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THE REAL SPECTRUM OF HIGHER LEVEL
OF A COMMUTATIVE RING

SUSAN MAUREEN BARTON

ABSTRACT.  The following paper defines a new type of ordering of higher level on
a commutative ring. This definition allows the set of all orderings of level n to be given
a topology which we show is consistent with the topology of the real spectrum.

Introduction. In the 1930’s Artin, Schreier and Baer [1,2,3] each studied orders
on a field. Recently Becker broadened this to orderings of higher level on a field [5]
(with further work in [7] by Becker, Harman, and Rosenberg). Here orders are called
orderings of level 1. Orders were also generalized by Coste and Coste-Roy to orderings
of level 1 on a commutative ring with unit [11] (see also Becker [4], and Lam [15]). For
a commutative ring A, these can be viewed as pairs (g, x) where g is a prime ideal of A
and x is a signature from the quotient field of A/ g into { £1}. The resulting structure
is called the real spectrum. The work in this area has evolved into a foundation for Real
Semi-Algebraic Geometry, where the objects of study are sets which can be defined by
a finite number of polynomial equalities and inequalities.

This paper extends the order concept to that of orderings of level n on a commutative
ring, and is modeled on Becker’s presentation of the level 1 case for commutative rings
[4]. Orderings of level n on a ring A are defined so as to be in one to one correspondence
with the sets (g, x) where g is a prime ideal of A and x is a signature from the quotient
field of A/ g into the 2n™ roots of unity. Note, we identify an ordering with a signature.
A second type of ordering of level n on a ring, which may be identified with the kernel
of a signature, has also been defined [6, 16].

We define the real spectrum of level n of A, denoted R,-spec A, to be the set of all
orderings of level n on A. We examine two topologies on R,-specA. And show that
R,-spec A is a contravariant functor from the category of commutative rings with unit
into the category of topological spaces. In future papers we hope to further investigate
real algebraic geometry of higher level. For other work in this area see also Berr [9].

1. Defining R,-specA. Given aring A, let A = A\ {0} . Further, given any prime
ideal of g of A, let k() denote the quotient field of A/, and k() denote k(p)\ {0} .
Finally by a we shall denote a + p in A/ o C k().

Let u(m) = {z € C | z” = 1} be the group of m™ roots of unity, and let u =
lim p(m) be the group of all roots of unity. A signature y is a homomorphism of the
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multiplicative group of a field, with values in p, whose kernel is additively closed. This
implies that if a signature has image p () then ¢ is even [7]. We say a signature has level
n if its image is a subset of 1(2n), and exact level n if its image equals p(2n).

An order on a field F'is a subset P of F, suchthat P+ P C P,P-PC P, PN —P =0,
and PU —P = F. It can also be defined as the kernel of a signature x: F — 1(2), where
every such signature yields an order P = kery U {0}.

Anorderonaring Aisasubset o ofA,suchthata+a C o, o Cx,aN—a =a
prime ideal, and U —a = A. Orders on rings are equivalent to pairs (g, P) where ( is a
prime ideal and P is an order on k(). Indeed, if m: A — A/ p is the canonical projection,
then @ = 1" (PN A/ p), [4]. Since P = ker x U {0} where x: k() — p(2), itis clear
that P completely determines 'y (or ker ) and that x (or ker x ) completely determines P.
Therefore the pairs (g, P), (,x) and (g, ker x) are equivalent, furthermore it has been
shown all are equivalent to o where « = {a €A | (a+gp) € P =kery U {0} } [4].

We now consider the pairs (¢, x), where x is a signature of level n on k(p). Again
there are homomorphisms A — k(g ) and /c(go) — 1(2n) and we have

THEOREM 1.1. Let A be a ring, o € spec A, x a signature of level n on k(y) and ¢
a primitive 2n™ root of unity. If a; = {a € A | a+p = a € x (U {0} }, then the
Sfamily of subsets «, . .., az, obeys the following rules:
(i) A=a U U as,
(i) a;N a; = g ifi # j, and denoting a;\ p by o/f
(iii) of + o C ot
(iv) af ~of C of wherek = i+jifi+j<2n andk = i+j—2nifi+j> 2n.

PROOF. The first two statements are clear, and the fourth is easily verified. To prove
the third statement we let a; and b; be in ', so x(d@;) = ¢’ and x(b;) = ¢'. To compute
x(a; + b;), we first note that @; = b, - ¢/ d where ¢/ d € k(). Furthermore, &/ d is in the
kernel of x since (' = x(a) = x(b; - ¢/ d) = x (b)) - x(¢/ d) = (' - x(¢/ d). Therefore

X(@i+b) = x(d@ +b;) = x(bic/d+ 1)) = x(b) - x(@/d+1) = x(b;) - 1 = ¢'and
(a,» + b,) S a,.*.
LEMMA 1.2. Given a ring A and a family of subsets «ay, ..., o, satisfying 1.1(i)

through (iv), then 1 € a5, and —1 € «a,.

PROOF. Assume 1 € o If i <nthenl = 1-1 € «;}, and this yields the contradic-
tionl € afNaf;=0.S0i>nand 1 =1-1 € a2, Therefore 1 € o N a3, ,,,
which implies i = 2i — 2n, that is i = 2n.

Now assume —1 € o/, then I = —1 - —1liesin ay;if j < nand in ay;_,, if j > n.
Since I € a5, either j = norj = 2n. If j = 2n then —1 and 1 both lie in «;,, which

contradicts a5, + a5, C a;,. Therefore j = n, and —1 € «,.

Given a collection of subsets «, ..., oy, of A so that (i) through (iv) of 1.1 hold, the
next theorem yields a signature of level n on k(g), where p = a; N «;. Subsequently,
given «y,..., o, found from a signature via Theorem 1.1 we will find a method for
obtaining the original signature from the subsets «;.
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THEOREM 1.3. Let A be a ring with a family of subsets a1, . .., as, such that
(l) A:'(X]U U Ay
(ii) ;"N a; = ¢ a prime ideal for all i # j, and defining o = a\ p
(iii) o} +of C of
(iv) (xi*-aj* Cafwherek=i+jifi+j<2nandk=i+j—2nifi+j> 2n.
Then for any primitive 2n™ root of unity, €, the map x: k(p) — p(2n) given by x(%) =

&' is a signature.

PROOF. Using Lemma 1.2 we see there is a unitary homomorphism of semigroups
¢:A'/p — p(2n) given by ¢(a;) = £'. This extends to a group homomorphism
x: k() — wu(2n) given by X(%) = ¢'7 fora; € @; and b; € ;. We need to show
the kernel of x is additively closed.

Let a; € o and b; € af, then x(ﬁj) = ¢ = lifand only if i = j. Thus kery =

{ Z% | anand b, are in a;}. Let Z— and ;—’ be in the kernel of x where g; and b; are in ", and
h i 'J

- o . N @di+bic; _ aidi+bic A
and d; in a*. Then if k is as in hypothesis (iv), € + <4 = =X = 0 = &
¢j and d; are in o*. Then if k ypot (iv), Pt 7 v o & for

some ry and s in o' Therefore the kernel of x is additively closed and x is a signature.

DEFINITION AND REMARK 1.4. Let the primitive root{ € u(2n) from Theorem 1.1,
and the primitive root { € p(2n) in Theorem 1.3 be the same. Then we have a one-to-
one correspondence between the ordered pairs (g, x) where © is in spec A and x is a
signature of ic(p), and collections of subsets aj, ..., ay, obeying 1.1(i) through (iv).

Leti = v/—1, from this point on we will always use ™"/ ” for the primitive 2n™ root of
unity used in Theorems 1.1 and 1.3, and will consistently denote it ¢ . It is not necessary to
use this particular root, but we need to fix ¢ in order to get a one-to-one correspondence.
Furthermore, we shall henceforth denote by x, the signature obtained from «;, ..., ay,
using Theorem 1.3, and ¢ = e™/".

Note, if two collections are the same except for indexing they yield different signatures
and so we will consider them distinct.

DEFINITION 1.5. An ordering o of level n on a ring A is an ordered collection of

subsets of A; «y, ..., @2, such that
N A=oU---Uoa,

(ii) o; N oj = Qo a prime ideal, and denoting o = o\ Qo

(iii) of + o C o

@iv) a,.*.aj* Coafwherek=i+jifi+j<2nandk =i+j—2nifi+j> 2n.

We call g, the support of a, and write it supp(cr ). As in Remark 1.4, we consider the
indexing part of the ordering. Therefore, there is a bijection between orderings of level
n and pairs (g, x), where g is in spec A and x is a signature of level n on k(g), given
by & — (supp(a), xa)-

DEFINITION 1.6. Let R,-specA = { « | « is an ordering of level n} .

The following lemma yields an equivalent definition of an ordering.
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LEMMA 1.7. The four conditions of Definition 1.5 are equivalent to
(i) A=y U ---U agp.
(ii) a;iN a; = Qo a prime ideal.
(iii) a;+ a; C .
(iv) -0 C oy wherek = i+jifi+j<2n andk =i+j—2nifi+j> 2n.
(v) —1 & ay, (equivalently —1 € o).

DEFINITION AND REMARKS 1.8. If « is an ordering of level n whose associated
signature x, maps k(g ) onto ((2n), then we define both « and x to have exact level
n. Note, if a is an ordering of exact level n on a ring A, then x5 '((’) # 050 & # Qa-
Therefore if ot is empty for some i, then Im(x o) = p(2m) g (£(2n). Thus there exists

an ordering 3 of level m < n associated with x4 .

If o is an ordering of level n on A associated with a signature x mapping l%(g)a)
into 4(2n), then o; = {a € A | a+po = a € x~'((e™/my) U {0} }. If x maps into
w(2m) g n(2n),son / m € Z, then there is an ordering 3 of level m associated to x. Here

Bi={acAlaecx '((/my)u{0}}={acA|aecx ' ((¢™™y)u{0}}=
®jp/ - Similarly if n/m divides j then o; = Bjm/ n» and if n/ m does not divide j then
a; = gg. Therefore every ordering o of level n associated with a signature x which
maps onto p(2m) C pu(2n)is associated to an ordering 3 of level m. Henceforth we shall
not distinguish between orderings obtained from the same signature, and will indicate
the level in which we are writing by a left subscript where needed. Thus, for 3 as above,
B = ma.That is, when « is written as an ordering of level m it equals (3.

EXAMPLE 1.9. Ifg¢a = o = {1, 2, 3, g, s, 0t } is an ordering of level 6, then
we identify a with 120 where 10 = {12(3(1 = Pa, 12000 = O, 12003 = Pqo, 1204 = 2,
1205 = Qo> 1206 = A3, 1207 = QPa, 1208 = A4, 1209 = Do, 12010 = A5, 2011 = Pas
12012 = 016}-

2. The topologies of R,-spec A. In Section 1 we defined the real spectrum of higher
level of a commutative ring, R,-spec A. In this section we will define two topologies on
R,-spec A and examine the resulting structures.

DEFINITION 2.1.  In order to topologize R,-spec A we will view f € A as a function
from R,-specA into ITk(pq) by setting f(ax) = f + 0« € k(9q). Given x, and ¢ as
in Definition 1.4, we define D(f,r) = {a € Ry,-specA | Xo,(f(cx)) = g'} ={a €
Ry-specA | xa(f +pa) =C'} ={a | f €} where 1 <1< 2n.

DEFINITION 2.2. If @ € R,-specA, then «;, # ¢, for some ¢, so there exists f € A
such that f € «,. Thus every « is contained in some D(f, 1), so the sets D(f,t) make
up a subbasis for a topology on R,-spec A. By definition its basis is given by the sets

1 D(fi, t;). We will call this the Coste-Roy (C-R) topology on R,-spec A.

REMARK 2.3. If A is a field then the only prime ideal is the zero ideal, so by Defini-
tion 1.5 the orderings of A are bijective with the signatures of A. Let X, denote the set of
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all signatures of level n on A, where ®@: R,-spec A >» X,, via & — X, is the above bijec-
tion. We topologize X,,, as usual, by giving the character group of A the standard compact
open topology, using the discrete topology on A and x(2n), and then giving X,, the sub-
space topology. A subbasis of this topology is given by the sets { x € X,, | x(c) = ('}
forcinAand ¢ = €™/, [see 8, Definition 1.3(ii)]. Now @' ({ x € X, | x(c) = ¢'}) =
{a € Ry-specA | ¢ € a} = D(c,i), and ®(D(c,i)) = {x € X | x(c) = ('} so that
® is a homeomorphism of R,-spec A with X,,, [8]. Therefore, when A is a field, the C-R
topology on R,-spec A is equivalent to the compact open topology on X,,.

We will now look at slightly more general sets than the D(f,¢). They will form a
subbasis of a finer topology of R,-spec A, and will allow us to arrive at conclusions about
the C-R topology. To simplify our notation we first note the following fact.

LEMMA 2.4. Let A be a ring, then " {a | fi € pa} = {a | TN, f? € Qa} for
Fireri o inA.

This may be proved by considering the images of the f; under the mapA — A/ p, —
k(o) and using the fact that k(g ) is formally real [5].

DEFINITION 2.5. Let{«a | f € Qa, &its----8in € forl1 <i<2nandf; >1} =
{alfepat Nty N {a]giy€a} ={alf€pa} NN N, D i). Note
that by Lemma 2.4 it does not increase the generality of the set to include N {« | f; €
Pa}-

DEFINITION 2.6. A subset of R,-spec A is constructible if it can be obtained from the
sets D(f, t) by a finite sequence of taking unions, intersections, and complements.

PROPOSITION 2.7. A set is constructible if and only if it can be written as a finite
union of sets of the form

(2.8) {a|f€E€pa,andgii,...,gi, €, for1 <i<2mandt; > 1}.

PROOF. Let 7 be the collection of all subsets of R,-spec A that are finite unions of
the sets of the form (2.8). If T € 7, then T is constructible if and only if a set of the form
2.8 is constructible. But this follows from Definition 2.5 and the fact that { & | f € g4 }
equals [D(f, 1) D(f,2)° N -- -0 D(f, 2n)°].

Conversely, since the D(f, 1) satisfy 2.8, to show all constructible sets lie in 7, it is
enough to show 7T is closed under finite intersection, complement and union. Since by
definition 7 is closed under finite unions, we proceed to intersections.

LetA = Uj_; Tx and B = U}_; W, be in ‘T where T, and W, are of the form 2.8.
Then AN B = [Ui_, Tk N [Ufe, We ] = Ui, U7 (T 0 Wy). This lies in 7 since by
2.4 and 2.5 it is clear that Ty N W, is of the form 2.8. Now induction yields T is closed
under finite intersections.

Again assume A = U}_, Ty lies in T where the Ty are of the form 2.8. To show 7'
is closed under finite complement it is enough to show A° = N]_,(T¢)" lies in 7. But
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T is closed under finite intersection, therefore, we need only show (T;)° € 7. Since
Ty is of the form 2.8 this follows from the fact that {a | h € '} = {a | h €
pa} UL {a|hea} € Tand{a|fE€pa} =" {al|fea} €T.
J#i

REMARK 2.9. We now put another topology on R,-spec A which we will show has
the constructible sets as a basis. This shall involve mapping R,-specA into
rea{0,1,...,2n}, where Z = Tlsea{0,1,...,2n} is given the Tychonoff topology.
That is, it is given the product topology using the discrete topology on {0, 1,...,2n}.
By Tychonoff’s theorem [14], Z is compact and Hausdorff in this topology.

DEFINITION AND PROPOSITION 2.10.  Define p: Ry-spec A — [Irea{0,1,...,2n} by
p(a) = Trea{ea(f)} where eq(f) is O if f € pa, and equals i if f € o}. Then ¢ is
injective, and the image of ¢ is closed in the Tychonoff topology.

PROOF.  Suppose p(a) = p(B), then eq () = e5(f) forall f inA. Thus {f | eo(f) =
i} = {f| eg(f) = i} for0 < i < 2n. This implies p, = g and o = B for
1 <i <2n. Therefore a; = 3; for all i, so @ = (3, and ¢ is injective.

Now let x = (x) lie in Im, the closure of Imp. Fori = 1,...,2nlet o; = {f |
x; = Oori}.Toshow x € Imy we must show that the «; obey the four statements of
Definition 1.5.

The first statement is clear. To show the second statement we must first show g is
closed under subtraction. Assume f € g and g € p butf —g € . Thenx; =0,x, =0
and x;_, = h # 0, for some natural number &, where 1 < h < 2n. Let U = {y € Z |
¥r = ¥g = 0,y7—¢ = h}, then U is an open neighbourhood of x = (x7) € Ime since the
topology is discrete. Therefore U N Imyp # 0. Let B € R,-spec A such that ¢(8) € U,
then f and g lie in supp(83), and f — g & supp(3). This is a contradiction since supp(3)
is an ideal. Therefore, f € g and g € g impliesf — g € .

The rest of the proof is similar. That is, we define an appropriate open set containing
x, as above it intersects Im¢p, and this gives a contradiction.

DEFINITION 2.11. The Tychonoff topology on R,-specA is the topology inherited
via the pullback of ¢, when Z = [[;ea{ 0, 1,...,2n} is topologized as in Remark 2.9.
That is, a subset T of R,-specA is open in the Tychonoff topology of R,-spec A if and
only if ¢(7T) equals the image of ¢ intersected with an open subset of the Tychonoff
topology of Z.

PROPOSITION 2.12.

(i) The constructible subsets of R,-spec A form a basis of the Tychonoff topology.
(ii) Inthe Tychonoff topology R,-spec A is compact and Hausdorff.
(iii) A set is constructible if and only if it is clopen in the Tychonoff topology.

PROOF. (i) Let I, = {0,1,...,2n}. A subbasis of the product topology on
Irea{0,1,...,2n} is givenby Iy X Iy X -+ X Iy X {i} X Iy X ... where 0 < i < 2n.
Therefore a subbasis of the Tychonoff topology on R,,-spec A is given by sets of the form
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{a|feal =D(fior{a|f € pa}. Abasis thus consists of all possible fi-
nite intersections of sets of these forms. Hence by Definition 2.5 and Proposition 2.7 the
constructible subsets of R,-spec A form a basis of the Tychonoff topology.

(i) Let Z = Tlfea{ 0, 1,...,2n}, and ¢: R,-spec A — Z as in Definition 2.10. Since
the image of ¢ is closed in Z, and Z is a compact Hausdorff space, then the image of
¢ is compact in Z. Therefore R,-spec A is compact in the topology inherited from .
But any bijective continuous map from a compact space into a Hausdorff space is a
homeomorphism [14], therefore R,-spec A is also Hausdorff in the Tychonoff topology.

(ii1) By Definition 2.6 the complement of a constructible set is constructible. There-
fore since in the Tychonoff topology constructible sets are open, they are also closed.
Conversely, assume S is clopen in the Tychonoff topology. As an open set it is a union of
constructible sets. But S is also closed, and hence compact. Therefore it is a finite union
of constructible sets, so by definition S is constructible.

REMARK 2.13.  Any basis element, N[_, D(f;, t;), of the C-R topology on R,-spec A is
constructible by definition. Therefore, by Proposition 2.12 (i), it is open in the Tychonoff
topology. That is, the Tychonoff topology is finer than the C-R topology.

THEOREM 2.14. In the C-R topology, R,-spec A is quasi-compact, and every con-
structible set is quasi-compact.

The proof of compactness follows from 2.12 and 2.13. In Example 2.17 we shall show
that R,-spec A is not necessarily Hausdorff in the C-R topology. From now on, unless
otherwise stated, we will only consider the C-R topology on R,-spec A.

LEMMA 2.15. Let a and 3 be members of R,-specA, then o; C (; forall i =
1,....2nifand only if 3} C a foralli=1,...,2n.

PROOF.  Suppose o; C §; fori = 1,...,2n. If there exists an f € 3 withf ¢ o for
some j between 1 and 2n, then f € «, for some ¢ # j. But since a, C 3, we have f € §3,.
This contradicts the fact f € %, so 8 C o fori = 1,...,2n. The converse is proved
similarly.

LEMMA 2.16. Let a and 3 be members of R,-spec A, and let mdenote the closure
of o in Ry-specA. Then 8 € {a} ifandonlyif o; C B foralli=1,...,2n.

PROOF.  Suppose «; € f; for some i between 1 and 2x. Then there exists f € «; such
that f € §3;* for some j # i. Hence D(f,j) = {v | f € ¥/} is an open set containing 3
butnot a. Thus 8 & {a}.

Conversely, suppose a; C f; if 1 < i < 2n, so that by Lemma 2.15 we have 5 C
af. It is enough to show that every basis element containing 3 contains . Let U =
N~y D t) = N {7 | fi €7} be an arbitrary basis element containing 3. If o ¢ U,
then f; & a for some i, so that 3" C o implies f; ¢ §,7. But this contradicts the fact
B € U, therefore, 3 € {a}.

Note that if R,-spec A is Hausdorff then its points are closed. By Lemma 2.16, 3 €
{a}ifandonlyifa; C §;foralli = 1,...,2n. Therefore, to ascertain whether R,-spec A
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is Hausdorff it is not enough to examine a;, and 3, we need the added structure found
in Definition 1.5.

Let A be a field and assume there are two orderings of level n, « and 3. In the field
case the oo and the 8 both form partitions of A, so a; C S for all i implies @ = 3.
Thus, by Lemma 2.16, when A is a field the points of R,-spec A are closed. This agrees
with the fact that in the field case the topology on R,-spec A is homeomorphic with the
compact open topology on the space of signatures (Remark 2.3), and this topology is
Hausdorft [8, Prop. 1.4].

To give an example of a ring A such that R,,-spec A is not Hausdorft, it is enough to find
a ring with two distinct orderings o and 8 in R,-spec A such that o; C §;if 1 <i < 2n.
Becker [4, p. 34] shows that if A = R [¢] then points are not closed in R;-spec A. The
next example is of a ring A such that the points of R,-spec A are not closed for any ».

ExaMPLE 2.17. Let A = R (x)[[r]], the ring of formal power series in one variable
over the field R (x). We shall show R,-spec A is not Hausdorff by finding two distinct
orderings of level n, @ and 3, such that o; C G, fori = 1,...,2n. We first consider the
orderings of level n on A with support zero. These are merely the restrictions of orderings
of level non R (x)((1)) to R (x)[[#]], where R (x)((¢)) is the field of formal power series in
tover R (x). To obtain a signature of exact level n on R (x)((#))/ { 0} we start with a sig-
nature x of exact level n on R (x)/ {0} [7, Prop. 2.9(ii)], and let x" map R (x)((r))/ { 0}
into 11(2n) via x' (/o)A (1 +£1(0) + £ +...)] = x (fox)) - ¢*. We shall show x is
a signature of exact level n on R (x)((r))/ {0} .

Clearly x' is a character, it remains to show the kernel of x’ is additively closed. Let
X T (1 +£100f + (07 +-- )1 = 1 = x'[go(X)F (1 + g1 (x)t + g2(x)e* +- - - )], s0 that
X(fo(x)) -(" = X(go(x)) -¢J = 1. Either # korj = k. In the first case, we may assume
J > kso that X' [fo()r* (1 +A ()1 +- - - ) +goE (1 + g1 () +-- )] = X (o) (1 +r1 (x)r +
() + -+ )] for appropriate r;(x). But this is X(fo(x)) -C k = 1. In the second case,
we have j = k so that x (fo()) = x (g0(x)) and x (g0(x)/ fo(x)) = 1. Now x'[fo(x)r*(1 +
[+ )+ (1+g1(0)1+ - )] = X [(fo(x)+8o(x)F* (1 +51(x)r+- - - )] for appropriate
si(x). But this equals x (fo(x)+£0(x)) ¢ * = X (fo(0)) x[1+(g0(x)/ foleN]-¢ * = X (fol))
1-¢* = 1. Therefore the kernel of ' is additively closed, so x’ is a signature. It has
exact level nsince u(2n) = X(R(x)/ {0}) = X’(R(x)/ {0}) - X’(R(x)((t))/ {0}) -
1(2n). Let o be the ordering on R (x)[[t]] determined by a; = (x')~!({’) restricted to
R (L[] Thus & = {£(x.0) = foA (L +A)e+- ) in REOUA | X' (Feen) = ¢}

Our second ordering of exact level n on R (x)[[#]], shall have suppport R (x)[[¢]], a
maximal ideal of R (x)[[¢]]. To define it we first determine an ordering of exact level n on
K = R L1/ R 0[[#]] = R (x). Let x be the signature of exact level non R (x)/ {0}
used above. Let §: K — R (x)/ {0} be the above isomorphism, and let 7: R(x)[[¢]] — K
be the canonical projection. Then x @ is a signature on K, and by Theorem 1.1, we have
Bi = {f(x, )€ R[] | w(f(x, t)) lies in (x0) " '(¢H U R (x)[[t]]} yields an ordering
of level n on R (x)[[¢]]. Simplifying we see 3; = {f(x, tH = fo(x)t"(l + it + - ) €
RN | w(fxe.n) €8x (¢Hork > 0} = {f(x,1) = o)t (1 + i)t +---) €
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R[] I k> 0,or eﬂ(f(x,t)) € X—l(ci)} - {f()(x)l‘k(l + fi(xo) +f2(x)t2 + .- ) c
R@A]| k> 0,0rk = 0and fy(x) € x (¢}

We now have two orderings « and 3 of exact level n on R (x)[[¢]] such that { oo ( 1+
[ +HWE +--) € RO | x (h0)¢F = ('} = a; Chi= {0 (1 + fitor +

fz()c)t2 +-- ) e R[] k> 0,0ork = 0and x(fo(x)) = C'}. Therefore points are not
closed and R,-spec (R (x)[[t]]) is not Hausdorff.

DEFINITION 2.18.  Let o and 3 bein R,-spec A. If o and 3 lie in disjoint open subsets
of R,-spec A, then we say o and 3 can be separated.

PROPOSITION 2.19. Two orderings o and (3 in R,-spec A can be separated if and
only if there exist i such that a; € [3; and there exist j such that 8; € «;.

PROOE. If o and 3 can be separated then they lie in mutually disjoint open sets, so
B ¢{a} and a ¢ {8} . Therefore, by Lemma 2.16, there eixst i such that a; € 3; and
there exist j such that 8; Z a;.

Conversely, suppose o; € 8; and 3; € o for some i and j. Since o; € (; there exists
f € a;such thatf € 3, for some m # i. If f & pq, then 3 € D(f,m) and o € D(f,i) so
a and 3 lie in two disjoint open sets, and thus can be separated. Therefore, we need only
consider the case f € gq, with f € (... Similarly we may assume there exists g € (g
withg € ay.

If £ # mthen (f+g) € (pa+a;) C af and (f+g) € (Br+93) C By, soa € D(f+g, L)
and 8 € D(f + g, m). These are disjoint open sets so « and 3 can be separated. If £ = m
then (f — g) € (B,, — 93) € B,, and since —1 € a, we have (f — g) € (po + ") C o
wheret = £ +nif £ +n <2nandt = £ +n—2nif £ +n > 2n. Therefore @« € D(f — g, 1)
and 3 € D(f — g,m) which are disjoint open sets since m # t. Therefore @ and 8 can
be separated.

DEFINITION 2.20. We will write « C (3 for o; C (; for all i, and we will say
B specializes o, or is a specialization of a if « C (. In this situation, « is called a
generalization of 3, or is said to generalize 3.

Let o and B be orderings of levels m and n respectively, where s = lem(m, n). Then
following the logic of Remark 1.8 we write o C 3 if ;a0 C ;3. Note o C 3 if and only
if ;o C ;3 for all ¢ divisible by s.

THEOREM 2.21. Given a ring A, let o be an ordering of level n and 3 and ordering
of level m. Assume m divides n, then a D ,(3 implies « = Y for some " an ordering of
level m. That is, specializations do not increase level, a specializes an ordering of level
m if and only if Im xo C p(2m).

PROOF. Assume o D ,3 for 8 an ordering of level m, but & # ,¥ forY an ordering
of level m. By Remark 1.8 there exists an i not divisible by n/ m such that «; 2 Qo

Leta € o\ po = o Since @ D ,08 we have o C 8/, therefore a € ,8;*. But this
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is impossible, since ,3;* is the empty set whenever n/ m does not divide i. Therefore,
o = ,7 for some Y an ordering of level m.

In order to put R,-spec A in context, and allow the use of previously proved theorems,
we make the following remark.

REMARK 2.22. R,-specA is an example of a spectral space [12] (or coherent space
[13]). Le. it is Ty and quasi-compact, the quasi-compact open subsets are closed under
finite intersection and form an open basis, and every nonempty irreducible closed subset
has a generic point. The patch topology of the spectral space is the Tychonoff topology.
Le. the Tychonoff topology has the quasi-compact open subsets and their complements
as an open basis. These assertions easily follow from Propositions 2.12 and 2.19, The-
orem 2.14, and [12, Prop. 4]. In fact we shall see R,-specA is a normal spectral space
[10]. That is, we shall see that each point has a unique maximal specialization.

PROPOSITION 2.23.

(i) The specializations of an ordering form a chain under inclusion of ordering.
(ii) { a} is closed if and only if o is a maximal ordering
(iii) An ordering is contained in a unique maximal specialization.

PROOF. (i)Leta CBanda Cv.If3 € v andY Z (3 then by Proposition2.19 we
see that 3 and 7Y are contained in two mutually disjoint open sets. But this is impossible
since by Lemma 2.16 these sets must both contain «. Therefore 3 2 Y orY 2 (3, so the
specializations of a form a chain under inclusion.

(ii) If { a } is closed, then by Lemma 2.16 there does not exist a 3 properly containing
o . Hence « is a maximal ordering. Conversely, if there does not exist 3 such that 3 O «
then { '} = {a} so a is closed.

(iii) This is equivalent [10, Prop. 2] to showing any two distinct closed points of
Ry-spec A may be separated. But closed points are maximal orderings, and by Proposi-
tion 2.19 these can be separated.

Note that Proposition 2.23 states that the closure of a singleton { « }, which is the set
of all specializations of «, is a totally ordered set, containing a minimum element, «,
and a maximum element.

DEFINITION 2.24. Let R,-specmA be the closed points of R,-specA. Then
R,-specm A consists of the maximal orderings of R,-spec A, and is called the maximal
real spectrum of level n on A. We give R,-specm A the subspace topology inherited from
R,-specA.

PROPOSITION 2.25. R,-specm A is a compact and Hausdorff space.

The proof uses Theorem 2.14 to show R,-specm A is compact, and Proposition 2.19
to show it is Hausdorff.
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3. The topology of ¥ C R,-specA. We now consider the topology of subspaces
Y of R,-spec A, where Y is closed in the Tychonoff topology of R,-spec A. Note that
by Proposition 2.12 (iii) these results will hold for constructible sets. Unless otherwise
specified we give R,-spec A the C-R topology and give Y the subspace topology.

In addition, we also have a topology inherited from the Tychonoff topology of
R,-spec A, we call this topology the Tychonoff topology of Y. A subset U of Y is Ty-
chonoff open in Y if U = VN Y where V is Tychonoff open in R,-spec A. Similarly a
subset U of Y is Tychonoff closed in Y if U = VN Y where V is Tychonoff closed in
R,-specA.

A set is called constructiblein Y if it is the intersection of Y with a constructible set of
R,-spec A. By definition these sets form a basis of the Tychonoff topology of Y. By Propo-
sition 2.12 (iii) the constructible sets of R,-spec A are clopen in the Tychonoff topology
of R,-spec A, therefore a set which is constructible in Y is clopen in the Tychonoff topol-
ogy of Y. Furthermore, if V is constructible in R,-spec A then Y\ (YN V) = YN V¢. That
is, if U is constructible in Y then Y\ U is constructible in Y.

In the coarser C-R topology, we note only that constructible sets in Y are compact
subsets of Y. This follows from the Tychonoff topology, as was seen for the correspond-
ing statement in R,-spec A (2.14), since constructible sets of Y are Tychonoff closed in
R,-spec A, which is compact Hausdorff in the Tychonoff topology.

REMARK 3.1 [12]. Using the language of Remark 2.22; if Y is closed in the Ty-
chonoff topology of R,-spec A, then Y, when given the subspace topology, is a spectral
space. Furthermore the patch topology on Y agrees with the topology inherited from the
Tychonoff (or patch) topology on R,-spec A.

LEMMA 3.2. IfY is closed in the Tychonoff topology of R,-spec A, then it is the
intersection of constructible subsets of R,-spec A.

PROOF.  Since Y* is open in the Tychonoff topology, we have Y° = J;¢; A;, for some
index set I, where the A; are constructible sets. By 2.6 the complement of a constructible
set is constructible, so Y = [Uier Ail° = Nies AY is the intersection of constructible sets.

PROPOSITION 3.3.  Let Y be a subspace of R,-spec A, with Y closed in the Tychonoff
topology, and let o be an element of Y.
(i) « is a maximal ordering in Y if and only if { o } is closed in Y.
(ii) o admits a unique maximal specializationin Y.
(iii) Y™ = {« € Y| o is maximal in Y} is a compact Hausdorff space.

The proof is like that of Propositions 2.23 and 2.25.

REMARK 3.4. It is clear from Proposition 3.3 and Remark 2.22 that if Y is closed in
the Tychonoff topology of R,-spec A, then Y is a normal spectral space.

PROPOSITION 3.5 [10, PROP. 3].  The map X : R,-spec A — R,-specm A sending a to
the maximal specialization of «, and the map Ay from Y to Y™ which sends « to its
maximal specialization in Y, are continuous and closed.

https://doi.org/10.4153/CJM-1992-029-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-029-8

460 SUSAN M. BARTON

PROPOSITION 3.6 [13, CHAPTER II, PROP. 4.6]. A subset X of Y is closed (respectively
open) in Y if and only if it is Tychonoff closed (respectively Tychonoff open) in Y, and it
is closed with respect to specializations (respectively generalizations) in Y.

DEFINITION 3.7. We shall call a set open constructible in Y if it is the finite union of
sets of the form Y M N_; D(f;, t;). We shall call a set closed constructible in Y if it is the
finite union of sets of the form Y N N_, D(f;, t;)".

Note that the open constructible sets are by definition the basis elements of the topol-
ogy of Y, that is the topology inherited from the C-R topology of R,,-spec A. Furthermore,
X is open constructible if and only if Y\ X is closed constructible.

PROPOSITION 3.8. Let X be constructible in Y, then X is open (respectively closed)
in Y if and only if X is open constructible (respectively closed constructible) in Y.

PROOF. It is enough to prove the theorem for open constructible sets. Let X be
constructible in Y with X open in Y. Since a basis of Y is given by sets of the form
YN N, D(fi,t;), we have X = UJ[Y N ﬂg’:l D(ﬁj,tij)] for some index set J. But X is
compact in Y so this is a finite union and X is open constructible in Y. The converse is
clear from the d=finition of open constructible.

4. The contravariant functor R,-spec. In this section we see that R,-spec is a
contravariant functor on the category of commutative rings with unit into the category
of topological spaces.

LEMMA 4.1. Let A and B be commutative rings and ¢:A — B be a unitary ring
homomorphism. Then if 3 € R,-spec B, and « is the indexed collection of subsets of A
where a; = ¢~ (B;), then a lies in R,-specA.

The proof is straightforward.

DEFINTIION 4.2. For A and B commutative rings and ¢: A — B a ring homomor-
phism, let ¢.: R,-spec B — R,-spec A be defined by ¢.(3) = a where a; = ¢ '(3)).

We now note several facts which allow us to show that ¢, is continuous and that
R,-spec acts as a contravariant functor.

Let ¢:A — B, as above, with § € R,-spec B and o = .(3). Let & be the ordering
onA/ g, givenby & = {a+gpq | a € o}, and let 3 be defined similarly. Then we have
the monomorphism @:(A/ g, @) — (8/s.0). given by (a + pa) — (@(a) +pg).
Now ¢ 1(3:) = «; implies ¢(a; + Pq) = ((,p(ai) + 305) = (b; + pp) for some b; € §;.
Therefore @ (&;) C G;.

If we use the function notation f(a) = f + @ € k({4 ), as in Definition 2.1, we see

that ¢ [f (0+(8)) ] = Glf(e)] = ¢(f +pa) = P(N+95 = L(N)B).

LEMMA 4.3. Recalling the notation D(f,t) = {7 | f € V}} from Definition 2.1, we
have: @II(D(f, t)) = D((p(f),t).
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PROOF. We have cp;'(D(f, t)) =o'V | FE€N}). LetY = pu(8), so that¥; =
@@, then o (D, 0) = o' ({ps@) | FE 9@} = {6 | F e 'O} =
{6 | e(H e’} =D(e(f).1).

PROPOSITION 4.4.  Given ¢:A — B and ,: R,-spec B — R,-spec A, ¢ is continu-
ous in the C-R topology of the n'™ level real spectra, and in the Tychonoff topologies. In
particular, inverse images of constructible sets are constructible.

PROOF. To show ¢, is continuous in the C-R topologies we need to show ¢, (V)
is open for an arbitrary basis element V = (_, D(f;, ;) of R,-spec A. But ¢ (V) =
N—y ex (D¢ 1)) = N~ D(#(£), 1;) by Lemma 4.3, and this is open by definition.

i=1
Similarly, to show ¢, is continuous in the Tychonoff topologies, it is enough to show
¢, (W) is open in the Tychonoff topology of R,-spec B for an arbitrary basis element

W= UL, [ﬂzjzl Dfi,t)N{v | fi € @'y}} Again using Lemma 4.3 and simplifying

we have o, (W) = Uj’."zl[ﬂz_’:] D(<p(f,»/,t,-,)) N{o | e € @5}} which is open in the
Tychonoff topology of R,-spec B.

THEOREM 4.5.  R,-spec is a contravariant functor from the category of commutative
rings with unit into the category of topological spaces.

PROOF. We have shown R,-spec is a functor. Now let ¢:A — Band ¥: B — C,
with Y € Ry,-spec C, then (¥) ' (7)) = ¢ "W~ '(V;). Therefore (W), = ¢.¥. and
R,-spec is a contravariant functor.
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