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108.29 A geometric mean–arithmetic mean ratio limit

One of the truly delightful results related to the natural numbers is the
following limit of the ratio of the geometric and arithmetic means of the first
 natural numbers:n

lim
n → ∞

n 1 · 2 · 3 · … · n
1
n (1 + 2 + 3 +  … +  n) =

2
e

. (1)

Obviously, the ratio in (1) approaches its limit really slowly. In fact, the
relative difference between the ratio and its limiting value is of order

, as . For example, this is about 2% when .(n + 1)(2n)−1
n → ∞ n = 100

Some generalisations of the limit can be found in [1], [2] and [3].
In this Note, we offer a short proof and generalisation of limit (1). Our

result is narrower here, but the techniques are wholly different from [1], [2]
and [3], and rely solely, in theory, on algebraic limit properties. Our proof
relies on the following well-known result.

Lemma [See e.g. [4, p. 81]]: Let  be a sequence of positive reals with

. Then .

an

lim
n → ∞

an + 1

an
= L lim

n → ∞

n an = L

We now establish a generalisation of (1) in the following theorem.

Theorem: Let  be a sequence of positive reals with .

Then

{bn} lim
n → ∞

bn − n = 0

lim
n → ∞

n b1b2b3  …  bn
1
n (b1 + b2 + b3 +  …  + bn)

=
2
e

.

Proof: We apply the Lemma to 

an =
∏n

i = 1 bi

(1
n ∑n

i = 1 bi)n .
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Note that  and define .
Then

1
n ∑n

i =1bi = 1
n ∑n

i =1 (bi − i) + 1
n ∑n

i =1 i cn = 1
n ∑n

i =1(bi − i)

an + 1

an
= bn + 1

(cn + 1
2 (n + 1))n

(cn + 1 + 1
2 (n + 2))n + 1

=
bn + 1

cn + 1 + 1
2 (n + 2) ( n + 1 + 2cn

n + 2 + 2cn + 1
)n

.

Noting that , we see that the limit of the first part is 2. We

may find the limit of the second part directly, or using the main result of [5]:

lim
n → ∞

cn = 0

lim
n → ∞ ( n + 1 + 2cn

n + 2 + 2cn + 1
)n

= exp ( lim
n → ∞

n
−1 + 2cn − 2cn + 1

n + 2 + 2cn + 1
) = e−1.

This completes the proof.
Note that taking  in the Theorem gives (1). As a general

example, the Theorem applies to any sequence , where
; for example, .

bn = n
bn = n + f (n)

f (n) → 0 bn = n + 1
n
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