
THE MEASURE ALGEBRA AS AN OPERATOR ALGEBRA 

DONALD E. RAMIREZ 

Introduction. In § I, it is shown that M(G)*, the space of bounded linear 
functionals on M(G), can be represented as a semigroup of bounded operators 
on M(G). 

Let A denote the non-zero multiplicative linear functionals on M(G) and 
let P be the norm closed linear span of A in M(G)*. In § II, it is shown that P , 
with the Arens multiplication, is a commutative J3*-algebra with identity. 
Thus P = C(B), where B is a compact, Hausdorff space. 

In § III, it is shown that B, with a natural multiplication, is a compact 
Abelian semigroup and that M(G) is topologically embedded in M(B). This 
gives a simplified construction of the Taylor structure semigroup for M(G). 

I am indebted to F. Birtel who directed this research. 

I. Let G be a locally compact Abelian group and T its dual group. Let 
CQ(G) denote the Banach algebra of continuous functions on G which vanish 
at infinity. Let M(G) denote the Banach algebra of bounded Borel measures 
on G and M(G)* its topological dual space. Let M(G)A denote the algebra of 
Fourier-Stieltjes transforms on T. For ju (E M(G), juA is defined on T by 
MA(T) =JVy(*) dn(x),y e r. 

For F G M(G)*, let EF denote the bounded operator on M(G) defined by 
( £ F M ) A ( T ) = F(ydn), where 7 £ r and M £ M(G). That (EF»)A £ M(G)A 

follows by Eberlein's theorem (5, p. 465) since 

D *4(E,/0A(70 
i=i 

X) CiFijidix) 
t = i 

g IIF  r 1 n 

MII sup n e ^ÎTÎ(^) i= i I 

Also, \\Ern\\ S \\F\\ ||M||. Thus | | £ , | | g | |£ | | . Now \F(n)\ = | ( £ , M ) A ( 0 ) | ^ 
| |£F^| | ^ H-EFII ||M||- Thus ll^ll = ||-Ey||. Now EF commutes with translation 
by 7 € T in the sense that ydEF(n) = EF(ydn) since for 71, 72 G I\ 

(7irf£FM)A(72) = (EPti)
A(y1 + yi) = FfayJv) = [£,(7tf*/*)]A(7»). 

Let S§ denote the bounded operators on M(G) which commute with trans­
lation by 7 € r . For E f f , define F Ç M(G)* by F(M) = ( £ M ) A ( 0 ) , 

JU 6 Jlf (G). Now EF = E since 

(£PJU)A(7) = Fiydn) = [£ (7^) ] A (0 ) = ( 7 ^ M ) A ( 0 ) = ( £ M ) A ( Y ) 

for JU G M (G) and 7 G T. Thus, we have the following results. 
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THEOREM l.f The mapping F —> EF is a one-to-one, onto isometry between 
M(G)* and âS', the semigroup of bounded operators on M(G) which commute 
with translation by y G T. 

COROLLARY. Let A denote the non-zero multiplicative linear junctionals on 
M(G) and $ the non-zero bounded endomorphisms on M(G). The mapping 
ir —» Ev is a one-to-one, onto isometry between A and the semigroup d?. 

Remark 1. For other algebras whose topological duals can be represented as 
a space of operators, see (3). 

I I . Let A denote the non-zero multiplicative linear functionals on M(G) 
and let P be the norm closed linear span of A in M(G)*; i.e., P = [A]~ C 
M(G)*. 

For M G M (G) and F G M (G)*, let dFyt G M {G) be defined by dFn(f) = 
F(fdn), where / G C0(G). For F, H G M (G)*, let F X H e M (G)* be defined 
by F X H(iJi) = F(dH(i), where /i G M (G). Now " X " is the Arens multipli­
cation in M (G)* (1). I t is known that, with the Arens multiplication, M(G)* 
is a commutative J3*-algebra (4, p. 869). 

THEOREM 2. With the Arens multiplication, P is a commutative B*-algebra 
with identity. 

Proof. If 7Ti, 7T2 G A, then n X 7r2 G A since for n, v £ M(G) and 7 G T 
we have that 

[j7T2(At * v)]A(y) = ir2{ydn * v) = T2(ydjjL * 7 ^ ) = 

M 7 ^ ) ] M 7 ^ ) ] = (^2M)A(7)(^2^)A(7). 

Let TTo G A be defined by TTOGU) = MA(0), where /* G -/^(G). Thus, for 
M G M (G) and 7 G T, we have that (dT0ti)

A(y) = T0(yd») = fj,A(y). Thus 
7̂roM = M- Hence, 7r0 is the identity for the Arens multiplication. 

Since M(G)* is a commutative .£>*-algebra under the Arens multiplication, 
it remains to show that A is closed under the involution, ~ , in M(G)*. I t 
suffices to_show that if F G M (G)*, then F~0u) = î?Gz), for /x G M(G), where 
#00 = /*(/)> f ° r / € G (G). To this end, we consider the proof that M(G)* is a 
£*-algebra (9). 

Let 5 denote the state space of Co(G) ; i.e., the collection of all positive 
linear functionals, /* G M (G), such that ||JU|| = 1. For each /* G 5, let i7M 

denote the Hilbert space associated with /z. Let/M
# be the standard representa­

tion of/ G Co (G) on H». Let i ï = X^GS^M be the direct sum of H^ and l e t / # 

be the operator on H which is on H^ the same as / M
# . The mapping/—>/# 

yields a one-to-one representation of Co(G) on H. Let Co (G)** denote the 

tThis result had been obtained earlier by I. Glicksberg in an unpublished typescript. 
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image under this map. Now, M(G)* can be identified with the weak closure of 
Co(G)#, Co(G)#. Each y. G M {G) can be represented in the form 

M(f)= £ [f*(h),nk], 
k=l 

where hk, nk G H. For F G M (G)*, F corresponds to T G C0(G)# and 

FM = È [TQik),nk]. 
k=l 

Thus, F~ corresponds to T~ G Co(G)# and 

/̂ GO = E [T~(hk),nk] = E fe, r(%)] = à ïf(^)7w = 
A = l fc=l * = 1  

Ê [T(nt),hk]. 

We need only note now that if /x(f) = _L/Li[/ t tfe), ^ L then 

M(/) = Z [?*(**),**] = Ê lh,fHnk)] = Z L/#(»*),W. 
fc=l k=l k=l 

Thus F~G0 = F(fi). 

Remark 2. We may consider r C A. Let AP denote the norm closed linear 
span of r in M{G)*\ i.e., AP = [ r ] - C M(G)*. Then AP is also a commuta­
tive _5*-algebra with identity. In fact, it may be identified with the almost-
periodic functions on G (2, p. 817). 

Remark 3. By Theorem 1, one can define a multiplication, o, in M(G)* by 
EFQH = EFo EH, where F, H G M(G)*\ i.e., F o H = F o EH. Let /«: G -> 
[0, 1], /« G Co (G), be such tha t /« —» 1 in the compact-open topology on G. 
Thus, for H G M (G)*, M £ Af(G), and T G T, we have that 

(dHfji)A(y) = fGy(%) dHn(x) = \imafGy (x)fa(x)dHfji(x) = 

\imaH(yfad») = ^(Td/i) = [£/_(7rf/i)]
A(0) = ( E * / I ) A ( Y ) . 

Thus d#M = EH\x, and thus, for F, if G M (G)*, F o H = F X H. 

Remark 4. Let F G M (G)* and let EF G ̂  be as in § I. Let M G M (G) be 
such that fj. __; 0 and ||/x|| = 1. L e t / F G (Z^GO)* be defined by restricting F 
to Z^GOî i.e.,/p = T^Z^GO. We consider/F as an element of Z,°°G0- Then, for 
*__€_£* GO» Z > = / ^ . Define P~ G ilZ(G)* by F~(p) = F(jï), where ;z(/) = 
/x(/) for / G Co (G). Then, for ? G Z^GO» EF~Ï> = / j ^ . One can now show 
directly that ||E_?.~E_»|| = ||Z^||2 and that ilZ(G)* and P are commutative 
_5*-algebras with identities with o as multiplication. This alternate proof of 
Theorem 1 is due to I. Glicksberg. 

I I I . Let A be a commutative semi-simple Banach algebra and A* its 
topological dual space. Let A' denote the norm closed subspace of A* spanned 
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by the non-zero multiplicative linear f unc t i ona l on A. Le t A" be the topo­
logical dual space of A'. Birtel (2) showed t h a t A" is a commuta t ive Banach 
algebra and t h a t A m a y be embedded continuously into A". W e modify his 
construct ion and apply it to the s i tuat ion in § I I . 

Le t A be a commuta t ive semi-simple Banach algebra and A* i ts topological 
dual space. Le t D (Z A* be a separat ing family of non-zero mult ipl icat ive 
linear f unc t i ona l on A. Le t P be the norm closed linear span of D in A*; i.e., 
P = [D]~ C A*. Now suppose t h a t P is a B*-algebra with identity. T h u s 
P = C(B), where B is a compact Hausdorff space. For T £ D (Z P, let T £ 
C(B) denote the Gel 'fand representat ion of IT. Define a: D C C(B) —> 
C(B X B) by a7t(s, t) = £($)£(*), where s, t e B. Since the Gel 'fand repre­
sentation of A s trongly separates the points of the maximal ideal space of A, 
D is linearly independent in A*\ and therefore we may extend a linearly to [D]. 

Let 8S be uni t point mass a t s G B and 5(Sfï) be uni t point mass a t (s, /) G 
B X B. Now, for a* Ç C and Ttt £ j5, 1 ^ i rg w, we have t h a t 

|<5(S,0 oa(ai7r i + . . . + aa7Tn)| = |ai7ri(s)#i(0 + . . . + a»7rn(s)*»(0| 

^ |ô , [a i£ i (0*i + • • • + 0n*»(*)*»]| 

^ | |5S | | ||ai7ri(/)7ri + . . . + anTrn(t)Trn\\c(B) 

= ||ai7ri(0wi + . . . + a»7r»(0*-n|L* 

= sup/|ai7Ti(07ri(/) + . . . + an7rn(t)7Tn(f)\ 

= supflôtla^iif)^! + . . . + anTn(f)Trn]\ 

^ I|o«I|supr||<Zi7ri(/)4ri + . . . + anirn(f)irn\\c(B) 

= SUP/HoiTTi^TTi + . . . + an7Tn(f)Tn\\A* 

= SUP/SUpJaiTTi^TTi^) + . • . + fl»7rn(f)7rn(g)| 

= s u p , J a i 7 n ( f e ) + . . . + a„7r„(/g)| 

^ s u p / J l a n n + . . . + anTn\\A*\\fg\\A 

^ IkiTri + . . . + an7T„|U* 

= \\dlTTi + . . . + <2w7Tw||c(B)» 

where, for example, s u p / is the supremum over all e l e m e n t s / with | | / | | ^ 1. 
T h u s , ô(Stt) o a is bounded on [J9]. Also, a is bounded on [D] and may be 
extended to all of C(B). Call the extension 0. T h u s , 0: C(J3) -> C ( £ X £ ) , 
||j8|| = 1, and /3TT(>, 0 = #($)#(*), where TT G i ) . 

Using the m a p /3, we define a multiplication in B. T h e m a p ô ( s>0 o /5: C ( 5 ) 
—> C is a non-zero mult ipl icat ive linear functional, and thus there is an r Ç B 
such t h a t 8(s,t) o /3 = 8r. Define m: B X B —> B by tn(s, t) = r. W e write st 
for m (5, t). 

Remark 5. T h e multiplication in B defined by m agrees with the convolution 
of point measures in M(B)\ i.e., 8m(Sit) = 8S * 8h where convolution in M(B) 
is the restricted Arens multiplication as defined by Birtel (2, p . 816). 
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THEOREM 3. Let A be a commutative semi-simple Banach algebra with 
topological dual space A*. Let D C. A* be a separating family of non-zero 
multiplicative linear functionals on A. Let P be the norm closed linear span of D 
in A*; i.e., P = [D]~ C A*. Suppose that P is a commutative B*-algebra with 
identity. Then there exists a compact Abelian topological semigroup, B, such that 
A is continuously algebraically isomorphic to a subalgebra of M(B). If D C P is 
a group, then B is also a group. 

Proof. We first show that m: B X B —» B is continuous. Let V = {s G B: 
\p(s)\ < 5} for some p G C(B) and ô > 0. Now F is a typical sub-basic 
neighbourhood in B. Let U = {(s, t) G B X B: \f3p(s, t)\ < ô}. Thus, U is a 
neighbourhood in B X B and m(U) C F since Pp(s, t) = p(m(s, t)) = p(st). 

If T(S) = TT(0, S, t £ B, for all TT G A then s = t, since [D] is dense in 
C(B) ; in particular, D separates the points of B. For it G D, it(st) = w(s)Tr(t) = 
£(/)£(» = Tt(ts). Thus st = ts. For TT g D, we have that 

#[(*/)«] = 7r(^)7r(w) = 7r(5)7r(0*(«) = 7r(s)Tr(tu) = 7r[s(ta)]. 

Thus (s/)w = s (ta). Thus, (5 , m) is a compact Abelian topological semigroup. 
Suppose now that D is a group. It suffices to show that B satisfies the 

cancellation laws (6, p. 99). Let st = sr. Now for K A #(*)#(*) = #(5/) = 
jt(sr) = Hs)Hr). Since TTA(T-1)A = 1, *(*) ^ 0. Thus, *(*) = *(r) for all 
it e D. Hence * = r. 

L e t / 6 A Let/** € ^** be defined by/**(P) = F(f), for F G 4* . Le t / P be 
defined o n P C i * by restricting/** to P ; i .e. , /p = /** |P . For P G P , let F 
denote its Gel'fand representation in C{B). Let /* G C(B)* = M(B) be 
defined by fB{F) = f(F). Let X denote the map from A to M(B) defined by 

X(f)=/*. 
Since 5 is a compact Abelian semigroup, M(B) is a commutative Banach 

algebra under convolution (8) ; i.e., for n, v € M(B), ix * v 6 Af(5) is denned 
by M * „(/) = jBjBf(st)dfi(s)dv(t), f 6 C(5). Let / , g G 4 and f Ç P . Then 
[X(fg)](#) = (fg)B(*) = T(f«) = T ( 0 » ( 2 ) = /B(*)gB(*) = 

J B * ( S ) < T O J " B * « W ) =/nfs*(5)*0)d/BWdgB(0 = 
S4BHst)df(s)d^(t) = (fB *£*)(*). 

Since [-6] is dense in C(B), it follows that X preserves multiplication. Now 

\M)\\ = n/Bik(B) = nip* ^ n u * * = ii/m. 
Hence ||X|| ^ 1. Finally, we note that X is one-to-one since D is separating. 

Remark 6. In Theorem 3, let A = Af (G) and D = A. Then J5 is the Taylor 
structure semigroup for M(G) (10, p. 158). 

Let B be a compact (semi) group. If p G C(P), £ ^ 0, is such that p(st) = 
p(s)p(t), s, t G B, then p is called a (semi) character. Let B denote the 
collection of all (semi) characters. 

THEOREM 4. With the notation of Theorem 3, M(B) is semi-simple, X(A) = 
AB is weak* dense in M(B), and B = D. 
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Proof. Since D is a separating family of multiplicative linear functionals, it 
follows that M(B) is semi-simple and that \{A) = AB is weak* dense in M(B). 

I t follows, from the definition of the multiplication in B, that D (Z B. 
Let F £ B such that F(st) = F(s)F(t), 0 ^ F G C(B). Let F £ P be such 
that the Gel'fand representation of F is F. Then for / , g £ A, 

*"(/*) =ÏBKs)d(fg)B(s) =fBF(s)d(fB*g»)(s) = fBfBF(st)df(s)dgB(t) = 

Thus F e D and F £ D. 

THEOREM 5. rAere w a compact Abelian semigroup, B, such that M(G) is 
isometric isomorphic to a closed sub algebra of M(B) such that the maximal ideal 
space of M(G) is identified with the semi-characters on B. 

Proof. With the previous notation, it remains only to show that the map 
M->/xB is an isometry from M(G) into M (B). We know that ||MB|I ^ ||/i|j. 
Now, for/x 6 M(G), 

||/xB|| ^ sup{|(ai7ri + . . . + an7rw)(/i)|: 

||fli7Ti + . . . + a„7rw||M(G0* ^ 1, where ^ G T) ^ | | ^ | | , 
where / / is the extension of M to the Bohr group. That | | / / | | è ||/x|| is well 
known (see, e.g., 2, p. 817). Thus \\^\\ = ||M||-

Remark 7. M. Rieffel (7, p. 64) has characterized measure algebras on 
locally compact Abelian groups. His proof is also based on the construction of 
Birtel (2). Following (7, p. 47), one could show that ||/x|| = \\fJ.B\\ by the 
Kaplansky density theorem; i.e., P = [A]~ C M(G)* is a weak* dense C*-
subalgebra of the PF*-algebra M(G)*, and thus the unit ball of P is weak* 
dense in the unit ball of ikf(G)*. 
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