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1. Introduction

Let F be a non-Archimedean local field of residue characteristic p and G a connected

reductive group over F. Motivated by the modulo p Langlands program, we study the
modulo p representation theory of G. As in the classical (the representations over the

field of complex numbers), Hecke algebras are useful tools for the study of modulo p

representations. Especially, a pro-p-Iwahori Hecke algebra which is attached to a pro-p-
Iwahori subgroup I(1) has an important role in the study. (One reason is that any nonzero

modulo p representation has a nonzero I(1)-fixed vector.) For example, this algebra is

one of the most important tool for the proof of the classification theorem [5].
We focus on the representation theory of pro-p-Iwahori Hecke algebra. Since the simple

modules are classified [3, 14, 18], we study its homological properties. The aim of this

paper is to calculate the extension between simple modules. Note that such calculation

was used to calculate the extension between irreducible modulo p representations of G
when G=GL2(Qp) [16]. As far as the author knows, a calculation of extensions was done

only when G = GL2. Our calculation is in general, namely we do not assume anything

about G. We also remark a related result in [1]. If π1,π2 are modulo p irreducible
subquotients of principal series of G, by the main theorem of [1], then we have an

embedding Ext1H(π
I(1)
1 ,π

I(1)
2 ) ↪→Ext1G(π1,π2). Hence, the calculation in this paper should

be helpful to calculate extensions between π1 and π2. When π1,π2 are principal series,
some calculations are done by Hauseux [10, 11].

We explain our result. For each standard parabolic subgroup P, let HP be the pro-

p-Iwahori Hecke algebra of the Levi subgroup of P. Then for a module σ of HP , we
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can consider: the parabolic induction IP (σ) which is an H-module, a certain parabolic

subgroup P (σ) containing P, a generalized Steinberg module St
P (σ)
Q (σ), where Q is a

parabolic subgroup between P and P (σ). By [3], each simple module is constructed

by three steps: (1) starting with a supersingular module σ of HP , where P is a

parabolic subgroup; (2) take a generalized Steinberg module St
P (σ)
Q (σ) (3) and take a

parabolic induction IP (σ)(St
P (σ)
Q (σ)). (We do not explain the detail of notation here.) Our

calculation follows these steps. Let π1 = IP (σ1)(St
P (σ1)
Q1

(σ1)) and π2 = IP (σ2)(St
P (σ2)
Q2

(σ2))

be two simple modules here σ1 (resp. σ2) is a simple supersingular module of HP1
(resp.

HP2
).

(1) By considering the central characters, the extension ExtiH(π1,π2) is zero if P1 �= P2

(Lemma 3.1). Hence, we may assume P1 = P2. Set P = P1.

(2) We prove

ExtiH(IP (σ1)(St
P (σ1)
Q1

(σ1)),IP (σ2)(St
P (σ2)
Q2

(σ2)))� ExtiHP ′ (St
P ′
Q′

1
(σ1),St

P ′
Q′

2
(σ2))

for some Q′
1,Q

′
2 and P ′ (Proposition 3.4). For the proof, we use the adjoint functors of

parabolic induction and results in [4]. Hence, it is sufficient to calculate the extension

groups between generalized Steinberg modules.

(3) We prove

ExtiH(StQ1
(σ1),StQ2

(σ2))� Exti−r
H (e(σ1),e(σ2))

for some (explicitly given) r ∈ Z≥0 or 0 (Theorem 3.8) using some involutions on H and
results in [2]. Here, e(σ) is the extension of σ to H (Definition 2.4).

(4) We prove

ExtiH(e(σ1),e(σ2))� ExtiHP /I(σ1,σ2)

for some ideal I ⊂ HP which acts on σ1 and σ2 by zero. We use results of Ollivier–

Schneider [15] for the proof. The algebra HP /I is not a pro-p-Iwahori Hecke algebra

attached to a connected reductive group but a generic algebra in the sense of Vignéras
[20, 4.3]. Hence, it is sufficient to calculate the extensions between supersingular simple

modules of a generic algebra.

(5) Now let H be a generic algebra and π1,π2 be simple supersinglar modules. The
algebra has the following decomposition as vector spaces: H=Haff ⊗C[Zκ]C[Ω(1)]. Here,

Haff ⊂H is an algebra called ‘the affine subalgebra’, Ω(1) is a certain commutative group

acting on Haff , Zκ is a normal subgroup of Ω(1) and we have an embedding C[Zκ] ↪→
Haff which is compatible with the action of Ω(1) on Haff . Set Ω = Ω(1)/Zκ. By this

decomposition and Hochschild–Serre type spectral sequence, we have an exact sequence

0→H1(Ω,HomHaff (π1,π2))→ Ext1H(π1,π2)→ Ext1Haff (π1,π2)
Ω.

We prove that the last map is surjective (Theorem 4.5).

Therefore, it is sufficient to calculate two groups: H1(Ω,HomHaff (π1,π2)) and
Ext1Haff (π1,π2)

Ω. By the classification result of supersingular simple modules [14, 18], the

restriction of π1,π2 toHaff are the direct sum of characters ofHaff . Hence, HomHaff (π1,π2)

is easily described, and with this description we can calculate H1(Ω,HomHaff (π1,π2))
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using well-known calculation of group cohomologies. Note that Ω is commutative. We also
calculate Ext1Haff (Ξ1,Ξ2), where Ξ1,Ξ2 are characters of Haff (Proposition 4.1) following

the method of Fayers [8]. This is also calculated by Nadimpalli [13]. Using this description,

we can calculate Ext1Haff (π1,π2)
Ω, and this finishes the calculation of extensions between

simple H-modules.

In the last two subsections, examples for GLn are given.

2. Preliminaries

2.1. Pro-p-Iwahori Hecke algebra

Let H be a pro-p-Iwahori Hecke algebra over a commutative ring C [20]. We study

modules over H in this paper. In this paper, a module means a right module. The algebra
H is defined with combinatorial data (Waff,Saff,Ω,W,W (1),Zκ) and a parameter (q,c).

We recall the definitions. The data satisfy the following:

• (Waff,Saff) is a Coxeter system.
• Ω acts on (Waff,Saff).
• W =Waff �Ω.
• Zκ is a finite commutative group.
• The group W (1) is an extension of W by Zκ, namely we have an exact sequence

1→ Zκ →W (1)→W → 1.

The subgroup Zκ is normal in W (1). Hence, the conjugate action of w ∈W (1) induces

an automorphism of Zκ, hence of the group ring C[Zκ]. We denote it by c �→ w · c.
Let Ref(Waff) be the set of reflections in Waff and Ref(Waff(1)) the inverse image of

Ref(Waff) in W (1). The parameter (q,c) is maps q : Saff →C and c : Ref(Waff(1))→C[Zκ]

with the following conditions. (Here, the image of s by q (resp. c) is denoted by qs (resp.

cs).)

• For w ∈W and s ∈ Saff , if wsw
−1 ∈ Saff , then qwsw−1 = qs.

• For w ∈W (1) and s ∈ Ref(Waff(1)), cwsw−1 = w · cs.
• For s ∈ Ref(Waff(1)) and t ∈ Zκ, we have cts = tcs.

Let Saff(1) be the inverse image of Saff in W (1). For s ∈ Saff(1), we write qs for qs̄, where

s̄ ∈ Saff is the image of s. The length function on Waff is denoted by �, and its inflation
to W and W (1) is also denoted by �.

The C -algebra H is a free C -module and has a basis {Tw}w∈W (1). The multiplication

is given by

• (Quadratic relations) T 2
s = qsTs2 + csTs for s ∈ Saff(1).

• (Braid relations) Tvw = TvTw if �(vw) = �(v)+ �(w).

We extend q : Saff →C to q : W →C as follows. For w ∈W , take s1, . . . ,sl and u ∈Ω such

that w = s1 · · ·slu and l = �(w). Then put qw = qs1 · · ·qsl . From the definition, we have

qw−1 = qw. We also put qw = qw for w ∈W (1) with the image w in W.
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2.2. The data from a group

Let F be a non-Archimedean local field, κ its residue field, p its residue characteristic and

G a connected reductive group over F. We can get the data in the previous subsection

from G as follows. See [20], especially 3.9 and 4.2 for the details.

Fix a maximal split torus S, and denote the centralizer of S in G by Z. Let Z0 be
the unique parahoric subgroup of Z and Z(1) its pro-p radical. Then the group W (1)

(resp. W ) is defined by W (1) = NG(Z)/Z(1) (resp. W = NG(Z)/Z0), where NG(Z) is

the normalizer of Z in G. We also let Zκ = Z0/Z(1). Let G′ be the group generated by
the unipotent radical of parabolic subgroups [5, II.1] and Waff the image of G′∩NG(Z)

in W. Then this is a Coxeter group. Fix a set of simple reflections Saff . The group W has

the natural length function, and let Ω be the set of length zero elements in W. Then we
get the data (Waff,Saff,Ω,W,W (1),Zκ).

Consider the apartment attached to S and an alcove surrounded by the hyperplanes

fixed by Saff . Let I(1) be the pro-p-Iwahori subgroup attached to this alcove. Then with

qs =#(I(1)s̃I(1)/I(1)) for s ∈ Saff with a lift s̃ ∈NG(Z) and suitable cs, the algebra H
is isomorphic to the Hecke algebra attached to (G,I(1)) [20, Proposition 4.4].

When the data come from the group G, let Waff(1) be the image of G′∩NG(Z) in W (1)

and put Haff =
⊕

w∈Waff(1)
CTw. This is a subalgebra of H.

In this paper, except Section 4, we assume that the data come from a connected reductive

group.

2.3. The root system and the Weyl groups

Let W0 =NG(Z)/Z be the finite Weyl group. Then this is a quotient of W. Recall that we
have the alcove defining I(1). Fix a special point x0 from the border of this alcove. Then

W0 � StabW x0, and the inclusion StabW x0 ↪→W is a splitting of the canonical projection

W →W0. Throughout this paper, we fix this special point and regard W0 as a subgroup
of W. Set S0 = Saff ∩W0 ⊂W . This is a set of simple reflections in W0. For each w ∈W0,

we fix a representative nw ∈W (1) such that nw1w2
= nw1

nw2
if �(w1w2) = �(w1)+ �(w2).

The group W0 is the Weyl group of the root system Σ attached to (G,S). Our fixed
alcove and special point give a positive system of Σ, denoted by Σ+. The set of simple

roots is denoted by Δ. As usual, for α ∈Δ, let sα ∈ S0 be a simple reflection for α.

The kernel ofW (1)→W0 (resp.W →W0) is denoted by Λ(1) (resp. Λ). Then Zκ ⊂Λ(1),

and we have Λ=Λ(1)/Zκ. The group Λ (resp. Λ(1)) is isomorphic to Z/Z0 (resp. Z/Z(1)).
Any element in W (1) can be uniquely written as nwλ, where w ∈W0 and λ ∈ Λ(1). We

have W =W0�Λ.

2.4. The map ν

The group W acts on the apartment attached to S, and the action of Λ is by the

translation. Since the group of translations of the apartment is X∗(S)⊗ZR, we have a

group homomorphism ν : Λ→X∗(S)⊗ZR. The compositions Λ(1)→Λ→X∗(S)⊗ZR and
Z → Λ→X∗(S)⊗ZR are also denoted by ν. The homomorphism ν : Z →X∗(S)⊗ZR�
HomZ(X

∗(S),R) is characterized by the following: For t ∈ S and χ ∈ X∗(S), we have

ν(t)(χ) =−val(χ(t)), where val is the normalized valuation of F.
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We call λ ∈ Λ(1) dominant (resp. anti-dominant) if ν(λ) is dominant (resp. anti-

dominant).

Since the group Waff is a Coxeter system, it has the Bruhat order denoted by ≤.
For w1,w2 ∈ W , we write w1 < w2 if there exists u ∈ Ω such that w1u,w2u ∈ Waff and

w1u<w2u. Moreover, for w1,w2 ∈W (1), we write w1 <w2 if w1 ∈Waff(1)w2 and w1 <w2,

where w1,w2 are the image of w1,w2 in W, respectively. We write w1 ≤ w2 if w1 < w2 or
w1 = w2.

2.5. Other basis

For w ∈ W (1), take s1, · · · ,sl ∈ Saff(1) and u ∈ W (1) such that l = �(w), �(u) = 0 and

w = s1 · · ·slu. Set T ∗
w = (Ts1 − cs1) · · ·(Tsl − csl)Tu. Then this does not depend on the

choice, and {T ∗
w}w∈W (1) is a basis of H. In H[q±1

s ], we have T ∗
w = qwT

−1
w−1 .

For a spherical orientation o, there is a basis {Eo(w)}w∈W (1) of H introduced in [20,

Definition 5.22]. This satisfies the following product formula [20, Theorem 5.25].

Eo(w1)Eo·w1
(w2) = q−1/2

w1w2
q1/2w1

q1/2w2
Eo(w1w2). (2.1)

Remark 2.1. The term q
−1/2
w1w2q

1/2
w1 q

1/2
w2 does not make sense in a usual way. See [4, Remark

2.2].

2.6. Parabolic induction

Since we have a positive system Σ+, we have the minimal parabolic subgroup B with a
Levi part Z. In this paper, parabolic subgroups are always standard, namely containing B.

Note that such parabolic subgroups correspond to subsets of Δ.

Let P be a parabolic subgroup. Attached to the Levi part of P containing Z, we have
the data (Waff,P ,Saff,P ,ΩP ,WP ,WP (1),Zκ) and the parameters (qP ,cP ). Hence, we have

the algebra HP . The parameter cP is given by the restriction of c; hence, we denote it

just by c. The parameter qP is defined as in [3, 4.1].

For the objects attached to this data, we add the suffix P. We have the set of simple
roots ΔP , the root system ΣP and its positive system Σ+

P , the finite Weyl group W0,P , the

set of simple reflections S0,P ⊂W0,P , the length function �P and the base {TP
w }w∈WP (1),

{TP∗
w }w∈WP (1) and {EP

o (w)}w∈WP (1) of HP . Note that we have no ΛP , ΛP (1) and Zκ,P

since they are equal to Λ, Λ(1) and Zκ.

An element nwλ ∈ WP (1), where w ∈ WP,0 and λ ∈ Λ(1) is called P -positive (resp.

P -negative) if for any α ∈ Σ+ \Σ+
P we have 〈α,ν(λ)〉 ≤ 0 (resp. 〈α,ν(λ)〉 ≥ 0). Set H+

P =⊕
wCTP

w , where w ∈WP (1) runs P -positive elements, and define H−
P by the similar way.

Then these are subalgebras of HP . The linear maps j±P : H±
P → H and j±∗

P : H±
P → H

defined by j±P (TP
w ) = Tw and j±∗

P (TP∗
w ) = T ∗

w are algebra homomorphisms.

Proposition 2.2 ([19, Theorem 1.4]). Let λ+
P (resp. λ−

P ) be in the center of WP (1)
such that 〈α,ν(λ+

P )〉 < 0 (resp. 〈α,ν(λ−
P )〉 > 0) for all α ∈ Σ+ \Σ+

P . Then TP
λ+
P

= TP∗
λ+
P

=

EP
o−,P

(λ+
P ) (resp. TP

λ−
P

= TP∗
λ−
P

= EP
o−,P

(λ−
P )) is in the center of HP , and we have HP =

H+
PE

P
o−,P

(λ+
P )

−1 (resp. HP =H−
PE

P
o−,P

(λ−
P )

−1).
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Now, for an HP -module σ, we define the parabolically induced module IP (σ) by

IP (σ) = Hom(H−
P ,j−∗

P )(H,σ).

This satisfies:

• IP is an exact functor.
• IP has the left adjoint functor LP . The functor LP is exact.
• IP has the right adjoint functor RP .

For the existence and explicit descriptions of adjoint functors LP ,RP , see [4, 5.1].

For parabolic subgroups P ⊂Q, we also defines HQ±
P ⊂HP and jQ±

P : HQ±
P →HQ and

jQ±∗
P : HQ±

P → HQ. This defines the parabolic induction IQP from the category of HP -

modules to the category of HQ-modules.

2.7. Twist by nwGwP

For a parabolic subgroup P, let wP be the longest element in W0,P . In particular, wG is

the longest element in W0. Let P
′ be a parabolic subgroup corresponding to −wG(ΔP ); in

other words, P ′ = nwGwP
P opn−1

wGwP
, where P op is the opposite parabolic subgroup of P

with respect to the Levi part of P containing Z. Set n= nwGwP
. Then the map P op → P ′

defined by p �→ npn−1 is an isomorphism which preserves the data used to define the
pro-p-Iwahori Hecke algebras. Hence, TP

w �→ TP ′
nwn−1 gives an isomorphism HP → HP ′ .

This sends TP∗
w to TP ′∗

nwn−1 and EP
o+,P ·v(w) to EP ′

o+,P ′ ·nvn−1(nwn−1), where v ∈W0,P .

Let σ be an HP -module. Then we define an HP ′-module nwGwP
σ via the pull-back of

the above isomorphism: (nwGwP
σ)(TP ′

w ) = σ(TP
n−1
wGwP

wnwGwP

). For an HP ′ -module σ′, we

define n−1
wGwP

σ′ by (n−1
wGwP

σ′)(TP
w ) = σ′(TP ′

nwGwP
wn−1

wGwP

).

2.8. The extension and the generalized Steinberg modules

Let P be the parabolic subgroup and σ an HP -module. For α ∈Δ, let Pα be a parabolic
subgroup corresponding to ΔP ∪{α}. Then we define Δ(σ)⊂Δ by

Δ(σ) = {α ∈Δ | 〈ΔP ,α
∨〉= 0, σ(TP

λ ) = 1 for any λ ∈Waff,Pα
(1)∩Λ(1)}∪ΔP .

Let P (σ) be the parabolic subgroup corresponding to Δ(σ).

Proposition 2.3 ([6, Theorem 3.6]). Let σ be an HP -module and Q a parabolic subgroup
between P and P (σ). Denote the parabolic subgroup corresponding to ΔQ \ΔP by P2.

Then there exists a unique HQ-module eQ(σ) acting on the same space as σ such that

• eQ(σ)(T
Q∗
w ) = σ(TP∗

w ) for any w ∈WP (1).
• eQ(σ)(T

Q∗
w ) = 1 for any w ∈Waff,P2

(1).

Definition 2.4. We call eQ(σ) the extension of σ to HQ.

A typical example of the extension is the trivial representation 1 = 1G. This is a
one-dimensional H-module defined by 1(Tw) = qw, or equivalently 1(T ∗

w) = 1. We have

Δ(1P ) = {α ∈Δ | 〈ΔP ,α
∨〉 = 0}∪ΔP , and if Q is a parabolic subgroup between P and

P (1P ), we have eQ(1P ) = 1Q.
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Let P (σ) ⊃ P0 ⊃ Q1 ⊃ Q ⊃ P . Then as in [3, 4.5], we have IP0

Q1
(eQ1

(σ)) ⊂ IP0

Q (eQ(σ)).

Define

StP0

Q (σ) = Coker

⎛⎝ ⊕
Q1�Q

IP0

Q1
(eQ1

(σ))→ IP0

Q (eQ(σ))

⎞⎠ .

When P0 =G, we write StQ(σ) and call it generalized Steinberg modules.

2.9. Supersingular modules

In this subsection, we assume that C is a field of characteristic p. Let O be a

conjugacy class in W (1) which is contained in Λ(1). For a spherical orientation o, set

zO =
∑

λ∈OEo(λ). Then this does not depend on o and zO ∈ Z, where Z is the center of
H[18, Theorem 5.1]. The length of λ ∈ O does not depend on λ. We denote it by �(O).

For λ ∈ Λ(1) and w ∈W (1), we put w ·λ= wλw−1.

Definition 2.5. Let π be an H-module. We call π supersingular if there exists n ∈ Z>0

such that πznO = 0 for any O such that �(O)> 0.

Remark 2.6. Since πzO ⊂ π is a submodule, if π is simple, then π is supersingular if and

only if πzO = 0 for any O such that �(O)> 0. Let λ ∈ Λ(1). Then �(λ) �= 0 if and only if

〈α,ν(λ)〉 �=0 for some α∈Σ [4, Lemma 2.12]. Hence, a simple H-module π is supersingular
if and only if π(zW (1)·λ) = 0 for any λ such that 〈α,ν(λ)〉 �= 0 for some α ∈ Σ.

The simple supersingular H-modules are classified in [14, 18]. We recall their results.
Let W aff(1) be the inverse image of Waff in W (1).

Remark 2.7. When we do not assume that the data come from a group, we have no

Waff(1) but we have W aff(1). Even though the data come from a group, Waff(1) is not

equal to W aff(1). We have Zκ ⊂W aff(1); however, Zκ �⊂Waff(1) in general. Since we will

not assume that the data come from a group, we do not use Waff(1) here.

Put Haff =
⊕

w∈W aff (1)CTw. Let χ be a character of Zκ and put Saff,χ = {s ∈ Saff |
χ(cs̃) �= 0}, where s̃ ∈W (1) is a lift of s ∈ Saff . Note that, if s̃′ is another lift, then s̃′ = ts̃

for some t ∈ Zκ. Hence, χ(cs̃′) = χ(t)χ(cs̃). Therefore, the condition does not depend on

a choice of a lift. Let J ⊂ Saff,χ. Then the character Ξ = ΞJ,χ of Haff is defined by

ΞJ,χ(Tt) = χ(t) (t ∈ Zκ),

ΞJ,χ(Ts̃) =

{
χ(cs̃) (s ∈ Saff,χ \J)
0 (s /∈ Saff,χ \J)

=

{
χ(cs̃) (s /∈ J),

0 (s ∈ J),

where s̃ ∈W aff(1) is a lift of s and the last equality easily follows from the definition of

Saff,χ. Let Ω(1)Ξ be the stabilizer of Ξ and V a simple C[Ω(1)Ξ]-module such that V |Zκ

is a direct sum of χ. Put HΞ = HaffC[Ω(1)Ξ]. This is a subalgebra of H. For X ∈ Haff

and Y ∈ C[Ω(1)Ξ], we define the action of XY on Ξ⊗V by x⊗y �→ xX⊗yY . Then this

defines a well-defined action of HΞ on Ξ⊗V . Set πχ,J,V = (Ξ⊗V )⊗HΞ
H.
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Proposition 2.8 ([18, Theorem 1.6]). The module πχ,J,V is simple, and it is supersin-

gular if and only if the groups generated by J and generated by Saff,χ \J are both finite.

If C is an algebraically closed field, then any simple supersingular modules are given in
this way.

The construction of πχ,J,V is still valid even if we do not assume that the data come
from a group. In Section 4, we do not assume it, and we calculate the extension between

the modules constructed as above.

2.10. Simple modules

Definition 2.9. We consider a triple (P,σ,Q) which satisfies the following:

• P is a parabolic subgroup of G.
• σ is a supersingular finite-dimensional HP -module.
• Q is a parabolic subgroup contained in P (σ).

Then we define an H-module I(P,σ,Q) by

I(P,σ,Q) = IP (σ)(St
P (σ)
Q (σ)).

Theorem 2.10 ([3, Theorem 1.1]). Assume that C is an algebraically closed field of
characteristic p. The module I(P,σ,Q) is simple, and any simple module has this form.

Moreover, (P,σ,Q) is unique up to isomorphism.

3. Reduction to supersingular representations

In the rest of this paper, we assume that C is a field of characteristic p. Let

(P1,σ1,Q1),(P2,σ2,Q2) be triples as in Definition 2.9. We calculate the extension group

Ext1H(I(P1,σ1,Q1),I(P2,σ2,Q2)).

3.1. Central character

We prove the following lemma.

Lemma 3.1. If ExtiH(I(P1,σ1,Q1),I(P2,σ2,Q2)) �= 0 for some i ∈ Z≥0, then P1 = P2.

To prove this lemma, we calculate the action of the center Z on simple modules. To do
it, we need to calculate the action of Z on a parabolic induction.

Lemma 3.2. Let P be a parabolic subgroup, σ a right HP -module. For W (1)-orbit O in
Λ(1), set OP = {λ ∈ O | λ is P -negative}. Then we have the following:

(1) The subset OP ⊂ Λ(1) is WP (1)-stable.

(2) Let OP =O1∪·· ·∪Or be the decomposition into WP (1)-orbits. The action of zO ∈Z
on IP (σ) is induced by the action of

∑
i z

P
Oi

on σ.

Proof. Since Σ+ \Σ+
P is stable under the action of W0,P , (1) follows from the definition

of P -negative.
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Let ϕ ∈ IP (σ) = Hom(H−
P ,j−∗

P )(H,σ). Then for X ∈H, we have

(ϕzO)(X) = ϕ(zOX) = ϕ(XzO)

since zO is in the center of H. Hence, by the definition of zO, we have

(ϕzO)(X) =
∑
λ∈O

ϕ(XE(λ)) =
∑
i

∑
λ∈Oi

ϕ(XE(λ))+
∑

λ∈O, not P -negative

ϕ(XE(λ))

We prove the vanishing of the second term.

Let λ∈O, which is not P -negative. Then there exists α ∈Σ+ \Σ+
P such that 〈α,ν(λ)〉<

0. Let λ−
P be as in Proposition 2.2. Then 〈α,ν(λ−

P )〉> 0. Hence, ν(λ) and ν(λ−
P ) does not

belongs to the same closed Weyl chamber. Therefore, we have E(λ)E(λ−
P ) = 0 in HC by

[4, (2.1), Lemma 2.11]. Hence, by [4, Lemma 2.6],

ϕ(XE(λ)) = ϕ(XE(λ))EP (λ−
P )E

P (λ−
P )

−1

= ϕ(XE(λ)j−∗
P (EP (λ−

P )))E
P (λ−

P )
−1

= ϕ(XE(λ)E(λ−
P ))E

P (λ−
P )

−1 = 0.

If λ ∈ Oi, then E(λ) ∈ H−
P . Hence, we have E(λ) = j−∗

P (EP (λ)) by [4, Lemma 2.6].

Therefore, ∑
λ∈Oi

ϕ(XE(λ)) = ϕ(X)
∑
λ∈Oi

σ(EP (λ)) = ϕ(X)σ(zPOi
).

We get the lemma.

Lemma 3.3. Let (P,σ,Q) be a triple as in Definition 2.9. Let R be a parabolic subgroup
and λ= λ−

R as in Proposition 2.2. Then zOλ
�= 0 on I(P,σ,Q) if and only if P ⊂R.

Proof. Set O = Oλ. Since Λ(1) ⊂WR(1) and λ is in the center of WR(1), λ commutes

with Λ(1). Hence, O = {nw ·λ | w ∈W0}.
We prove that WP (1) acts transitively on OP . Let μ ∈ OP , and take w ∈ W0 such

that μ= nw ·λ. Take v ∈W0,P such that v(ν(μ)) is dominant with respect to Σ+
P . Since

v−1(Σ+\Σ+
P ) =Σ+\Σ+

P and μ is P -negative, we have 〈v(ν(μ)),α〉 ≥ 0 for any α∈Σ+\Σ+
P .

Hence, v(ν(μ)) is dominant. Now ν(λ) and v(ν(μ)) = vw(ν(λ)) is both dominant. Hence,

vw ∈ StabW0
(ν(λ)) = W0,R. Since λ is in the center of WR(1), we have (nvnw) ·λ = λ.

Hence, μ= n−1
v ·λ. Therefore, WP (1) acts transitively on OP .

By the definition, I(P,σ,Q) is a quotient of IP (σ)(I
P (σ)
Q (eQ(σ))) = IQ(eQ(σ)). Moreover,

by the definition of the extension, we have an embedding eQ(σ) ↪→ IQP (σ). Hence, we have

IQ(eQ(σ)) ↪→ IQ(I
Q
P (σ)) = IP (σ). Let χ : ZP →C be a central character of σ. By the above

lemma and the fact that OP is a single WP (1)-orbit, on IP (σ), zOλ
acts by χ(zPOP

). Since

ν(λ) is dominant, λ is P -negative. Hence, λ ∈ OP . By the definition of supersingular

representations with Remark 2.6, χ(zPOP
) = 0 if and only if 〈α,ν(λ)〉 �= 0 for some α ∈Σ+

P .
The condition on λ = λ−

R tells that 〈α,ν(λ)〉 �= 0 if and only if α ∈ Σ+ \Σ+
R. Therefore,

χ(zPOP
) �= 0 if and only if Σ+

P ∩ (Σ+ \Σ+
R) = ∅ which is equivalent to P ⊂R.

Proof of Lemma 3.1. Assume that P1 �= P2. Then we have P1 �⊂ P2 or P1 �⊃ P2. Assume

P1 �⊂ P2, and take λ= λ−
P2

as in Proposition 2.2. Put O= {w ·λ |w ∈W (1)}. Then zO = 0
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on I(P1,σ1,Q1) and zO �= 0 on I(P2,σ2,Q2). Hence, the vanishing follows from a standard

argument since zO ∈H is in the center. The case of P1 �⊃P2 is proved by the same way.

3.2. Reduction to generalized Steinberg modules

By Lemma 3.1, to calculate the extension between I(P1,σ1,Q1) and I(P2,σ2,Q2), we may
assume P1 = P2. We prove the following proposition.

Proposition 3.4. The extension group ExtiH(I(P,σ1,Q1),I(P,σ,Q2)) is isomorphic to

ExtiHP (σ1)∩P (σ2)
(St

P (σ1)∩P (σ2)
Q1∩P (σ2)

(σ1),St
P (σ1)∩P (σ2)
Q2

(σ2)).

if Q2 ⊂ P (σ1) and Δ(σ1)⊂ΔQ1
∪Δ(σ2). Otherwise, the extension group is zero.

Hence, for the calculation of the extension, it is sufficient to calculate the extensions
between generalized Steinberg modules. For an H-module π, set π∗ = HomC(π,C). The

right H-module structure on π∗ is given by (fX)(v) = f(vζ(X)) for f ∈ π∗, v ∈ π and

X ∈H. Here, the anti-involution ζ : H→H is defined by ζ(Tw) = Tw−1 .

Lemma 3.5. We have ExtiH(π1,π
∗
2) � ExtiH(π2,π

∗
1). In particular, if π1 or π2 is finite-

dimensional, then ExtiH(π1,π2)� ExtiH(π∗
2,π

∗
1).

Proof. We have the isomorphism for i = 0 since both sides are equal to {f : π1×π2 →
C | f(x1X,x2) = f(x1,ζ(X)x2) (x1 ∈ π1,x2 ∈ π2,X ∈ H)}. Hence, in particular, if π is

projective, then π∗ is injective. Let · · · → P1 → P0 → π2 → 0 be a projective resolution.

Then ExtiH(π2,π
∗
1) is a i -th cohomology of the complex Hom(Pi,π

∗
1)�Hom(π1,P

∗
i ). Since

0→ π∗
2 → P ∗

0 → P ∗
1 → ·· · is an injective resolution of π∗

2 , this is Ext
i
H(π1,π

∗
2).

If π2 is finite-dimensional, then π2 � (π∗
2)

∗. Hence, we have ExtiH(π1,π2) �
ExtiH(π1,(π

∗
2)

∗) � ExtiH(π∗
2,π

∗
1). By the same argument, we have ExtiH(π1,π2) �

ExtiH(π∗
2,π

∗
1) if π1 is finite-dimensional.

Proposition 3.6. Let P be a parabolic subgroup, π an H-module and σ an HP -module.

(1) We have ExtiH(π,IP (σ))� ExtiHP
(LP (π),σ).

(2) We have ExtiH(IP (σ),π
∗) � ExtiHP

(σ,RP (π
∗)). In particular, if π is finite-

dimensional, then ExtiH(IP (σ),π)� ExtiHP
(σ,RP (π)).

Proof. The exactness of IP and LP implies (1).

Put P ′ = nwGwP
P opn−1

wGwP
Define the functor I ′P ′ by

I ′P ′(σ′) = Hom(H−
P ′,j

−
P ′ )

(H,σ′)

for an HP ′-module σ′. Then this has the left adjoint functor L′
P ′ defined by L′

P ′(π) =
π⊗(H−

P ′,j
−
P ′ )

HP ′ . This is exact since HP ′ is a localization of H−
P ′ by Proposition 2.2. Set

σ�−�P (T
P
w ) = (−1)�(w)−�P (w)σ(Tw) [4, 4.1]. Using [2, Proposition 4.2], for an HP -module

σ, we have

ExtiH(IP (σ),π
∗)� ExtiH(π,IP (σ)

∗)

� ExtiH(π,I ′P ′(nwGwP
σ∗
�−�P ))
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� ExtiHP
(n−1

wGwP
L′
P ′(π),σ∗

�−�P )

� ExtiHP
(σ�−�P ,n

−1
wGwP

L′
P ′(π)∗)

� ExtiHP
(σ,(n−1

wGwP
L′
P ′(π))∗�−�P ).

Put i = 0. Then we get (n−1
wGwP

L′
P ′(π))∗�−�P

� RP (π
∗) by HomH(IP (σ),π

∗) �
HomHP

(σ,RP (π
∗)). Hence, we get (2).

If π is finite-dimensional, then π = (π∗)∗. Hence, we get ExtiH(IP (σ),π) �
ExtiHP

(σ,RP (π)) applying (3) to π∗.

Proof of Proposition 3.4. Since I(P,σ2,Q2) is finite-dimensional, we have

ExtiH(I(P,σ1,Q1),I(P,σ2,Q2)) = ExtiHP (σ1)
(St

P (σ1)
Q1

(σ1),RP (σ1)(I(P,σ2,Q2))).

We have RP (σ1)(I(P,σ2,Q2)) = 0 if Q2 �⊂ P (σ1) by [4, Theorem 5.20]. If Q2 ⊂ P (σ1), then

RP (σ1)(I(P,σ2,Q2)) = IP (σ)(P,σ,Q2). Hence, the extension group is isomorphic to

ExtiHP (σ1)
(St

P (σ1)
Q1

(σ1),IP (σ1)(P,σ2,Q2))

= ExtiHP (σ1)
(St

P (σ1)
Q1

(σ1),I
P (σ1)
P (σ2)∩P (σ1)

(StQ2
(σ2)))

= ExtiHP (σ1)∩P (σ2)
(L

P (σ1)
P (σ2)∩P (σ1)

(St
P (σ1)
Q1

(σ1)),St
P (σ1)∩P (σ2)
Q2

(σ2))

We have L
P (σ1)
P (σ2)∩P (σ1)

(St
P (σ1)
Q1

(σ1)) = 0 if Δ(σ1) �=Δ(Q1)∪ΔP (σ1)∩P (σ2) or P �⊂ P (σ1)∩
P (σ2) by [4, Proposition 5.10, Proposition 5.18]. If it is not zero, then the extension group

is isomorphic to

ExtiHP (σ1)∩P (σ2)
(St

P (σ1)∩P (σ2)
Q1∩P (σ2)

(σ1),St
P (σ1)∩P (σ2)
Q2

(σ2)).

This holds if Q2 ⊂ P (σ1), Δ(σ1) = Δ(Q1)∪ΔP (σ1)∩P (σ2) and P ⊂ P (σ1)∩P (σ2), and

otherwise the extension group is zero. Note that we always have P ⊂ P (σ1)∩P (σ2) since
both P (σ1) and P (σ2) contain P. Since Q1 ⊂ P (σ1), Δ(Q1)∪ΔP (σ1)∩P (σ2) = (Δ(σ1)∩
Δ(Q1))∪ (Δ(σ1)∩Δ(σ2)) = Δ(σ1)∩ (ΔQ1

∪Δ(σ2)). (Recall that P (σ1) is the parabolic

subgroup corresponding to Δ(σ1).) Hence, we have Δ(σ1) =Δ(Q1)∪Δ(P (σ1)∩P (σ2)) if

and only if Δ(σ1)⊂ΔQ1
∪Δ(σ2). We get the proposition.

Therefore, to calculate the extension groups, we may assume P (σ1) = P (σ2) =G.

3.3. Extensions between generalized Steinberg modules

We assume that P (σ1) = P (σ2) = G, and we continue the calculation of the extension

groups.

Lemma 3.7. Let Q11,Q12,Q2 be parabolic subgroups and α ∈ ΔQ12
such that ΔQ11

=

ΔQ12
\{α}. Then we have

ExtiH(StQ11
(σ1),StQ2

(σ2))�
{
Exti−1

H (StQ12
(σ1),StQ2

(σ2)) (α ∈ΔQ2
),

Exti+1
H (StQ12

(σ1),StQ2
(σ2)) (α /∈ΔQ2

).
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Proof. Let P1 be a parabolic subgroup corresponding to Δ \ {α}. First, we prove that

there exists an exact sequence

0→ StQ12
(σ1)→ IP1

(StP1

Q11
(σ1))→ StQ11

(σ1)→ 0. (3.1)

We start with the following exact sequence.

0→
∑

P1⊃Q�Q11

IP1

Q (eQ(σ1))→ IP1

Q11
(eQ11

(σ1))→ StP1

Q11
(σ1)→ 0,

Apply IP1
to this exact sequence. Then we have

0→
∑

P1⊃Q�Q11

IQ(eQ(σ1))→ IQ11
(eQ11

(σ1))→ IP1
(StP1

Q11
(σ1))→ 0.

Hence, we get the following commutative diagram with exact columns:

0 0

∑
P1⊃Q�Q11

IQ(eQ(σ1))
∑

Q�Q11
IQ(eQ(σ))

IQ11
(eQ11

(σ1)) IQ11
(eQ11

(σ1))

IP1
(StP1

Q11
(σ1)) StQ11

(σ1)

0 0

Hence, IP1
(StP1

Q11
(σ1))→ StQ11

(σ1) is surjective, and the kernel is isomorphic to

∑
Q�Q11

IQ(eQ(σ))

/ ∑
P1⊃Q�Q11

IQ(eQ(σ1))

by the snake lemma.

We prove:

(1) IQ12
(eQ12

(σ1))+
∑

P1⊃Q�Q11
IQ(eQ(σ1)) =

∑
Q�Q11

IQ(eQ(σ)).

(2) IQ12
(eQ12

(σ1))∩
∑

P1⊃Q�Q11
IQ(eQ(σ1)) =

∑
Q�Q12

IQ(eQ(σ)).

We prove (1). Since Q12 � Q11, IQ12
(eQ12

(σ1)) is contained in the right-hand side.
Obviously,

∑
P1⊃Q�Q11

IQ(eQ(σ1)) is also contained in the right-hand side. Hence,

IQ12
(eQ12

(σ1)) +
∑

P1⊃Q�Q11
IQ(eQ(σ1)) ⊂ ∑

Q�Q11
IQ(eQ(σ)). Take Q�Q11, and we

prove that IQ(eQ(σ1)) ⊂ IQ12
(eQ12

(σ1))+
∑

P1⊃Q�Q11
IQ(eQ(σ1)). If P1 ⊃ Q, then it is

obvious. We assume that P1 �⊃ Q. Since ΔP1
= Δ \ {α}, this is equivalent to α ∈ ΔQ.

Hence, ΔQ ⊃ ΔQ11
∪ {α} = ΔQ12

. Therefore, we have Q ⊃ Q12. Hence, IQ(eQ(σ1)) ⊂
IQ12

(eQ12
(σ1)).
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We prove (2). By [2, Lemma 3.10], the left-hand side is∑
P1⊃Q�Q11

I〈Q,Q12〉(e〈Q,Q12〉(σ1)),

where 〈Q,Q12〉 is the subgroup generated by Q and Q12. We prove

{〈Q,Q12〉 | P1 ⊃Q�Q11}= {Q |Q�Q12}.
If Q satisfies P1 ⊃Q �Q11, then there exists β ∈ΔQ \ΔQ11

. We have β ∈ΔQ ⊂ΔP1
=

Δ \ {α}. Therefore, we have β �= α. Hence, β /∈ΔQ11
∪{α} = ΔQ12

. On the other hand,

β ∈ ΔQ ⊂ Δ〈Q,Q12〉. Namely, we have β ∈ Δ〈Q,Q12〉 \ΔQ12
. Obviously, 〈Q,Q12〉 ⊃ Q12.

Therefore, we get 〈Q,Q12〉�Q12.
On the other hand, assume that Q � Q12. Then α ∈ ΔQ since α ∈ ΔQ12

. Let Q′ be
the parabolic subgroup corresponding to ΔQ \{α}. Then we have ΔQ′ ⊂Δ\{α} =ΔP1

and ΔQ′ = ΔQ \ {α} �ΔQ12
\ {α} = ΔQ11

. Hence, P1 ⊃ Q′ � Q11. We have Δ〈Q′,Q12〉 =
ΔQ′ ∪ΔQ12

= (ΔQ \{α})∪ΔQ11
∪{α}=ΔQ∪ΔQ11

∪{α}. This is ΔQ since ΔQ ⊃ΔQ12
=

ΔQ11
∪{α}. Hence, Q= 〈Q′,Q12〉. We get the existence of the exact sequence (3.1).

Assume that α ∈ ΔQ2
. Then α ∈ ΔQ2

and α /∈ ΔQ2∩P1
. Hence, ΔQ2

�= ΔQ2∩P1
∪ΔP .

Therefore, RP1
(StQ2

(σ2)) = 0 by [4, Proposition 5.11]. We have an exact sequence

ExtiH(IP1
(StP1

Q11
(σ1)),StQ2

(σ2))→ ExtiH(StQ12
(σ1),StQ2

(σ2))

→ Exti+1
H (StQ11

(σ1),StQ2
(σ2))→ Exti+1

H (IP1
(StP1

Q11
(σ1)),StQ2

(σ2)).

Since RP1
(StQ2

(σ2)) = 0, for any j, we have

ExtjH(IP1
(StQ12

(σ1)),StQ2
(σ2)) = ExtjH(StQ12

(σ1),RP1
(StQ2

(σ2))) = 0.

Therefore, we get

ExtiH(StQ12
(σ1),StQ2

(σ2))� Exti+1
H (StQ11

(σ1),StQ2
(σ2)).

Next assume that α /∈ ΔQ2
. Let Qc

11 (resp. Qc
12,Q

c
2) be the parabolic subgroup

corresponding to (Δ \ΔQ11
) ∪ΔP (resp. (Δ \ΔQ12

) ∪ΔP ,(Δ \ΔQ2
) ∪ΔP ). Let ι =

ιG : H → H be the involution defined by ι(Tw) = (−1)�(w)T ∗
w, and set πι = π ◦ ι for an

H-module π. Then we have

ExtiH(StQ11
(σ1),StQ2

(σ2))� ExtiH((StQ11
(σ1))

ι,(StQ2
(σ2))

ι)

� ExtiH(StQc
11
(σιP

1,�−�P
),StQc

2
(σιP

2,�−�P
))

by [2, Theorem 3.6]. Now we have α ∈ΔQc
2
. Applying the lemma (where Q11 =Qc

12 and

Q12 =Qc
11), we have

ExtiH(StQc
11
(σιP

1,�−�P
),StQc

2
(σιP

2,�−�P
))� Exti−1

H (StQc
12
(σιP

1,�−�P
),StQc

2
(σιP

2,�−�P
))

� Exti−1
H ((StQ12

(σ1))
ι,(StQ2

(σ2))
ι)

� Exti−1
H (StQ12

(σ1),StQ2
(σ2)).

We get the lemma.

For sets X,Y , let X�Y = (X \Y )∪ (Y \X) be the symmetric difference.
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Theorem 3.8. We have

ExtiH(StQ1
(σ1),StQ2

(σ2))� Ext
i−#(ΔQ1

�ΔQ2
)

H (eG(σ1),eG(σ2)).

Proof. By applying Lemma 3.7 several times, we have

ExtiH(StQ1
(σ1),StQ2

(σ2))� Exti−r1
H (eG(σ1),StQ2

(σ2)),

where r1 = #{α ∈ Δ \ ΔQ1
| α ∈ ΔQ2

} − #{α ∈ Δ \ ΔQ1
| α /∈ ΔQ2

}. Set Q′
2 =

nwGwQ2
Qop

2 n−1
wGwQ2

. Then by Lemma 3.5, we get

Exti−r1
H (eG(σ1),StQ2

(σ2))� Exti−r1
H ((StQ2

(σ2))
∗,eG(σ1)

∗)

� Exti−r1
H (StQ′

2
(σ∗

2),eG(σ
∗
1)).

Again using Lemma 3.7, we have

Exti−r1
H (StQ′

2
(σ∗

2),eG(σ
∗
1))� Exti−r1−r2

H (eG(σ
∗
2),eG(σ

∗
1)),

where r2 =#(Δ\ΔQ′
2
) = #(Δ\ΔQ2

). Applying Lemma 3.5 again, we get

Exti−r1−r2
H (eG(σ

∗
2),eG(σ

∗
1))� Exti−r1−r2

H (eG(σ1),eG(σ2)).

Since r1+ r2 =#(ΔQ1
�ΔQ2

), we get the lemma.

Recall that the trivial module 1 is defined by 1(Tw) = qw. We denote the restriction of

1 to Haff by 1Haff
.

Corollary 3.9. We have ExtiHaff
(1Haff

,1Haff
) = 0 for i > 0.

Proof. Let Haff be the quotient of Haff by the ideal generated by {Tt − 1 | t ∈ Zκ ∩
Waff(1)}. Then this is the Hecke algebra attached to the Coxeter system (Waff,Saff). Let

π2 (resp. π1) be an an Haff -module (resp. Haff -module). Then we have HomHaff
(π1,π2) =

HomHaff
(π1,π

Zκ
2 ). In particular, π2 �→ πZκ

2 sends injective H-modules to injective Haff -

modules. Since the functor π2 �→ πZκ
2 is exact, we have ExtiHaff

(π1,π2)� ExtiHaff
(π1,π

Zκ
2 ).

Therefore, we have ExtiHaff
(1Haff

,1Haff
)� ExtiHaff

(1Haff
,1Haff

). Consider the root system

which defines (Waff,Saff), and let H be the split simply-connected semisimple group with

this root system. Then the affine Hecke algebra attached to H is Haff . Let H′ be the pro-
p-Iwahori Hecke algebra for H. Then H ′ =H by [5, II.3.Proposition]; hence, H′

aff =H′.
Therefore, the above argument implies that ExtiH′(1H′,1H′)� ExtiHaff

(1Haff
,1Haff

).

Therefore, it is sufficient to prove ExtiH(1G,1G) = 0 for i > 0 assuming G is a split,
simply connected semisimple group. By [15, Proposition 6.20], the projective dimension of

1G is equal to the semisimple rank of G, namely #Δ. Therefore, Exti+#Δ
H (1G,StB(1B)) =

0 for i > 0. The left-hand side is ExtiH(1G,1G) by Theorem 3.8.

3.4. Extension between extensions

Let P be a parabolic subgroup and σ an HP -module which has the extension eG(σ) to H.

In particular, ΔP and Δ\ΔP are orthogonal to each other. Let P2 be a parabolic subgroup
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corresponding to Δ\ΔP . Let J ⊂H be an ideal generated by {T ∗
w −1 | w ∈Waff,P2

(1)}.
Then eG(σ)(J) = 0. Hence, for any module π of H, we have

HomH(e(σ),π) = HomH/J (e(σ),{v ∈ π | vJ = 0}).
Note that TP2

w �→ Tw defines the injection Haff,P2
→ H since the restriction of � on

Waff,P2
(1) is �P2

. Since any generator of J is in Haff,P2
, we have {v ∈ π | vJ = 0}= {v ∈

π | v(J ∩Haff,P2
) = 0}. Since the trivial representation 1Haff,P2

of Haff,P2
is isomorphic to

Haff,P2
/(J ∩Haff,P2

), we get

{v ∈ π | v(J ∩Haff,P2
) = 0}=HomHaff,P2

(1Haff,P2
,π).

Hence, we get

HomH(eG(σ),π) = HomH/J(eG(σ),HomHaff,P2
(1Haff,P2

,π)).

This isomorphism can be generalized as

HomH(π1,π) = HomH/J(π1,HomHaff,P2
(1Haff,P2

,π))

for any H/J-module π1. In particular, π �→ HomHaff,P2
(1Haff,P2

,π) from the category of

H-modules to the category of H/J-modules preserves injective modules. Hence, we have

a spectral sequence

ExtiH/J(eG(σ),Ext
j
Haff,P2

(1Haff,P2
,π))⇒ Exti+j

H (e(σ),π).

Now let σ1,σ2 be HP -modules such that both have the extensions eG(σ1),eG(σ2) to H.

Since eG(σ2)|Haff,P2
is a direct sum of the trivial representations, we have

ExtjHaff,P2
(1Haff,P2

,e(σ2)) = 0

for j > 0 by Corollary 3.9. Hence,

ExtiH(eG(σ1),eG(σ2))� ExtiH/J(eG(σ1),eG(σ2)).

Lemma 3.10 ([6, Proposition 3.5]). Let I be the ideal of HP generated by {TP
λ −1 | λ ∈

Λ(1)∩Waff,P2
(1)}. Then we have H/J �HP /I.

Therefore, we get

ExtiH(eG(σ1),eG(σ2))� ExtiHP /I(σ1,σ2).

Proposition 3.11. Set W ′
aff = Waff,P , S′

aff = Saff,P , W ′ = WP /(Λ ∩Waff,P2
), Ω′ =

ΩP /(Λ∩Waff,P2
), W ′(1) =WP (1)/(Λ(1)∩Waff,P2

(1)), Z ′
κ = Zκ/(Zκ ∩Waff,P2

(1)). Then

(W ′
aff,S

′
aff,Ω

′,W ′,W ′(1),Z ′
κ) satisfies the condition of subsection 2.1, and the attached

algebra is H/I. Moreover, Ω′ is commutative.

Proof. Since Δ = ΔP ∪ΔP2
is the orthogonal decomposition, we have Waff = Waff,P ×

Waff,P2
and Saff = Saff,P ∪ Saff,P2

. The pair (W ′
aff,S

′
aff) = (Waff,P ,Saff,P ) is a Coxeter

system, and ΩP acts on it. Since Waff,P2
commutes with Waff,P , this gives the action

of Ω′ on (W ′
aff,S

′
aff). We have W ′

aff ⊂ WP , and since Waff,P ∩Waff,P2
is trivial, we

have the embedding W ′
aff ⊂ W ′. We also have ΩP ⊂ W ′. Since WP = Waff,PΩP , we
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have W ′ = W ′
affΩ

′. Since Waff,P ∩ΩP = {1}, we have W ′
aff ∩Ω′ = {1} in W ′. Hence,

W ′ = W ′
aff �Ω′. Since Zκ is finite and commutative, Z ′

κ is also a finite commutative

group. The existence of the exact sequence

1→ Z ′
κ →W ′(1)→W ′ → 1

is obvious. Note that the length function �′ : W ′(1)→ Z≥0 is given by �P : W ′
P (1)→ Z≥0

since S′
aff = Saff,P and Ω′ is the image of ΩP .

We put q′s = qs for s ∈ Saff,P . (Note that qs = qs,P since Δ=ΔP ∪ΔP2
is an orthogonal

decomposition.) For s ∈Ref(W ′(1)), take its lift s̃ ∈Ref(WP (1)) and let c′s be the image

of cs̃ in C[Z ′
κ]. We prove that this is well-defined. Let s̃′ be another lift, and take λ ∈

Λ(1)∩Waff,P2
(1) such that s̃′ = s̃λ. The image of s̃ in W is in Ref(WP ) ⊂WP,aff since

SP,aff ⊂ WP,aff and WP,aff is normal. (Recall that a reflection is an element which is

conjugate to a simple reflection.) Let λ be the image of λ in Λ. Since s̃,s̃′ ∈ WP,aff(1),

we have λ ∈ Λ∩Waff,P2
∩Waff,P = {1}. Hence, λ ∈ Zκ. Since λ ∈ Waff,P2

(1), we have
λ∈Zκ∩Waff,P2

(1). Hence, the image of cs̃′ = cs̃λ = cs̃λ is the same as that of cs̃ in C[Z ′
κ].

We get the parameter (q′,c′) and let H′ =
⊕

w∈W ′(1)T
′
w be the attached algebra.

Consider the linear map Φ: HP → H′ defined by TP
w �→ T ′

w, where w ∈ WP (1) and
w ∈W ′(1) is the image of w.

First, we prove that the map Φ preserves the relations. Let s ∈WP (1) be a lift of an

affine simple reflection in Saff,P . Then we have (TP
s )2 = qsT

P
s2 +csT

P
s . Let s be the image

of s in W ′(1). Then we have (T ′
s)

2 = q′sT
′
s2 + c′sT

′
s. The definition of (q′,c′) says q′s = qs

and Φ(cs) = c′s. Hence, Φ preserves the quadratic relations. The compatibility between

�P and �′ implies that Φ preserves the braid relations.

Obviously, Φ is surjective. We prove that KerΦ = I. Clearly, we have I ⊂ KerΦ. Let∑
w∈WP (1) cwTw ∈KerΦ, where cw ∈C. Fix a section x of WP (1)→W ′(1). Then we have∑
w∈WP (1) cwT

P
w =

∑
w∈W ′(1)

∑
λ∈Λ(1)∩Waff,P2

(1) cx(w)λT
P
x(w)λ. Hence,

0 = Φ

⎛⎝ ∑
w∈WP (1)

cwT
P
w

⎞⎠=
∑

w∈W ′(1)

⎛⎝ ∑
λ∈Λ(1)∩Waff,P2

(1)

cx(w)λ

⎞⎠T ′
w.

Therefore, for each w ∈W ′(1), we have
∑

λ∈Λ(1)∩Waff,P2
(1) cx(w)λ = 0. Hence,∑

w∈WP (1)

cwT
P
w

=
∑

w∈W ′(1)

∑
λ∈Λ(1)∩Waff,P2

(1)

cx(w)λT
P
x(w)λ

=
∑

w∈W ′(1)

⎛⎝ ∑
λ∈Λ(1)∩Waff,P2

(1)

cx(w)λT
P
x(w)λ−

∑
λ∈Λ(1)∩Waff,P2

(1)

cx(w)λT
P
x(w)

⎞⎠
=

∑
w∈W ′(1)

⎛⎝ ∑
λ∈Λ(1)∩Waff,P2

(1)

cx(w)λT
P
x(w)(T

P
λ −1)

⎞⎠ ∈ I.

Finally, Ω′ is commutative since ΩP is commutative.
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Remark 3.12. The data do not come from a reductive group in general.

3.5. Example

Let G = PGL2. We have Λ(1) � F×/(1+ (�)) � Z×κ×. Consider G̃ = SL2. Then G′ is
the image of G̃→ G [5, II.4 Proposition]. By this description, we have Λ(1)∩Waff(1) =

{λ2 | λ ∈ Λ(1)}. Therefore, with the notation in Proposition 3.11, we have W ′
aff = {1},

S′
aff = ∅, W ′(1) = Λ(1)/{λ2 | λ∈Λ(1)}, Zκ =Zκ/{t2 | t∈Zκ}. We have HB/I =C[W ′(1)].
Consider the trivial module 1G. Then we have 1G = eG(1B), and we have

ExtiH(1G,1G)� ExtiHB/I(1B,1B)� ExtiC[W ′(1)](1B,1B) =Hi(W ′(1),C).

Here, C is the trivial W ′(1)-module. Since the group W ′(1) is a 2-group, this cohomology

is zero if the characteristic of C is not 2. However, if the characteristic of C is 2, since

W ′(1) � Z/2Z (p = 2) or (Z/2Z)⊕2 (p �= 2), Hi(W ′(1),C) �= 0 if i is even. Therefore,
we have infinitely many i with ExtiH(1G,1G) �= 0. This recovers Koziol’s example [12,

Example 6.2].

3.6. Summary

Now we get a reduction. The Ext1 between simple modules is equal to Ext1−r between

supersingular simple modules for some r ≥ 0 or zero. In particular, if r ≥ 2, then Ext1

between simple modules is zero. If r = 1, then Ext1−r = Hom, so it is zero or one-

dimensional. If r = 0, we have to calculate Ext1 between supersingular simple modules.

Therefore, the only remaining task is to calculate Ext1 between supersingular simple
modules.

4. Ext1 between supersingular modules

In this section, we fix data (Waff,Saff,Ω,W,W (1),Zκ) and let H be the algebra attached

to this data. We do not assume that these data come from a group. We also assume:

• our parameter qs is zero.
• #Zκ is prime to p.

As in subsection 2.9, let W aff(1) be the inverse image of Waff in W (1), and put Haff =⊕
w∈W aff (1)CTw.

For a character χ of Zκ and w ∈ W , we define (wχ)(t) = χ(w̃−1tw̃) where w̃ ∈ W (1)

is a lift of W. Since Zκ is commutative, this does not depend on a lift w̃ and defines a
character wχ of Zκ. For a character Ξ of Haff and ω ∈Ω(1), we write Ξω for the character

Tw �→ Ξ(Tωwω−1) for w ∈W aff(1). Since Ξω only depends on the image ω of ω in Ω, we

also write Ξω.

Note that, since s · cs̃ = cs̃ for s ∈ Saff with a lift s̃ by the conditions of the parameter
c, we have (sχ)(cs̃) = χ(cs̃).

4.1. Ext1 for Haff

Let χ,χ′ be characters of Zκ and J ⊂ Saff,χ,J
′ ⊂ Saff,χ′ subsets. Then we have characters

Ξ = ΞJ,χ, Ξ
′ = ΞJ ′,χ′ of Haff . We calculate Ext1Haff (Ξ,Ξ′).
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To express the space of extensions, we need some notation. For each s ∈ Saff , let Cs

be the set of functions a on {s̃ ∈W (1) | s̃ �→ s ∈W} such that a(ts̃) = χ′(t)a(s̃), a(s̃t) =
a(s̃)χ(t) for any t∈Zκ. Then Cs �=0 if and only if χ′ = sχ and if χ′ = sχ then dimCCs =1.

Now we define some subsets of Saff . First, consider the sets

A1(Ξ,Ξ
′) = {s ∈ Saff | Ξ(Ts̃) = Ξ′(Ts̃) = 0},

A2(Ξ,Ξ
′) = {s ∈ Saff | Ξ(Ts̃) �= 0, Ξ′(Ts̃) = 0},

A3(Ξ,Ξ
′) = {s ∈ Saff | Ξ(Ts̃) = 0, Ξ′(Ts̃) �= 0},

A4(Ξ,Ξ
′) = {s ∈ Saff | Ξ(Ts̃) �= 0, Ξ′(Ts̃) �= 0},

where s̃ is a lift of s. We define

S2(Ξ,Ξ
′) =A2(Ξ,Ξ

′)∪A3(Ξ,Ξ
′),

S1(Ξ,Ξ
′) = {s ∈A1(Ξ,Ξ

′)\Saff,χ | sχ= χ′, (ss1)2 �= 1 for any s1 ∈ S2(Ξ,Ξ
′)}.

If s ∈ Saff,χ and a ∈ Cs, then a(s̃)χ(cs̃)
−1 ∈ C does not depend on a lift s̃ of s. We

denote it by aχ(cs)
−1. We also have that if s ∈ Saff,χ′ , then a(s̃)χ′(cs̃)−1 does not depend

on a lift s̃. We denote it by aχ′(cs)−1. If a �= 0, then χ′ = sχ. Hence, if s ∈ Saff,χ, then

s ∈ Saff,χ′ and aχ(cs)
−1 = aχ′(cs)−1.

For the Hecke algebra attached to a finite Coxeter system, the following proposition is

[8, Theorem 5.1], and we use a similar proof.

Proposition 4.1. Consider the subspace E2(Ξ,Ξ
′) of

⊕
s∈S2(Ξ,Ξ′)Cs consisting (as) such

that

• If s1,s2 ∈A2(Ξ,Ξ
′), then as1χ(cs1)

−1 = as2χ(cs2)
−1.

• If s1,s2 ∈A3(Ξ,Ξ
′), then as1χ

′(cs1)
−1 = as2χ

′(cs2)
−1.

• If s1 ∈ A2(Ξ,Ξ
′), s2 ∈ A3(Ξ,Ξ

′) and (s1s2)
2 = 1, then as1χ(cs1)

−1 + as2χ
′

(cs2)
−1 = 0,

and put E1(Ξ,Ξ
′) =

⊕
s∈S1(Ξ,Ξ′)Cs, E(Ξ,Ξ′) = E1(Ξ,Ξ

′)⊕E2(Ξ,Ξ
′). For (as) ∈ E(Ξ,Ξ′),

consider the linear map H→M2(C) defined by

Ts̃ �→
(
Ξ(Ts̃) 0

as(s̃) Ξ′(Ts̃)

)
,

where as = 0 if s /∈ S1(Ξ,Ξ
′)∪S2(Ξ,Ξ

′). Then this gives an extension of Ξ by Ξ′, and it

gives a surjective map E(Ξ,Ξ′)→ Ext1Haff (Ξ,Ξ′). The kernel is⎧⎨⎩(as) ∈ E(Ξ,Ξ′)

∣∣∣∣∣∣
as1χ(cs1)

−1+as2χ
′(cs2)

−1 = 0

(s1 ∈A2(Ξ,Ξ
′),s2 ∈A3(Ξ,Ξ

′))
as = 0 (s ∈ S1(Ξ,Ξ

′))

⎫⎬⎭ . (4.1)

Remark 4.2. Let V2 be a subspace of
⊕

s∈A2(Ξ,Ξ′)Cs consisting (as) such that

as1χ(cs1)
−1 = as2χ(cs2)

−1 for any s1,s2 ∈ A2(Ξ,Ξ
′). Then dimV2 ≤ 1 and V2 �= 0 if and

only if Cs �= 0 for any s ∈ A2(Ξ,Ξ
′), namely sχ = χ′ for any s ∈ A2(Ξ,Ξ

′). Define V3 by
the similar way. Then dimV3 ≤ 1 and V3 �= 0 if and only if sχ= χ′ for any s ∈A3(Ξ,Ξ

′). If
there is no s1 ∈A2(Ξ,Ξ

′) and s2 ∈A3(Ξ,Ξ
′) such that (s1s2)

2 =1, then E2(Ξ,Ξ
′) = V2⊕V3.

Otherwise, dimE2(Ξ,Ξ
′) = max{0, dimV2+dimV3−1}.
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Proof. LetM be an extension of Ξ by Ξ′. Since #Zκ is prime to p, the representation of Zκ

over C is completely reducible. Hence, we can take a basis e1,e2 such that Tte1 = χ(t)e1
and Tte2 = χ′(t)e2. With this basis, the action of Ts̃ where s̃ ∈ Saff(1) with the image
s ∈ Saff is described as

Ts̃ =

(
Ξ(Ts̃) 0
as(s̃) Ξ′(Ts̃)

)
.

for some as(s̃) ∈ C. The action of Tt where t ∈ Zκ is given by(
χ(t) 0
0 χ′(t).

)
Since TtTs̃ = Tts̃, we have(

χ(t) 0
0 χ′(t).

)(
Ξ(Ts̃) 0
as(s̃) Ξ′(Ts̃)

)
=

(
Ξ(Tts̃) 0
as(ts̃) Ξ′(Tts̃)

)
.

Hence, as(ts̃) = χ′(t)as(s̃). Similarly, we have as(s̃t) = as(s̃)χ(t). Hence, as ∈ Cs.

Now we check the conditions that the map defines an action of Haff . Since we have(
Ξ(Ts̃) 0

as(s̃) Ξ′(Ts̃)

)2

=

(
Ξ(Ts̃)

2 0

as(s̃)(Ξ(Ts̃)+Ξ′(Ts̃)) Ξ′(Ts̃)
2

)
,

this satisfies the quadratic relation T 2
s̃ = Ts̃cs̃ if and only if

as(s̃)(Ξ(Ts̃)+Ξ′(Ts̃)) = as(s̃)χ(cs̃). (4.2)

If s ∈A1(Ξ,Ξ
′), then as(s̃) = 0 or χ(cs̃) = 0, namely as = 0 or s /∈ Saff,χ.

If s ∈A2(Ξ,Ξ
′), then as = 0 or Ξ(Ts̃) = χ(cs̃). Since Ξ(Ts̃) �= 0, we always have Ξ(Ts̃) =

χ(cs̃). Hence, equation (4.2) is always satisfied.

If s ∈A3(Ξ,Ξ
′), then as = 0 or Ξ′(Ts̃) = χ(cs̃). Note that if as �= 0, then sχ= χ′; hence,

Saff,χ = Saff,χ′ and χ(cs̃) = χ′(cs̃). Therefore, under as �= 0, we have Ξ′(Ts̃) = χ(cs̃) if and
only if Ξ′(Ts̃) = χ′(cs̃). This always hold since Ξ′(Ts̃) �= 0. Hence, equation (4.2) is always

satisfied.

If s∈A4(Ξ,Ξ
′), then we have Ξ(Ts̃) = χ(cs̃). Hence, we have as(s̃)Ξ

′(Ts̃) = 0. Therefore,
we have as = 0 since Ξ′(Ts̃) �= 0.

Consequently, the quadratic relation holds if and only if as =0 or s∈ (A1(Ξ,Ξ
′)\Saff,χ)∪

A2(Ξ,Ξ
′)∪A3(Ξ,Ξ

′). The action of Ts̃ is given by one of the following matrix:(
0 0

as(s̃) 0

)
,

(
χ(cs̃) 0

as(s̃) 0

)
,

(
0 0

as(s̃) χ′(cs̃)

)
,

(
χ(cs̃) 0

0 χ′(cs̃)

)
. (4.3)

Here, each χ(cs̃) and χ′(cs̃) is not zero, and in the first matrix, we assume that s /∈ Saff,χ

if as �= 0.

Now we check the braid relations. Let s1,s2 ∈ Saff and s̃1,s̃2 their lifts. We consider a

braid relation s1s2 · · ·= s2s1 · · · . It is easy to see that the action satisfies the braid relation
for some lifts s̃1,s̃2 if and only if it is satisfied for any lifts s̃1,s̃2. Take s̃1,s̃2 such that

s̃1s̃2 · · ·= s̃2s̃1 · · · . It is easy to see that if s1 ∈ A4(Ξ,Ξ
′) or s2 ∈ A4(Ξ,Ξ

′), then the braid

relations hold automatically. So we assume that s1,s2 ∈A1(Ξ,Ξ
′)∪A2(Ξ,Ξ

′)∪A3(Ξ,Ξ
′).

https://doi.org/10.1017/S1474748022000202 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000202


2794 N. Abe

Assume that s1 ∈A1(Ξ,Ξ
′). We have(

0 0
as1(s̃1) 0

)(
Ξ(Ts̃2) 0
as2(s̃2) Ξ′(Ts̃2)

)
=

(
0 0

as1(s̃1)Ξ(Ts̃2) 0

)
,(

0 0

as1(s̃1) 0

)(
Ξ(Ts̃2) 0

as2(s̃2) Ξ′(Ts̃2)

)(
0 0

as1(s̃1) 0

)
=

(
0 0

0 0

)
,(

Ξ(Ts̃2) 0

as2(s̃2) Ξ′(Ts̃2)

)(
0 0

as1(s̃1) 0

)
=

(
0 0

Ξ′(Ts̃2)as1(s̃1) 0

)
,(

Ξ(Ts̃2) 0

as2(s̃2) Ξ′(Ts̃2)

)(
0 0

as1(s̃1) 0

)(
Ξ(Ts̃2) 0

as2(s̃2) Ξ′(Ts̃2)

)
=

(
0 0

Ξ′(Ts̃2)Ξ(Ts̃2)as1(s̃1) 0

)
,(

Ξ(Ts̃2) 0

as2(s̃2) Ξ′(Ts̃2)

)(
0 0

as1(s̃1) 0

)(
Ξ(Ts̃2) 0

as2(s̃2) Ξ′(Ts̃2)

)(
0 0

as1(s̃1) 0

)
=

(
0 0

0 0

)
.

Hence, the braid relation is satisfied if and only if

• as1 = 0
• or Ξ(Ts̃2) = Ξ′(Ts̃2) and the order of s1s2 is 2
• or Ξ(Ts̃2)Ξ

′(Ts̃2) = 0 and the order of s1s2 is 3
• or the order of s1s2 is greater than 3.

If s2 ∈ A1(Ξ,Ξ
′), then the condition always holds. If s2 ∈ A2(Ξ,Ξ

′)∪A3(Ξ,Ξ
′), then the

condition holds if and only if as1 = 0 or the order of s1s2 is not 2, namely (s1s2)
2 �= 1.

Replacing s1 with s2, if s2 ∈A1(Ξ,Ξ
′), we have the similar condition.

Assume that s1,s2 ∈A2(Ξ,Ξ
′). We have(

χ(cs̃1) 0

as1(s̃1) 0

)(
χ(cs̃2) 0

as2(s̃2) 0

)
=

(
χ(cs̃1)χ(cs̃2) 0

as1(s̃1)χ(cs̃2) 0

)
=

(
χ(cs̃1) 0

as1(s̃1) 0

)
χ(cs̃2).

By this calculation, the braid relation is satisfied if and only if as1(s̃1)χ(cs̃2) · · · =
as2(s̃2)χ(cs̃1) · · · . By [20, Proposition 4.13 (6)], we have cs̃1cs̃2 · · · = cs̃2cs̃1 · · · . Hence,

the braid relation is satisfied if and only if as1(s̃1)χ(cs̃1)
−1 = as2(s̃2)χ(cs̃2)

−1, namely
as1χ(cs1)

−1 = as2χ(cs2)
−1. By a similar calculation, if s1,s2 ∈ A3(Ξ,Ξ

′), then the braid

relation is satisfied if and only if as1χ
′(cs1)

−1 = as2χ
′(cs2)

−1.

Finally, we assume that s1 ∈A2(Ξ,Ξ
′) and s2 ∈A3(Ξ,Ξ

′). We have(
χ(cs̃1) 0

as1(s̃1) 0

)(
0 0

as2(s̃2) χ′(cs̃2)

)
=

(
0 0

0 0

)
,(

0 0
as2(s̃2) χ′(cs̃2)

)(
χ(cs̃1) 0
as1(s̃1) 0

)
=

(
0 0

as2(s̃2)χ(cs̃1)+as1(s̃1)χ
′(cs̃2) 0

)
,(

0 0

as2(s̃2) χ′(cs̃2)

)(
χ(cs̃1) 0

as1(s̃1) 0

)(
0 0

as2(s̃2) χ′(cs̃2)

)
=

(
0 0

0 0

)
.

Hence, the braid relation is satisfied if and only if

• as2(s̃2)χ(cs̃1)+as1(s̃1)χ
′(cs̃2) = 0 and the order of s1s2 is 2.

• the order of s1s2 is greater than 2.
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We notice that as2(s̃2)χ(cs̃1) + as1(s̃1)χ
′(cs̃2) = 0 if and only if as1χ(cs1)

−1 +

as2χ
′(cs2)

−1 = 0.
We get the following table which shows the condition for the braid relation:

s2

s1 A1 A2 A3 A4

A1 always as2 = 0 or (s1s2)
2 �= 1 always

A2

as1 = 0

or (s1s2)
2 �= 1

as1χ(cs1)
−1

= as2χ(cs2)
−1

as1χ
′(cs1)

−1+

as2χ(cs2)
−1 = 0

or (s1s2)
2 �= 1

always

A3

as1χ(cs1)
−1+

as2χ
′(cs2)

−1 = 0

or (s1s2)
2 �= 1

as1χ
′(cs1)

−1

= as2χ
′(cs2)

−1 always

A4 always always always always

Now we assume that (as) ∈
⊕

s∈Saff
Cs defines an action of H. First, recall that Cs �= 0

if and only if sχ= χ′. Hence, as �= 0 implies sχ= χ′. Since the quadratic relations hold,

if as �= 0, then s ∈ (A1(Ξ,Ξ
′) \Saff,χ)∪S2(Ξ,Ξ

′). If s ∈ A1(Ξ,Ξ
′) \Saff,χ and (ss1)

2 = 1

for some s1 ∈ S2(Ξ,Ξ
′), then the table says that as = 0. Therefore, if as �= 0, then s ∈

S1(Ξ,Ξ
′)∪S2(Ξ,Ξ

′). Hence, again by the table, (as) belongs to E(Ξ,Ξ′).
Conversely, if (as) ∈E(Ξ,Ξ′), then as �= 0 implies s ∈ S1(Ξ,Ξ

′)∪S2(Ξ,Ξ
′)⊂ (A1(Ξ,Ξ

′)\
Saff,χ)∪S2(Ξ,Ξ

′). Hence, each Ts̃ satisfies the quadratic relation. Let s1,s2 ∈ Saff . If s1 ∈
A1(Ξ,Ξ

′) and s2 ∈A2(Ξ,Ξ
′)∪A3(Ξ,Ξ

′), then the definition of S1(Ξ,Ξ
′) says that (s1s2)2 �=

1 or as1 = 0. Then by the table, the braid relation for s1,s2 holds. For other cases, the

condition on E2(Ξ,Ξ
′) and the table imply that the braid relation holds too.

Therefore, the map E(Ξ,Ξ′)→ Ext1Haff (Ξ,Ξ′) is well-defined and surjective.

Assume that the extension given by (as) splits, namely each matrix in equation (4.3)

is simultaneous diagonalizable. If s ∈ A1(Ξ,Ξ
′), then the matrix corresponding to s

is diagonalizable if and only if as = 0. Let s1,s2 ∈ A2(Ξ,Ξ
′). Then by as1χ(cs1)

−1 =
as2χ(cs2)

−1, the matrices corresponding to s1,s2 commute with each other. Hence, these

matrices are simultaneous diagonalizable. Similarly, matrices corresponding to A3(Ξ,Ξ
′)

are simultaneous diagonalizable.
If s1 ∈A2(Ξ,Ξ

′) and s2 ∈A3(Ξ,Ξ
′), then the corresponding matrices are(

χ(cs̃1) 0

as(s̃1) 0

)
,

(
0 0

as(s̃2) χ′(cs̃2)

)
,

and these commute with each other if and only if as1χ(cs1)
−1+as2χ(cs2)

−1 = 0. Hence,

the kernel is equation (4.1).

Remark 4.3. Let ω ∈Ω(1)Ξ∩Ω(1)Ξ′ . Then ω acts on Ext1Haff (Ξ,Ξ′), and by this action,

Ext1Haff (Ξ,Ξ′) is a right Ω(1)Ξ∩Ω(1)Ξ′ -module. We also have the action of ω on E(Ξ,Ξ′)
as follows: Let s ∈ Saff , and put s1 = ω−1sω ∈ Saff . Then a �→ (s̃1 �→ a(ωs̃1ω

−1)) gives an
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isomorphism Cs � Cs1 . We denote this map by a �→ a ·ω. Then the action is given by
(as) �→ (aω−1sω ·ω). This action commutes with the action of ω on Ext1Haff (Ξ,Ξ′).

4.2. Semidirect product

The argument in this subsection is general. Let A be a C -algebra and Γ a group acting

on A. We assume that a finite commutative normal subgroup Γ′ ⊂ Γ and an embedding
C[Γ′] ↪→A are given. Here, we assume that for γ′ ∈ Γ′, the action of γ′ on A as an element

in Γ is given by a �→ γ′a(γ′)−1. We put B = C[Γ]⊗C[Γ′]A and define a multiplication by

(γ1⊗a1)(γ2⊗a2) = γ1γ2⊗(γ−1
2 ·a1)a2 for a1,a2 ∈A and γ1,γ2 ∈ Γ. Of course, the example

in our mind is A=Haff , Γ = Ω(1) and Γ′ = Zκ. We have B =H.

Let M1,M2 be right B -modules. Then HomA(M1,M2) has the structure of a Γ-

module defined by (fγ)(m) = f(mγ−1)γ. This action factors through Γ → Γ/Γ′, and

we have HomB(M1,M2) = HomA(M1,M2)
Γ/Γ′

. Let N be a Γ/Γ′-module and ϕ ∈
HomΓ/Γ′(N,HomA(M1,M2)). Set f : N ⊗M1 → M2 by f(n⊗m) = ϕ(n)(m) for n ∈ N

and m∈M1. Then for γ ∈ Γ, we have f(nγ⊗mγ) =ϕ(nγ)(mγ) =ϕ(n)(m)γ = f(n⊗m)γ.

Namely, f is Γ-equivariant. We define an action of a∈A on N⊗M1 by (n⊗m)a= n⊗ma.
Then it coincides with the action of Γ on C[Γ′], and it gives an action of B. This

correspondence gives an isomorphism

HomΓ/Γ′(N,HomA(M1,M2))�HomB(N ⊗M1,M2).

In particular, if M2 is an injective B -module, then HomA(M1,M2) is an injective Γ/Γ′-
module. Therefore, from HomB(M1,M2) =HomA(M1,M2)

Γ/Γ′
, we get a spectral sequence

Eij
2 =Hi(Γ/Γ′,ExtjA(M1,M2))⇒ Exti+j

B (M1,M2).

In particular, we have an exact sequence

0→H1(Γ/Γ′,HomA(M1,M2))→ Ext1B(M1,M2)→ Ext1A(M1,M2)
Γ/Γ′

(4.4)

Moreover, we assume the following situation. Let Γ1 be a finite index subgroup of Γ
which contains Γ′, and put B1 =A⊗C[Γ′]C[Γ1]. Then this is a subalgebra of B, and B is

a free left B1-module with a basis given by a complete representative of Γ1\Γ. Assume

that M1 has a form L1⊗B1
B for some B1-module L1. We have M1 =

⊕
γ∈Γ1\ΓL1⊗ γ.

Since B is flat over B1, we have

Ext1B(M1,M2)� Ext1B1
(L1,M2).

We have a B1-module embedding L1 ↪→M1. This is in particular an A-homomorphism,
and we get

ExtiA(M1,M2)→ Ext1A(L1,M2).

Since L1 ↪→M1 is a B1-homomorphism, this is a Γ1-homomorphism. Hence, this induces

ExtiA(M1,M2)→ IndΓΓ1
(ExtiA(L1,M2)).
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The decomposition M1 =
⊕

γ∈Γ1\ΓL1⊗γ respects the A-action. Hence,

ExtiA(M1,M2) =
⊕

γ∈Γ1\Γ
ExtiA(L1⊗γ,M2) =

⊕
γ∈Γ1\Γ

ExtiA(L1,M2)γ.

Therefore, the above homomorphism is an isomorphism

ExtiA(M1,M2)� IndΓΓ1
(ExtiA(L1,M2)).

This implies

H1(Γ/Γ′,HomA(M1,M2))�H1(Γ1/Γ
′,HomA(L1,M2)),

Ext1A(M1,M2)
Γ/Γ′ � Ext1A(L1,M2)

Γ1/Γ
′

and a commutative diagram

0 H1(Γ/Γ′,HomA(M1,M2)) Ext1B(M1,M2) Ext1A(M1,M2)
Γ/Γ′

0 H1(Γ1/Γ
′,HomA(L1,M2)) Ext1B1

(L1,M2) Ext1A(L1,M2)
Γ1/Γ

′
.

  

We also assume that there exists a finite index subgroup Γ2 of Γ which contains

Γ′ and M2 = L2 ⊗B2
B, where B2 = A ⊗C[Γ′] C[Γ2]. Let {γ1, . . . ,γr} be a set of

complete representatives of Γ2\Γ/Γ1. Then the decomposition M2 =
⊕

γ∈Γ2\ΓL2 ⊗ γ =⊕
i

⊕
γ∈(Γ1∩γ−1

i Γ2γi)\Γ1
L2⊗γiγ gives

M2|B1
=
⊕
i

L2γi⊗B1∩γ−1
i B2γi

B1,

where L2γi is a γ−1
i B2γi-module defined by: L2γi = L2 as a vector space and the action

is given by l(γ−1
i bγi) = l · b for l ∈ L2 and b ∈B2, here · is the original action of b ∈B2 on

L2. From this isomorphism, we get

Hi(Γ1/Γ
′,ExtjA(L1,M2))�

⊕
i

Hi((Γ1∩γ−1
i Γ2γi)/Γ

′,ExtjA(L1,L2γi))

and

ExtiB1
(L1,M2) =

⊕
i

Exti
B1∩γ−1

i B2γi
(L1,L2γi)

which is compatible with the exact sequence in equation (4.4).

Set A=Haff , Γ =Ω(1), Γ′ =Zκ, Γ1 =Ω(1)Ξ and Γ2 =Ω(1)Ξ′ . Then we get the following

lemma. Recall that Ω is assumed to be commutative. For a character Ξ of H, we defined

Ω(1)Ξ as the stabilizer of Ξ in Ω(1) and HΞ =HaffC[Ω(1)Ξ] in subsection 2.9.

Lemma 4.4. Let χ,χ′ be characters of Zκ and J ⊂ Saff,χ,J
′ ⊂ Saff,χ′ . Put Ξ = Ξχ,J ,

Ξ′ = Ξχ′,J ′ , and let V ,V ′ be irreducible C[Ω(1)Ξ], C[Ω(1)Ξ′ ]-modules, respectively. Let

{ω1, . . . ,ωr} be a set of complete representatives of ΩΞ\Ω/ΩΞ′ = Ω/ΩΞΩΞ′ , and define

Ξ′
i by Ξ′

i(X) = Ξ′(ωiXω−1
i ). Consider the representation of C[Ω(1)Ξ′

i
] = ω−1

i C[Ω(1)Ξ′ ]ωi
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twisting V ′ by ωi, and we denote it by V ′
i . Put ΩΞ,Ξ′ = ΩΞ∩ΩΞ′ and HΞ,Ξ′ =HΞ∩HΞ′ .

Then we have a commutative diagram with exact rows:

0 0

H1(Ω,HomHaff (πJ,χ,V ,πJ ′,χ′,V ′))
⊕
i

H1(ΩΞ,Ξ′
i
,HomHaff (Ξ⊗V ,Ξ′

i⊗V ′
i ))

Ext1H(πχ,J,V ,πχ′,J ′,V ′)
⊕
i

Ext1HΞ,Ξ′
i

(Ξ⊗V ,Ξ′
i⊗V ′

i )

Ext1Haff (πχ,J,V ,πχ′,J ′,V ′)Ω
⊕
i

Ext1Haff (Ξ⊗V ,Ξ′
i⊗V ′

i )
ΩΞ,Ξ′

i

∼

∼

∼

The following theorem will be proved in subsection 4.4.

Theorem 4.5. The map Ext1HΞ,Ξ′ (Ξ ⊗ V ,Ξ′ ⊗ V ′) → Ext1Haff (Ξ ⊗ V ,Ξ′ ⊗ V ′)ΩΞ,Ξ′ is

surjective.

Combining with Lemma 4.4, we get the surjectivity of Ext1H(πχ,J,V ,πχ′,J ′,V ′) →
Ext1Haff (πχ,J,V ,πχ′,J ′,V ′)Ω stated in the introduction of this paper.

4.3. Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′

To prove Theorem 4.5, we analyze Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ . First, we have

Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)� Ext1Haff (Ξ,Ξ′)⊗HomC(V ,V ′)

and the surjective homomorphism E(Ξ,Ξ′)→ Ext1Haff (Ξ,Ξ′). We have the decomposition

E(Ξ,Ξ′) = E1(Ξ,Ξ
′)⊕E2(Ξ,Ξ

′). Let E′
1(Ξ,Ξ

′) (resp. E′
2(Ξ,Ξ

′)) be the image of E1(Ξ,Ξ
′)

(resp. E2(Ξ,Ξ
′)). By the description of the kernel (4.1), we have:

• Ext1Haff (Ξ,Ξ′) = E′
1(Ξ,Ξ

′)⊕E′
2(Ξ,Ξ

′).
• E1(Ξ,Ξ

′) ∼−→ E′
1(Ξ,Ξ

′).
• the dimension of the kernel of E2(Ξ,Ξ

′)→ E′
2(Ξ,Ξ

′) is at most 1.

Define Ei (i=2,3) by Ei =E2(Ξ,Ξ
′)∩⊕

s∈Ai(Ξ,Ξ′)Cs. Then dimE2, dimE3 ≤ 1 and Ei �=0

if and only if for any s ∈Ai(Ξ,Ξ
′) we have sχ= χ′.

Assume that sχ = χ′ for any s ∈ A2(Ξ,Ξ
′). Fix s0 ∈ A2(Ξ,Ξ

′). Then a = (as) �→
as0χ(cs0)

−1 gives an isomorphism E2 � C. Let ω ∈ ΩΞ,Ξ′(1). Then

(aω)s0χ(cs0)
−1 = aωsω−1(ωs̃0ω

−1)χ(cs̃0)
−1.
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Since ω stabilizes χ, we have χ(cs̃0) = (ω−1χ)(cs̃0) = χ(ω · cs̃0) = χ(cωs̃0ω−1). Therefore,

we have

(aω)s0χ(cs0)
−1 = aωsω−1(ωs̃0ω

−1)χ(cωs̃0ω−1)−1

= aωsω−1χ(cωsω−1)−1

= asχ(cs)
−1.

Here, the last equality follows from the definition of E′
2(Ξ,Ξ

′). Namely, ΩΞ,Ξ′ acts trivially

on E2. By the same argument, ΩΞ,Ξ′ also acts trivially on E3. Therefore, it also acts
trivially on E2(Ξ,Ξ

′), hence on E′
2(Ξ,Ξ

′). Hence,

(E′
2(Ξ,Ξ

′)⊗HomC(V ,V ′))ΩΞ,Ξ′ = E′
2(Ξ,Ξ

′)⊗HomΩΞ,Ξ′ (V ,V ′).

4.4. Proof of Theorem 4.5

Now we prove Theorem 4.5. Take e ∈ Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ , and first, assume that

e ∈ E′
1(Ξ,Ξ

′). Therefore, e gives fs ∈ Cs⊗HomC(V ,V ′). The space Cs⊗HomC(V ,V ′) is
the space of functions fs on {s̃ | s̃ is a lift of s} with values in HomC(V ,V ′) such that

f(t1s̃t2) = χ′(t1)f(s̃)χ(t2) for t1,t2 ∈ Zκ. Using this fs, we define an H-module structure

on V ⊕V ′ by

Ts̃ �→
(
Ξ(Ts̃) 0

fs(s̃) Ξ′(Ts̃)

)
, Tω �→

(
V (ω) 0

0 V ′(ω)

)
,

where s̃∈ Saff , s its image in Saff and fs = 0 if s /∈ S1(Ξ,Ξ
′). Since e is ΩΞ,Ξ′ -invariant and

E1(Ξ,Ξ
′)→ E′

1(Ξ,Ξ
′) is injective, we have V ′(ω)fs(s̃)V (ω−1) = fωsω−1(ωs̃ω−1). Hence,(
V (ω) 0

0 V ′(ω)

)(
Ξ(Ts̃) 0

fs(s̃) Ξ′(Ts̃)

)(
V (ω) 0

0 V ′(ω)

)−1

=

(
Ξ(Tωs̃−1) 0

fs(ωs̃ω
−1) Ξ′(Tωs̃ω−1)

)
.

Namely, the above action gives an action of HaffC[ΩΞ,Ξ′ ]. Hence, this gives an extension

class in Ext1HΞ,Ξ′ (Ξ⊗V ,Ξ′⊗V ′), and its image in Ext1Haff (Ξ⊗V ,Ξ′⊗V ′) corresponds to e.
Next, we assume that e comes from E2-part. Then we may assume that there exist

ϕ ∈ HomΩ(1)Ξ,Ξ′ (V ,V ′) and e0 ∈ E′
2(Ξ,Ξ

′) such that e is given by e0⊗ϕ. Take a lift (as)

of e0 in E2(Ξ,Ξ
′), and consider the action of HaffC[Ω(1)Ξ,Ξ′ ] on V ⊕V ′ defined by

Ts̃ �→
(
Ξ(Ts̃) 0

as(s̃)ϕ Ξ′(Ts̃)

)
, Tω �→

(
V (ω) 0

0 V ′(ω)

)
,

where s̃ ∈ Saff(1), s its image in Saff and as = 0 if s /∈ S2(Ξ,Ξ
′). Recall that Ω(1)Ξ,Ξ′ acts

trivially on (as). Since ϕ is Ω(1)Ξ,Ξ′ -equivariant, the calculation as above shows that this

gives an action of HΞ,Ξ′ .
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4.5. Calculation of the extensions

We have

Ext1H(πχ,J,V ,πχ′,J ′,V ′)�
⊕
i

Ext1HΞ,Ξ′
i

(Ξ⊗V ,Ξ′
i⊗V ′

i ).

Hence, it is sufficient to calculate Ext1HΞ,Ξ′
i

(Ξ⊗V ,Ξ′
i⊗V ′

i ). Now replacing (Ξ′
i,Vi) with

(Ξ′,V ′), we explain how to calculate Ext1HΞ,Ξ′ (Ξ⊗V ,Ξ′⊗V ′).
Theorem 4.5 implies

dimExt1HΞ,Ξ′ (Ξ⊗V ,Ξ′⊗V ′)

= dimH1(ΩΞ,Ξ′,HomHaff (Ξ⊗V ,Ξ′⊗V ′))+dimExt1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ .

Since Haff acts trivially on V and V ’s, we have

HomHaff (Ξ⊗V ,Ξ′⊗V ′) = HomHaff (Ξ,Ξ′)⊗HomC(V ,V ′),

and it is zero if Ξ �= Ξ′. If Ξ = Ξ′, then

HomHaff (Ξ,Ξ′)⊗HomC(V ,V ′) = HomC(V ,V ′),

and hence,

H1(ΩΞ,Ξ′,HomHaff (Ξ⊗V ,Ξ′⊗V ′
i ))�H1(ΩΞ,Ξ′,HomC(V ,V ′)).

This is a group cohomology of an abelian group.

We also have

Ext1Haff (Ξ⊗V ,Ξ′⊗V ′) = Ext1Haff (Ξ,Ξ′)⊗HomC(V ,V ′),

and

Ext1Haff (Ξ,Ξ′) = E′
1(Ξ,Ξ

′)⊕E′
2(Ξ,Ξ

′).

As we saw in subsection 4.3, ΩΞ,Ξ′ acts trivially on E′
2(Ξ,Ξ

′). Hence,

(E′
2(Ξ,Ξ

′)⊗HomC(V ,V ′))ΩΞ,Ξ′ = E′
2(Ξ,Ξ

′)⊗HomΩΞ,Ξ′ (1)(V ,V ′),

and it is not difficult to calculate this.

Finally, we consider (E′
1(Ξ,Ξ

′)⊗ HomC(V ,V ′))ΩΞ,Ξ′ . By Proposition 4.1, we have

E′
1(Ξ,Ξ

′) � E1(Ξ,Ξ
′) =

⊕
s∈S1(Ξ,Ξ′)Cs. Fix s0 ∈ S1(Ξ,Ξ

′), and let Ω(1)Ξ,Ξ′,s0 be the

stabilizer of s0 in Ω(1)Ξ,Ξ′ . Then Cs0 is an Ω(1)Ξ,Ξ′,s0 -representation. Consider an
Ω(1)Ξ,Ξ′ -orbit S ⊂ S1(Ξ,Ξ

′). The subspace
⊕

s∈SCs is Ω(1)Ξ,Ξ′ -stable, and we have an

isomorphism ⊕
s∈S

Cs � Ind
Ω(1)
Ω(1)Ξ,Ξ′,s0

Cs0

defined by

(as) �→ (ω �→ (s̃0 �→ aω−1sω)(ω
−1s̃0ω)).
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Let {s1, . . . ,sr} be a complete representative of the Ω(1)Ξ,Ξ′ -orbits in S1(Ξ,Ξ
′). Then we

have

E′
1(Ξ,Ξ

′)�
⊕
i

Ind
Ω(1)Ξ,Ξ′
Ω(1)Ξ,Ξ′,si

Csi .

Hence,

(E1(Ξ,Ξ
′)⊗HomC(V ,V ′))ΩΞ,Ξ′ =

⊕
i

(Csi ⊗HomC(V ,V ′))ΩΞ,Ξ′,si .

4.6. Example: G=GLn

Assume that the data come from GLn. Then the data are as follows (see [17]).
We have W0 = Sn, W = Sn� (F×/O×)n � Sn�Zn, W (1) = Sn� (F×/(1+ (�)))n =

Sn� (Z×κ×)n and W aff = Sn�{(xi) ∈ Zn |∑xi = 0}. Set

ω =

(
1 2 · · · n−1 n
2 3 · · · n 1

)
(0, . . . ,0,1) ∈ Sn�Zn ⊂W (1),

and denote its image in W by the same letter ω. Then Ω is generated by ω and Ω(1) =

〈ω〉(κ×)n. We have ωn = (1, . . . ,1), and it belongs to the center of W (1). The element
csi ∈C[Zκ] is given by csi =

∑
t∈κ× Tνi(t)νi+1(t)−1 , where νi : κ

× → (κ×)n is an embedding

to i -th entry and νn+1 = ν1.

Let πχ,J,V and πχ′,J ′,V ′ be simple supersingular modules, and we assume that the
dimension of the modules are both n.

Remark 4.6. An importance of n-dimensional simple supersingular modules is revealed

by a work of Grosse-Klönne [9]. He constructed a correspondence between supersingular
n-dimensional modules of H and irreducible modulo p n-dimensional representations of

Gal(F/F ).

We have dimπχ,J,V = (dimV )[Ω : ΩΞ]. Since Ω(1) is (hence, Ω(1)Ξ is) commutative, we

have dimV = 1. Therefore, our assumption implies [Ω : ΩΞ] = n. Since ωn is in the center,
〈ωn〉 ⊂ΩΞ. Hence, ΩΞ = 〈ωn〉 and ΩΞ = 〈ωn〉(κ×)n. Set λ= V (ωn). Since V |(κ×)n = χ, V

is determined by χ and λ. We also put λ′ = V ′(ωn).

We define χj : κ
× → C× by χ(t1, . . . ,tn) = χ1(t1). . . χn(tn), and we extend it for any

j ∈ Z by χj±n = χj . Then

(siχ)j =

⎧⎪⎨⎪⎩
χj (j �= i,i+1),

χi+1 (j = i),

χi (j = i+1).

The description of csi shows χ(csi) = 0 if and only if χi = χi+1 if and only if siχ = χ.

Therefore, Saff,χ = {si ∈ Saff | χi = χi+1}.
We consider Ext1HΞ,Ξ′ (Ξ⊗V ,Ξ′⊗V ′). By Theorem 4.5, we have the exact sequence

0→H1(ΩΞ,Ξ′,HomHaff (Ξ,Ξ′)⊗HomC(V ,V ′))→ Ext1HΞ,Ξ′ (Ξ⊗V ,Ξ′⊗V ′)

→ Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ → 0.
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The space HomHaff (Ξ,Ξ′) is C if Ξ = Ξ′ and 0 otherwise. We have ΩΞ,Ξ′ = 〈ωn〉 � Z and

ωn acts on HomC(V ,V ′) by λ−1λ′. Therefore, H1(ΩΞ,Ξ′,HomC(V ,V ′)) =C if λ= λ′ and
0 otherwise. Namely, we get

dimH1(ΩΞ,Ξ′,HomHaff (Ξ,Ξ′)⊗HomC(V ,V ′)) =

{
1 Ξ = Ξ′,V = V ′,
0 otherwise.

(4.5)

Note that ΩΞ,Ξ′ acts on Saff trivially since ΩΞ,Ξ′ is in the center of W. Hence, the

stabilizer of each s ∈ Saff in ΩΞ,Ξ′ is ΩΞ,Ξ′ itself, and each orbit is a singleton. Therefore,
by the previous subsection, we have

Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′

=
⊕

s∈S1(Ξ,Ξ′)

(Cs⊗HomC(V ,V ′))ΩΞ,Ξ′ ⊕E′
2(Ξ,Ξ

′)⊗HomΩΞ,Ξ′ (V ,V ′).

Since ωn ∈ ΩΞ,Ξ′,s = ΩΞ,Ξ′ is in the center of W (1), it acts trivially on Cs. Hence, (Cs⊗
HomC(V ,V ′))ΩΞ,Ξ′,s =HomΩΞ,Ξ′ (V ,V ′), and it is not zero if and only if λ= λ′. Hence,

Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ �
{
CS1(Ξ,Ξ

′)⊕E′
2(Ξ,Ξ

′) λ= λ′,
0 otherwise.

A complete representative of Ω/ΩΞΩΞ′ is given by {1,ω, . . . ,ωn−1}. Put Ξ′
i =Ξ′ωi. This is

parametrized by (χωi,Ji = ωiJω−i). We have (χωi)j = χj+i and ωiJω−i = {sj+i | sj ∈ J}.
We put V ′

i = V ′ωi. Then V ′
i (ω) = V ′(ω) and V ′

i |Zκ
= χωi.

The cohomology group H1(ΩΞ,Ξ′
i
,HomHaff (Ξ,Ξ′

i)⊗HomC(V ,V ′
i )) is zero if and only if

(Ξ,V ) �= (Ξ′
i,V

′
i ) by equation (4.5). There exists at most one i such that (Ξ,Ξ′

i) �= (V ,V ′
i ),

and such i exists if and only if (Ξ,V ) is Ω-conjugate to (Ξ′,V ′). Hence,

dim

n−1⊕
i=0

H1(ΩΞ,Ξ′
i
,HomHaff (Ξ,Ξ′

i)⊗HomC(V ,V ′
i ))

=

{
1 (Ξ,V ) is Ω-conjugate to (Ξ′,V ′),
0 otherwise.

We also have

dim
n−1⊕
i=0

Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′

�
{∑n−1

i=0 (#S1(Ξ,Ξ
′
i)+dimE′

2(Ξ,Ξ
′
i)) λ= λ′,

0 otherwise,

and each term can be calculated by the description in Proposition 4.1.

4.7. GL2

Now we assume n = 2, and we compute Ext1H(πχ,J,V ,πχ′,J ′,V ′). We continue to use the

notation in the previous subsection. Then ω switches s0 and s1.
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Lemma 4.7. The nonvanishing of Ext1H(πχ,J,V ,πχ′,J ′,V ′) implies that (χ,J,V ) is conju-

gate to (χ′,J ′,V ′) by Ω.

Proof. As we have seen in the above, nonvanishing of Ext1 implies V (ω) = V ′(ω) =
(V ′ω)(ω). Hence, it is sufficient to prove that (χ,J ′) is conjugate to (χ′,J ′).
If H1(ΩΞ,Ξ′,HomHaff (Ξ⊗Ξ′)⊗HomC(V ,V ′)) �= 0, we have Ξ = Ξ′ and V = V ′. Hence,

we have the lemma.
If Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ �=0, then Cs �=0, hence χ′ = sχ for some s∈ Saff . Since we

assume G=GL2, s0χ= s1χ= χω. Since πχ,J,V and πχ′,J ′,V ′ are both supersingular, the

possibility of (J,J ′) is (∅,∅), ({s0},{s1}), ({s0},{s1}), ({s0},{s0}), ({s1},{s1}) and except
the last two cases, we have J = ωJ ′ω−1. If J = J ′ = {s0}, then s0 ∈ Saff,χ; hence, s0χ= χ.

Since s0χ = s1χ, we have Saff,χ = Saff . Hence, S1(Ξ,Ξ
′) = ∅. We also have A2(Ξ,Ξ

′) =
A3(Ξ,Ξ

′) = ∅. Therefore, we get Ext1Haff (Ξ⊗ V ,Ξ′ ⊗ V ′)ΩΞ,Ξ′ = 0. By the same way, if
J = J ′ = {s1}, then Ext1Haff (Ξ⊗V ,Ξ′⊗V ′)ΩΞ,Ξ′ = 0.

Since πχ,J,V only depends on the Ω-orbit of (χ,J,V ), we may assume (χ,J,V ) =
(χ′,J ′,V ′). In this case, H1(ΩΞ,Ξ′,HomX aff (Ξ⊗ V ,Ξi ⊗ Vi)) is one-dimensional if i = 0

and zero if i= 1.

(1) The case of χ1 = χ2. Then we have Saff,χ = Saff . By the proof of Lemma 4.7, we

have Ext1Haff (Ξ⊗ V ,Ξ⊗ V ) = 0. We have S1(Ξ,Ξ1) = ∅, A2(Ξ,Ξ1) = J1 = ωJω−1

and A3(Ξ,Ξ1) = J0 = J . Hence, the description in Proposition 4.1 shows that

dimE′
2(Ξ,Ξ

′) = 1, and hence, dimExt1Haff (Ξ⊗V ,Ξ⊗V ) = 1.

(2) The case of χ1 �= χ2. Then we have Saff,χ = ∅. Since χ �= sχ = sχ0 for s = s0,s1,

Cs = 0. Therefore, Ext1Haff (Ξ⊗V ,Ξ0⊗V0) = 0. Since Saff,χ = ∅, Ξ(Ts) = Ξ′(Ts) = 0

for any s ∈ Saff . We have A2(Ξ,Ξ1) =A3(Ξ,Ξ1) = ∅ and S1(Ξ,Ξ1) = Saff . Therefore,
E′

1(Ξ,Ξ1) = 0 and dimE′
2(Ξ,Ξ1) = #S1(Ξ,Ξ1) = #Saff = 2.

Hence, we have

dimExt1H(πχ,J,V ,πχ′,J ′,V ′) =

⎧⎪⎨⎪⎩
0 (πχ,J,V �� πχ′,J ′,V ′),

2 (πχ,J,V � πχ′,J ′,V ′, χ1 = χ2),

3 (πχ,J,V � πχ′,J ′,V ′, χ1 �= χ2).

This recovers [7, Corollary 6.7]. (Note that in [7], they calculate the extensions with fixed

central character. Since we do not fix the central character here, the dimension calculated
here is one greater than the dimension they calculated.)
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