
it is unlikely that ui(τ) = 1

2 is exactly achieved, but for theoretical purposes this
choice will determine the (non-)strictness of various inequalities along the way.

52 Also called the diffusion time (step).
53 For the mathematical analysis of the scheme, it is convenient to assume there is no stopping

condition and no upper bound on the number of steps, so that the scheme generates an infinite
sequence of output functions uk.
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44 Non-Local Data Interactions: Foundations and Applications

A first, hand-waving, reason to expect the graph MBO scheme to minimize
GLε is its superficial similarity to the Allen–Cahn equation from (7.1). Instead
of solving a nonlinear differential equation as in (7.1), when executing the
MBO scheme the solution of a linear differential equation is sought in the diffu-
sion step up to a, typically small,54 time τ > 0, after which the phase-separating
drive of theW-derived nonlinear term from (7.1) is mimicked by the threshold-
ing step. (For some more details about this interpretation of the MBO scheme
as a time-splitting scheme, we refer to remark 6.1.8 in [190].)

Another reason to suspect similar behaviour from the graph MBO scheme
as from the graph Allen–Cahn equation is that in the continuum both processes
approximatemean curvature flow (for small ε in the Allen–Cahn case and small
τ in the MBO case). This can be made rigorous in the form of precisely for-
mulated convergence results, whose details fall outside the scope of the current
work. In section 3.7.6 of [190] we give a brief overview of some literature
about the continuum versions of the graph models, equations, and schemes we
discuss in the current work, including these convergence results.

In chapter 6 of that same work [190], we also present a rigorous link between
a specific time discretization of the Allen–Cahn equation with double-obstacle
potential (7.2) and the MBO scheme.

8.2 The Signless MBO Scheme
Starting from the signless Ginzburg–Landau functional from Section 5.3,
Keetch and Van Gennip [117] and Keetch [116] define a signless MBO
scheme.55

Signless Graph MBO Scheme
• Initialize (signless). Choose an initial condition u0 = χS0 − χSc0 with S

0 ⊆ V
and a ‘time step’ τ > 0.

• Step k + 1: signless diffusion. Solve the signless diffusion/heat equation
du
dt = −∆σu on (0, τ] with initial condition u(0) = uk.

• Step k + 1: signless threshold. Define, for all i ∈ V,

uk+1i :=
−1, if ui(τ) < 0,

1, if ui(τ) ≥ 0.
• Stop.

54 What ‘small’ exactlymeans in this context is an interesting topic for study; see, for example, the
results on time step selection or freezing (aka pinning) in [33, 35, 36, 37, 124, 173, 187, 191].
See also Section 10.

55 In [116, 117] the threshold step assigns −1 instead of 1 to nodes i with ui(τ) = 0. As discussed
in Section 8.1, arbitrariness in the choice of value assigned ‘at the threshold’ is a source of
nonuniqueness of definition of these schemes. Here we have kept our choice consistent with
that in Section 8.1.
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Differential Equations and Variational Methods on Graphs 45

We note that, besides the use of the signless graph Laplacian ∆σ in the dif-
fusion step, we also require the binary functions56 uk to take values that are
symmetric with respect to the origin, as argued in Section 5.3.

As with the diffusion step before, standard ODE techniques guarantee the
existence of a unique outcome of the signless diffusion step.

In [117] it is shown that the signless MBO scheme performs well for the
Max-Cut problem (see Section 5.3) in some practical tests, finding compar-
able or greater cut values than the Goemans–Williamson algorithm [99], in less
computation time – but without any rigorous performance guarantees. Finding
such guarantees for any of the MBO-type algorithms is currently still an open
question of great interest.

8.3 The MBO Scheme with Constraints
Amass or fidelity constraint, as in Section 5.1, can also be incorporated into the
MBO scheme. In the current section we will state and explain these schemes.
The rigorous link between the Allen–Cahn equation and MBO scheme which
was first established in Budd and Van Gennip [35] and which is also presented
in chapter 6 of [190] does explain how these MBO schemes with constraint
can be derived from the Allen–Cahn equations with constraint as presented in
Section 7.3.

To incorporate a mass constraint as in [188, section 5.3]57 and [36, theorem
4.16], we first require some more notation. If u is the solution of the (k + 1)st

diffusion step, we denote the preimage of x ∈ R under u at time τ by

U(x) := {i ∈ V : ui(τ) = x}.

Let L ∈ N be the (always strictly positive and finite) number of xℓ ∈ R for
which U(xℓ) , ∅ and assume the labels xℓ are such that x1 < . . . < xL. Then by
[36, theorem 4.16] there is a unique ℓ∗ ∈ [K] such that

L∑
ℓ=ℓ∗+1

M(U(xℓ)) < M(uk) ≤
L∑

ℓ=ℓ∗
M(U(xℓ)).

We now replace the threshold step by a mass-conserving threshold step to get
a mass-conserving MBO scheme:

56 Sometimes a function which takes two independent variables as input is called a binary func-
tion. That is not the sense in which we will use this term. When we refer to a binary function,
we mean a function whose image is a subset of a set with two elements, most commonly {0, 1}
or {−1, 1}.

57 We note that the description of the (mcOKMBO) algorithm in [188, section 5.3] contains typos:
all instances of ‘d r

i ui’ in the description at the top of page 2357 should be replaced by ‘d r
i ’.
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Mass-Conserving Graph MBO Scheme

• Initialize.
• Step k + 1: diffusion.
• Step k + 1: mass-conserving threshold. Let uk+1 be any function in V
which satisfies M(uk+1) =M(uk) and, for all i ∈ V,

uk+1i :=
0, if ui(τ) ∈

⋃
1≤ℓ<ℓ∗ U(xℓ),

1, if ui(τ) ∈
⋃

ℓ∗<ℓ≤L U(xℓ).
• Stop.

Remark 8.1. In the mass-conserving threshold step we order the nodes by
their value of the diffused state ui(τ) and assign, by setting uk+1i = 1, as much
mass to the nodes at the top of the order (with the highest diffused state values
xL > . . . > xℓ∗+1) as we can without assigning more than the required total
mass M(uk). The leftover mass can be assigned in any way to the nodes in
U(xℓ∗ ). If and only if |U(xℓ∗ )| > 1 and

∑L
ℓ=ℓ∗ M(U(xℓ)) , M(uk), this intro-

duces nonuniqueness into the scheme (see [36, theorem 4.16] or [33, theorem
4.2.16]). In [188] the choice is made to pick exactly enough (arbitrarily chosen)
nodes i ∈ U(xℓ∗ ) so that all leftover mass can be assigned to them. If r , 0, the
maximum amount of mass that can be assigned per node, namely d r

i , is node-
dependent, so that it is possible (in practice likely) that the leftover mass does
not match exactly the sum

∑
d r
i over the chosen nodes. In this case one of the

chosen nodes does not get its full mass assigned, that is the resulting function
uk+1 will be non-binary, since ui < {0,1} at this one node. Other choices to deal
with the nonuniqueness are possible, for example, an equal division of mass
over all nodes in U(xℓ∗ ), which may also lead to a non-binary function uk+1.

Next, we incorporate a fidelity constraint into the MBO scheme [37], instead
of a mass constraint. This time we change the diffusion step of the scheme,
instead of the threshold step. Restricting to the case p= 2 (i.e., a fidelity term
of the form 1

2 ‖µ
1
2 (u− f )‖2V in the functional) and taking a clue from the fidelity-

forced Allen–Cahn equation from (7.3), we replace the diffusion step by a
fidelity-forced diffusion step to get a fidelity-forced MBO scheme (version 1):

Fidelity-Forced Graph MBO Scheme (Version 1)

• Initialize.
• Step k + 1: fidelity-forced diffusion. Solve the fidelity-forced diffu-
sion/heat equation du

dt = −∆u − µ(u − f ) on (0, τ] with initial condition
u(0) = uk.

• Step k + 1: threshold.
• Stop.
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The interest in MBO schemes on graphs started with the introduction of this
fidelity-forced scheme in Merkurjev et al. [144] for classification and image
processing applications (see also chapter 4 of [190]).

As before, by the usual methods for linear systems of ODEs (see Hale [103,
chapter III.1]), it follows that the fidelity-forced diffusion step has a unique
outcome, given an initial condition uk.

In Section 7.3 we described an alternative way to incorporate a fidelity con-
straint into a mass-conserving Allen–Cahn equation from Calder et al. [44].
This can be used in a non-mass-conserving context as well, giving rise to the
following fidelity-forced scheme (version 2) (the continuum limit of which is
examined in Laux and Lelmi [124]; see also section 7.2.6 of [190]):

Fidelity-Forced Graph MBO Scheme (Version 2)

• Initialize.
• Step k + 1: fidelity-forced diffusion. Solve the fidelity-forced diffu-
sion/heat equation du

dt = −∆u + µf on (0, τ] with initial condition u(0) =
uk.

• Step k + 1: threshold.
• Stop.

If we impose both a fidelity and mass constraint at once, both the diffu-
sion and threshold steps of the original MBO scheme get replaced. While the
threshold step gets replaced by the mass-conserving threshold step as described
earlier, the diffusion step must be replaced by a mass-conserving fidelity-
forced diffusion step to obtain a mass-conserving fidelity-forced MBO scheme
(version 1):

Mass-Conserving Fidelity-Forced Graph MBO Scheme (Version 1)

• Initialize.
• Step k + 1: mass-conserving fidelity-forced diffusion. Solve the mass-
conserving fidelity-forced diffusion/heat equation du

dt = −∆u − µ(u − f ) +
1

vol(V) 〈µ,u − f〉V on (0, τ] with initial condition u(0) = uk.
• Step k + 1: mass-conserving threshold.
• Stop.

As above, we can also define a different mass-conserving fidelity-forced
MBO scheme, used in Calder et al. [44], which uses the following mass-
conserving fidelity-forced diffusion step instead of the one described earlier
to arrive at a mass-conserving fidelity-forced MBO scheme (version 2):
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Mass-Conserving Fidelity-Forced Graph MBO Scheme (Version 2)

• Initialize.
• Step k + 1: mass-conserving fidelity-forced diffusion. Solve the mass-
conserving fidelity-forced diffusion/heat equation
du
dt = −∆u + µf − 1

vol(V) 〈µ, f〉V on (0, τ] with initial condition u(0) = uk.
• Step k + 1: mass-conserving threshold.
• Stop.

As for the other diffusion(-like) steps earlier, we note that mass-conserving
fidelity-forced diffusion initial-value problems have unique solutions.

As mentioned before, for explanations of how these alternative steps in the
MBO scheme can be derived, we refer to [190]. It is also interesting to compare
the two alternative fidelity-forced and mass-conserving fidelity-forced MBO
schemes which we presented above. A full comparison is an interesting topic
for future work. As an initial step, in the companion volume we have included
a closer look at the steady states for the two mass-conserving fidelity-forced
diffusion steps. It should be noted that in practice these steps will be run for
a short time and steady states will not be achieved, but they do shed light on
some features that distinguish both methods.

9 Graph Curvature and Mean Curvature Flow
As with many of the other concepts, functionals, and dynamics we have intro-
duced thus far, mean curvature flow (or motion by mean curvature) finds it
origins in the continuum setting. It refers to the evolution of a set in which each
boundary point moves with a normal velocity proportional to the local mean
curvature at that point. In this section we describe various attempts to define a
meaningful concept of curvature and mean curvature flow (MCF) on a graph.
For some references about mean curvature flow in the continuum setting, we
refer to section 3.7.5 of [190]. First we introduce various notions of curvature
on graphs.

9.1 Curvature
Various different definitions of graph curvature can be found in the literature.
In this section we discuss a few of them.

In the discussion following (3.10) we determined that the maximum in the
definition ofTV(u) is achieved by φ = sgn(∇u). In the continuum setting, if u is
the characteristic function of a set with smooth boundary, the supremum in the
definition of total variation can be achieved by a smooth extension of the normal
vector field on the boundary of the set. Inspired by this, in the graph setting,
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if u is the characteristic function of some node subset S ⊆ V, namely u = χS,
then we can interpret this edge function φ as a graph normal analogously to the
normal vector field in the continuum:

νSij := (sgn(∇χS))ij =
sgn

(
(χS)j − (χS)i

)
, if ωij > 0,

sgn(0), if ωij = 0.

This prompted Van Gennip et al. [191] to define graph (mean) curvature for a
node subset S as κ := div νS. Thus (allowing for a brief return of our parameter
q from (3.1)):

κi =
1
2
d−r
i

∑
j∈V

ω
q
ij
(
(sgn(∇χS))ji − (sgn(∇χS))ij

)
=

1
2
d−r
i

2
∑

j∈Sc ω
q
ij +

∑
j∈S ω

q
ij (sgn(0) − sgn(0)) , if i ∈ S,

−2∑
j∈S ω

q
ij +

∑
j∈Sc ω

q
ij (sgn(0) − sgn(0)) , if i ∈ Sc,

= d−r
i


∑

j∈Sc ω
q
ij, if i ∈ S,

−∑
j∈S ω

q
ij, if i ∈ Sc.

We note that κ is independent of the value chosen for sgn(0).
In El Bouchairi et al. [69, remark 5.1(ii)] the graph mean curvature of a

function u ∈ V at i ∈ V is defined as

(K(u))i := −d−1
i

∑
j∈V

ωij sgn(uj − ui), (9.1)

where explicitly sgn(0) = 1 is chosen. For r = 1 and q = 1,K(χS) would equal
κ, if sgn(0) = 0 had been chosen instead. The reason for the choice sgn(0) = 1
in K is so that (K(u))i can be interpreted as the mean curvature K{j∈V : uj≥ui }

i of
the superlevel set {j ∈ V : uj ≥ ui} at i ∈ V, where, for S ⊆ V and i ∈ V,

KS
i := d−1

i
©«
∑
j∈Sc

ωij −
∑
j∈S

ωij
ª®¬ .

We note that (K(χS))i =
K

S
i , if i ∈ S,

−1, if i ∈ Sc.
The curvature used in El Chakik

et al. [70] is the same as K from (9.1).
In Zhou and Schölkopf [206, section 2.4] the authors define the graph mean

curvature of u ∈ V as

−1
2

div
(

∇u
2‖∇u‖E

)
,
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where q = 1 is chosen in the definition of the E-norm (see (3.1)) and the
gradient and divergence operators are scaled to be consistent with the symmet-
rically normalized Laplacian of (3.6). Aside from the differences in scaling,
this approach is similar to the ones mentioned earlier.

Finally wemention two notions of Ricci curvature on graphs: Ollivier’s Ricci
curvature and Forman’s Ricci curvature.

Ollivier curvature (or coarse Ricci curvature; see Ollivier [165, 166], also
Münch and Wojciechowski [152]) is defined to be

(κOG)ij := 1 −
WG(µi, µj)

dG
ij

,

where µ : V → P(V ) assigns a probability measure on the node set V to each
node in V 58 andWG is a graph Wasserstein distance. In this context, the graph
distance dG

ij often is chosen to be as in (3.15) with q = 2 (or equivalently q = 0,
with reciprocal weights) – for unweighted graphs the choice of q in dG

ij is, of
course, not relevant.

In Ni et al. [162, 163] and Tian et al. [185] the probability-measure-valued
node function µ is chosen to be

µi( j) :=


α, if j = i,

(1−α)e−(d
G
ij )

p∑
k∈{j∈V : j∼i} e

−(dGik )
p , if j ∼ i,

0, otherwise,

where, for given i ∈ V, µi ∈ P(V ) assigns probability µi( j) to node j ∈ V. The
parameters α ∈ [0,1] and p ≥ 0 are both chosen to be zero for unweighted
graphs, in which case the probability distribution µi is uniform over the neigh-
bours of i. On random geometric graphs (see section 7.2 of [190]), Van der
Hoorn et al. [186, section III.B] has a slightly different definition for Ollivier
curvature:

(κ̃OG)ij := 1 −
WG(µi, µj)

δ
,

where δ > 0 is the distance between the sample points corresponding to nodes i
and j along the geodesic on themanifold fromwhich the points are sampled, and
µi is the uniform distribution over the set of vertices that are within a weighted
graph distance of at most δ > 0 of the node i. If the edge weights ωij are chosen
to be equal to the distance between i and j on the manifold, then in [186], this

58 HereP(V ) denotes the set of probability measures on V, not to be confused with the power set
of V, which it denotes in some other, clearly indicated, places in this work.
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curvature is proven to converge59 to the Ricci curvature on the manifold that
underlies the random geometric graph. In García Trillos andWeber [96], expli-
cit rates are proved for this convergence. We refer to those papers for further
details, such as details about the graph Wasserstein distance (whose explana-
tion would take us a bit too far afield here.) In particular, we refer to [96] for an
in-depth discussion of various choices of the graph distance and their impact
on the result, and to [186, section II] and the references therein for information
about more distinct notions of graph curvature.

Forman curvature (or combinatorial Ricci curvature) is defined in Forman
[91] (see also [111, 196, 197]) for cell complexes. Here we do not introduce the
concept in this general setting, but rather give its definition applied to graphs.
Besides edge weights ωij, the definition also allows for node weights ωi. In
our standard setting without node weights, we may assume that, for all i ∈ V,
ωi = 1. Forman curvature is then defined to be60

(κFG)ij := ωij

[
ωi
ωij
+
ωj

ωij
− 2

∑
k∈V

(
ωi√
ωijωik

+
ωj

√
ωijωkj

)]
.

9.2 Mean Curvature Flow
In Section 9.1 we saw that Van Gennip et al. [191] and El Chakik et al. [70]
introduce very similar notions of graph mean curvature. They also both give
definitions of graphMCF, but do so starting from different descriptions ofMCF
at the continuum level.

In [70] the inspiration comes from the level set description of MCF in the
continuum [50, 56, 82, 83, 84, 85]: du

dt = |∇u| div
(

∇u
|∇u |

)
, where the operators

div and ∇ here denote the continuum versions of the divergence and gradi-
ent, respectively. If u satisfies this equation, then each level set of u evolves
according to flow by mean curvature. Since div

(
∇u
|∇u |

)
gives the curvature of

the level sets of u, this leads [70] to introduce the following equations for MCF
on graphs:

dui
dt
= 2p(K(u))+i ‖(∇u)+‖i,p − 2p(K(u))−i ‖(∇u)−‖i,p, if p ∈ [1,∞),

dui
dt
= (K(u))+i ‖(∇u)+‖i,∞ − (K(u))−i ‖(∇u)−‖i,∞, if p = ∞. (9.2)

59 Under appropriate conditions, such as the correct scaling of both δ and the connectivity radius
(see remark 7.2.4 in [190]) in the random geometric graph with the number of nodes in the
graph, and a rescaling of κG with δ−2.

60 The factor 2 in the last term appears if we count (i, j) and ( j, i) as different edges; if we identify
these edges as the same edge, the factor is 1.
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Recall the definitions of the positive and negative parts (superscripts ±) from
Remark 3.3. Also recall the node-dependent p-norms from (3.3).

A similar MCF is used in El Bouchairi et al. [69] and called power
mean curvature flow, where each instance of K(u) in (9.2) is replaced by
|K(u)|α−1K(u) for a parameter α ∈ [0,1] (not to be confused with α(ε) from
Section 5). In particular, if α = 1, then [69, formula (6.5)] is the same as (9.2).

If locally in time the mean curvature (K(u))i at node i is positive, only the
term 2p(K(u))+i ‖(∇u)+‖i,p or (K(u))+i ‖(∇u)+‖i,∞ remains in the right-hand side
of the the preceding equations, which leads to what [70] calls a discrete dilation
process. Similarly, if locally in time the mean curvature (K(u))i < 0, only the
terms with (K(u))−i survive, leading to discrete erosion processes.

To understand those names, we recall from Remark 3.3 that [70, 183] defines
(nonlocal) dilation and erosion operators,NLD andNLE, respectively, in terms
of the node-dependent ∞-norms. These allow us to rewrite the graph MCF
equation in (9.2) for p = ∞ as

dui
dt
= (K(u))+i (NLD(u))i + (K(u))−i (NLE(u))i − ui

[
(K(u))+i + (K(u))−i

]
.

For further brief discussions of the mean curvature flow from [70], in particular
the decrease of total variation along its trajectories, we refer to Budd and Van
Gennip [35, remark 6.4] and Budd [33, section 7.5]. Variants of this graphMCF
equation are studied in El Bouchairi [68] and El Bouchairi et al. [69].

In [191] (we also refer to Van Gennip [187, appendix B.1]) a different, vari-
ational, formulation is given for MCF, inspired by the variational formulation
for continuum mean curvature flow in Almgren et al. [6] and Luckhaus and
Sturzenhecker [132]. This is a discrete-in-time scheme generating a sequence
of node subsets Sk, starting from an initial set S 0 ⊆ V, as follows:

Sk+1 ∈ argmin
S⊆V

TV(χS) +
1
ðt
〈χS − χSk, (χS − χSk )dS

k〉V . (9.3)

Here dSk denotes the graph distance function (see Section 3.3) toSk, which is
the graph boundary of Sk defined by

S
k := {i ∈ V : ∃j ∼ i

(
χSk

)
i ,

(
χSk

)
j}

and ðt > 0 is a time-step parameter.
Besides its cosmetic resemblance to the continuum variational formulation

of MCF in [6, 132], the definition for MCF in (9.3) has the desired property that
any sequence (Sk) satisfying it does not increase total variation. To be precise,
since S = Sk is admissible in the minimization problem in (9.3), we see that
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TV(χSk+1) ≤ TV(χSk+1) +
1
ðt
〈χSk+1 − χSk, (χSk+1 − χSk)dS

k ≤ TV(χSk).

It is not true, however, thatTV(χSk+1 )= TV(χSk ) only if Sk+1 = Sk. Consider the
following counterexample. Let G= (V,E,ω) be the graph with V= {1,2,3,4},
ω12 =ω21 =ω23 =ω32 =ω34 =ω43 = 1,ωij = 0 in all other cases, and E contains
(i, j) if and only ifωij , 0. If Sk = {1,2}, thenSk = {2,3} and thus dSk

1 = d
Sk

4 = 1
and dSk

2 = d
Sk

3 = 0 (recall from Remark 3.9 that we have chosen q = 1). More-
over, d r

1 = d
r
4 = 1 and d r

2 = d
r
3 = 2

r. For this example, the second term in the
objective function in (9.3) thus becomes

1
ðt
〈χS − χ{1,2}, (χS − χ{1,2})dS

k〉V =
1
ðt

[ (
(χS)1 − 1

)2
+ (χS)24

]
.

Since TV(χSk)= 1, we know that TV(χSk+1) ≤ 1. Furthermore, if S ∈ {∅,V},
then TV(χS)= 0, and if S < {∅,V}, then TV(χS) ≥ 1. In the former
case, the objective function has value 1

ðt . Looking for potential minimizers
S in (9.3) that are different from ∅ and V, we know that TV(χS)= 1, thus
S ∈

{
{1}, {4}, {1,2}, {3,4}, {1,2,3}, {2,3,4}

}
. Among these candidates, only

those that minimize the second term of the objective functional are poten-
tial miminizers of (9.3), thus we require 1 ∈ S and 4 < S. This leaves
S ∈

{
{1}, {1,2}, {1,2,3}

}
. For each of these candidates the objective function

has value 1 and thus, if ðt< 1, all these candidates are solutions Sk+1 of (9.3).
In particular we note that two of these candidates are different from Sk, yet
TV(χSk+1)= TV(χSk ) = 1.

Mean curvature flow of a form very similar to (9.3) is analysed on square
grids by Braides et al. in [29].

In light of the close connection between the MBO scheme (and the Allen–
Cahn equation) and MCF in the continuum that was briefly touched upon in
Section 8.1 (and Remark 7.4) – we refer to section 3.7.6 of [190] for more
details – a natural question is whether such a connection also exists in the graph
setting. In [35, section 6.2] (and in more detail in [33, section 3]) it is argued
that a close connection between the graph MBO scheme and the variational
graph MCF from (9.3) is not to be expected.

A first reason for this is that, even though when the time step is large (i.e.,
large τ forMBO and large ðt forMCF) each schemewill reach a stationary state
equal to u = 0 (S = ∅) or u = 1 (S = V) after a single time step, the conditions
governing which of these two states is chosen are different for MBO and MCF.

Since themain interest in these schemes is at small time steps, this first reason
by itself would not necessarily be enough to abandon the formulation of MCF
from (9.3). The other reason provided in [33, section 3] is more damning, if our
intention is to connect MBO and MCF. Given a graph G = (V,E,ω) (satisfying
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54 Non-Local Data Interactions: Foundations and Applications

the conditions described in Section 3.1) and η > 0, we can consider the η-
completion of G, which we define to be the graph Gη = (V,V2,ωη), where
ω
η
ij = ωij if ωij > 0 and ωη

ij = η if i , j and ωij = 0. In [33, theorem 7.3.1] it is
shown that the difference (in V-norm) between solutions of the heat equation
on G and on Gη is bounded by Cη teCt, where C > 0 is a constant and 0 <

Cη = O(η) as η ↓ 0.61 Unless in very specific circumstances in which this
small difference places both solutions on different sides of the threshold value
in the MBO scheme, this shows that the MBO scheme will have very similar, if
not the same, solutions on G and Gη . A similar conclusion is shown to hold for
solutions of the graph Allen–Cahn equation.62 On the other hand, however, if
Sk < {∅,V}, then the graph boundarySk on Gη is equal to V, thus dSk

= 0 and
(9.3) reduces to Sk+1 ∈ argminS⊆V TV(χS) = {∅,V}. For most graphs G, this
behaviour of MCF on Gη will differ significantly from the behaviour of MCF
(according to (9.3)) onG. In other words, while the behaviour of solutions to the
Allen–Cahn equation orMBO scheme is expected to be very stable under the η-
completion ofG, the behaviour of solutions of (9.3) is not. Simple redefinitions
of the graph boundary, for example asSk ∩ Sk orSk ∩ (V \ Sk), do nothing to
alter this conclusion.

A promising alternative is offered in [35, section 6.2] and [33, section 7.4]:

Sk+1 ∈ argmin
S⊆V

TV(χS) +
1
τ
‖e− 1

2τ∆(χS − χSk)‖2V . (9.4)

Just as we saw for solutions of (9.3), solutions of (9.4) satisfy TV(χSk+1) ≤
TV(χSk). Unlike before, we now also have that equality is achieved if and only
if Sk+1 = Sk, since e− 1

2τ∆ is an invertible operator and thus equality in

TV(χSk+1) ≤ TV(χSk+1) +
1
τ
‖e− 1

2τ∆(χSk+1 − χSk)‖2V ≤ TV(χSk).

cannot be achieved unless χSk+1 − χSk = 0 [33, proposition 7.4.1].
The main objection against the formulation in (9.3) does not apply to the

formulation in (9.4). The total variation term in the objective function in (9.4)
depends linearly on the edge weights and thus will differ only by anO(η) term
between graphs G and Gη ; the second term in the objective function depends
on the solution of the graph diffusion equation and thus, by the argument from
[33, theorem 7.3.1] discussed earlier, will also only differ by an O(η) term.

61 By this we mean that there exists a C̃ > 0 such that, for η > 0 small enough, |Cη | ≤ C̃η. (See
footnote 39.)

62 Technically, it is only shown for the Allen–Cahn equation with smooth enough potentials, such
as the double-well potential. In [33, note 39] it is argued that a similar conclusion holds when
the double-obstacle potential is used, except potentially in very pathological circumstances.
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Differential Equations and Variational Methods on Graphs 55

The other, minor, objection which was brought against (9.3) also does not
apply here. It is argued in [33, section 7.4] that the behaviour at large τ of the
scheme in (9.3) is very similar to that of the MBO scheme at large τ.

In section 6.3 of [190] we compare MCF defined by (9.4) more closely with
the MBO scheme.

10 Freezing of Allen–Cahn, MBO, and Mean Curvature Flow
Freezing (or pinning) is the phenomenon where for very small values of
the parameters ε (in the graph Allen–Cahn equation), τ (in the graph MBO
scheme), or ðt or τ (in the variational graph mean curvature flow) no, or only
trivial, dynamics occur. (See also footnote 54.)

In the graph Allen–Cahn equation, if the parameter ε is very small, the poten-
tial term dominates the right-hand side of the equation, leading to dynamics in
which each value ui simply settles into the well ofW in which it starts. Rigorous
quantitative statements are made in Van Gennip et al. [191, theorem 5.3], Budd
and Van Gennip [35, remark 4.7], Budd and van Gennip [36, section 3.3], and
Budd [33, theorem 3.4.11]. We collect them in the following lemma.

We define ρ∆ to be the spectral radius of ∆, namely the maximal eigen-
value of ∆. In general, we write ρO for the spectral radius of a linear operator
O : V → V .

Lemma 10.1. Let W(x) = (x − 1)2(x + 1)2. Let u0 ∈ V and let u solve
dui
dt = −(∆u)i − 1

ε d
−r
i W′(ui), for all i ∈ V and t > 0,

u(0) = u0.

Then there exists a C > 0 such that, for all t ≥ 0, ‖u(t)‖V ≤ C. Now assume
additionally that there exists an α ∈ (0,1) such that, for all i ∈ V, |u0i | ≥ α. If

ε ≤ C−1ρ−1
∆
4α(1 − α2)

(
max
i∈V

di
)− r

2

, or

ε ≤
(
sup
t≥0

‖∆u(t)‖V ,∞

)−1
4α(1 − α2)

(
max
i∈V

di
)−r

,

then, for all i ∈ V, t 7→ sgn(ui(t)) is constant.
Now assume that W is the double obstacle potential from (5.1) instead and

T is some interval. Let S be a strict and nonempty subset of V. Then u(t) = χS,
for all t ∈ T, is a solution of (7.2) if and only if

ε ≤ 1
2
‖∆χS‖−1V ,∞.
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Similarly u(t) = χS solves the mass-conserving Equation (7.4) if and only if

εmax
i∈Sc

|(∆χS)i | ≤ 1 − εmax
i∈S

|(∆χS)i |.

This latter condition is satisfied if ε ≤ 1
2 ‖∆χS‖−1V ,∞.

Lastly, u(t) = χS solves the fidelity-forced equation (7.3) if and only if

εmax
i∈Sc

(|(∆χS)i | + fi) ≤
1
2

and εmax
i∈S

(|(∆χS)i | − fi + µi) ≤
1
2
.

For the graph MBO scheme, the pinning or freezing phenomenon appears
in a different guise. If the time parameter τ in the diffusion step is so small
that at every node the local function value does not cross the threshold value,
then the thresholding step will return the initial value and hence the scheme
is stationary. The critical value of τ below which this behaviour is produced,
depends not only on the structure of the graph, but also on the initial condi-
tion that is fed into the diffusion step. After all, it is known that for fixed τ
the graph MBO schemes converge in a finite number of steps [191, proposition
4.6] and so eventually a stationary state will be reached which, for the given τ,
will be ‘frozen’ by the scheme. In practical applications, however, one wants to
choose a value of τ that does not immediately freeze the initial condition that is
given at the start of the first iteration of the scheme. The following lemma col-
lects bounds on the critical value for τ for various variants of the graph MBO
scheme. These bounds are not sharp and to the best of the authors’ knowledge,
sharp bounds are not currently known. Similar restrictions on the size of τ were
already discussed in the context of a finite-difference discretization of the con-
tinuumMBO scheme in Ruuth [173, section 2.3]. The bounds listed in the next
lemma are taken fromVanGennip et al. [191, theorem 4.2], Budd andVanGen-
nip [35, theorem 4.5 and remark 4.6], Budd and Van Gennip [36, theorem 4.24]
(for the mass-conserving scheme), Budd [33, section 4.3.2] (for both the mass-
conserving scheme and the fidelity-forced scheme), Keetch and Van Gennip
[117, theorem 5.3] (for the signless scheme), and Keetch [116, theorem 4.2.3]
(also for the signless scheme). The references [33, 35, 36] actually provide
information about a whole family of schemes, of which graph MBO is only
one member. These so-called semidiscrete implicit Euler (SDIE) schemes63

are the main objects of study in chapter 6 of [190] and we briefly address the
topic of freezing then and there.

63 Recently, the authors were made aware that the SDIE scheme may be called an implicit expo-
nential scheme. We thank Daniele Avitabile for letting us know. For more details we refer to
footnote 210 of [190].
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Differential Equations and Variational Methods on Graphs 57

To ease notation, we define A : V → V by A u := ∆u + µu. Recall that ρA

and ρ∆σ are the spectral radii ofA and the signless Laplacian ∆σ , respectively.

Lemma 10.2. Let k ∈ N0, S ⊆ V such that ∅ , S , V, and uk = χS. Let
uk+1 be the result of one iteration of either the graph MBO scheme or the mass-
conserving graph MBO scheme applied to initial condition uk. If

τ <
1

2‖∆χS‖V ,∞
or

τ < ρ−1
∆

log
(
1 +

1
2

(
min
i∈V

di
)r/2

vol (S)−1/2
)
, (10.1)

then uk+1 = uk.
Alternatively, let S ⊆ V (S = ∅ or S = V are now allowed) and let uk+1 be

the result of one iteration of the fidelity-forced graph MBO scheme applied to
initial condition uk. If

τ <
1

2 supt∈[0,∞) ‖e−tA χV‖V ,∞‖A χS − f‖V ,∞

or

τ < ρ−1A log
(
1 +

1
2

(
min
i∈V

di
)r/2 (

vol (S)1/2 + ρ−1A ‖f‖V
)−1)

,

then uk+1 = uk.
Finally, let S ⊆ V and uk = χS− χSc , and let uk+1 be the result of one iteration

of the signless graph MBO scheme applied to initial condition uk. If

τ < ρ−1
∆σ

log
(
1 +

(
min
i∈V

di
)r/2

vol (V)−1/2
)
,

then uk+1 = uk.

If we let f = 0 and A = ∆ in the fidelity-forced case, we observe that we
recover the conditions for the graph MBO scheme without forcing.

We note that the restriction ∅ , S , V in the first part of Lemma 10.2, does
not diminish the generality of the lemma, since χ∅ and χV are stationary states
of the (mass-conserving) graph MBO scheme for any τ > 0.

For the signless graph MBO scheme only one condition for τ is given in
Lemma 10.2, whereas two conditions are given for the other two schemes. To
mimick one of the proofs from the other schemes to try and derive a second
condition for the signless scheme, we would require a comparison principle
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58 Non-Local Data Interactions: Foundations and Applications

(as in [191, lemma 2.6(d)]; see also [33, theorem 3.2.6]) for the signless graph
Laplacian ∆σ to produce an analogue of the proof of [191, theorem 4.2], or
we would require e−t∆σ to have a matrix representation with only nonnegative
elements to mimick the proof from [33, lemma 4.3.4]. Neither is true; for a
counterexample see section 3.4 of [190]. (Of course, the fact that mimicking
the proofs from the other schemes does not work, does not prove a similar
second condition does not hold.)

Remark 10.3. In section 6.1 [190] we present variational formulations of the
graph MBO scheme and its fidelity-forced and mass-conserving variants. The
functions generated by these schemes are solutions of these variational prob-
lems, but, due to some subtle nonuniqueness issues that are explained in that
book, these are not the only solutions. Despite that, the results presented in
Lemma 10.1 for these three graph MBO schemes in fact hold for all solutions
of their variational formulations.

In [191, theorem 4.8] (with an updated proof in [187, appendix A]) a con-
dition for pinning in the graph MBO scheme at a specific node was given
that depended only on the local graph structure around that node. Unfor-
tunately, later in [187, theorem 3.1], it was proven that this is an ‘empty’
condition, namely that it cannot be satisfied by any graph. In [187, sections
4 and 5] ‘nonempty’ local conditions are provided specifically for star graphs
and regular trees.

Pinning occurs in the MBO scheme if τ is chosen to be small; on the other
hand, if τ is large, another example of trivial dynamicsmay occur, as one imple-
mentation of the diffusion step could lead to a state u(τ) which is close to the
constant steady state M(u0)

vol(V) χV and hence the subsequent threshold step would
return either u1 = χV or u1 = χ∅, which are stationary states of the MBO
scheme. The following lemma gives a precise result (originally published as
[191, theorem 4.3]). We write λ2 for the second smallest eigenvalue of ∆ (i.e.,
the algebraic connectivity; see Section 6).64

Lemma 10.4. Let k ∈ N0, S ⊆ V, uk = χS, and assume that RS := M(uk)
vol(V) ,

1
2 .

Let uk+1 be the result of one iteration of the graph MBO scheme applied to
initial condition uk. If

τ > λ−12 log
(

(vol (S))1/2(vol (Sc))1/2

(vol (V))1/2 |RS − 1
2 | (mini∈V di)r/2

)
, (10.2)

64 We recall from Lemma 6.1 that the smallest eigenvalue is zero and, since we are working with
a connected graph, λ2 > 0.
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Differential Equations and Variational Methods on Graphs 59

then

uk+1 =
χV, if RS >

1
2 ,

χ∅, if RS <
1
2 .

It is natural to ask if there is a gap between the lower bound of (10.1) below
which pinning occurs in the MBO scheme and the upper bound of (10.2)
above which the dynamics is trivial in the way described in Lemma 10.4.
The following result from [191, theorem 4.4] (with corrections to the proof
in [187, appendix B.2]; see also the discussion in [33, section 7.3.2]) answers
affirmatively.

Lemma 10.5. If λ2ρ∆ <
log

√
2

log(3/2) ≈ 0.85, then there exists a τ which does satisfy
neither the inequality in (10.1), nor the inequality in (10.2).

We emphasize that there is no reason to believe that the inequality conditions
in the lemmas above are sharp. In particular, Lemma 10.5 does not preclude
the possibility that, for a particular given graph and particular given initial con-
dition uk, every choice of τ > 0 leads to either the behaviour described in
Lemma 10.2 or the behaviour from Lemma 10.4.

In Boyd et al. [27, propositions 4.1 and 4.2], results similar to some of those
in Lemmas 10.2 and 10.4 are presented for an MBO scheme with a generalized
diffusion step.65 That particular scheme is used for modularity optimization
(see section 4.1.4 of [190]). The practical suggestion in [27, section 4.5] is to
choose τ as the geometric mean of the (trivial-dynamics-avoiding) upper and
lower bounds that are obtained for τ.

We end this section by taking a brief look at the behaviour of graph mean
curvature flow for small τ and large τ. As explained in Section 9.2 there is
currently not one main definition for the graph MCF and the behaviour at small
or large time steps will depend on which form of the scheme that is chosen. For
some notes on the small time-step behaviour of some of the variational graph
MCF formulations we refer the interested reader to [191, remark 3.10] and [33,
theorem 7.4.2 and note 38], for information about behaviour at large time steps
to [33, sections 7.3.2 and 7.4]. We end this section by giving some results from
[33, section 7.4] for the graph MCF defined in (9.4) in detail.

We require the Lambert W-function [57], which we denote by WL. We note
that, if x ∈ [0,∞) (as is the relevant case in Lemma 10.6), thenWL is the unique
function on [0,∞) that satisfiesWL(x)eWL(x) = x. To make the following bound

65 In the notation of [27], for γ = 0 the scheme of Boyd et al. is the same as the graph MBO
scheme (without constraints) from Section 8.1 with the combinatorial graph Laplacian.
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more intuitive, we note the following simple approximation for WL(x) when
x ≥ 0, which is given in Iacono and Boyd [107]:

WL(x) ≈ log
(
1 +

x
1 + 1

2 log(1 + x)

)
.

Lemma 10.6. Let k ∈ N, Sk ⊆ V, and let Sk+1 be a graph MCF update defined
by (9.4). If

τeτρ∆ <
mini∈V d r

i
maxS⊆V TV(χS)

, or equivalently, τ < ρ−1
∆
WL

(
ρ∆mini∈V d r

i
maxS⊆V TV(χS)

)
,

then Sk+1 = Sk.
Now assume τ > vol(V)

min(i, j)∈E ωij
, then Sk+1 ∈ {∅,V}. If vol

(
Sk

)
< 1

2vol (V), then
Sk+1 = ∅. Alternatively, if vol

(
Sk

)
> 1

2vol (V) instead, then Sk+1 = V.

We note that the volume conditions on Sk in the ‘large τ’ case of Lemma
10.6, correspond to the conditions on RS in Lemma 10.4 which decided the
‘large τ’ behaviour of the MBO scheme.

The results we have mentioned thus far have all been obtained by studying
the discrete schemes directly and all provide parameter regions in which freez-
ing is guaranteed to happen. A different approach is to consider the continuum
limit of the graph-based MBO scheme and obtain parameter scalings under
which the limiting dynamics is not frozen, as a way to guide parameter choices
to avoid freezing. One example in the literature is Misiats and Yip [149], which
considers three regimes for the parameter τ for MBO on a two-dimensional
square grid with grid size h. With h=C(τ)γ, for some constant C> 0, the
regimes are γ > 1, in which the limiting dynamics is mean curvature flow;
γ < 1, in which the limiting dynamics is frozen; and the critical case γ = 1
in which the dynamics depends on finer details. Another example is Laux
and Lelmi [124, theorem 6 and corollary 8] which studies the continuum
limit of (a generalization of) the graph MBO scheme on random geomet-
ric graphs and guarantees nontrivial limit dynamics if τ ↓ 0 such that
lim |V |→∞[(log(|V|))ατ]−1 = 0 and lim |V |→∞ ε(log(|V|))β = 0, for constants α >
0 (not to be confused with α(ε) from Section 5) and β > 0 in a specified range.
Here ε is the length scale used to construct the edge weights in the graph.
(More details about the construction of the random geometric graphs are given
in section 7.2 of [190].) Interestingly, the convergence to limiting dynamics
remains valid even if the spectral decomposition of the graph Laplacian is trun-
cated after the lowest K eigenvalues and their corresponding eigenfunctions,
as is commonly done in implementations to keep the scheme computation-
ally manageable and to filter out noise that may be present in the higher
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Differential Equations and Variational Methods on Graphs 61

eigenfunctions (see also chapter 5 [190]). In this case K ≥ (log(|V|))q is
required, for q > 0 (unrelated to the parameter q from Section 3) in a specified
range.

11 Multiclass Extensions
Themodels we have discussed so far all describe exactly two phases (or classes,
or clusters), which allows for a characterization of the state of the system via a
single (approximately) binary-valued function u. Many of these models can be
extended to incorporate multiple classes; in this section we will discuss some
of these extensions, specifically for the Ginzburg–Landau functional, Allen–
Cahn equation, and MBO scheme. (In Shen and Kang [175] total variation for
functions on a continuum domain andwith a discretemulticlass range (quantum
TV) is investigated for image processing applications.)

The two-phase nature of the functional GLε is the result of the double-well
potential and double-obstacle potential each achieving their minimum value
in two places (‘wells’). For a multiphase version of the Ginzburg–Landau
functional, we thus require a potential with multiple minimizers.

One approach is using a potential function W̃ : R → R with multiple wells
instead ofW, as is done with a periodic-well potential in Garcia-Cardona et al.
[93, 94]. The one-dimensional domain of W̃ has the advantage that the state of
the system can still be described by a single real-valued function u : V → R;
but having more than two wells in the one-dimensional domain necessarily
creates an asymmetry in the distances between the wells. For example, if the
potential has wells located at −1, 0, and 1, then the distance between the first
and third wells is twice that between the first and second wells. Combined with
the Dirichlet energy term in the Ginzburg–Landau functional, this creates an
unwanted bias in favour of interfaces between the−1- and 0-phases (or between
the 0- and 1-phases) over interfaces between the −1- and 1-phases. In [93, 94]
this problem is resolved by the use of a generalized difference function in the
Dirichlet energy term, which compensates for the asymmetry.

A second approach, which has found more traction in the literature, is using
a potential function on a higher-dimensional domain, as in Merkurjev et al.
[143] and Garcia-Cardona et al. [95]. The state of a system with K phases is
now described by a vector-valued function u : V → RK. We denote the set of
such functions by VK := VRK and the kth component of the value of such a
function u at node i by (ui)k ∈ R. Just as there is a bijective correspondence
between functions u ∈ V and vectors in Rn (see Remark 3.4), there is also a
bijective correspondence between functions u ∈ VK and n-by-K real matrices
U, with entries Uij = (ui)j, that is, Uij is the jth entry of the vector ui ∈ RK. We
write u·j for the jth component function of u, that is, (u·j)i = (ui)j. The K phases
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are represented by the standard basis vectors66 ek ∈ RK (i.e., (ek)j = 1 if k = j
and (ek)j = 0 if k , j), with k ∈ [K], and thus the potential function should have
wells located at the corners of the K-dimensional Gibbs simplex

Σ
K :=

{
x ∈ [0,1]K :

K∑
k=1

xk = 1

}
. (11.1)

If EK := {e1, . . . ,eK} is the set of standard basis vectors in RK, then

VK
E := VEK

is the set of node functions that take values on the corners of the simplex. Hence,
if u ∈ VK

E with matrix representationU ∈ Rn×K and we writeUi∗ for the ith row
of U, then, for all i ∈ [n], Ui∗ ∈ EK.

In [95, 143] the multiclass potential

WK(x) := 1
2

K∏
k=1

1
4
‖x − ek‖21

is used for x ∈ RK, where ‖x‖1 :=
∑K

i=1 |xi | and, more generally, ‖x‖p :=(∑K
i=1 |xi |p

) 1
p for p ∈ [1,∞) and x ∈ RK. The Dirichlet energy term now extends

straightforwardly to K classes:67

1
2

K∑
k=1

‖∇u·k‖2E,

where in matrix representation u·k is represented by the kth column of U.
Applying these multiclass extensions to the graph Ginzburg–Landau functional
from Section 5, we arrive at the following multiclass graph Ginzburg–Landau
functional GLK

ε : VK → R:

GLK
ε (u) := 1

2
α(ε)

K∑
k=1

‖∇u·k‖2E +
1
ε
WK(u),

where WK(u) :=
∑

i∈VWK(ui) or WK(u) :=
∑

i∈V d r
i WK(ui) (see Section 5 for a

discussion about these two options in the context of the two-phase functional
GLε and about α(ε); also see Remark 7.1).

66 In machine learning, there is the related notion of one-hot encoding of categorical variables: if
data point i belongs to category j, then this can be encoded in a matrix U with Uij = 1. In our
context each data point belongs to one and only one phase, in which case the one-hot encoded
rows ofU are corners of a Gibbs simplex (see (11.1)). In a more general setting in which a data
point can belong to multiple categories, one-hot encoded rows can contain multiple ones.

67 In [95, 143] the symmetrically normalized Laplacian ∆sym from (3.6) is used instead of ∆ in
the Dirichlet energy, which can be written in the form 1

2
∑K

k=1 〈u·k, ∆
symu·k 〉V .
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Differential Equations and Variational Methods on Graphs 63

In the case when K = 2, GLK
ε is not equal to GLε . We can, however, derive a

connection between the two under the assumption that u·1 = v and u·2 = 1 − v,
for some v ∈ V . We note that this is equivalent to requiring u ∈ Σ2, and note that
that node i being in one of the pure phases, namely ui = e1 ∈ R2 or ui = e2 ∈ R2,
corresponds to vi = 1 or vi = 0, respectively. Then we compute

1
2

(
‖∇u·1‖2E + ‖∇u·2‖2E

)
=

1
2

(
‖∇v‖2E + ‖∇(1 − v)‖2E

)
= ‖∇v‖2E

and

W2(ui) =
1
32

‖ui − e1‖21 ‖ui − e2‖21 =
1
32

(2|1 − vi |)2 (2|vi |)2 = 2W(vi),

ifW(x) = 1
4x

2(x−1)2, which is one of the options discussed in Section 5. Hence,
under these assumptions,

GL2
ε(u) = 2GLε(v),

and so for minimization purposes both functionals are equivalent.
Given amulticlass graphGinzburg–Landau functional, a correspondingmul-

ticlass graph Allen–Cahn equation is defined as its gradient flow with respect
to the VK-inner product

〈u,v〉VK :=
K∑
k=1

〈u·k,v·k〉V,

for u,v ∈ VK. With s ∈ R and for all u,v ∈ VK, we have

d
ds

GLK
ε (u)

����
s=0
= α(ε)〈∆u,v〉VK +

1
ε
〈DWK ◦ u,v〉VK,

where ∆ : VK → VK andDWK : VK → VK are defined by, for all u ∈ VK, i ∈ V,
and k ∈ [K],((

∆u
)
i

)
k

:= (∆u·k)i and ((DWK ◦ u)i)k := ∂kWK(ui),

with ∂k the partial derivative with respect to the kth component of the independ-
ent variable inRK. Here we have chosenWK(u) :=

∑
i∈V d r

i WK(ui); ifWK(u) :=∑
i∈VWK(ui) instead, we would need to include the degrees in the second term,

as in Remark 7.1, or, equivalently, redefine ((DWK(u))i)k := d−r
i ∂kWK(ui).

This leads to the following multiclass graph Allen–Cahn equation:

du
dt
= −α(ε)∆u − 1

ε
DWK ◦ u.

In [95, 143] also a fidelity-forcing term is included in the Allen–Cahn equation.
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64 Non-Local Data Interactions: Foundations and Applications

Similarly, also amulticlassMBO scheme can be defined. In the diffusion step
K uncoupled diffusion equations are solved, leading to an intermediate output
u ∈ VK. In the threshold step, we first project each ui ∈ RK onto the simplex
ΣK and then assign (one of) the closest corner(s) of the simplex to each node i.
This leads to the following scheme.

Multiclass Graph MBO Scheme

• Initialize (multiclass). Choose an initial condition u0 ∈ VK
E , and τ > 0.

• Step l + 1: multiclass diffusion. Solve the multiclass diffusion/heat equa-
tions: for all k ∈ [K], du·k

dt =−∆u·k on (0, τ] with initial condition u(0)=ul.
• Step l + 1: multiclass threshold. For all i ∈ V, define ul+1i := ek∗ ∈RK,
where k∗ ∈ argmink∈[K] ‖vi−ek‖2 (if k∗ is not unique, a k is chosen unifor-
mly at random out of all minimizers) with vi := argminx∈ΣK ‖ui − x‖2.68

• Stop.

The initial condition u0 and the output ul+1 of each iteration are functions in
VK
E and can be interpreted as indicator functions for the K classes: for k ∈ [K],

define Slk := {i ∈ V : uli = ek}, then ul·k = χSlk
. The diffusion step thus consists

of K uncoupled instances of the standard (i.e., 2-phase) MBO scheme diffusion
step, one for each of the K classes. In Cucuringu et al. [60, appendix A.3] it is
shown that the multiclass threshold step is equivalent to assigning ul+1i := ek∗

where k∗ ∈ argmaxk∈[K](ui)k. In other words, the diffusion step is followed by
a ‘majority vote’ determining to which class each node gets assigned.

In Bresson et al. [31] a variant of graph multiclass MBO is presented, with
a slightly different random-walk-based diffusion step, but more importantly
with an incremental reseeding step between iterations: each iteration the ini-
tial condition of the diffusion step is created by randomly sampling nodes
from each class based on the output of the previous iteration’s multiclass
threshold step. The number of sampled nodes per class is increased in each
iteration.

The ideas presented earlier for the multiclass graph MBO scheme can dir-
ectly be transferred to the signless setting from Sections 5.3 and 8.2 (see Keetch
[116, chapter 5]) and to the fidelity-forced setting [95, 143].

In the signless case we need to take care to replace the standard simplex by

Σ
K
± :=

{
x ∈ [−1,1]K :

K∑
k=1

xk = 2 − K

}
,

68 Existence and uniqueness of vi follow from a well-known result; see, for example, Bagirov et
al. [14, lemma 2.2].
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with corners E±
K := {e±1 , . . . ,e±K}, where, for all i,k ∈ [K], (e±k )i = 1 if i = k and

(e±k )i = −1 if i , k. Let VK
E± := VE±

K
be the set of node-functions with values on

the corners of ΣK± .

Signless Multiclass Graph MBO Scheme

• Initialize (signless multiclass). Choose u0 ∈ VK
E± and τ > 0.

• Step l + 1: signless multiclass diffusion. Solve the multiclass signless
diffusion/heat equations: for all k ∈ [K], du·k

dt = −∆σu·k on (0, τ]; u(0) = ul.
• Step l + 1: signless multiclass threshold. For all i ∈ V, define ul+1i :=
e±k∗ ∈ R

K, where k∗ ∈ argmink∈[K] ‖vi−ek‖2 (if k∗ is not unique, a k is chosen
uniformly at random out of all minimizers) with vi:=argminx∈ΣK± ‖ui−x‖2.69

• Stop.

We again refer to [60, appendix A.3] for a ‘majority vote’ interpretation of
the signless multiclass threshold step.

For the multiclass fidelity-forced MBO scheme, we need multiclass versions
of the fidelity parameter function µ and reference function f from Section 5.1;
that is, µ ∈ V[0,∞)K \ {0}70 and f ∈ VK. In [95, 143] each µ·k is chosen to be the
same and f is chosen from VK

E .

Multiclass Fidelity-Forced Graph MBO Scheme

• Initialize (multiclass).
• Step l + 1: multiclass fidelity-forced diffusion. Solve the multiclass
fidelity-forced diffusion/heat equations: for all k ∈ [K], du·k

dt = −∆u·k −
µ·k(u·k − f·k) on (0, τ] with initial condition u(0) = ul.

• Step l + 1: multiclass threshold.
• Stop.

A multiclass mass-conserving graph MBO scheme called auction dynamics
is developed in Jacobs et al. [110] (for r = 0), based on the (unconstrained)
continuum multiclass MBO scheme that was introduced in Esedoḡlu and Otto
[77] to approximate multiclass mean curvature flow. The mass of each class
is specified, that is, for a given M ∈ RK it is imposed that, for all k ∈ [K],
M(u·k) = Mk. In order that the mass is conserved, the simple majority vote
from the multiclass threshold step has to be adapted by a class-dependent cor-
rection term pk. (Approximately) determining this term is accomplished in
[110] via the duality theory of linear programming. The name ‘auction dynam-
ics’ is inspired by an interpretation of the scheme in which each node is bidding

69 As in footnote 68, existence and uniqueness of vi follow from, for example, Bagirov et al. [14,
lemma 2.2].

70 If fidelity-forcing is required in each of the K classes, then each µ·k should be non-zero.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009346641
Downloaded from https://www.cambridge.org/core. IP address: 3.141.38.172, on 13 Mar 2025 at 13:43:04, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009346641
https://www.cambridge.org/core


66 Non-Local Data Interactions: Foundations and Applications

for membership of one of the K classes, with ui ∈ RK the vector of weighted
preferences of node i for each class and pk the price of membership for class k.
For details we refer to [110].

At the time of writing and to the best knowledge of the authors, it is an open
question whether this auction dynamics scheme can also be derived starting
from a multiclass mass-conserving Allen–Cahn equation similar to the way the
binary mass-conserving MBO scheme from Section 8.3 is derived as explained
in section 6.1.2 of [190].

In [110] auction dynamics is also extended to handle upper and lower bounds
on the masses of the classes, rather than exactly prescribed masses.

In the context of Poisson learning (see Section 12) Calder et al. [44] imple-
ment a multiclass version of the mass-conserving fidelity-forced graph MBO
scheme (version 2) from Section 8.3, which they name PoissonMBO and which
takes the following form.71

Multiclass Mass-Conserving Fidelity-Forced Graph MBO Scheme

• Initialize (multiclass).
• Step l+1:multiclassmass-conserving fidelity-forced diffusion. Solve the
multiclass mass-conserving fidelity-forced diffusion/heat equations: for all
k ∈ [K], du·k

dt = − ∆u·k + µ· kf·k − 〈µ·k, f·k〉V on (0, τ], with u(0)=ul.
• Step l + 1: multiclass mass-conserving threshold. For all i ∈ V, define
ul+1i := ek∗ ∈RK, where k∗ ∈ argmink∈[K] ‖vi − ek‖2 (in case of nonunique-
ness of minimizers one k is chosen uniformly at random out of all minim-
izers) with vi :=

∑K
k=1 ck (ui)k, where the strictly positive constants ck are

chosen such that, for all k ∈ [K], M(u·k) =M(u0·k).
• Stop.

It is argued in [44, remark 2.2] that the constants ck > 0 in the multi-
class mass-conserving threshold step can always be chosen such that the mass
constraints are satisfied.

In section 7.2.6 of [190] some further multiclass MBO schemes and their
continuum limits are discussed.

12 Laplacian Learning and Poisson Learning
A function u ∈ V is harmonic at i ∈ V, if (∆u)i = 0. In Zhu et al. [211] the
random walk graph Laplacian (r = 1) is used, but other Laplacians appear in
the literature as well. If S ⊆ V and u is harmonic at all i ∈ V \ S, then u is
said to be harmonic on V \ S. If S , ∅ and f̃ : S → R is given, there exists a

71 To be consistent with the other MBO schemes, we write f for the f̃ of Section 8.3.
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unique function u ∈ V such that u is harmonic on V \ S and u|S = f̃, see Lovász
[130, theorem 3.1.2]. This is called the harmonic extension of f. For introduc-
tory notes on harmonic functions on graphs, see Wigderson [199]. In [211] this
harmonic extension of f̃ is suggested as a good candidate for semi-supervised
learning (we refer to section 4.1.2 of [190] for more information about semi-
supervised learning) of binary labels on a graph (label propagation), given the
a priori labels f̃ on S. This technique is called Laplacian learning (or Laplace
learning). In Zhu et al. [210] the harmonic extension is interpreted as the mean
of an associated Gaussian Random Field. To go from the real-valued harmonic
extension f̃ to binary labels, simple thresholding suffices – or mass-conserving
thresholding if the preferred cluster sizes are known – in the vein of the MBO
scheme(s) of Section 11. Extensions to multiple labels are also possible, similar
to the multiclass extension of Calder et al. [44] which we discuss in Section 11.

The Laplacian learning problem∆ũ = 0, on V \ S,
ũ = f̃, on S,

(12.1)

can be transformed, via u := ũ − f, where

f :=
0, on V \ S,
f̃, on S,

(12.2)

to the semihomogeneous Dirichlet problem∆u = −∆f, on V \ S,
u = 0, on S.

The unique solution to this problem can be constructed in terms of a Green’s
function [53, 54], which itself can be expressed in terms of equilibrium
measures [19, 188] (see also appendix B of [190]).

The Laplacian learning problem in (12.1) also has a variational formulation.

Lemma 12.1. Let u ∈ V , then u is the unique solution of (12.1) if and only if

u ∈ argmin
û∈V

‖∇û‖2E s.t. û|S = f̃. (12.3)

Proof. For a proof, we refer to lemma 3.5.1 in [190].

Laplacian learning and variants (often using the Dirichlet energy as a regu-
larizer in a variational setting, inspired by (12.3)), have been applied in various
settings, for example in Zhou and Schölkopf [206], Zhou et al. [204], and
Elmoataz et al. [74]. One generalization is the p-Laplacian learning problem
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(see [206]) which uses ‖∇u‖pE ,p in (12.3) instead of ‖∇u‖2E .72 However, when
there are many a priori unlabelled nodes (i.e., when |V \ S| is large), there are
some drawbacks. In particular, for random geometric graphs built from point
clouds in Rd it has been shown that when |S| is fixed and p ≤ d, solutions to the
limiting problem |V\S| → ∞ are relatively flat, except for spikes concentrated
around the a priori labelled points (see, e.g., [208]). When p > d, solutions
to the limiting problem do not exhibit this unwanted behaviour, assuming the
length scale in the edge weight function (which regulates the strength of the
connection between points in the point cloud based on their Euclidean dis-
tance) decreases slowly enough as |V \ S| → ∞. For technical details, we refer
to Slepčev and Thorpe [179]; see also [4, section 7.2]. In Crook et al. [59] this
connection to the limiting problem is exploited to develop a new numerical
method for solving p-Laplacian learning. In Calder et al. [44] this degeneracy
issue for p = 2 is related to the random walk interpretation of Laplace learn-
ing, in which ui equals the expected value of f̃j, where j ∈ S is the first node in
S that a random walk starting from node i hits.73 Also for p = 2, Calder and
Slepčev in [43] address this degeneracy issue by adapting the weights of edges
that connect to nodes (i.e., points in the point cloud) that are near to the a priori
labelled points.

When p = ∞, ∞-Laplacian learning is also called Lipschitz learning, see
Kyng et al. [123]. Various graph-to-continuum consistency results for Lipschitz
learning, as well as learning with the game-theoretic p-Laplacian from (3.14)
(or variants thereof) are established in, for example, Flores et al. [90] (for more
literature references, see section 3.5 of [190]).

In Weihs and Thorpe [198], fractional-Laplacian learning is studied (espe-
cially its consistency at the variational level; we refer to section 7.4 of [190]),
which is based on another variant of the graph Dirichlet energy:

〈u,∆su〉V,

with parameter s > 0 (and r = 0 in ∆).
Another variant is Poisson learning, which is suggested in [44] as a way to

avoid the degeneracy issue that we discussed earlier:

∆u = χS

(
f − M( f )

M(χS)

)
, (12.4)

72 In fact, in various papers, for example Zhou and Schölkopf [206], the graph p-Laplacian from
(3.13) – which is the one derived from the graph p-Dirichlet energy – is not used, but rather
the p-Laplacian derived by discretizing the continuum p-Laplacian; see footnote 22.

73 For a brief overview of the connection between random walks and the graph Laplace equa-
tion, we refer to Van Gennip [188, Supplementary materials, section 2] and the references
therein.
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Differential Equations and Variational Methods on Graphs 69

where f is as in (12.2). The choice r = 0 is made for the Laplacian ∆ and mass
functionalM. To select a unique solution, the constraintM(u) = 0 is imposed,
where this time r = 1 is chosen inM.74 As in the case of Laplace learning, to go
from the real-valued function u to labels, a (mass-conserving) thresholding step
is used. This is extended to multiple labels (see Section 11) and implemented
using a multiclass variant of the mass-conserving fidelity-forced graph MBO
scheme (version 2) from Section 8.3, which is named the Poisson MBO algo-
rithm in [44]. Indeed, in the two-class case we see that the stationary solution
to the diffusion step of this Poisson graph MBO scheme – namely to the mass-
conserving fidelity-forced diffusion step of the mass-conserving fidelity-forced
graph MBO scheme (version 2) – satisfies (12.4) with χS in the right-hand side
replaced by µ with support equal to S.

Per [44, theorem 2.3], the equivalent variational formulation of (12.4) is75

u ∈ argmin
v∈V

1
2
‖∇v‖2E −

〈
χS

(
f − M( f )

M(χS)

)
,v

〉
V

s.t. M(v) = 0.

For an interpretation of Poisson learning in terms of random walks, we refer to
[44, theorem 2.1]. In appendix B of [190] we have a detailed look at solutions
of (12.4).

In the recent work of Thorpe and Wang [184] a robust certification against
adversarial attacks is proved for graph Laplace learning, that is, the classifica-
tion result remains unchanged if the data points (assumed to be embedded in
Rm) are perturbed with some bounded perturbation. Work currently in prepar-
ation of Korolev et al. [122] studies Laplace learning in an infinite-dimensional
setting.

13 Conclusions
Using the tools discribed in Section 3, discretized variants of differential equa-
tions and variational models can be formulated on graphs. We have focused
mostly on the graph Ginzburg–Landau model and dynamics related to that
model, such as those described by the graph Allen–Cahn equation, the graph
MBO scheme, and graph mean curvature flow. In Section 12 we also had a look
at the graph Laplace equation and graph Poisson equation.

A common theme that unites these various models and equations, besides
being discretized versions of well-known continuum variational models and
PDEs, is their application in machine learning and mathematical imaging.

74 For a brief discussion of a redefined Poisson learning which uses a consistent r and which
generalizes the Laplacian used to the two-parameter Laplacian ∆(s,t) from (3.7), see Budd [34].

75 To be consistent with [44], again we must choose r = 0, except in the constraint M(v) = 0,
where r = 1.
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Besides containing extended versions of some of the sections from the cur-
rent book, the companion volume, [190], also contains a full chapter about these
applications in machine learning and imaging. It has another chapter dealing
with the numerical implementation of these methods, a chapter about the con-
nections between the graph Allen–Cahn equation, the graphMBO scheme, and
graph mean curvature flow, and a chapter about discrete-to-continuum limits
of graph-based models. Furthermore, it contains a, necessarily relatively brief,
overview of the continuum models from which the graph-based models are
derived, and a discussion of connections with other fields and open questions.

If this work is part of a snapshot of the current state of this very active math-
ematical field, then its companion is meant to be a fuller and broader overview.
While both works contain a literature overview that can suggest further dir-
ections to explore for the interested reader, the companion volume contains a
significantly more extensive bibliography to explore.
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