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Abstract. A blender for a surface endomorphism is a hyperbolic basic set for which
the union of the local unstable manifolds robustly contains an open set. Introduced by
Bonatti and Díaz in the 1990s, blenders turned out to have many powerful applications to
differentiable dynamics. In particular, a generalization in terms of jets, called parablenders,
allowed Berger to prove the existence of generic families displaying robustly infinitely
many sinks. In this paper we introduce analogous notions in a measurable setting. We
define an almost blender as a hyperbolic basic set for which a prevalent perturbation has
a local unstable set having positive Lebesgue measure. Almost parablenders are defined
similarly in terms of jets. We study families of endomorphisms of R2 leaving invariant
the continuation of a hyperbolic basic set. When an inequality involving the entropy and
the maximal contraction along stable manifolds is satisfied, we obtain an almost blender
or parablender. This answers partially a conjecture of Berger, and complements previous
works on the construction of blenders by Avila, Crovisier, and Wilkinson or by Moreira and
Silva. The proof is based on thermodynamic formalism: following works of Mihailescu,
Simon, Solomyak, and Urbański, we study families of skew-products and we give
conditions under which these maps have limit sets of positive measure inside their fibers.
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1. Introduction
1.1. Blenders and almost blenders. Fractal sets have played a central role in the
development of differentiable dynamics. Among several examples, a central notion is that
of the blender, introduced by Bonatti and Díaz in the 1990s. It was first introduced in
the invertible setting in [BD1] to construct robustly transitive non-hyperbolic diffeomor-
phisms. A blender is a hyperbolic basic set on which the dynamics has a special behavior:
its unstable set forms an ‘impenetrable wall’ in the sense that it intersects any perturbation
of a submanifold of dimension lower than the stable dimension. In the case of surface
endomorphisms, this notion takes the following simpler form,

Definition A. A Cr -blender (of saddle type) for a Cr -endomorphism F of a surface S is
a hyperbolic basic set K of saddle type such that the union of its local unstable manifolds
has Cr -robustly a non-empty interior: there exists a non-empty open set U ⊂ S included
in the union of the local unstable manifolds of the continuation K̃ of K for any map F̃
which is Cr -close to F.

A hyperbolic basic set for F is a compact, F-invariant, hyperbolic, transitive set K
such that periodic points of F|K are dense in K (basic notions about hyperbolic sets for
endomorphisms are recalled in the Appendix).

Local unstable manifolds of size ε > 0 of hyperbolic basic sets for endomorphisms are
defined in the Appendix. In the latter definition and also in what follows, we suppose that
ε has been fixed and is implicit.

Blenders turned out to have a huge number of other powerful applications: for example,
the density of stable ergodicity [ACW, RRTU], robust homoclinic tangencies [BD2, Bie1,
BR] and thus Newhouse phenomena, the existence of generic families displaying robustly
infinitely many sinks [Be1], robust bifurcations in complex dynamics [Bie2, Du, Taf],
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robust transitivity in Hamiltonian dynamics [NP], a robust criterion for the existence of
non-hyperbolic measures [BBD], and the fast growth of the number of periodic points
[AST, Be2]. Thus the following question is of fundamental interest: when do blenders
appear?

In this direction, Berger proposed the following conjecture.

Conjecture A. (Berger [Be3]) Let F be a Cr -local diffeomorphism of a manifoldM, for
r ≥ 2. Let K be a hyperbolic basic set for F. Suppose that the topological entropy hF of
F|K satisfies

hF > dimEs · |log m(DF)| with m(DF) := min
z∈K,u∈Esz,‖u‖=1

‖DzF(u)‖,

and Es the stable bundle of K. Then there exist a Cr -neighborhood U of F and an
infinite-codimensional subset N ⊂ U such that for every F̃ ∈ U \N, the continuation K̃
of K is a Cr -blender.

A very similar question appears in the paper [ACW] of Avila, Crovisier, and Wilkinson
(see §3.3). Under the assumption of a slightly different inequality on the entropy, they
manage to perform perturbations of an affine horseshoe in order to obtain a blender
(Theorem C in their paper). Blenders (in fact a variant called ‘superblenders’) are
ultimately used to prove a C1-version of the stable ergodicity conjecture of Pugh and Shub:
among partially hyperbolic volume-preserving Cr -diffeomorphisms, r > 1, the stably
ergodic ones are C1-dense.

A different approach to the same problem of the construction of blenders was introduced
by de Araujo Moreira and Silva [MS]. They obtained blenders for perturbations of (even
non-affine) horseshoes, when the dimension of the ambient manifold is at least 3. Their
construction is based on the recurrent compact criterion of Moreira and Yoccoz [MY].

In the conservative setting, Rodriguez Hertz et al. [RRTU2] proved that each Cr

conservative diffeomorphism with a pair of hyperbolic periodic points of co-index 1
can be C1-approximated by Cr conservative diffeomorphisms having a blender. In
higher dimension, Bonatti and Díaz [BD3] showed that blenders appear near co-index-1
heterodimensional cycles.

In this work we study the problem of the prevalence of blenders, and specifically
Conjecture A on surfaces, from a measurable point of view and using thermodynamic
formalism. This is also linked to a program proposed by Díaz [Di] on the thermodynamical
study of blenders.

Note that we cannot hope that K is itself systematically a Cr -blender under the
assumptions of Conjecture A. Here is an easy counterexample.

Counterexample. Let us consider the doubling map f : x �→ 2x mod 1 on the circle S :=
R/Z. The whole circle is a hyperbolic basic set of repulsive type and f is a C∞-local
diffeomorphism. The topological entropy hf is equal to log 2 > 0. Let us pick λ < 1 close
to 1 such that hf > |log λ|. The map F : (x, y) ∈ S× R �→ (f (x), λy) ∈ S× R leaves
invariant the hyperbolic basic set of saddle type K := S× {0}. Moreover, F is a C∞-local
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diffeomorphism and hF = hf > |log λ|. However, the unstable set of K is included in
S× {0} and thus has empty interior.

In this paper we give an answer to Conjecture A from a measurable point of view.
We will define a measurable variant of the notion of blender, called an ‘almost blender’.
It is a hyperbolic basic set whose unstable set has positive volume instead of having
non-empty interior. Also, this property will be required to be ‘robust’ in a measurable
way instead of topological. Let us be precise about this ‘measurable robustness’. We
recall that this notion is delicate since there is no canonical measure on the space
Cr(M,M) of Cr -endomorphisms of a manifoldM. We need something analogous to the
finite-dimensional notion of ‘Lebesgue almost every’ in an infinite-dimensional setting.
Nevertheless, there are several notions of prevalence or typicity which generalize this
concept. A panorama has been drawn by Hunt and Kaloshin in [HK], by Ott and Yorke
in [OY], and by Ilyashenko and Li in [IL]. Here is one of these notions of prevalence,
particularly adapted to our case.

Definition B. [HK, p. 53] We say that a set E in a Banach space B is finite-dimensionally
prevalent if there exists a continuous family (vq)q∈Q of vectors vq ∈ B, parameterized by
a parameter q varying in a neighborhood Q of 0 in R

m with m > 0 and v0 = 0, such that
for every fixed v ∈ B, we have that v + vq ∈ E for Lebm-almost every (a.e.) q ∈ Q.

In other words, we require that for some finite-dimensional family of perturbations, if
we start at any point in B, then by adding a perturbation randomly chosen with respect
to the Lebesgue measure, we are in E with probability 1. A similar notion, simply called
‘prevalence’, has been designed by Sauer, Ott, and Casdagli (see [OY, Definition 3.5], or
[HSY, SYC]) for completely metrizable topological vector spaces and with the additive
condition that vq is a linear function of q. In our results we will have this additional
linearity, but since we do not need it, we will take inspiration from the above definition.
See [HK, Remark 1, p. 53] for details.

We restrict ourselves in this paper to the case where the manifold M is equal
to R

2 endowed with its usual Euclidean metric. The vector space Cr(R2, R2) of
Cr -endomorphisms of R2 is endowed with the topology given by the uniform Cr -norm:

‖F‖Cr := sup
0≤i≤r ,z∈R2

‖DizF‖ when 0 ≤ r <∞.

The space of Cr -bounded Cr -endomorphisms endowed with this norm is a Banach space.
Since we are interested in properties depending only on perturbations of a map on a
compact set, we can restrict ourselves to Cr -bounded Cr -endomorphisms if necessary, and
so the above definition of prevalence from [HK] could fit into our setting. Similarly, for
r = ∞, we endow C∞(R2, R2) with the union of uniform Cs-topologies on Kj between
integers s and j, for an exhausting sequence of compact sets Kj of R

2, which endows
C∞(R2, R2) with a complete metrizable topology.

However, we cannot hope that a blender-like property, even in a weak sense, holds true
densely inCr(R2, R2), even less in a prevalent way. This is why we introduce the following
immediate adaptation.
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Definition C. A prevalent Cr -neighborhood N of a Cr -endomorphism F of R
2 is a

subset of Cr(R2, R2) such that there exist a Cr -neighborhood U of F in Cr(R2, R2)

and a continuous family (�q)q∈Q of Cr -endomorphisms �q of R2, with q varying in a
neighborhood Q of 0 in R

m with m > 0 and �0 = 0, such that for every fixed G ∈ U, the
map G+�q belongs to N for Lebm-a.e. q ∈ Q.

In particular, a prevalent Cr -neighborhood N of F contains arbitrarily small
Cr -perturbations of F.

Here is a new notion, which formalizes a measurable variant of blenders.

Definition D. A hyperbolic basic set K of saddle type for a Cr -endomorphism F of
R

2, r ≥ 1, is an almost Cr -blender if the union of the local unstable manifolds of the
continuation K̃ of K has positive measure for any map F̃ in a prevalent Cr -neighborhood
of F:

Leb2(W
u
loc(K̃)) > 0.

Our first result gives a positive answer to Conjecture A on surfaces, from a measurable
point of view.

THEOREM A. Let F be a Cr -local diffeomorphism of R2, with 2 ≤ r ≤ ∞. Let K be a
hyperbolic basic set of saddle type for F. Suppose that the topological entropy hF of F|K
satisfies hF > |log m(DF)|. Then K is an almost Cr -blender.

Conjecture A seems to be a very difficult problem in its full generality. A related
question is the following long-standing open problem.

Conjecture B. [Ho1, Conjecture 3.1] Let μ be the self-similar measure associated to an
iterated function system (IFS) � = (ψa)a∈A formed by a finite number of contracting
similarities ψa on R. Suppose that there are no exact overlaps and that the similarity
dimension of the IFS is strictly greater than 1. Thenμ is absolutely continuous with respect
to Leb1.

One can refer to the survey of Hochman [Ho1] for more details.

1.2. Parablenders and almost parablenders. Berger introduced in [Be1] a variant of
blenders, and it is defined for families of maps where not only the unstable set of a
hyperbolic set but also the set of jets of points inside unstable manifolds contains an open
set. Such objects were named parablenders (‘para’ standing for ‘parameter’). They were
introduced to prove the existence of generic families displaying robustly infinitely many
sinks, thus yielding a counter-example to a conjecture of Pugh and Shub from the 1990s
[PS].

Definition E. [BCP, Be1] A Cr -parablender at p0 ∈ P for a Cr -family (Fp)p∈P of
endomorphisms of a surface S, r ≥ 1, parameterized by a parameter p in an open subset
P ⊂ R

d , is a family (Kp)p∈P of continuations of a hyperbolic basic set Kp0 for Fp0 and
such that
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• for every (γp)p∈P in a non-empty open set of Cr -families of points γp ∈ S,
• for every Cr -family (F̃p)p∈P of endomorphisms Cr -close to (Fp)p∈P,
there exists a Cr -family (ζp)p∈P of points ζp ∈ S such that

• there is a local unstable manifold of Kp0 whose continuation for F̃p contains ζp, for
any p ∈ P,

• the r-jets of ζp and γp at p0 are equal,

(ζp, ∂pζp, . . . , ∂rpζp)|p=p0 = (γp, ∂pγp, . . . , ∂rpγp)|p=p0 .

In particular, Kp0 is a Cr -blender for Fp0 if (Kp)p∈P is a Cr -parablender for (Fp)p∈P
at p0. In a subsequent work [Be2], Berger used parablenders to prove the existence of
generic families of maps displaying robustly fast growth of the number of periodic points,
solving a problem of Arnold [Ar] in the finitely differentiable case.

From now on, we work with Cr -families (Fp)p of endomorphisms Fp of R
2,

with 2 ≤ r ≤ ∞, parameterized by a parameter p varying in P := (−1, 1)d for some
1 ≤ d <∞. In fact, we will need to work with families which admit some extension
to a larger parameter space. We therefore fix an open set P′ ⊂ R

d such that P � P′.
We then define a Cr -family (Fp)p of endomorphisms Fp of R

2 to be an element of
Cr(P′ × R

2, R2). We endow this space with the uniform Cr -topology when 0 ≤ r <∞,
and with the union of uniform Cs-topologies on Kj between integers s and j, for an
exhaustion of P′ × R2 by a sequence of compact sets Kj when r = ∞. Note that for
simplicity in the following we often denote this family by (Fp)p∈P since we are mainly
interested in the dynamics when p ∈ P but keep in mind that it admits such an extension.
Let (Kp)p∈P be the (hyperbolic) continuation (extending to P′) of a hyperbolic basic
set of saddle type Kp0 . Let Esp and Eup be the one-dimensional stable and unstable
bundles of Kp.

Our main result deals with jets of points inside local unstable manifolds of Kp. Let
(Mp)p be a Cr -curve of points Mp parameterized by p such that the point Mp belongs to
the continuation of the same local unstable manifold of Kp for every p. For any integer
s ≤ r , one can consider the s-jet of Mp at any p0 ∈ P:

Jsp0
Mp := (Mp, ∂pMp, . . . , ∂spMp)|p=p0 .

An interesting set is then the set Jsp0
Wu

loc(Kp) of all the s-jets among such curves (Mp)p.
When this set has robustly a non-empty interior, (Kp)p∈P is a Cs-parablender at p0. Let
δd,s be the dimension of the set of jets in d variables of order s in one dimension, which is
the space Rs[X1, . . . , Xd ] of polynomials in d variables of degree at most s. In particular,
notice that the space of jets of order s of maps from P to R

2 is of dimension 2δd,s .
Here is the counterpart for families of the definition of a prevalent Cr -neighborhood.

Definition F. A prevalent Cr -neighborhoodN of aCr -family (Fp)p∈P of endomorphisms
of R

2 is a subset of Cr(P′ × R
2, R2) such that there exist a Cr -neighborhood U of

(Fp)p∈P in Cr(P′ × R
2, R2) and a continuous family (�q)q∈Q of Cr -families �q =

(�p,q)p∈P of endomorphisms �p,q of R2, with q in a neighborhood Q of 0 in R
m with

m > 0 and �p,0 = 0 for every p ∈ P, such that for every fixed family (Gp)p ∈ U, the
family (Gp +�p,q)p∈P belongs to N for Lebm-a.e. q ∈ Q.
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In particular, a prevalent Cr -neighborhood N of (Fp)p∈P contains arbitrarily small
Cr -perturbations of (Fp)p∈P.

The following is an analogue of Cs-parablenders, from a measurable point of view.

Definition G. The continuation (Kp)p∈P of a hyperbolic basic set of saddle type for a
Cr -family (Fp)p∈P of endomorphisms of R2, with r ≥ 1, is an almost Cr ,s-parablender,
with s an integer such that s ≤ r , if for any family (F̃p)p∈P in a prevalentCr -neighborhood
of (Fp)p∈P, the continuation (K̃p)p∈P of (Kp)p∈P satisfies

Leb2δd,s (J
s
p0
Wu

loc(K̃p)) > 0 for Lebd -a.e. p0 ∈ P.

Note that if (Kp)p∈P is an almost Cr ,s-parablender and p is a parameter in P, the set
Kp is an almost Cr -blender.

Here is our second main result, which generalizes Theorem A in terms of jets.

THEOREM B. Let (Fp)p∈P be a Cr -family of local diffeomorphisms of R
2, with

2 ≤ r ≤ ∞. Let (Kp)p∈P be the continuation of a hyperbolic basic set of saddle type
for (Fp)p∈P. Take an integer s ≤ r − 2 and suppose that the topological entropy hFp of
Fp|Kp satisfies

(�) hFp > δd,s · |log m(DFp)| for all p ∈ P′.
Then (Kp)p∈P is an almost Cr ,s-parablender.

This second result is again in the direction of Conjecture A, in terms of jets. Let us
mention that both Theorems A and B still hold true if we assume that the maps involved are
local diffeomorphisms only in a neighborhood of the basic sets. We hope to use Theorem B
to solve the conjecture of Pugh and Shub [PS] in the smooth C∞ case which is not handled
by [Be1]. Finally, let us mention the following immediate question.

Question. Is it possible to generalize Theorems A and B to the case where M is any
surface (not necessarily equal to R

2) and for the alternative notion of prevalence defined
by Kaloshin in this context? We recall that the latter is defined as follows: a subset E ⊂
Cr(M,M) is strictly n-prevalent if there exists an open dense set of n-parameter families
(Fp)p such that Fp ∈ E for a.e. p and if for every F ∈ Cr(M,M) there exists such a
family with F0 = F. An n-prevalent set is a countable intersection of strictly n-prevalent
sets.

1.3. Combinatorics and notation. LetA be a finite alphabet of cardinality at least 2. Let
−→A = AN,

←−A = AZ
∗− , and

←→A = AZ

be respectively the sets of infinite forward, backward, and bilateral words with letters inA.
We consider the left full shift on

−→A or
←→A ,

σ : α = (αi)i ∈ −→A 
←→A �→ σ(α) = (αi+1)i ∈ −→A 
←→A ,

and the right full shift on
←−A ,

σ : α = (αi)i ∈ ←−A �→ σ(α) = (αi−1)i ∈ ←−A .
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In particular, these full shifts are of positive entropy and topologically mixing. We also
define A∗ as the set of finite words with letters in A and denote by e the empty word.
We endow

←→A with the distance given by d∞(α, β) = Dq for every distinct α = (αi)i ∈←→A and β = (βi)i ∈ ←→A . Here D ∈ (0, 1) is a fixed number and q is the largest integer
satisfying the property that αi = βi for every |i| < q. We endow

−→A with a metric defined
similarly.

For α ∈ A∗ ∪ −→A ∪←−A ∪←→A , let |α| ∈ N ∪ {+∞} be the number of letters in α.
When |α| > n for some integer n > 0, we call αi the ith letter of α and denote α|n :=
(α0, . . . , αn−1) when α ∈ A∗ ∪ −→A and α|n := (α−n, . . . , α−1) when α ∈ ←−A ∪←→A .
Finally, for α = (α−n, . . . , α−1) ∈ A∗, let [α] be the corresponding cylinder in

←→A :

[α] := {β ∈ ←→A : βi = αi for all − n ≤ i ≤ −1}.
We similarly define cylinders in

←−A and
−→A and use the same notation. Greek (respectively,

Gothic) letters will be used for finite or backward infinite (respectively, forward infinite)
words. For a ∈ −→A , α ∈ ←−A , β ∈ A∗, we denote by αa, βa, αβ their concatenations.
The topological closure of a set relative to the Euclidean distance is denoted by an overline
(P, for example). The notation � means that the inequality holds up to an absolute
multiplicative constant, and � means that both � and � are true.

2. Example
We give here an application of our results, in which we provide simple examples of almost
blenders and parablenders.

Let us consider the segment X = [−1, 1]. We pick three integers n ≥ 2, d ≥ 1,
and s ≥ 0. We choose n′ := (n+ 1)�δd,s� disjoint subsegments Xj � X and n′ numbers
0 < rj < 1− 1/n, for 1 ≤ j ≤ n′. Let gj be the affine order-preserving map sending Xj
onto X. We pick a C∞-map g : R→ R which is equal to gj on a small neighborhood
of each interval Xj and also a C∞-map h : R→ R which is equal to rj on a small
neighborhood of each interval Xj . The C∞-endomorphism

F : (x, y) ∈ R
2 �→

(
g(x),

y

n
+ h(x)

)
∈ R

2

is a local diffeomorphism on a small neighborhood of U :=⊔
1≤j≤n′ Xj ×X (see

Figure 1). It is easy to verify that the set

K :=
⋂
n∈Z
F n(U) (1)

is a compact, hyperbolic, invariant, locally maximal set, with stable and unstable dimen-
sions equal to 1. This remains true for any C∞-endomorphism F̃ which is C∞-close to F,
with the same formula.

We setA := {1, . . . , n′} and call Fj the restriction of F onXj ×X. For a = (ai )i≥0 ∈−→A and α = (αi)i<0 ∈ ←−A , the following are local stable and unstable manifolds of K:

Wa =
⋂
j≥0

Dom(Faj ◦ · · · ◦ Fa0) and Wα =
⋂
j<0

Im(Fαj ◦ · · · ◦ Fα−1), (2)
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FIGURE 1. The dynamics of the map F.

where the domains Dom(Faj ◦ · · · ◦ Fa0) and Dom(Fαj ◦ · · · ◦ Fα−1) of Faj ◦ · · · ◦ Fa0

and Fαj ◦ · · · ◦ Fα−1 are (gaj ◦ · · · ◦ ga0)
−1(X)×X and (gαj ◦ · · · ◦ gα−1)

−1(X)×X.
It is immediate that Wa is a vertical segment of second coordinate projection X. By

hyperbolic continuation, for every C∞-endomorphism F̃ which is C∞-close to F and
every a ∈ −→A , we can define a local stable manifold W̃a which is a vertical graph of
class C∞ over y ∈ X with small slope. We notice that these local stable manifolds are
pairwise disjoint. We have analogous properties for local unstable manifolds (except their
disjointness) and W̃a and W̃α intersect in exactly one point.

Let us now consider any d-unfolding (Fp)p∈P of F, that is, a C∞-family of endomorph-
isms Fp such that F0 = F and P = (−1, 1)d . Up to restricting and then rescaling the
parameter space, this family leaves invariant the continuation (Kp)p∈P of the hyperbolic
setK, and Fp is a local diffeomorphism on a neighborhood ofKp. We can define families
of local stable and unstable manifolds Wa

p and Wα
p as above, and we denote by φp the

map sending β = αa ∈ ←→A (with α ∈ ←−A and a ∈ −→A ) to the unique intersection point
φp(αa) ∈ Kp between Wa

p and Wα
p . We denote

�p : β ∈ ←→A �→ (φp(σ
i(β)))i ∈ ←→Kp .

We notice that �p conjugates the full shift (
←→A , σ) to the dynamics (

←→
Kp ,
←→
Fp ) on the

inverse limit and so periodic points are dense in Kp and Kp is transitive, and thus
a hyperbolic basic set. The entropy hFp of Fp|Kp is equal to log(n′) and its stable
contraction is close to 1/n. We recall that:

log(n′)
|log(1/n)| = �δd,s� · log(n+ 1)

log(n)
> δd,s ≥ 1.
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Thus hF > |log(1/n)| and assumption (�) holds true for the family (Fp)p∈P. By Theorems
A and B, we obtain the following proposition.

PROPOSITION. The set K is an almost C∞-blender and, for any d-unfolding (Fp)p∈P of
F, (Kp)p∈P is an almost C∞,s-parablender, up to restricting and rescaling P.

3. Skew-product formalism and strategy
Our method is based on a method introduced by Mihailescu, Simon, Solomyak, and
Urbański. Let us give some details. For an IFS without overlaps, the Hausdorff dimension
of the limit set is given by Bowen’s formula [Bo2]. In [SiSoU], Simon, Solomyak, and
Urbański introduced a method to compute it even in the presence of overlaps. The key
ingredient in their proofs (see §4) is a transversality property (see [PeSo, So] for more
on transversality, and also [Ho2, SaShSo, ShSo]). This also allows to parameters to be
obtained for which the limit set has positive measure, which is what we are interested in.
Later these results were extended by Mihailescu and Urbański to the case of hyperbolic
and fiberwise conformal skew-products in [MU]. Here we extend these to the setting of
families of fiberwise unipotent skew-products.

3.1. Skew-products. We work with (N-dimensional) skew-products acting on
−→A ×

[−1, 1]N , where N > 0. Here A is a fixed finite alphabet of cardinality at least 2. For
simplicity, we denote X := [−1, 1]N . We are working with C2-maps.

Definition 3.1.1. A pre-skew-product is a map F of the form

F : (a, x) ∈ −→A ×X �→ (σ (a), fa(x)) ∈ −→A ×X
satisfying the requirement that there exists an open setX′ ⊂ R

N independent of a such that
X � X′ and such that fa : X→ X extends to a C2-diffeomorphism from X′ to fa(X′) �
X for every a.

A pre-skew-product F is a skew-product if, moreover, the maps

a ∈ −→A �→ fa ∈ C0(X′, RN) and a ∈ −→A �→ Dfa ∈ C0(X′, L(RN , RN))

are Hölder with positive exponent, and the map

a ∈ −→A �→ D2fa ∈ C0(X′, L2(RN , RN)).

is continuous.

In the latter definition,
−→A is endowed with its distance and the spaces of C0-maps

from X′ to R
N , to the space L(RN , RN) of linear maps from R

N to R
N and to the space

L2(RN , RN) of bilinear maps from R
N × R

N to R
N endowed with the uniformC0-metric.

In the following, we suppose that the extensions of the maps fa are fixed.
We are even more interested in families (Fp)p of (pre-)skew-products, indexed by p

varying in [−1, 1]d , for 1 ≤ d <∞. We define such a family as a family of maps

Fp : (a, x) ∈ −→A ×X �→ (σ (a), fp,a(x)) ∈ −→A ×X
such that F̂ : (a, (p, x)) �→ (σ (a), (p, fp,a(x))) is an (N + d-dimensional) (pre-)skew-
product. In particular, there exist open neighborhoods X′ and P′ of X and P in R

N and R
d
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such that (p, x) �→ (p, fp,a(x)) extends to a diffeomorphism from P′ ×X′ into P×X
for each a and the map Fp is an (N-dimensional) (pre-)skew-product for every p ∈ P′.
Again, we denote this family by (Fp)p∈P since we are mainly interested in the dynamics
when p ∈ P but still keep in mind that it admits such an extension.

We will say that such a family (Fp)p∈P of (pre-)skew-products satisfies the unipotent
assumption (U) when, for any p ∈ P′, a ∈ −→A , and x ∈ X′, the differential Dfp,a(x) is
inferior unipotent, that is a lower triangular matrix such that all its diagonal coefficients
are equal, and its unique eigenvalue is strictly bounded between 0 and 1 in modulus.

We will adopt the following formalism. For every p ∈ P′, a ∈ −→A , n > 0, and α =
(α−n, . . . , α−1) ∈ A∗, we set,

for all x ∈ X′, ψαp,a(x) := fp,α−1a ◦ · · · ◦ fp,α−n···α−1a(x).

We show below that a consequence of assumption (U) is that ψαp,a is a C2-contraction
from X′ to ψαp,a(X

′) � X when |α| is large enough. If we now take an infinite backward

sequence α = (. . . , α−n, . . . , α−1) ∈ ←−A , we see that the points ψα|np,a(0) converge to a
point πp,a(α) ∈ X. This defines a C0-map πp,a :

←−A → X.

Definition 3.1.2. The limit set Kp,a of the skew-product Fp inside the a-fiber is

Kp,a := πp,a(
←−A ).

We will give conditions under which this set has positive measure.
For a C1-map f : X→ X, let m(Df ) and M(Df ) be the respective minimum and

maximum of ‖Df (x) · u‖ among x ∈ X and u ∈ R
N such that ‖u‖ = 1. We need the

following thermodynamical formalism.

Definition 3.1.3. The pressure at the parameter p in the a-fiber is the map

�p,a : s ∈ R+ �→ lim
n→+∞

1
n

log
∑
α∈An

M(Dψαp,a)
s .

When �p,a has a unique zero, we call it the similarity dimension inside the a-fiber.

In Proposition 5.1.3, we show that both the pressure and the similarity dimension are
well defined and independent of a. In particular, we denote them by �p and �(p).

We adopt the following terminology to denote perturbations with special properties.

Definition 3.1.4. Let (Fp)p be a family of (pre-)skew-products and let us fix neighbor-
hoods X′ and P′ of X and P such that (p, x) �→ (p, fp,a(x)) extends to a diffeomorphism
from P′ ×X′ into P×X for every a ∈ −→A . For any ϑ > 0, a ϑ-perturbation of (Fp)p is a
family of pre-skew-products (F̃p)p such that the map (p, x) �→ (p, f̃p,a(x)) extends to a
diffeomorphism from P′ ×X′ into P×X for every a ∈ −→A , and

sup
a∈−→A
‖(p, x) ∈ X′ × P′ �→ (fp,a − f̃p,a)(x)‖C2 < ϑ .

The family (F̃p)p is a ϑ-U-perturbation when it satisfies assumption (U).
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For ϑ-U-perturbations with small ϑ , we will show that for any α ∈ ←−A , the points

f̃p,α−1a ◦ · · · ◦ f̃p,α−n···α−1a(0)

converge to π̃p,a(α) ∈ X such that p �→ π̃p,a(α) is a C2-map C2-close to p �→ πp,a(α).
We will consider also parameterized families of ϑ-perturbations (F̃t ,p)p:

F := ((F̃t ,p)p)t∈T.

Here t varies in T := (−1, 1)τ with τ > 0 and (t , p, x) �→ f̃t ,p,a(x) is C2 for every
a ∈ −→A . When each (F̃t ,p)p is a ϑ-U-perturbation, we say that F is a parameterized family
of ϑ-U-perturbations. When ϑ is small enough, we will denote by π̃t ,p,a(α) the limit
point corresponding to any α ∈ ←−A and K̃t ,p,a := π̃t ,p,a(

←−A ), and then the C2-maps p �→
π̃t ,p,a(α) will be C2-close to p �→ πp,a(α), uniformly in (t , α). We will set conditions
under which K̃t ,p,a has positive Lebesgue measure for a.e. t ∈ T.

3.2. Strategy and organization of the paper. The strategy will be to focus on the
dynamics restricted to the local stable manifolds, which allows us to reduce the dynamics
to a skew-product.

Hence we forget for the time being families of endomorphisms and we work with
families of (pre-)skew-products. We say that such a family of (pre-)skew-products (Fp)p∈P
satisfying assumption (U) also satisfies the transversality assumption (T) when there exists
C > 0 such that for all sequences a ∈ −→A and α, β ∈ ←−A satisfying α−1 �= β−1, and for
every r > 0, we have

Lebd{p ∈ P : ‖πp,a(α)− πp,a(β)‖ < r} ≤ CrN ,

and, moreover, for every small ϑ > 0 and every family F of ϑ-U-perturbations, for any
t ∈ T, a ∈ −→A , α, β ∈ ←−A such that α−1 �= β−1 and r > 0, we have

Lebd{p ∈ P : ‖π̃t ,p,a(α)− π̃t ,p,a(β)‖ < r} ≤ CrN .

We next give the main technical result in the proof of Theorem B. This sets conditions
under which a given family of skew-products intersects its fibers into a set of positive
measure, up to perturbations.

THEOREM C. Let (Fp)p∈P be a family of skew-products satisfying (U), (T), and �(p) >
N for any p ∈ P. Then, for every a ∈ −→A , we have

LebN(Kp,a) > 0 for Lebd -a.e. p ∈ P,

and for every family F of ϑ-U-perturbations of (Fp)p∈P with small ϑ , we have

LebN(K̃t ,p,a) > 0 for Lebd -a.e. p ∈ P and Lebτ -a.e. t ∈ T.

Here is the strategy for proving Theorem C. For every parameter p and a-fiber, we
define a probability measure νp,a supported on the limit set Kp,a. To show that Kp,a

has positive measure, it is enough to show that νp,a is absolutely continuous relative to
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the N-dimensional Lebesgue measure, and so to prove that its density is finite almost
everywhere. We compute the integral of the density relative to the parameter and the
phase space. The trick is to use the Fubini theorem to integrate first relative to p. The
finiteness of the integral is implied by the transversality assumption (T) and the inequality
�(p) > N . The same method will give the same results for families of ϑ-U-perturbations,
with additional integration relative to t.

To prove Theorem B, we go back to Cr -families (Fp)p of endomorphisms and we
restrict the dynamics to the local stable manifolds Wa

p , which are tagged in exponent by
infinite forward sequences a in letters in an alphabet A. Since dim Esp = 1, we are led to
study families (Fp)p of skew-products acting on fibers which are segments, and such that
the restriction on each fiber is Cr .

We then look at the action induced by (Fp)p on s-jets (with s ≤ r − 2), and this gives
a new family of skew-products (Gp0)p0 acting on fibers of dimension δd,s . This new
family satisfies assumption (U) (the assumption dim Esp = 1 is used here); its similarity
dimension is larger than δd,s by (�). We extend (Fp)p into a larger Cr -family of
endomorphisms so that the associated extended family of skew-products acting on s-jets
satisfies the transversality assumption (T).

To conclude, we pick a family (�t ,p)t ,p of parallel segments �t ,p close to a local stable
manifold Wa

p and such that the set of s-jets at any p0 ∈ P of the projection of �t ,p on a
fixed direction transverse to �t ,p when varying t has positive measure. The local unstable
set intersects each segment �t ,p in a set which is the limit set of a ϑ-U-perturbation with
small ϑ , at every parameter p. We then apply the second part of Theorem C to get positive
sets of s-jets for the intersection points between the local unstable set and �t ,p for a.e. t at
a.e. p0: in other words, we get positive sets of s-jets in the direction of �t ,p for these values
of t and p0. To conclude, we apply the Fubini theorem to find positive sets of bidimensional
s-jets for points inside local unstable manifolds at a.e. p0. The same extension scheme
works for (Gp)p close to (Fp)p, which proves that (Kp)p is an almost Cr ,s-parablender.

Finally, Theorem A is an immediate consequence of Theorem B together with Remark
6.0.4, by taking the constant family (F)p∈(−1,1) and the order s of the jets equal to 0
(remark, in particular, that δ1,0 = 1).

In §4 we study a model given by families of IFSs of affine maps on an interval. We
simplify the proof of Simon, Solomyak, and Urbański [SiSoU] in this context and introduce
the strategy for the proof of Theorem C. In §5 we prove Theorem C. In each fiber the
behavior of the dynamics looks like the model. Finally, we prove Theorem B in §6.

4. Model: Iterated function systems of affine maps on the interval
4.1. Setting and results. In this section we simplify the proof of a result of Simon,
Solomyak, and Urbański about IFSs on an interval. This can be seen as a model for the
behavior of the dynamics inside the fibers of a skew-product, as we will see in §5.

Let us fix X := [−1, 1] and P := (−1, 1). We consider families (�p)p∈P, where, for
every p ∈ P, the IFS�p is a finite family�p = (ψap)a∈A of affine contractionsψap : X→
X such that ψap(X) � X. The absolute value of the linear coefficient of ψap is denoted by
�p,a . We suppose that for every a ∈ A, the map ψap depends continuously on p. In fact, we
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even suppose that the affine contractionψap is still defined for p in some open neighborhood
of [−1, 1] and still depends continuously on p.

For every p ∈ P and α = (α−n, . . . , α−1) ∈ A∗, we denote the corresponding compo-
sition by ψαp = ψα−1

p ◦ · · · ◦ ψα−np , which is an affine contraction of the segment X into
its own interior. When α = e, the map ψep is simply the identity. The absolute value of the
linear coefficient of ψαp is denoted by �p,α .

By continuity of the derivative ofψap relative to p ∈ P, there exist 0 < γ ′ < γ < 1 such
that γ ′ < �p,a < γ for every p ∈ P and a ∈ A. Then �p,α ≤ γ |α| for every α ∈ A∗. If
we now take α ∈ ←−A , the sequence of points ψ

α|n
p (0) tends to a point πp(α). This defines

a C0-map πp :
←−A → X for every p ∈ P. Since this convergence is uniform in p, the map

p �→ πp(α) is C2 for any α. Moreover, the map p �→ πp is continuous, the set of C0-maps
from
←−A to R endowed with the uniform C0-norm. We set

Kp := πp(←−A ).
We also suppose that the following assumption, which we call (Taff), is satisfied by
(�p)p∈P. There exists C > 0 such that for every α, β ∈ ←−A satisfying α−1 �= β−1, we have

Leb1{p ∈ P : |πp(α)− πp(β)| < r} ≤ Cr for any r > 0.

It is immediate that for any p ∈ P, there exists exactly one number �(p) ≥ 0 such that∑
a∈A

�
�(p)
p,a = 1.

This is the similarity dimension of the IFS�p. We are now in position to state the following
result, which is a direct consequence of Theorem 3.1 of [SiSoU].

THEOREM D. (Simon, Solomyak, and Urbański) Let (�p)p∈P be a family of IFSs of affine
contractions satisfying (Taff) and �(p) > 1 for any p ∈ P. Then

Leb1(Kp) > 0 for Leb1-a.e. p ∈ P.

4.2. Proof of Theorem D.

Proof of Theorem D. Let p0 ∈ P such that �(p0) > 1+ ε for a small ε > 0. To prove
the result, it is enough to show that there exists δ > 0 such that B := (p0 − δ, p0 + δ) is
included in P and Leb1(Kp) > 0 for Leb1-a.e. p ∈ B.

We define a probability measure μ on
←−A by setting μ[α] = ��(p0)

p0,α for every cylinder
defined by α ∈ A∗. For any p ∈ P, let νp be the pushforward of μ by πp, which is
supported on Kp. To conclude, it is enough to show that there exists δ > 0 such that for
Leb1-a.e. p ∈ B, the measure νp is absolutely continuous relative to Leb1. We set

D(νp, x) := lim inf
r→0

νp(x − r , x + r)
2r

for every p ∈ P and x ∈ R, which is the lower density of the measure νp at x.

LEMMA 4.2.1. The map (p, x) ∈ P× R �→ D(νp, x) is Borel measurable.
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Proof. Since p ∈ P �→ πp is continuous, it is also the case for p ∈ P �→ νp (the set of
probability measures endowed with the weak-∗ topology). Since x ∈ R �→ νp(x − r , x +
r) is Borel measurable for every p ∈ P and r > 0, the map (p, x) ∈ P× R �→ νp(x −
r , x + r) is Borel measurable for every r > 0. Since r �→ νp(x − r , x + r) is monotonic
and r �→ 2r continuous, the lower limit D(νp, x) does not change if r is restricted to
positive rationals. Thus the measurability of (p, x) ∈ P× R �→ D(νp, x) reduces to that
of the lower limit of countably many measurable maps.

We will shortly prove the following proposition.

PROPOSITION 4.2.2. There exists δ > 0 such that B ⊂ P and the following expression is
finite:

I :=
∫
p∈B

∫
x∈R

D(νp, x) dνp dLeb1 < +∞.

This is enough to show that for Leb1-a.e. p ∈ B, νp is absolutely continuous relative to
Leb1. Indeed, then, for Leb1-a.e. p ∈ B, we will have D(νp, x) < +∞ for νp-a.e. x ∈ R

and we apply the following result from the third item of Lemma 2.12 in [Ma].

PROPOSITION 4.2.3. Let ν be a Radon measure on R
n, where n > 0, such that the density

D(ν, x) of ν relative to Lebn is finite for ν-a.e. x ∈ R
n. Then ν is absolutely continuous

relative to Lebn.

This concludes the proof of Theorem D.

Proof of Proposition 4.2.2. For δ small enough, the interval B := (p0 − δ, p0 + δ) is
included in P. If necessary, we reduce δ so that �1+ε/2

p1,a ≤ �p2,a for every p1, p2 ∈ B
and a ∈ A. In particular, this implies that

for all p1, p2 ∈ B, for all α ∈ A∗, �
1+ε/2
p1,α ≤ �p2,α . (3)

The strategy is to bound I by a new integral which will be easily shown to be finite using
(Taff), for this specific choice of δ. First, by Fatou’s lemma, we have

I ≤ lim inf
r→0

1
2r

∫
p∈B

∫
x∈R

νp(x − r , x + r) dνp dLeb1. (4)

We can write νp(x − r , x + r) =
∫
y∈R 1{|x−y|<r} dνp as the integral of the indicator

function 1{|x−y|<r}, equal to 1 if |x − y| < r , and 0 if not. Using this and then the definition
of νp as the pushforward of μ by πp, we have∫

x∈R
νp(x − r , x + r) dνp =

∫
(α,β)∈←−A×←−A

1{|πp(α)−πp(β)|<r} dμ× μ, (5)

where 1{|πp(α)−πp(β)|<r} is equal to 1 if |πp(α)− πp(β)| < r and 0 if not. Then we
substitute equation (5) into inequality (4) and use Fubini’s theorem to change the order
of integration:

I ≤ lim inf
r→0

1
2r

∫
(α,β)∈←−A×←−A

Leb1{p ∈ B : |πp(α)− πp(β)| < r} dμ× μ. (6)
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We write the latter integral as a sum whose terms are all easier to bound. For every
finite word ρ ∈ A∗, we denote by Cρ the set of pairs (α, β) ∈ ←−A ×←−A such that
α−|ρ| · · · α−1 = β−|ρ| · · · β−1 = ρ but α−|ρ|−1 �= β−|ρ|−1. We notice that

←−A ×←−A =⊔
n≥0

⊔
ρ∈An Cρ , and so by inequality (6) we have

I ≤ lim inf
r→0

1
2r

∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

Leb1{p ∈ B : |πp(α)− πp(β)| < r} dμ× μ. (7)

We show below that the following lemma is a consequence of the transversality assumption
(Taff).

LEMMA 4.2.4. For every n ≥ 0, ρ ∈ An, and (α, β) ∈ Cρ , we have

Leb1{p ∈ B : |πp(α)− πp(β)| < r} � r ·�−1−ε/2
p0,ρ .

We can substitute the bound of Lemma 4.2.4 into inequality (7):

I �
∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

�
−1−ε/2
p0,ρ dμ× μ. (8)

We use the equality μ[ρ] = ��(p0)
p0,ρ , the inequality (1+ ε/2)/�(p0) < (1+ ε/2)/

(1+ ε) < 1− ε/3, and finally the inequality γ ′ < �p,a < γ to get

�
−1−ε/2
p0,ρ � μ[ρ](−1−ε/2)/�(p0) ≤ μ[ρ]−(1−ε/3) � γ nε/3 · μ[ρ]−1. (9)

We now substitute this bound into inequality (8) to find that

I �
∑
n≥0

γ nε/3
∑
ρ∈An

(μ× μ)(Cρ)
μ[ρ]

≤
∑
n≥0

γ nε/3
∑
ρ∈An

μ[ρ] =
∑
n≥0

γ nε/3 < +∞,

where we used the inequality (μ× μ)(Cρ) ≤ μ[ρ]2 (coming from Cρ ⊂ [ρ]2) to prove the
second inequality. This concludes the proof of Proposition 4.2.2.

Proof of Lemma 4.2.4. For every p ∈ P, n ≥ 0, ρ ∈ An, and (α, β) ∈ Cρ , we have

|πp(α)− πp(β)| = �p,ρ · |πp(σn(α))− πp(σn(β))|. (10)

Indeed, the points πp(α) and πp(β) are the respective images of πp(σn(α)) and
πp(σ

n(β)) by the map ψρp which is an affine contraction, and the absolute value of the
linear coefficient of ψρp is �p,ρ . Thus, using equation (3), we have

Leb1{p ∈ B : |πp(α)− πp(β)| < r} = Leb1

{
p ∈ B : |πp(σn(α))− πp(σn(β))| < r

�p,ρ

}

≤ Leb1

{
p ∈ B : |πp(σn(α))− πp(σn(β))| < r

�
1+ε/2
p0,ρ

}
.

To conclude, by (Taff) and since B ⊂ P, the right-hand term of the latter is smaller than
C · r ·�−1−ε/2

p0,ρ .
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Example. Let us give a simple application of Theorem D. Let n ≥ 2 be an integer. We
set A := {0, 1, 2, . . . , n}, X := [0, 1], and P := (1/n, 1− 1/n). Let c < 1/n be a real
number close to 1/n. For a ∈ A, we put ψap(x) := cx + 1

2 (1/n− c)+ a/n if 0 ≤ a <
n and ψnp(x) := cx + p if a = n. Condition (Taff) is clearly satisfied when n is large.
Moreover, trivial computations show that the similarity dimension is �(p) = −log(n+
1)/log(c) > 1 for any p ∈ P. By Theorem D, Kp has positive one-dimensional Lebesgue
measure for a.e. p ∈ P.

5. The unipotent case: proof of Theorem C
We now extend Theorem D to the case of families of fiberwise unipotent skew-products.
The fibers are indexed by a ∈ −→A and the dynamics on each fiber will look like that of the
model previously introduced. Here are some differences.
• We will not restrict ourselves to fibers of dimension 1 and we will not suppose that

the dynamics on each fiber is conformal but we will suppose that its differentials are
unipotent with contracting eigenvalue (assumption (U)).

• We will need distortion results (Lemmas 5.2.1– 5.2.4) since the dynamics will not be
supposed to be affine this time.

5.1. Notation and immediate facts. We henceforth adopt the following formalism
in order to prove Theorem C. Let (Fp)p∈P be a family of skew-products satisfying
assumptions (U) and (T). We recall that there exist open neighborhoodsX′ and P′ of X and
P in R

N and R
d such that each map (p, x) �→ (p, fp,a(x)) extends to a diffeomorphism

from X′ × P′ into X × P and the map Fp is an (N-dimensional) skew-product for every
p ∈ P′. We set,

for all p ∈ P′, a ∈ −→A , a ∈ A, x ∈ X′, ψap,a(x) := fp,aa(x) (11)

and notice that ψap,a : X′ → X is a C2-map depending continuously on (p, a). The

C2-norm of ψap,a on X is then bounded independently of p ∈ P, a ∈ −→A , and a ∈ A. We

now define for any p ∈ P′, a ∈ −→A , n > 0, and α = (α−n, . . . , α−1) ∈ A∗:
for all x ∈ X′, ψαp,a(x) := ψα−1

p,a ◦ · · · ◦ ψα−np,α−n+1···α−1a(x)= fp,α−1a ◦ · · · ◦ fp,α−n···α−1a(x).

In particular, assumption (U) implies that for every p ∈ P′, a ∈ −→A , α ∈ A∗, and x ∈
X′, the differential Dψαp,a(x) is unipotent inferior and thus has a unique eigenvalue. This
motivates the definition of the following contraction rate.

Definition 5.1.1. For any p ∈ P′, a ∈ −→A , α ∈ A∗, and x ∈ X′, let λp,a,α(x) be the absolute
value of the unique eigenvalue of the differential Dψαp,a(x) and

�p,a,α := maxx∈Xλp,a,α(x). (12)

For any p ∈ P′, a ∈ −→A , α = (α−n, . . . , α−1) ∈ A∗, and x ∈ X′, we then have

λp,a,α(x) =
n∏
k=1

λp,ak ,α−k (ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)) with ak := α|k−1a. (13)
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By continuity of Dψap,a(x) relative to p ∈ P, a ∈ −→A , and x ∈ X and by compactness

of P,
−→A , and X, there exist 0 < γ ′ < γ < 1 so that for any p, a, and a,

for all x ∈ X, γ ′ < λp,a,a(x) < γ . (14)

In particular, for every α ∈ A∗, we have

γ ′|α| < �p,a,α < γ |α|. (15)

We will later need the following lemma, whose proof is in the Appendix.

LEMMA 5.1.2. There exists a real polynomial P positive on R+ such that for any p ∈ P,
a ∈ −→A , α ∈ A∗, x ∈ X, and (i, j) ∈ {1, . . . , N}2 with i > j , the modulus of the (i, j)th
coefficient of the differential Dψαp,a(x) is smaller than P(|α|) · λp,a,α(x).

As an immediate consequence of Lemma 5.1.2, the pressure function �p,a defined in
Definition 3.1.3 is equal to

�p,a(s) = lim
n→+∞

1
n

log
∑
α∈An

�sp,a,α for any s ≥ 0. (16)

Moreover, this map satisfies the following nice properties.

PROPOSITION 5.1.3. The map s ∈ R+ �→ �p,a(s) ∈ R is well defined, strictly decreasing,
continuous, independent of a, with �p,a(0) > 0 and lims→+∞�p,a(s) = −∞. In partic-
ular, it has exactly one zero denoted by �(p), depending continuously on p.

From now on we suppose that �(p) > N for any p ∈ P.
Lemma 5.1.2 also implies that for any p ∈ P, a ∈ −→A , and α ∈ A∗ of length sufficiently

large, the map ψαp,a is a contraction. For p ∈ P, a ∈ −→A , and α ∈ ←−A , the diameter of
ψ
α|n
p,a(X) is then small when n is large. Thus the sequence of points ψ

α|n
p,a(0) converges

to πp,a(α) ∈ X. This defines, for every p ∈ P and a ∈ −→A , a C0-map πp,a :
←−A → X. The

map (p, a) ∈ P×−→A �→ πp,a is then continuous, the set of C0-maps from
←−A to R

N being
endowed with the uniform C0-norm. We set

Kp,a := πp,a(
←−A ).

For any family F := ((F̃t ,p)p)t∈T of ϑ-U-perturbations with small ϑ > 0, the map
ψαt ,p,a := f̃t ,p,α−1a ◦ · · · ◦ f̃t ,p,α−n···α−1a is also a contraction when |α| is large and so the
sequence of points ψ

α|n
t ,p,a(0) still converges to π̃t ,p,a(α) ∈ X. This allows us to define a

C0-map π̃t ,p,a :
←−A → X for any t and p, and its limit set K̃t ,p,a := π̃t ,p,a(

←−A ).
LEMMA 5.1.4. The map p �→ πp,a(α) is continuous for every a ∈ −→A and α ∈ ←−A .
Moreover, for every family F of ϑ-U-perturbations with small ϑ > 0, the map (t , p) �→
π̃t ,p,a(α) is continuous and p �→ π̃t ,p,a(α) isC0-close to p �→ πp,a(α) uniformly in t ∈ T.

Proof. We notice that the point πp,a(α) is the image of πp,α|na(σ
n(α)) by the map ψα|np,a

(we recall that σ denotes the shift map). The distance between 0 ∈ X and πp,α|na(σ
n(α)) ∈

X is bounded by diam(X). Since the map ψα|np,a contracts by a factor independent of
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(p, a) and exponentially small in n (by equation (15) and Lemma 5.1.2), it follows
that the map p �→ πp,a(α) is the uniform limit (when n→+∞) of the sequence of
continuous maps p �→ ψ

α|n
p,a(0) and hence is continuous. The same argument works for

small ϑ-U-perturbations.

5.2. Distortion lemmas. We now state distortion results, whose proofs are given in the
Appendix.

LEMMA 5.2.1. (Bounded distortion with respect to x) There exists D1 > 1 such that for
every p ∈ P, a ∈ −→A , α ∈ A∗, and x, y ∈ X, we have

1/D1 <
λp,a,α(x)

λp,a,α(y)
< D1.

LEMMA 5.2.2. (Distortion with respect to p) For every η > 0, there exist δ(η) > 0 and
D2 = D2(η) > 1 such that for every p1, p2 ∈ P and a ∈ −→A , we have

‖p1 − p2‖ ≤ δ(η) �⇒ for all α ∈ A∗, D−1
2 e−η|α| <

�p1,a,α

�p2,a,α
< D2e

η|α|.

LEMMA 5.2.3. (Bounded distortion with respect to a) There exists D3 > 1 such that for
any p ∈ P, a, a′ ∈ −→A , and α ∈ A∗, we have

1/D3 <
�p,a,α

�p,a′,α
< D3.

LEMMA 5.2.4. (Distortion with respect to ϑ-perturbations) For every ε′ > 1, there exists
D4 > 1 such that for every family F of ϑ-U-perturbations with ϑ small enough, we have,
for every t ∈ T, a ∈ −→A , p ∈ P, and α ∈ A∗,

�ε
′
p,a,α/D4 < �̃t ,p,a,α < D4�

1/ε′
p,a,α ,

where �̃t ,p,a,α is the maximum among x ∈ X of the absolute value λ̃t ,p,a,α(x) of the unique
eigenvalue of the differential Dψαt ,p,a(x).

5.3. Choice of a probability measure μ on
←−A . We will first need the following result

of Bowen [Bo1, Theorem 1.4, p. 7 and its proof, p. 19] about the existence of a Gibbs
measure. We recall that σ is a full shift. We state the result in this case but it remains true
for topologically mixing subshifts of finite type. We suppose that a parameter p0 has been
fixed (the precise choice will be made in the next subsection). We fix an arbitrary a0 ∈ −→A .

THEOREM E. (Bowen) Let φ :
←→A → R be a Hölder map with positive exponent (the set←→A being endowed with the distance d∞). Then there exists a unique σ -invariant measure

μ on
←→A such that for every A ∈ ←→A , we have

μ[A|n] � exp
(
−�n+

n−1∑
k=0

φ(σ k(A))

)
,
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where � = �(φ) = limn→∞(1/n)logZn(φ), with

Zn(φ) :=
∑
x∈An

exp(Sx) and Sx = sup
{ n−1∑
k=0

φ(σ k(y)) : y ∈ [x]
}

.

Writing A = αa ∈ ←→A as the concatenation of α ∈ ←−A and a ∈ −→A , we can apply the
previous result with the map

φ : A ∈ ←→A �→ �(p0) · logλp0,a,α−1(πp0,α−1a(σ (α))).

We prove the following lemma in the Appendix.

LEMMA 5.3.1. The map φ is Hölder with positive exponent.

Using Lemmas 5.2.1 and 5.2.3, we note that � = �(φ) coincides with �p0(�(p0))

and thus vanishes by definition of �(p0) (see Proposition 5.1.3). Moreover, by equation
(13), for any A ∈ ←→A the sum

∑n−1
k=0 φ(σ

k(A)) is equal to

�(p0) · log
n∏
k=1

λp0,ak ,α−k (πp0,ak+1(σ
k(α))) = �(p0) · logλp0,a,α|n(πp0,α|na(σ

n(α)))

with ak := α|k−1a. By Theorem E, this gives us a σ -invariant measure μ on
←→A such that

for every A = αa ∈ ←→A , we have

μ[A|n] � λ�(p0)
p0,a,α|n(πp0,α|na(σ

n(α))) when n→+∞.

Using successively Lemmas 5.2.1 and 5.2.3, for any A = αa ∈ ←→A , we have

μ[A|n] � ��(p0)
p0,a,α|n � ��(p0)

p0,a0,α|n when n→+∞. (17)

We then define a σ -invariant probability measure on
←−A , still denoted μ, by giving each

cylinder in
←−A the same measure as the corresponding one in

←→A . Then

μ[ρ] � ��(p0)
p0,a0,ρ when ρ ∈ An and n→+∞. (18)

Remark 5.3.2. We will not need the σ -invariance property of μ in the following, only the
estimation from equation (18).

5.4. Proof of Theorem C. The strategy is the same as for the proof of Theorem
D. Let us consider p0 ∈ P and a ∈ −→A . We have �(p0) > N + ε, where ε :=
1
2 (minp∈P �(p)−N) > 0. To prove the result, we show that there exists δ > 0 such that
the d-dimensional ball B of center p0 of radius δ is included in P with LebN(Kp,a) > 0
and LebN(K̃t ,p,a) > 0 for Lebd -a.e. p ∈ B and Lebτ -a.e. t ∈ T, for every family F of
ϑ-U-perturbations with small ϑ .

We endow
←−A with the probability measure μ defined in §5.3. For any p ∈ P and t ∈ T,

let νp,a and νt ,p,a be the images of μ by the maps πp,a and π̃t ,p,a.
As Proposition 4.2.2 implies Theorem D, Theorem C is a consequence of the following

result.
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PROPOSITION 5.4.1. There exists δ > 0 such that the ball B of center p0 and radius δ is
included in P and the following two integrals are finite:

I :=
∫
p∈B

∫
x∈RN

lim inf
r→0

νp,a(x + B(r))
cNrN

dνp,a dLebd < +∞,

I′ :=
∫
p∈B

∫
t∈T

∫
x∈RN

lim inf
r→0

νt ,p,a(x + B(r))
cNrN

dνt ,p,a dLebτ dLebd < +∞,

for any family F of ϑ-U-perturbations with small ϑ , where B(r) ⊂ R
N is the ball of center

0 and radius r and the constant cN is defined by cNrN := LebN(B(r)).

Proof. Let us take a small δ so thatB ⊂ P. The radius δ will be reduced once so that I and
I′ are finite. We first begin by bounding I. The proof is similar to that of Proposition 4.2.2:
we begin by using Fatou’s lemma, the definition of νp,a, and the Fubini–Tonelli theorem
to find the following bound:

I ≤ lim inf
r→0

1
cNrN

∫
(α,β)∈←−A×←−A

Lebd{p ∈ B : ‖πp,a(α)− πp,a(β)‖ < r} dμ× μ.

We write
←−A ×←−A =⊔

n≥0
⊔
ρ∈An Cρ where Cρ is the set of pairs (α, β) ∈ ←−A ×←−A such

that α−|ρ| · · · α−1 = β−|ρ| · · · β−1 = ρ but α−|ρ|−1 �= β−|ρ|−1. Thus I

I < lim inf
r→0

1
cNrN

∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

Lebd{p ∈ B : ‖πp,a(α)− πp,a(β)‖ < r} dμ× μ.

(19)

We show below that the following lemma is a consequence of the transversality
assumption (T).

LEMMA 5.4.2. We fix η := −εlogγ /(2N + ε) and reduce δ if necessary so that δ < δ(η)

(where δ(η) is defined in Lemma 5.2.2). Then for any n ≥ 0, ρ ∈ An, (α, β) ∈ Cρ , we have

Lebd{p ∈ B : ‖πp,a(α)− πp,a(β)‖ < r} � rN ·�−N−2ε/3
p0,a0,ρ .

For any family F of ϑ-U-perturbations of (Fp)p with small ϑ , for any t ∈ T, we have

Lebd{p ∈ B : ‖π̃t ,p,a(α)− π̃t ,p,a(β)‖ < r} � rN ·�−N−2ε/3
p0,a0,ρ .

Notice that when the similarity dimension is close to the dimension N of the fibers (and
so ε is small), we need to work with a ball of small radius η. We can inject the first bound
of Lemma 5.4.2 into inequality (19):

I �
∑
n≥0

∑
ρ∈An

∫
(α,β)∈Cρ

�
−N−2ε/3
p0,a0,ρ dμ× μ. (20)

We use successively equation (18), the inequality (N + 2ε/3)/�(p0) < (N + 2ε/3)/
(N + ε) < 1− ε/4N , and finally inequality (15) (which gives μ[ρ] � γ n) to get

�
−N−2ε/3
p0,a0,ρ � μ[ρ](−N−2ε/3)/�(p0) ≤ μ[ρ]−(1−ε/4N) � γ nε/4N · μ[ρ]−1. (21)

https://doi.org/10.1017/etds.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.16


1108 S. Biebler

We now substitute this bound into inequality (20) to find that

I �
∑
n≥0

γ nε/4N
∑
ρ∈An

(μ× μ)(Cρ)
μ[ρ]

≤
∑
n≥0

γ nε/4N
∑
ρ∈An

μ[ρ] =
∑
n≥0

γ nε/4N < +∞,

where we used the inequality (μ× μ)(Cρ) ≤ μ[ρ]2 (coming from Cρ ⊂ [ρ]2) to prove
the second inequality. To bound I′ for every family F of ϑ-U-perturbations of (Fp)p
with small ϑ , we just remark that the same proof works when ϑ is small enough, with
an additional integration relative to t ∈ T.

Proof of Lemma 5.4.2. Let us begin with the following distortion lemma.

LEMMA 5.4.3. There exists D5 > 0 such that for every p1, p2 ∈ P, a1, a2 ∈ −→A , and
ρ ∈ A∗, the following holds true:

‖p1 − p2‖ < δ �⇒ �
1+ε/2N
p1,a1,ρ ≤ D5 ·�p2,a2,ρ .

Proof. If ‖p1 − p2‖ < δ, then ‖p1 − p2‖ < δ(η). By Lemma 5.2.2, we have

�1+ε0
p1,a1,ρ ≤ D1+ε0

2 e|ρ|η(1+ε0)�1+ε0
p2,a1,ρ ≤ D1+ε0

2 e|ρ|η(1+ε0)γ |ρ|ε0�p2,a1,ρ ,

with ε0 := ε/(2N). By Lemma 5.2.3,�p2,a1,ρ � �p2,a2,ρ when |ρ| → +∞, with bounds
independent of p2. The result follows since, by definition of η,

e|ρ|η(1+ε0)γ |ρ|ε0 = e|ρ|(η(1+ε0)+ε0logγ ) with η(1+ ε0)+ ε0logγ = 0.

LEMMA 5.4.4. There exists a real polynomial R positive on R+ such that for every p ∈ P,
a ∈ −→A , n ≥ 0, ρ ∈ An, and (α, β) ∈ Cρ , we have

‖πp,a(α)− πp,a(β)‖ ≥ �p,a,ρ

R(n)
· ‖πp,ρa(σ

n(α))− πp,ρa(σ
n(β))‖. (22)

Moreover, for any ε′ > 1, for every family F of ϑ-U-perturbations of (Fp)p with ϑ > 0
small enough we have for every t ∈ T, p ∈ P, a ∈ −→A , n ≥ 0, ρ ∈ An, and (α, β) ∈ Cρ
that

‖π̃t ,p,a(α)− π̃t ,p,a(β)‖ ≥
�ε
′
p,a,ρ

R(n)
· ‖π̃t ,p,ρa(σ

n(α))− π̃t ,p,ρa(σ
n(β))‖. (23)

The proof is in the Appendix.
Given a ∈ −→A , n ≥ 0, ρ ∈ An, (α, β) ∈ Cρ , using inequality (22) and then Lemma 5.4.3

together with the fact that B is the ball of center p0 and radius δ, we have

Lebd{p ∈ B : ‖πp,a(α)− πp,a(β)‖ < r}
≤ Lebd

{
p ∈ B : ‖πp,ρa(σ

n(α))− πp,ρa(σ
n(β))‖ < R(n)r

�p,a,ρ

}

≤ Lebd

{
p ∈ B : ‖πp,ρa(σ

n(α))− πp,ρa(σ
n(β))‖ < D5R(n)r

�
1+ε/2N
p0,a0,ρ

}
.
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To conclude, by assumption (T) and since B ⊂ P, the last term of the latter inequality is
smaller than

rN ·Q(n) ·�−N−ε/2p0,a0,ρ with Q(n) := C ·DN5 · (R(n))N .

The result follows since �p0,a0,ρ decreases exponentially with n, and ε/2 < 2ε/3. The
proof of the second item is similar, by taking ε′ close to 1 in inequality (23).

6. Jets: proof of Theorem B
Proof of Theorem B. The strategy is to study the dynamics of the family (Fp)p inside
the local stable manifolds to reduce the problem to the dynamics of a family (Fp)p

of skew-products (step 1) with one-dimensional fibers, and such that the restriction on
each fiber is Cr . From (Fp)p, we construct a family of skew-products (Gp0)p0 acting
on s-jets (step 2). Then we extend the latter family into a larger one, (Gq0)q0 , to satisfy
the transversality assumption (T) (step 3). Finally, we look at the intersection between
the unstable set and a family of curves all close to a stable manifold. In each curve,
this intersection is equal to the limit set of a perturbation of the skew-product. We then
successively apply Theorem C and the Fubini theorem to conclude to a set of jets of
positive measure at a.e. parameter, which gives the parablender property (step 4).

Step 1: Dynamically defined family of skew-products. We first need to define local stable
and unstable manifolds. Let us fix a small ε > 0 and an arbitrary parameter in P, taken
arbitrarily close to 0 for simplicity. We recall that K0 is a hyperbolic basic set for F0. Up
to a change of metric on the stable (respectively, unstable) bundles of K0, we suppose that
DF0 strictly contracts (respectively, expands) the stable (respectively, unstable) bundle by
a factor λ < 1 (respectively, 1/λ) uniformly over z ∈ K0.

It has been shown by Qian and Zhang (see §4 of [QZ]) that the limit inverse
←→
K0 can

be endowed with a map [·] defined on a subset of
←→
K0 ×←→K0 with values in

←→
K0 so that

for all sufficiently closed orbits x, y ∈ ←→K0 , the orbit z = [x, y] is well defined and the
0-coordinate projection π(z) ∈ K0 of z is the intersection of the local unstable manifold of
x and the local stable manifold of y0. This map endows

←→
K0 with a Smale space structure

(see Ruelle [Ru, Ch. 7], for the definition of a Smale space). This implies that
←→
K0 admits

Markov partitions of arbitrarily small diameter (see again Ruelle [Ru, Ch. 7], for this result
and the definition and properties of a Markov partition for a Smale space). We pick such a
partition of

←→
K0 by a finite number of compact rectangles R1, . . . , RM of diameter small

compared to ε. Up to reducing ε, we can suppose that F0 is a local diffeomorphism when
restricted to the 0-coordinate projection Ri := π(Ri ) ⊂ K0 of any rectangle Ri .

The topological entropy of F0|K0 is larger than δd,s · |log m(DF0)| by (�). Then
for large � we can pick Nε,� orbits xa = (xia)0≤i≤�−1 of length � (with a ∈ A :=
{1, 2, . . . , Nε,�}) under F0 which are (�, ε)-separated (in the sense of Bowen) with

(�) logNε,�
�

> δd,s · |log m(DF0)|.

In particular, the cardinalityNε,� ofA is at least 2. We can extend each of these orbits xa of
length � into an infinite orbit in

←→
K0 , still denoted xa . Up to slightly perturbing xa , we can
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suppose that for every 0 ≤ k ≤ �− 1, the orbit
←→
F0

k(xa) is in the interior of some rectangle
Ri which we denote by Ra,k . In particular, xka = Fk0(x0

a) is in Ra,k = π(Ra,k). Since M is
independent of �, up to modifying Nε,� by a multiplicative constant (independent of �
large), we can suppose that all orbits xa (a ∈ A) begin in the same Ri and end in the same
Rj , with (�) still true. For any a ∈ A, let us define

Ra := Ra,0 ∩ F−1
0 (Ra,1) ∩ · · · ∩ F−(�−1)

0 (Ra,�−1).

which is not empty by assumption. Since the �-orbits (xia)0≤i≤�−1 (with a ∈ A) under
F0 are (�, ε)-separated and since the diameter of each rectangle of the partition is small
compared to ε, the sets Ra (a ∈ A) are pairwise disjoint compact subsets of Ri having
their images by F�0 included in Rj . Up to adding a constant (independent of � large) to �,
using the properties of Markov partitions, we can suppose, moreover, that Ri and Rj are
equal. We denote this set by R in the following and thus the setsRa are non-empty pairwise
disjoint compact subsets of R with images under F�0 included in R. This does not change
the number Nε,� of such sets Ra and so inequality (�) is still true. For every non-empty
finite word β = β0 · · · βp ∈ Ap+1, we now set

Rβ := Rβ0 ∩ F−�0 (Rβ1) ∩ · · · ∩ F−�p0 (Rβp),

which is a non-empty compact set by the properties of Markov partitions, and the sets
Rβ among β ∈ Ap+1 are pairwise disjoint subsets of R for a fixed value of p. Finally, for
a ∈ −→A , we define

Ra :=
⋂
n>0

Ra|n

which is also a non-empty compact subset of R, included in K0, and the sets Ra (a ∈ −→A )
are pairwise disjoint. Finally, since the partition admits a continuation in a neighborhood
of 0 in P, the sets Ra , Rβ , and Ra admit continuations Rp,a , Rp,β , and Rp,a with the same
dynamical properties when p varies in a neighborhood of 0 in the parameter space. Up to
covering P by finitely many such neighborhoods and extending a finite number of times
(Fp)p in steps 2,3, and 4, we can suppose that Rp,a , Rp,β , and Rp,a vary continuously in
a neighborhood of P, which we can suppose equal to P′ up to reducing it, and inequality
(�) is satisfied in P.

Let us take a small ε′ > 0. For any infinite forward sequence a ∈ −→A and any p ∈ P′,
we notice that all the points in Rp,a are asymptotic (using hyperbolicity) and thus belong
to a same stable manifold W of Kp (which is one-dimensional). We define Wa

p as
the ε′-neighborhood in W of the maximal arc of W bounded by points of Rp,a. We
parameterize Wa

p with X := [−1, 1] via a Cr -map sap such that (sap)p Hölder depends
on the Cr−1-topology on a by Remark A.4.1.

Since Fp is a local diffeomorphism and since Wa
p is injectively immersed, up to

decreasing ε′, the restriction of F�p to each Wa
p is a diffeomorphism satisfying

for all p ∈ P′, for all a ∈ −→A , F�p(Wa
p ) ⊂ W̊σ(a)

p := sσ(a)p ((−1, 1))

by hyperbolicity. We define the Cr -diffeomorphism fp,a := (sσ(a)p )−1 ◦ F�p ◦ sap on a
small neighborhood X′ of X independent of (p, a). Its image is such that fp,a(X

′) � X.
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The differentialDF�p strictly contracts (respectively, expands) Esp,z (respectively, Eup,z) by a
factor λ� < λ < 1 (respectively, 1/λ) uniformly over p ∈ P and z ∈ Kp. Up to modifying
F�p outside a neighborhood ofKp (this operation does not modify the local stable/unstable
sets of Kp in a neighborhood of Kp nor jets of points inside it), we can suppose that F�p
contracts strictly each Wa

p by λ and so each map fp,a contracts by less than λ. Moreover,
the map (p, x) �→ fp,a(x) is Cr . It extends on P′ ×X′, up to reducing P′ and X′. Easy
computations show that the map a �→ ((p, x) �→ fp,a(x)) is Hölder for theCr−1-topology
and continuous for the Cr -topology. We set

Fp : (a, x) ∈ −→A ×X �→ (σ (a), fp,a(x)) ∈ −→A ×X,

and (Fp)p is a family of fiberwise λ-contracting skew-products (whose restriction on each
fiber is Cr ) satisfying the preliminary assumptions of Theorem C.

LEMMA 6.0.1. The similarity dimension �(p) is greater than δd,s for any p ∈ P.

Proof. The fact that the similarity dimension does not depend on the fiber is a consequence
of Proposition 5.1.3. Moreover, for a fixed fiber a, there are Nε,� contractions fp,a which
contract by at most m(DFp)�. Thus the result follows by the definition of the similarity
dimension and inequality (�).

Using backward sequences instead of forward sequences, we can define similarly
families (Wα

p )p of local unstable manifolds of Kp parameterized by maps sαp so that the

map F�p restricted to some subset of each W̊σ(α)
p := sσ(α)p ((−1, 1)) is a diffeomorphism

onto Wα
p which expands strictly by 1/λ. Moreover, the local unstable manifold Wα

p

intersects the local stable manifold Wa
p at a unique point.

Remark 6.0.2. For any Cr -family (Fq)q∈Q of endomorphisms which extends (Fp)p∈P (by
this we mean that Q is a neighborhood of P), by hyperbolic continuation, we can extend
(Kp)p∈P into the continuation (Kq)q∈Q of a hyperbolic basic set of stable dimension 1,
up to reducing Q. Thus we can also extend the local stable and unstable manifolds (using
Theorem F in the Appendix) and so the family (Fp)p into a family (Fq)q of fiberwise
λ-contracting skew-products, whose restriction on each fiber is Cr .

In the following, we prove Theorem B in the case � = 1. The proof is the same when
� > 1, with a variant in the proof of Proposition 6.0.3 described in Remark 6.0.7.

Step 2: Maps acting on jets. From (Fp)p, we define a family of skew-products (Gp0)p0

acting on s-jets at any p0. We begin by performing this step for d = 1 for the sake of
simplicity of notation, and then treat the general case d ≥ 2.

For any p0 ∈ P′ and a ∈ −→A , we define from (fp,a)p the following map gp0,a acting on
s-jets:

gp0,a : (xp, ∂pxp, . . . , ∂spxp)|p=p0 �→ (fp,a(xp), ∂p(fp,a(xp)), . . . , ∂sp(fp,a(xp)))|p=p0 ,

when defined. Since (fp,a)p is a Cr -family of maps with s ≤ r − 2, the family (gp0,a)p0

is itself a C2-family of maps. It depends continuously on a.
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Notice that

∂p(fp,a(xp))|p=p0 = Dfp0(xp0) · ∂p(xp)|p=p0 + ∂p(fp(xp0))|p=p0 .

We notice that ∂p(fp,a(xp))|p=p0 has possibly a non-zero derivative relative to xp0 (inde-
pendent of ∂p(xp)|p=p0 ), a derivative Dfp0(xp0) relative to ∂p(xp)|p=p0 , and derivatives
equal to zero relative to each ∂jp(xp)|p=p0 for 2 ≤ j ≤ s.

When 1 < k ≤ s, the term ∂kp(fp,a(xp))|p=p0 has possibly a non-zero derivative relative

to ∂jp(xp)|p=p0 for 0 ≤ j ≤ k − 1 (independent of ∂kp(xp)|p=p0 ), a derivative Dfp0(xp0)

relative to ∂kp(xp)|p=p0 , and derivatives equal to zero relative to each ∂jp(xp)|p=p0 for
k < j ≤ s. To see this, it is enough to write the map p �→ fp,a(xp) as the composition
of p �→ (p, xp) and (p, x) �→ fp,a(x) and to apply the multidimensional Faà di Bruno
formula (see, for example, [CS, Theorem 2.1]).

We recall that by assumption we have 0 < |Dfp0(xp0)| < λ < 1. Then for any p0 ∈ P′
and a ∈ −→A , the map gp0,a has inferior unipotent differentials with eigenvalues uniformly
bounded between 0 and 1 in modulus.

We recall that δ1,s = s + 1. We define a set of s-jets Y, identified with a subset of Rs+1

as follows (the term of degree i corresponding to the ith coordinate). We set

Y := X × [−R1, R1]× · · · × [−Rs , Rs].
We can choose R1 large compared to the diameter of X and Ri+1 large compared to Ri
for 1 ≤ i ≤ s − 1. Since its differentials are unipotent with non-zero contracting diagonal
coefficients, an immediate induction shows that gp0,a is a C2-diffeomorphism from a
small neighborhood Y ′ of Y onto gp0,a(Y

′) � Y . Up to rescaling, we can suppose that
Y := [−1, 1]s+1. The map a �→ ((p, x) �→ fp,a(x)) is Hölder for the Cr−1-topology and
continuous for the Cr -topology, and we have s ≤ r − 2. This implies that the map a �→
((p0, y) �→ gp0,a(y)) is Hölder for the C1-topology and continuous for the C2-topology.
To summarize, we just prove that (Gp0)p0 , with

Gp0 : (a, y) ∈ −→A × Y �→ (σ (a), gp0,a(y)) ∈ −→A × Y ,

is a family of skew-products satisfying the preliminary assumptions of Theorem C, (U)
and �(p0) > s + 1 = δ1,s for any p0 ∈ P.

As already said, we get the same result with d ≥ 2 but with painful notation. Indeed,
it is enough to remark that the action of (fp,a)p on jets of multiorder (k1, . . . , kd) with∑
i ki ≤ s only depends on jets of the same multiorder, with a linear coefficientDfp0(xp0),

and on jets of multiorder (k′1, . . . , k′d) with
∑
i k
′
i <

∑
i ki . In particular, its differentials

still satisfy assumption (U).
Step 3: Extending the family. We now extend (Gp0)p0 to satisfy the transversality

assumption (T) inside a larger family. But we have to ensure that this extension comes
from an extension of (Fp)p, itself coming from an extension of (Fp)p.

PROPOSITION 6.0.3. There exists a family of skew-products (Gq0)q0∈Q:

Gq0 : (a, y) ∈ −→A × Y �→ (σ (a), gq0,a(y)) ∈ −→A × Y ,
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with Q := P× (−1, 1)m for some m > 0, satisfying the preliminary assumptions of
Theorem C, (U), (T), �(q0) > δd,s for q0 ∈ Q, and

G(p0,0) = Gp0 and g(p0,0),a = gp0,a for every p0 ∈ P and a ∈ −→A .

Moreover, there exists a Cr -family (Fq)q∈Q of local diffeomorphisms extending (Fp)p∈P
such that if (Fq)q = (fq,a)q is its associated family of skew-products, we have that
f(p0,0),a = fp0,a and gq0,a is the map acting on the s-jets at p0 derived from (fq,a)q

(here the jets at p0 are taken varying p for fixed q ′0 where q0 := (p0, q ′0)). The family
(Fq)q∈Q is of the form Fq = F(p,q ′) = Fp +�p,q ′ where (�p,q ′)(p,q ′) is a Cr -family such
that �p,0 = 0.

We now finish the proof of Theorem B. We give the proof of Proposition 6.0.3
immediately thereafter since it is technical.

Step 4: Conclusion. Let us pick the family (Gq0)q0 of skew-products satisfying the
preliminary assumptions of Theorem C, (U), (T), and�(q0) > δd,s for every q0 ∈ Q given
by Proposition 6.0.3. We will pick well-chosen ϑ-U-perturbations and apply the second
part of Theorem C. We will conclude by using the Fubini theorem.

We pick the continuation (kq)q of a point kq ∈ Kq at the intersection of local stable and
unstable manifolds Wa

q and Wα
q for arbitrary a ∈ −→A and α ∈ ←−A . Up to working locally in

the parameter space Q, we can pick a Cr -family (�t ,q)t ,q of segments of same direction u�
(these segments all remain parallel when varying t and q), which do not intersect Ws(Kq)
and which intersect (Wα

q )t ,q in a curve (zt ,q)t ,q C0-close to (kq)t ,q . Moreover, we choose
(�t ,q)t ,q so that the v�-coordinateX(q, t) in the basis (u� , v�) of �t ,q , for a fixed direction
v� transverse to �t ,q , is of the form

X(q, t) :=
∑
|i|≤s

tip
i for t = (t1, . . . , tδd,s ) ∈ T := (−1, 1)δd,s

which does not depend on q ′ but only on p for q = (p, q ′). In particular, for any q0 ∈ Q,
the map t ∈ T �→ Jsq0

X(q, t) sends T diffeomorphically to a non-empty set of s-jets in p
(and thus a set of s-jets in p of positive δd,s-dimensional measure).

By the parametric inclination lemma (Lemma A.4.2 in the Appendix), up to taking an
inverse iterate, for any t ∈ T, we can suppose that (�t ,q)q is (uniformly in t ∈ T) close to
the continuation (Wa

q )q of a local stable manifold for some a ∈ −→A . We can parameterize
it by the segment X with a Cr -family of charts Cr -close to (saq )q . Still iterating backwards,
for every a ∈ A, there is a family of submanifolds (�at ,q)q close to (Waa

q )q (uniformly in
t ∈ T) such that �at ,q is sent by Fq into the interior of �t ,q . We can parameterize (�at ,q)q by
X with a family of charts close to (saaq )q , and in these charts the restriction of Fq from �at ,q

into �t ,q defines a family of maps (f̃t ,q,aa)q C
r -close to (fq,aa)q . Iterating backwards by

induction, we can define, for every α ∈ A∗, families of curves (�αt ,q)q which are (uniformly
in α) Cr -close to (Wαa

q )q by Lemma A.4.2 and such that each �aαt ,q is sent into the interior
of �αt ,q . This defines families of maps (f̃t ,q,αa)qC

r -close to (fq,αa)q (uniformly in t ∈ T
and α ∈ A∗). We set f̃t ,q,b := fq,b when b is not of the form αa with α a non-empty word.
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When looking at the action of the families of maps (f̃t ,q,a)q on s-jets (with respect to p) for
fixed values of t and a, one obtains a family of maps (g̃t ,q0,a)q0 from Y into itself C2-close
to (gq0,a)q0 (uniformly in t and a). This defines a family (indexed by t) of ϑ-U-perturbations
of the family (Gq0)q0 of skew-products, with arbitrarily small ϑ .

By the second part of Theorem C, we have

Lebδd,s (K̃t ,q0,a) > 0 for Lebd+m-a.e. q0 ∈ Q and Lebδd,s -a.e. t ∈ T,

where the limit set K̃t ,q0,a is formed by jets at p0 taken while varying p for fixed q ′0 where
q0 := (p0, q ′0). By the Fubini theorem, for a.e. q ′0 we have

Lebδd,s (K̃t ,(p0,q ′0),a) > 0 for Lebd -a.e. p0 ∈ P and for Lebδd,s -a.e. t ∈ T.

We fix such a q ′0. We consider (F̃p)p := (F(p,q ′0))p and �̃t ,p := �t ,(p,q ′0). We notice that

K̃t ,(p0,q ′0),a is (in the charts) the set of the s-jets at p0 of the intersection points between the

local unstable set of K̃p and �̃t ,p. Moreover, the set of s-jets at any p0 of the v�-coordinate
of �̃t ,p in the basis (u� , v�) when varying t in T has positive δd,s-dimensional Lebesgue
measure. Since we have a positive set of one-dimensional s-jets in the direction of u� for
a.e. t ∈ T, we just have to use the Fubini theorem to conclude to a set of bidimensional
s-jets of positive measure for a.e. p0 ∈ P.

The same proof works for every family (Gp)p which is Cr -close to (Fp)p with the
extension (Gq)q∈Q given by Gq = Gp +�p,q ′ where (�p,q ′)(p,q ′) is the Cr -family given
by Proposition 6.0.3. Indeed, the preliminary conditions of Theorem C, (U), and �(q0) >

δd,s are open conditions, and the extension in Proposition 6.0.3 in order to get (T) works for
nearby families with the same additive perturbation since having a positive relative speed
is an open property. Thus we can apply Theorem C to the family of skew-products derived
from (Gq)q . This achieves the proof that (Kp)p is an almost Cr ,s-parablender and thus
shows Theorem B. �

Remark 6.0.4. When the family (Fp)p is of the form (F)p with F independent of p and
when the order s of the jets is equal to 0, the extension (Fq)q satisfying the conclusions of
Theorem B can be taken of the form (F+�q ′)(p,q ′) with (�q ′)q ′ independent of p. This
will help to prove Theorem A from Theorem B.

Proof of Proposition 6.0.3. The proof is divided into two steps. The goal and main
difficulty of the extension concerns satisfying (T): we want to extend the family (Fp)p∈P
by adding finitely many new parameters, which will give a positive relative speed to pairs
of limit points with different combinatorics, inside each fiber. We set

� := {(a, α, β) ∈ −→A ×←−A ×←−A : α−1 �= β−1},
and by introducing new parameters we will give a positive relative speed to the points
coded by α and β inside the fiber coded by a for any (a, α, β) ∈ �, and this will give the
transversality assumption (T) inside the extended family.

We begin by choosing a covering of � by products of small cylinders. The reason why
we work with a covering by small products of cylinders is that this will allow us to control
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precisely the relative movement of the two limit points. We will then extend iteratively the
original family (Fp)p∈P by adding new parameters for each set of the covering.

We first pick an arbitrary number h > 0. The extended family (Fq)q∈Q will be taken
so that the families (F(p,q ′))p∈P are (uniformly in q ′) h-Cr -close to (Fp)p∈P. We pick an
integer M large enough so that λM/(1− λ) is small.

Step 1: Working locally. Let us pick any (a, α, β) ∈ �. If a is periodic of minimal period
p ∈ A∗, since α−1 �= β−1, we can choose β so that β−1 is different from the last letter
of p.

FACT 1. The sequences σk(a) where 0 ≤ k ≤ M are all distinct from β−1a.

FACT 2. The sequences β|ka where 2 ≤ k ≤ M are all distinct from β−1a.

Proof of Facts 1 and 2. If a is not periodic, this is immediate. If a is periodic, it is due to
the fact that β−1 is different from the last letter of its minimal period p.

From now, we distinguish two disjoint cases which cover all possible tuples in �:
Case 1: The sequences α|ka where 1 ≤ k ≤ M are all distinct from β−1a. In this case,

we consider the two cylinders [ρα] and [ρβ ] of
←−A of length M defined by ρα := α|M and

ρβ := β|M . We pick a small cylinder [ρa] of
−→A such that a ∈ [ρa] and

• the cylinders [α|kρa] where 1 ≤ k ≤ M are all disjoint from [β−1ρa];
• the cylinders [β|kρa] where 2 ≤ k ≤ M are all disjoint from [β−1ρa].

Case 2: a is periodic of minimal period p and there exists f > 0 such that the last
letters of α are of the form β−1 · pf . We consider two small cylinders [ρα] and [ρβ ] of

←−A
containing α and β, and a small cylinder [ρa] of

−→A such that a ∈ [ρa] and
• the cylinders σk([ρa]) where 0 ≤ k ≤ M are all disjoint from [β−1ρa];
• the cylinders [β|kρa] where 2 ≤ k ≤ M are all disjoint from [β−1ρa].
We take these cylinders so that their lengths are large compared to M.

We notice that the compact set � is covered by the union of the (open) products of
cylinders [ρa]× [ρα]× [ρβ ] associated to any (a, α, β) ∈ � (independent of h). We can
then find a finite covering of � by such products.

Step 2: Extension. We now construct an extension of (Fp)p obtained by successively
extending the family a finite number of times, adding at each step δd,s parameters
corresponding to a product of cylinders [ρ]× [ρ ′]× [ρ′′] ⊂ � in the finite covering
defined in step 1. Here [ρ] is a cylinder in

−→A and [ρ′] and [ρ′′] are cylinders in
←−A such that

ρ′−1 �= ρ′′−1. The δd,s parameters are intended to move the s-jet of the limit point associated
to α relative to that corresponding to β, inside the fiber encoded by a, where (a, α, β) is
any tuple in [ρ]× [ρ′]× [ρ′′].

The union of the points of Rp,a on the local stable manifolds Wa
p for a ∈ [ρ′′−1ρ] is

disjoint from the union of the points of Rp,a on the local stable manifolds Wa
p for a /∈

[ρ′′−1ρ] at every parameter p ∈ P. We then pick a Cr -family (hp)p of bump functions hp
equal to h in a neighborhood of the first ones and equal to 0 in a neighborhood of the
second ones for every p ∈ P. We also pick a Cr -family of maps vsp such that vsp(z) is close
to the stable direction of Kp at Fp(z) for any point z ∈ Kp.
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We now extend the family by setting for every q := (p, q ′)with p ∈ P′ and q ′ = (qi)i ∈
R
δd,s small:

Fq(z) = Fp(z)+ hp(z) ·
( ∑

i

qi · pi
)
· vsp(z) for all z ∈ R

2, (24)

where we sum over i = (i1, . . . , id) such that
∑
k ik ≤ s with pi = pi11 · · · pidd .

This defines a Cr -family of endomorphisms (Fq)q . For small values of q ′, say for q in
some open neighborhood of P× {0}, these are still local diffeomorphisms. Moreover, the
family of hyperbolic basic sets admits a continuation as a family (Kq)q (see the Appendix).

By Remark 6.0.2, we can define the associated family of skew-products (Fq)q which
extends (Fp)p and then the associated map (Gq0)q0 acting on the s-jets derived from
(Fq)q , defined as in step 2 of the proof of Theorem B (let us recall that the jets are taken
while varying only p for fixed q ′ if we set q := (p, q ′)). In particular, (Gq0)q0 is a family
of skew-products satisfying the preliminary assumptions of Theorem C and also (U). By
Proposition 5.1.3, the map q �→ �(q) is continuous. Thus, up to restricting the parameter
space, we have �(q0) > δd,s for any q0.

Here is the counterpart of Lemma 5.1.4 in the Cs-case.

LEMMA 6.0.5. The map q �→ πq,a(α) is Cs for every a ∈ −→A and α ∈ ←−A . Moreover, for
every family F of ϑ-U-perturbations with small ϑ > 0, the map (t , q) �→ π̃t ,q,a(α) is Cs

and q �→ π̃t ,q,a(α) is Cs-close to q �→ πq,a(α) uniformly in t ∈ T.

Proof. We already saw in the proof of Lemma 5.1.4 that the map q �→ πq,a(α) is the
uniform limit (when n→+∞) of the maps q �→ ψ

α|n
q,a(0). On the other hand, we saw in

the second step of the proof of Theorem B that the contraction ψα|nq,a induces a map on
s-jets which has inferior unipotent differentials with eigenvalues exponentially small in n.
Thus by Lemma 5.1.2 this induced map acting on s-jets contracts by a factor independent
of (q, a) and exponentially small in n. Thus the sequences of the s first derivatives of the
maps q �→ ψ

α|n
q,a(0) all converge uniformly. Then the map q �→ πq,a(α) is Cs . The same

argument works for small ϑ-U-perturbations.

We now prove that (Gq0)q0 satisfies property (T) restricted to any (a, α, β) ∈ [ρ]×
[ρ′]× [ρ′′]. More precisely we show below the following technical lemma.

LEMMA 6.0.6. Up to reducing Q, for every a ∈ [ρ], α ∈ [ρ′], β ∈ [ρ′′], p0 ∈ P, and r >
0, with q := (p, q ′), the set of q ′0 such that Jsp0

πq,a(α) and Jsp0
πq,a(β) are r-close is of

Lebesgue measure dominated by rδd,s , with a constant independent of a, α, β, and p0.
Moreover, for every family of ϑ-perturbations of (Gq0)q0 with ϑ small enough, t ∈ T,
a ∈ [ρ], α ∈ [ρ′], β ∈ [ρ′′], p0 ∈ P, and r > 0, the set of q ′0 such that Jsp0

π̃t ,q,a(α) and
Jsp0
π̃t ,q,a(β) are r-close is of Lebesgue measure dominated by rδd,s , with the same constant.

We recall that the s-jets at p0 are taken while varying p around p0 for a fixed value of
q ′ equal to q ′0. In particular, by the Fubini theorem, the set of (p0, q ′0) such that Jsp0

πq,a(α)

and Jsp0
πq,a(β) are r-close is also of measure dominated by rδd,s and the same holds for
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ϑ-perturbations. The proof of Lemma 6.0.6 is given below. We first finish the proof of
Proposition 6.0.3.

We extend iteratively the initial family (Fp)p a finite number of times by the same
method. At each step, we extend by adding δd,s new parameters corresponding to a new
product of cylinders [ρ]× [ρ′]× [ρ′′] in the finite covering of � defined in step 1. The
adaptation of Lemma 6.0.6 is straightforward. This proves property (T) and so (Gq0)q0∈Q
is a family of skew-products, with Q := P× (−1, 1)m for some m > 0 (up to rescaling).
This concludes the proof.

Proof of Lemma 6.0.6. We first prove the result for case 1 in step 1 of the proof of
Proposition 6.0.3. Let �q,a(α) and �q,a(β) be the points of the phase space R

2 equal
to πq,a(α) and πq,a(β) in the parameterization of Wa

q . Both belong to Wa
q .

We pick local coordinates in a neighborhood of �0,a(α) centered at �0,a(α) with a
basis given by R · es0 + R · eu0 , where we denote by R · es0 and R · eu0 the stable and unstable

directions of
←→
K0 at �0,a(α). We write

Jsp0
�q,a(α) =: J s

p0
�q,a(α) · es0 +J u

p0
�q,a(α) · eu0 .

Take care that the s in the left-hand term is the order of the jet and the s in the right hand
term just means ‘stable’. We can proceed similarly for �0,a(β).

Case 1. Easy case: 0-jets. We first perform the proof for 0-jets to show the general idea.
We fix the parameter p0 = 0. We begin by studying�q,a(α), more precisely the variations
of the 0-jet of �(0,q ′),a(α), that is, �(0,q ′),a(α) itself, when moving q ′. In order to do this,
we set

�0(q
′) := �(0,q ′),a(α)

and denote by �k(q
′) its preimage by F k(0,q ′) on W

α|ka
(0,q ′) (this is the point equal to

π(0,q ′),α|ka(σ
k(α)) in the parameterization of the stable manifold). We pick local coor-

dinates centered at each Pk := �k(0) with a basis given by the corresponding preimages
R · esk and R · euk of R · es0 and R · eu0 by F k0 for k > 0. These are the stable and unstable

directions of
←→
K0 at Pk . In the decomposition R · esk + R · euk , we write

�k(q
′) =: �sk(q

′) · esk +�uk(q ′) · euk .

In the coordinates given by Pk+1 + R · esk+1 + R · euk+1 and Pk + R · esk + R · euk with
Pk+1 = Pk = (0, 0), the map F0 restricted to a neighborhood of Pk+1 = (0, 0) sends
Pk+1 = (0, 0) to Pk = (0, 0) and is C1-close to its differential which is diagonal. In
particular, the (1, 1)-coefficient is a real number λk such that |λk| < λ < 1.

By hyperbolic continuation, there exists B > 0 independent of k and M such that

Ck :=
∣∣∣∣d�

s
k

dq ′
(0)

∣∣∣∣ < B.

We recall that �k+1(q
′) is sent onto �k(q ′) by F(0,q ′). Moreover, F(0,q ′)(�k+1(q

′)) is
the sum of F0(�k+1(q

′)) and a term �k(q
′) = �sk(q ′) · esk +�uk (q ′) · euk coming from
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equation (24). In particular, we notice that∣∣∣∣d�
s
k

dq ′
(0)

∣∣∣∣ < 2h.

We have

d�sk

dq ′
(0) = λk ·

d�sk+1

dq ′
(0)+ d�

s
k

dq ′
(0),

Ck < λk · Ck+1 + 2h.

We also notice that�k(q ′) is equal to zero when 0 ≤ k ≤ M − 1 by the first item of case 1.
This gives, for every M ′ > M ,

C0 < B · λM ′ + 2h · (λM ′−1 + · · · + λM).
By taking M ′ large, we get

C0 ≤ 2h
λM

1− λ ,

which is small compared to h by assumption. We finally get that the derivative of
�(0,q ′),a(α) = �0(q

′) at q ′ = 0 in the stable direction R · es0 is small compared to h:

d

dq ′
�s(0,q ′),a(α) is small compared to h.

The same holds true when replacing �(0,q ′),a(α) by the preimage �′1(q ′) of �(0,q ′),a(β)

by F(0,q ′) onWβ−1a
(0,q ′) , using the second item of case 1. By equation (24) and since es0 is close

to vs0(�
′
1(0)), the derivative (d/dq ′)�s

(0,q ′),a(β) is then close to h. Thus

d

dq ′
(�s(0,q ′),a(α)−�s(0,q ′),a(β)) is bounded away from (0, 0).

In particular, up to reducing Q, the set of q ′0 such that J0
0�q,a(α) and J0

0�q,a(β) are r-close
is of Lebesgue measure dominated by r with a constant which is independent of a, α, β, and
p0 (since the above relative speed is locally uniformly bounded from below while varying
a, α, β, and p0). We can proceed the same way for any p0, and the domination constant is
independent. Integrating using the Fubini theorem, the set (p0, q ′0) such that J0

p0
�q,a(α)

and J0
p0
�q,a(β) are r-close is of Lebesgue measure dominated by r, and thus it is also the

case for J0
p0
πq,a(α) and J0

p0
πq,a(β). The statement about ϑ-perturbations follows easily

with the same arguments when ϑ is small.
Case 2. General case: s-jets. We now turn to the general but more difficult case of s-jets.

This time, we also vary the parameter p. We fix p0 = 0. We investigate the differentials of
Js0�q,a(α) and Js0�q,a(β) when deriving relative to q ′.

We keep the same coordinates for each k: we keep expressing the point �k(p, q ′)
(depending also on p this time) in the coordinates Pk + R · esk + R · euk (independent of
(p, q ′) small). Let Js0�k(q ′) and Ju0�k(q ′) be the components in this basis of the s-jet of
�k(p, q ′) at p0 = 0 for q ′ fixed. Note that by hyperbolic continuation, there exists B ′ > 0
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independent of k and M such that

C′k :=
∣∣∣∣dJ

s
0�k

dq ′
(0)

∣∣∣∣ < B ′.

For q ′ fixed the family (�k(p, q ′))p is the image of (�k+1(p, q ′))p by the family of maps
(F(p,q ′))p. The family (F(p,q ′)(�k+1(p, q ′)))p is the sum of (Fp(�k+1(p, q ′)))p and of
the family (�p,k)p of perturbations coming from equation (24). In particular,∣∣∣∣dJ

s
0�k,p

dq ′
(0)

∣∣∣∣ � 2δd,sh.

Again �k,p(q
′) is equal to zero when 0 ≤ k ≤ M − 1 by the second item of case 1.

However, this time the action of (Fp)p on s-jets is more complicated than on 0-jets. For
each k, we write the Taylor expansion of Fp in Pk+1 of order s. Then we replace each of
its coefficients by its s-jet in p, and the variables by Js0�k+1(q

′) and Ju0�k+1(q
′), and we

expand this expression. This shows that

J s
0�k(q

′) =Mk ·J s
0�k+1(q

′)+M′k ·J u
0 �k+1(q

′)+J s
0�k,p(q

′).

The termJs0�k,p(q
′) has its derivative at q ′ = 0 bounded by 2δd,sh, and its coefficients

in pi depends only on qi . The matrix Mk is lower triangular with all its diagonal
coefficients equal to λk with |λk| < λ < 1. On the other hand, the matrix M′k is lower
triangular with all its diagonal coefficients equal to 0. Iterating, using the first item of step
1 and then taking the derivative at q ′ = 0, we see that

d

dq ′
J s

0�(p,q ′),a(α)

is lower triangular with all its diagonal coefficients bounded by

2δd,sh
λM

1− λ ,

which is small compared to h by assumption on M. Thus for every i = (i1, . . . , id) such
that

∑
k ik ≤ s, the coordinate in pi of the stable component of the s-jet Js0�q,a(α) has

small derivative compared to h while moving the parameter qi around 0.
The same holds for the preimage �′1(p, q ′) of �q,a(β) by Fq . By equation (24) and

since R · es0 is close to R · vs0(�′1(0, 0)), for every i = (i1, . . . , id) such that
∑
k ik ≤ s,

the coordinate in pi of the stable component of the s-jet Js0�q,a(β) has a derivative close
to h (up to a non-zero independent multiplicative constant) while moving the parameter qi .
Thus the coordinate in pi of Js0�q,a(α)− Js0�q,a(β) has a non-zero derivative while
moving qi around 0. The same still holds for other values of p0. Then, up to reducing Q,
the set of (p0, q ′0) such that Jsp0

�q,a(α) and Jsp0
�q,a(β) are r-close is of Lebesgue measure

dominated by rδd,s , and thus it is also the case for Jsp0
πq,a(α) and Jsp0

πq,a(β). This gives
the result, using the Fubini theorem. The statement about ϑ-perturbations follows easily
with similar arguments. This ends the proof for case 1.

For case 2, the proof is simpler. First take the original sequences α, β, and a of case 2
around which the cylinders [ρα], [ρβ ], and [ρa] are centered. The coordinate in pi of the
stable component of the s-jet Js0�q,a(β) still has a non-zero derivative while moving the
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parameter qi (this only needs the second item of case 2 and not the first item of case
1 not present in case 2). On the other hand, �q,a(α) is the image of �q,a(β) by some
iterate of Fq restricted on the M first images of Wa

q since a is periodic of period p and
the last letters of α are of the form β−1 · pf for some f > 0. These local stable manifolds
do not depend on q ′ by the first item of case 2. Moreover, the action of (Fq)q restricted
to these stable manifolds on stable components of jets is lower triangular with diagonal
coefficients between 0 and 1. Thus the coordinate in pi of Js0�q,a(α)− Js0�q,a(β) has
again a non-zero derivative while moving qi . Since the lengths of the cylinders are large,
this remains true for any (α, β, a) in [ρα]× [ρβ ]× [ρa]. We conclude as in case 1, which
ends the proof.

Remark 6.0.7. When � = 1, to give a relative movement inside the a-fiber to the points
encoded by α and β, we considered the preimages of these two points by Fp (respectively
on Wα−1a

p and Wβ−1a
p ). The second one was not periodic and distinct from the first one.

We then perturbed Fp in a neighborhood of this second preimage.
In the case where � > 1, we shall look at the � respective successive preimages of these

two points by Fp (respectively, onWα−1a
p andWβ−1a

p and their �− 1 successive images by
Fp) and take the first pair of preimages which are distinct. One of them is not periodic, and
we perform the same perturbation as before in a neighborhood of this point. Then the proof
is the same with the same distinction in two cases whether the M successive preimages of
the other preimage intersect this neighborhood or not.
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A. Appendix
A.1. Proofs of intermediate lemmas.

Proof of Lemma 5.1.2. Let us fix p ∈ P, a ∈ −→A , x ∈ X, and α = (α−n, . . . , α−1) ∈ An
for some n > 0. We notice that the differential Dψαp,a(x) can be written as the product of
n factors:

Dψαp,a(x) =
n∏
k=1

Dψ
α−k
p,ak (ψ

α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)) with ak := α|k−1a. (25)

By assumption (U), each of these n factors is unipotent inferior and can then be written as
a sum of N terms:

Dψ
α−k
p,ak (ψ

α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)) = M0 +M1 + · · · +MN−1. (26)
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Here M0 is a diagonal matrix which has all its diagonal coefficients of absolute value
equal to the coefficient λp,ak ,α−k (ψ

α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)). On the other hand, for every

1 ≤ k ≤ N − 1, all the coefficients ofMk are equal to 0 except possibly on the kth (small)
diagonal line below the (great) diagonal line.

We can write each of the n factors of equation (25) as in equation (26) and then expand
Dψαp,a(x) as a sum ofNn factors of n terms. Among them, any such product with no fewer
than N matrices having zero coefficients on and above the great diagonal line vanishes.
Thus, between the Nn terms whose sum equals Dψαp,a(x), there are at most

P̃ (n) :=
(

n

N − 1

)
· (N − 1)N−1 +

(
n

N − 2

)
· (N − 1)N−2 + · · ·

(
n

1

)
· (N − 1)+ 1

(27)

which are non-zero, with P̃ polynomial. Each of these at most P̃ (n) termsM1 · · ·Mn is
a product of n factorsMk .

Let us consider such a product M1 · · ·Mn. At most N − 1 of the Mk have all their
coefficients equal to 0 except possibly on one of the small diagonal lines below the
(great) diagonal line. The at least n− (N − 1) other factors are all diagonal matrices. Each
coefficient of the resulting productM1 · · ·Mn is then either zero or equal to the product of
n non-zero coefficients ck , with ck a non-zero coefficient ofMk . IfMk is diagonal, |ck| is
equal to λp,ak ,α−k (ψ

α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)). If not, |ck| is bounded by some independent

constant C1 since for every a ∈ A, the C1-bounded map ψap,a depends continuously on

p ∈ P and a ∈ −→A . By equation (13), we have

λp,a,α(x) =
n∏
k=1

λp,ak ,α−k (ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)) with ak := α|k−1a. (28)

Moreover, each of the coefficients λp,ak ,α−k (ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)) is larger than γ ′.

Thus the resulting coefficient ofM1 · · ·Mn is smaller than λp,a,α(x) · (γ ′)−N+1 · CN−1
1

in modulus. Thus any coefficient of Dψαp,a(x) is bounded by P(n) · λp,a,α(x), where
P(n) := P̃ (n) · (γ ′)−N−1 · CN−1

1 is a positive polynomial on R+.

Proof of Lemma 5.4.4. For every p ∈ P, a ∈ −→A , n ≥ 0, ρ ∈ An, and (α, β) ∈
Cρ , the points πp,a(α) and πp,a(β) are the respective images of πp,ρa(σ

n(α))

and πp,ρa(σ
n(β)) by ψ

ρ
p,a. Let us denote by v = (v1, . . . , vN) the vector v :=

πp,ρa(σ
n(α))− πp,ρa(σ

n(β)). We denote by j ∈ {1, . . . , N} the maximal index such
that |vj | > 2N · P(n) · |vi | for every i < j , where the polynomial P was defined in
Lemma 5.1.2. Using this, it follows that

|vj | ≥ F · (2NP(n))−N · ‖v‖ (29)

for some positive constant F (depending only on N). The segment between the two points
πp,ρa(σ

n(α)) and πp,ρa(σ
n(β)) is fully included in X since X is convex. Let χ : [0, 1]→

R be theC1-map which sends x ∈ [0, 1] to the jth coordinate ofψρp,a(πp,ρa(σ
n(β))+ xv).

https://doi.org/10.1017/etds.2022.16 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.16


1122 S. Biebler

By the mean value equality, there exists x ∈ (0, 1) such that

χ(1)− χ(0) = χ ′(x) =
j∑
i=1

aj ,i · vi (30)

where aj ,i is the coefficient of index (j , i) of the differential Dψρp,a(y) with y :=
πp,ρa(σ

n(β))+ xv. The right-hand equality is due to the fact that Dψρp,a(y) is unipotent
inferior by assumption (U). We notice that |aj ,j | = λp,a,ρ(y). By Lemma 5.1.2, |aj ,i | is
smaller than P(n) · λp,a,ρ(y). By equation (30), we then have

|χ(1)− χ(0)| ≥ λp,a,ρ(y) · |vj | −
∑
i<j

P (n) · λp,a,ρ(y) · |vj |
2N · P(n) ≥

λp,a,ρ(y) · |vj |
2

.

(31)

Noticing that ‖πp,a(α)− πp,a(β)‖ ≥ |χ(1)− χ(0)| and substituting inequality (29) into
inequality (31), we then have

‖πp,a(α)− πp,a(β)‖ ≥ F2 · (2NP(n))
−N · λp,a,ρ(y) · ‖πp,ρa(σ

n(α))− πp,ρa(σ
n(β))‖.

(32)

By Lemma 5.2.1 and noting R(n) := (2D1/F ) · (2NP(n))N , which is positive on R+, we
have

‖πp,a(α)− πp,a(β)‖ ≥ �p,a,ρ

R(n)
· ‖πp,ρa(σ

n(α))− πp,ρa(σ
n(β))‖. (33)

The proof of the second item is similar and we apply Lemma 5.2.4 to conclude.

Proof of Lemma 5.3.1. We notice that the coefficient λp,a,α−1(πp,α−1a(σ (α))) is positive
and uniformly distant from 0 and +∞. Since log is C1 on ]0, +∞[, we just have to show
that the following map is Hölder with positive exponent on its domain:

(α, a) �→ λp,a,α−1(πp,α−1a(σ (α))).

Let us recall that the latter is the (1, 1)th coefficient of Dψα−1
p,a (πp,α−1a(σ (α))) (up to

the sign). By assumption the map a ∈ −→A �→ Dfp,a is Hölder for the C0-topology and so
it is enough to show that the map (α, a) ∈ ←−A ×−→A �→ πp,a(α) ∈ X is itself Hölder. By
hyperbolicity, the map α ∈ ←−A �→ πp,a(α) ∈ X is Hölder for any a ∈ −→A , with exponent
and constant independent of a. Thus it is enough to show that the map a ∈ −→A �→
πp,a(α) ∈ X is Hölder for any α ∈ ←−A , with independent constants. But using again both
the hyperbolicity and that a �→ fp,a and a �→ Dfp,a are Hölder for the C0-topology, we
see that the maps a �→ ψ

αn
p,a(0) are Hölder, with exponent and constant independent of p,

α, and n. But this sequence converges uniformly to the map a �→ πp,a(α), which concludes
the proof.

A.2. Proofs of distortion lemmas.

Proofs of Lemma 5.2.1. The lemma will follow easily from the following two sublemmas.
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SUBLEMMA A.2.1. There exists A > 0 such that for any p ∈ P, a ∈ −→A , and a ∈ A,

1− A|x − y| ≤ λp,a,a(x)

λp,a,a(y)
≤ 1+ A|x − y| for all x, y ∈ X.

Proof. The non-zero number λp,a,a(x) is the (1, 1)th coefficient of the differential
Dψap,a(x) (up to the sign). The maps ψap,a are uniformly (in p, a, and a) C2 bounded
since for each a ∈ A, the map ψap,a depends continuously in the C2-topology on (p, a)

and since P and
−→A are compact and A is finite. Thus, denoting by Ã a uniform bound of

the second differential ofψap,a on X among p ∈ P, a ∈ −→A , a ∈ A, the coefficient λp,a,a(x)

is between λp,a,a(y)− Ã|x − y| and λp,a,a(y)+ Ã|x − y|. We notice that γ ′ < λp,a,a(y).
Denoting A := Ã/γ ′ and taking the quotient, we get the desired inequality.

SUBLEMMA A.2.2. There exists A′ > 0 such that for every p ∈ P, a ∈ −→A , n ≥ 0, α ∈
An, x, y ∈ X, the points ψαp,a(x) and ψαp,a(y) are A′ · γ n/2 distant.

Proof. It is an immediate consequence of the inequality�p,a,α < γ |α| and of Lemma 5.1.2
that the diameter of ψαp,a(X) is dominated by γ |α|/2.

We can now conclude. Using equation (13), we write both λp,a,α(x) and λp,a,α(y) as
products of n factors and thus their quotients as

λp,a,α(x)

λp,a,α(y)
=

n∏
k=1

λp,ak ,α−k
(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x)

)
λp,ak ,α−k

(
ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(y)

) ,

where we set again ak := α|k−1a ∈ −→A . Using the two sublemmas, the previous quotient is
between

∏n
k=1(1− AA′ · γ k/2) and

∏n
k=1(1+ AA′ · γ k/2). Since 0 < γ < 1, the infinite

products
∏∞
k=1(1± AA′ · γ k/2) converge and their limits are respectively in (0, 1) and

(1, +∞), which concludes the proof.

Proof of Lemma 5.2.2. Let us fix η > 0. By Sublemmas A.2.1 and A.2.2, there exist
n0 ∈ N such that for every p ∈ P, a ∈ −→A , n > n0, α ∈ An, a ∈ A, and x, y ∈ ψαp,a(X),
we have e−η < λp,a,a(x)/λp,a,a(y) < eη. We recall that the map ψap,a depends contin-

uously in the C2-norm on a ∈ −→A and p in P (both compact sets). Thus there exists
δ(η) > 0 such that for every a ∈ −→A and p1, p2 ∈ P with ‖p1 − p2‖ < δ(η), we have
e−η < λp1,a,a(x)/λp2,a,a(y) < eη for every n > n0, α ∈ An, a ∈ A, x ∈ ψαp1,a(X), and
y ∈ ψαp2,a(X). We denote by D2 > 0 the maximum of the quotients λp1,a,α(x)/λp2,a,α(y)

among p1, p2 ∈ P, a ∈ −→A , n ≤ n0, α ∈ An, and x, y ∈ X. We conclude by noticing that
for every n > n0 and x, y ∈ X, we have

λp1,a,α(x)

λp2,a,α(y)
= λp1,a,...α−n0 ···α−1(x)

λp2,a,α−n0 ···α−1(y)
·

n∏
k=n0+1

λp1,ak ,α−k (ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(x))

λp2,ak ,α−k (ψ
α−k−1
p,ak+1 ◦ · · · ◦ ψα−np,an(y))

.

Proof of Lemma 5.2.3. Let us fix p ∈ P. We saw in the proof of Lemma 5.3.1 that

(a, α) �→ λp,a,α−1(πp,α−1a(σ (α)))
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is Hölder with positive exponent on its domain. We now fix an arbitrary β ∈ ←−A . Let us
take a, a′ ∈ −→A . By equation (13) and proceeding as in the proof of Lemma 5.2.1, we see
that the quotient

λp,a,α(πp,αa(β))

λp,a′,α(πp,αa′(β))

is bounded between 0 and+∞, with constants independent of p, a, a′, and α. To conclude,
we just have to apply Lemma 5.2.1.

Proof of Lemma 5.2.4. By Sublemma A.2.2, there exists n0 ∈ N such that for every p ∈ P,
n > n0, ρ ∈ An, a ∈ A, and x, y ∈ ψρp,a(X), we have

λp,a,a(y)
ε′ < λp,a,a(x) < λp,a,a(y)

1/ε′ .

Then up to taking ϑ-perturbations for small ϑ , for every t ∈ T, p ∈ P, a ∈ −→A , n > n0,
ρ ∈ An, a ∈ A, x ∈ ψρt ,p,a(X), and y ∈ ψρp,a(X), we have

λp,a,a(y)
ε′ < λ̃t ,p,a,a(x) < λp,a,a(y)

1/ε′ .

Let D4 > 0 be the maximum of λ̃t ,p,a,ρ(x)/λ
ε′
p,a,ρ(y) and λ1/ε′

p,a,ρ(y)/λ̃t ,p,a,ρ(x) among

t ∈ T, a ∈ −→A , p ∈ P, n ≤ n0, ρ ∈ An, x, y ∈ X. We conclude as for Lemma 5.2.2.

A.3. Pressure function: proof of Proposition 5.1.3. For simplicity, we fix p ∈ P and
denote, for every s ≥ 0,

Zn(s) :=
∑
α∈An

�sp,a,α > 0.

For every s ≥ 0, the sequence n ∈ N+ �→ logZn(s) is subadditive and so the limit
�p,a(s) = limn→+∞(1/n)logZn(s) exists and is finite by Fekete’s lemma. We notice that
�p,a(0) is equal to the topological entropy of the shift σ which is positive since A has
at least two letters. An immediate consequence of Lemma 5.2.3 is that the pressure �p,a

only depends on p. We denote it by �p. We notice that the map s ∈ R+ �→ logZn(s) is
convex. The limit map s �→ �p(s) is then also convex and thus continuous. We remark
that for s, s′ ≥ 0,

Zn(s + s′) =
∑
α∈An

�s+s′p,a,α ≤
∑
α∈An

�sp,a,α · γ ns
′
,

and then �p(s + s′) ≤ �p(s)+ s′ · logγ . Since logγ < 0, the map s ∈ R+ �→ �p(s)

is strictly decreasing. As s →+∞, we see that �p(s) tends to −∞. Finally, by the
intermediate value theorem, the map s ∈ R+ �→ �p(s) has a unique zero�(p). It remains
to prove the continuity of p �→ �(p). By equation (16), we have

�p(s) = lim
n→+∞

1
n

log
∑
α∈An

�sp,a,α for any s ≥ 0. (34)

By Lemma 5.4.3 (whose proof does not need the continuity of p �→ �(p)), we see that
for every p and ε′ > 1, there exists a neighborhoodUp,ε′ of p and a constant D5 > 0 such
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that for every p′ ∈ Up,ε′ and α ∈ A∗, the term �p′,a,α is bounded between �ε
′
p,a,α/D5

and D5�
1/ε′
p,a,α . Substituting this in equation (34), this implies that �p(sε′) ≤ �p′(s) ≤

�p(s/ε
′) for every s ≥ 0 and p′ ∈ Up,ε′ and so �(p)/ε′ ≤ �(p′) ≤ �(p)ε′ for every

p′ ∈ Up,ε′ . This proves the continuity of p �→ �(p).

A.4. Hyperbolicity theory. We recall here some background on hyperbolic compact
sets of Cr -endomorphisms. This subsection is mainly taken from §1 in [Be1] and from
Appendix C in [BB].

Let M be a manifold. A subset K ⊂M is left invariant by a C1-endomorphism F
from M into M if F(K) = K. When F is a diffeomorphism, the invariant compact set
K ⊂M is hyperbolic if there exists a DF-invariant splitting TM|K = Es ⊕

Eu so that
Es is contracted by DF and Eu is expanded by DF:

there exist λ < 1, C > 0, for all k ∈ K, for all n ≥ 0,

‖DF n|Esk‖ ≤ Cλn and ‖(DF n|Euk )−1‖ ≤ Cλn.

When F is a local diffeomorphism, we shall study the inverse limit
←→
K F of K:

←→
K F := {(ki)i ∈ KZ : F(ki) = ki+1, for all i ∈ Z}.

This is a compact space for the topology induced by the product one ofKZ. The dynamics
induced by F on

←→
K F is the shift

←→
F and is invertible. Let π :

←→
K F→ K be the

0-coordinate projection. Let π∗TM be the bundle over
←→
K F whose fiber at k is Tπ(k)M.

The mapDF acts canonically on π∗TM as
←→
F on the basis and as the linear mapDπ(k)F

on the fiber of k ∈ ←→K F.
The compact set K (or

←→
K F) is hyperbolic if there exists a DF-invariant splitting

π∗TM = Es ⊕
Eu such that Esk is contracted by Dπ(k)F and Euk is expanded by Dπ(k)F:

there exist λ < 1, C > 0, for all k ∈ ←→K F, for all n ≥ 0,

‖DF n|Esk‖ ≤ Cλn and ‖(DF n|Euk )−1‖ ≤ Cλn.

Actually the definition of hyperbolicity for local diffeomorphisms is consistent with the
definition of hyperbolicity for diffeomorphisms when the dynamics is invertible. Here is a
useful result about structural stability.

THEOREM. (Przytycki [Pr]) Let K be a hyperbolic set for a C1-local diffeomorphism F
ofM. Then for every C1-local diffeomorphism F ′ which is C1-close to F, there exists a
continuous map iF ′ :

←→
K F→M which is C0-close to π and so that:

(1) iF ′ ◦ ←→F = F ′ ◦ iF ′;
(2) KF ′ := iF ′(←→K F) is hyperbolic for F ′.

Let us also recall the definition of a stable manifold in this context. For every k ∈ K and
η > 0, we define the stable manifold and local stable manifold of k by
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Ws(k; F) := {k′ ∈M : d(F n(k), F n(k′)) −→
n→+∞ 0},

Ws
η(k; F) := {k′ ∈M : η > d(F n(k), F n(k′)) −→

n→+∞ 0}.

For k ∈ ←→K F and η > 0, the unstable manifold and local unstable manifold of k are:

Wu(k, F)= {k′0 ∈M: there exists (k′i )i<0 such that F(k′i−1)=k′i and d(kn, k′n) −→
n→−∞0};

Wu
η (k, F)={k′0∈M: there exists (k′i )i<0 such that F(k′i−1)=k′i and η>d(kn, k′n) −→

n→−∞0}.
These sets are properly embedded Cr -manifolds. For simplicity, we write for example

Ws(k) instead of Ws(k, F) when there is no possible confusion.

THEOREM F. (Berger [Be1] Proposition 1.6, Theorem C.5 [BB]) Let r ≥ 1 and letM be
a manifold. Suppose that (Fp)p is a Cr -family of local diffeomorphisms Fp ofM leaving
invariant the continuation of a compact hyperbolic set Kp. Then there exists η > 0 such
that the families (Ws

η (kp; Fp))p∈P and (Wu
η (kp; Fp))p∈P of Cr -submanifolds are of class

Cr and depend continuously on respectively k0 ∈ K0 and k0 ∈
←→
K F0 .

Remark A.4.1. An immediate adaptation of the proof of Theorem C.5 in Appendix C
of [BB] actually shows that the families (Ws

η (kp; Fp))p∈P and (Wu
η (kp; Fp)p∈P Hölder

depend for the Cr−1-topology on respectively k0 ∈ K0 and k0 ∈
←→
K F0 .

We will need the following parametric inclination lemma.

LEMMA A.4.2. Let r ≥ 1 and U � R
m. Suppose that (Fp)p is a Cr -family of local diffeo-

morphisms Fp of U leaving a compact hyperbolic setKp invariant. Let k = (ki0)i ∈
←→
K F0

and (�p)p be a Cr -family of manifolds of the same dimension as Ws
η(kp; Fp). Suppose

that �p does not intersect the stable set of Kp and (�p)p intersects (Wu
η (kp; Fp))p

transversally at a Cr -family of points (zp)p. Then for any ε > 0 and n large there is a
submanifold �np C

r -close to Ws
η(k
−n
p ; Fp), whose image by F np is in a ε-neighborhood of

zp in �p and such that (�np)p is Cr -close to (Ws
η (k
−n
p ; Fp))p.

Proof. The proof is similar to that of Lemma C.6 of [BB], but for inverse iterations this
time: we extend Fp on a neighborhood U ′ of U in such a way that �p is included in the
stable manifold of some saddle point. Then we apply Theorem F.
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