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Abstract Let p and � be primes such that p> 3 and p | �−1 and k be an even integer. We use deformation
theory of pseudo-representations to study the completion of the Hecke algebra acting on the space of
cuspidal modular forms of weight k and level Γ0(�) at the maximal Eisenstein ideal containing p. We give
a necessary and sufficient condition for the Zp-rank of this Hecke algebra to be greater than 1 in terms
of vanishing of the cup products of certain global Galois cohomology classes. We also recover some of
the results proven by Wake and Wang-Erickson for k = 2 using our methods. In addition, we prove some
R= T theorems under certain hypotheses.
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1. Introduction

Let p and � be primes such that p > 3 and p | �−1.
Let T be the Hecke algebra over Zp, acting faithfully on the space of modular forms

of level Γ0(�) and weight k, and m be its Eisenstein maximal ideal containing p (i.e. the

maximal ideal of T generated by p and the prime ideal corresponding to the classical
Eisenstein series of level Γ0(�) and weight k having Atkin-Lehner eigenvalue −1). Let Tm

be the completion of T at m and let T0
m be its cuspidal quotient.

In the setting given above, Mazur, in his landmark work on Eisenstein ideal ([19]),
studied the cuspidal Hecke algebra T0

m in the case of k = 2. He proved (among many

other things) that T0
m �= 0 and also asked whether one can say anything about the

Zp-rank of T0
m. Since then this question has been studied in detail by various authors

using different approaches. We will now give a brief summary of their works on the
Zp-rank of T0

m when k = 2.

1.1. History

In [21], Merel proved that the Zp-rank of T0
m is greater than 1 if and only if the image of∏ �−1

2
i=1 i

i in (Z/�Z)× is a p-th power. His method was mainly based on computation of some
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Eisenstein elements in the first homology group of a modular curve. In [18], Lecouturier

extended Merel’s result by combining the same circle of ideas with new methods. In

particular, he gave a necessary and sufficient condition for the Zp-rank of T0
m to be

greater than 2 in terms of a numerical invariant which is similar to the Merel’s invariant

mentioned above (see [18, Theorem 1.2]). He also gave an alternate proof of Merel’s result

in [18].
On the other hand, in [6], Calegari and Emerton studied this question using deformation

theory of Galois representations. They proved that T0
m =Zp if the p-part of the class group

of Q(�1/p) is cyclic. In [28], Wake and Wang-Erickson used techniques from deformation
theory of Galois pseudo-representations to prove that the Zp-rank of T0

m is greater than

1 if and only if the cup product of certain global Galois cohomology classes vanishes.

They also recovered many results of Calegari–Emerton. The key step in both these works

is a suitable R = T theorem. In [29], Wake and Wang-Erickson studied this question in
the case of squarefree level. We refer the reader to the well-written introductions of [21],

[6], [28], [29] and [18] for a summary of the known results, nice exposition of various

approaches to the problem and their comparison.
One can say that the approach of Merel and Lecouturier is on the “analytic side”

and the approach of Calegari–Emerton and Wake–Wang-Erickson is on the “algebraic

side”. In [26], Wake studied the Hecke algebras Tm and T0
m and their Eisenstein ideals for

weights k > 2 by unifying the two approaches mentioned above. In particular, he gave a

necessary and sufficient condition (in terms of the Eisenstein ideal and the derivative of

Mazur–Tate ζ-function that he defines) for the Zp-rank of T0
m to be 1. This is an analogue

of Merel’s result ([21, Théoreme 2]) for higher weights.

1.2. Aim and Setup

The main aim of this article is to obtain necessary and sufficient conditions for

rankZp
(T0

m)≥ 2 when k > 2 in terms of vanishing of cup products of certain global Galois

cohomology classes and class groups. In particular, we prove analogues of [28, Theorem
1.2.1] and [28, Corollary 1.2.2] for k > 2, and we recover these results when k = 2.

Our approach is based on deformation theory of Galois representations and pseudo-

representations, so it is similar to the approach of [6] and [28]. However, our methods are

different. To be precise, even though our main tool is comparison between deformation
rings (of either representations or pseudo-representations) and Hecke algebras, our main

results are not based on R= T theorems. We instead use the description of
Fp[ε]

(ε2)
-valued

ordinary pseudo-representations, analysis of pseudo-representations arising from actual

representations and results from [26] and [19]. The results from [26] that we use are about

the reducibility properties of the Tm-valued pseudo-representation ([26, Theorem 5.1.1])
and the index of Eisenstein ideal in T0

m ([26, Theorem 5.1.2]).

Note that, in [28], Wake and Wang-Erickson work with pseudo-representations which

are finite flat at p (a notion that they define and study in [27]). But since this condition
is not present in weight k > 2, we work with pseudo-representations that are ordinary at

p and recover the results of Wake and Wang-Erickson mentioned above using them. In

addition, we also prove some R= T theorems in certain cases.
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Note that in the case of k = 2, we need [19, Proposition II.9.6], but it is not needed

in the works of Wake–Wang-Erickson ([28]) and Calegari–Emerton ([6]). Moreover, both

sets of authors recover [19, Proposition II.9.6] using their methods.
Before stating our main results, we describe the setup with which we will be working.

Setup 1.1. Let p > 3 be a prime and � be a prime such that p | �− 1. Let GQ,p� be the
Galois group of the maximal extension of Q unramified outside p, � and ∞ over Q, and

let GQ,p be the Galois group of the maximal extension of Q unramified outside p and ∞
over Q. Denote the mod p cyclotomic character of GQ,p� by ωp and the p-adic cyclotomic
character by χp. By abuse of notation, we will also denote the mod p cyclotomic character

of GQ,p by ωp. Let k ≥ 2 be an even integer and ρ̄0 :GQ,p� →GL2(Fp) be the continuous,

odd representation given by ρ̄0 = 1⊕ωk−1
p . Let ζp denote a primitive p-th root of unity.

Suppose the following hypotheses hold:

(1) p−1 � k,

(2) the ω1−k
p -component of the p-part of the class group of Q(ζp) is trivial,

(3) dimFp
(H1(GQ,p,ω

k−1
p )) = 1.

For a positive integer n, let Bn be the n-th Bernoulli number.

Remark 1.2. Using the Herbrand–Ribet theorem and Kummer’s congruences, we
conclude that Condition (2) of Setup 1.1 holds if and only if p does not divide Bk.

Combining this with Kummer’s congruences, we get that ζ(1− k) ∈ Z×
(p). Hence, the

hypotheses of [26] are satisfied in our setup.

Remark 1.3. From [5, Lemma 21], we know that Condition (3) of Setup 1.1 holds if

and only if the ωp+1−k
p -component of the p-part of the class group of Q(ζp) is trivial.

Let 0 < k0 < p−1 be the integer such that k ≡ k0(mod p−1). Hence, by combining the

reflection principle ([30, Theorem 10.9]) and the Herbrand–Ribet theorem, Condition (3)

of Setup 1.1 holds if p �Bp+1−k0
.

Remark 1.4. Combining Remarks 1.2 and 1.3, we get that Conditions (2) and (3) of

Setup 1.1 hold if one of the following conditions hold:

• p is a regular prime.
• Vandiver’s conjecture holds for p.
• p �BkBp+1−k0

, where 0< k0 < p−1 is the integer such that k ≡ k0(mod p−1).
• p > 7 and k = 4,6.

• p≡ 3(mod 4) and k =
p+1

2
.

Note that we get Condition (3) of Setup 1.1 for k = 4 from [16, Corollary 3.8] and for

k = 6 from [12, Corollary 7.1]. On the other hand, Conditions (2) and (3) for k =
p+1

2
follow from the Herbrand–Ribet Theorem and [23, Theorem 1.1].

In the rest of the article, we assume that we are in Setup 1.1 unless mentioned otherwise.

Let Tm be the Hecke algebra of level Γ0(�) and weight k as defined in §4 and T0
m be its

cuspidal quotient.
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Denote the absolute Galois group of Qp and Q� by GQp
and GQ�

, respectively,
and denote their inertia subgroups by Ip and I�, respectively. Now our assumptions

imply that dimFp
(ker(H1(GQ,p�,ω

1−k
p ) → H1(Ip,ω

1−k
p ))) = 1 (see Lemma 2.4). Choose

a generator c0 ∈ ker(H1(GQ,p�,ω
1−k
p )→H1(Ip,ω

1−k
p )). Let ρ̄c0 :GQ,p� →GL2(Fp) be the

representation given by ρ̄c0 =

(
1 ∗
0 ωk−1

p

)
where ∗ corresponds to c0.

Note that both ker(H1(GQ,p�,1) → H1(Ip,1)) and H1(GQ,p,ω
k−1
p ) are also one-

dimensional. Choose generators a0 ∈ ker(H1(GQ,p�,1) → H1(Ip,1)) and b0 ∈ H1(GQ,p,
ωk−1
p ). Denote the cup product of c0 and b0 by c0∪ b0 and the cup product of c0 and a0

by c0∪a0. So in particular, c0∪ b0 ∈H2(GQ,p�,1) and c0∪a0 ∈H2(GQ,p�,ω
1−k
p ).

1.3. Main Results

We are now ready to state the main results.

Theorem A (see Corollary 5.2, Corollary 5.3, Theorem 5.5). Suppose we are in

Setup 1.1. Then:

(1) If k = 2, then rankZp
(T0

m) = 1 if and only if c0∪a0 �= 0.

(2) If k > 2, then rankZp
(T0

m) = 1 if and only if c0∪ b0 �= 0 and c0∪a0 �= 0.

Note that part (1) of Theorem A has already been proved by Wake and Wang-Erickson

in [28] using a similar approach but different methods.

In [26], Wake has proved that when k > 2, rankZp
(T0

m) = 1 if and only if the Eisenstein

ideal of T0
m is principal and a certain element ξ′MT ∈ Fp (that he defines in [26, Section

1.2.2]) is nonzero. See [26, Theorem 1.2.4] for more details. We don’t use this result to

prove part (2) of Theorem A, but we do need some other results from [26].

To be precise, when c0 ∪ b0 = 0, we prove part (2) of Theorem A by proving that
the Eisenstein ideal of T0

m is not principal (see Theorem 5.5 and Theorem 5.6). As a

consequence of our analysis, we get the following result regarding the principality of the

Eisenstein ideal of T0
m:

Corollary A. Suppose we are in Setup 1.1 and k > 2. Then the Eisenstein ideal of T0
m

is principal if and only if c0∪b0 �= 0. Moreover, if Vandiver’s conjecture holds for p, then
these assertions hold if and only if

∏p−1
j=1(1− ζjp)

jk−2 ∈ (Z/�Z)× (where ζp ∈ Z/�Z is a

primitive p-th root of unity) is not a p-th power.

Remark 1.5. Note that Corollary A matches with the prediction made by Wake in [26,

Section 1.2.3, Remark 3.2.1].

Remark 1.6. If p is a regular prime, then Vandiver’s conjecture holds for p.

When c0 ∪ b0 �= 0, the Eisenstein ideal is principal. In this case, we prove that

rankZp
(T0

m) = 1 if and only if c0 ∪a0 �= 0 by using an analysis of pseudo-representations

arising from representations.
Let ζ� be a primitive �-th root of unity, and let ζ�

(p) ∈ Q(ζ�) be an element such

that [Q(ζ
(p)
� ) : Q] = p. Denote by Cl(Q(ζ

(p)
� ,ζp)) the class group of Q(ζ

(p)
� ,ζp), and let
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(Cl(Q(ζ
(p)
� ,ζp))/Cl(Q(ζ

(p)
� ,ζp))

p)[ω1−k
p ] be the subspace of Cl(Q(ζ

(p)
� ,ζp))/Cl(Q(ζ

(p)
� ,ζp))

p

on which Gal(Q(ζp)/Q) acts by ω1−k
p . Now we get the following corollaries (see

Proposition 5.7):

Corollary B. Suppose we are in Setup 1.1 and k = 2. Then the following are equivalent:

(1) rankZp
(T0

m) = 1.

(2) dimFp
((Cl(Q(ζ

(p)
� ,ζp))/Cl(Q(ζ

(p)
� ,ζp))

p)[ω1−k
p ]) = 1.

(3)
∏ �−1

2
i=1 i

i in (Z/�Z)× is not a p-th power.

Note that Corollary B has already been proved by Wake and Wang-Erickson in [28]

and by Lecouturier in [18] using different methods. However, Wake and Wang-Erickson
use results of [17] to prove that the second part of Corollary B implies the first part. We

give a slightly different proof of the same (see Proposition 5.7 and its proof).

Corollary C. Suppose we are in Setup 1.1 and k > 2. Then the following are equivalent:

(1) rankZp
(T0

m) = 1.

(2) dimFp
((Cl(Q(ζ

(p)
� ,ζp))/Cl(Q(ζ

(p)
� ,ζp))

p)[ω1−k
p ]) = 1, and the restriction map

H1(GQ,p,ω
k−1
p )→H1(GQ�

,ωk−1
p ) is not the zero map.

(3)
∏�−1

i=1 i
(
∑i−1

j=1 j
k−1) ∈ (Z/�Z)× is not a p-th power, and the restriction map

H1(GQ,p,ω
k−1
p )→H1(GQ�

,ωk−1
p ) is not the zero map.

Moreover, if Vandiver’s conjecture holds for p, then the above assertions hold if and only

if
∏�−1

i=1 i
(
∑i−1

j=1 j
k−1) ∈ (Z/�Z)× is not a p-th power and

∏p−1
i=1 (1−ζip)

ik−2 ∈ (Z/�Z)× (where
ζp ∈ Z/�Z is a primitive p-th root of unity) is not a p-th power.

Let Rpd,ord
ρ̄0,k

(�) be the universal p-ordinary, �-unipotent deformation ring of

(tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p (see Definition 2.1 and the paragraph after

it). Let Rpd,st
ρ̄0,k

(�) be the universal p-ordinary, Steinberg-or-unramified at � deformation

ring of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p (see Definition 2.3 and the paragraph

after it). Let Rdef,ord
ρ̄c0

,k (�) be the quotient of the universal ordinary deformation ring of ρ̄c0

with determinant χk−1
p defined in §2.

Note that there is a surjective map φT : Rpd,ord
ρ̄0,k

(�)→ Tm such that φT factors through

Rpd,st
ρ̄0,k

(�), giving the map ψT : Rpd,st
ρ̄0,k

(�) → Tm (see Lemma 4.1). Moreover, the map

Rpd,ord
ρ̄0,k

(�) → T0
m obtained by composing φT with the surjective map Tm → T0

m factors

through Rdef,ord
ρ̄c0

,k (�), giving the map φT0 :Rdef,ord
ρ̄c0

,k (�)→ T0
m (see Lemma 4.2).

We are now ready to state the R = T theorems that we prove. Let (Rpd,ord
ρ̄0,k

(�))red be

the maximal reduced quotient of Rpd,ord
ρ̄0,k

(�). Recall, from Corollary A, that c0∪ b0 �= 0 if

and only if the Eisenstein ideal of T0
m is principal.
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Theorem B. Suppose we are in Setup 1.1 and c0∪ b0 �= 0. Then

(1) φT :Rpd,ord
ρ̄0,k

(�)→ Tm induces an isomorphism (Rpd,ord
ρ̄0,k

(�))red � Tm of local complete
intersection rings.

(2) ψT :Rpd,st
ρ̄0,k

(�)→ Tm is an isomorphism of local complete intersection rings.

(3) φT0 :Rdef,ord
ρ̄c0

,k (�)→ T0
m is an isomorphism of local complete intersection rings.

From part (3) of Theorem B, we get the following analogue of [6, Corollary 1.6]:

Corollary D. Suppose we are in Setup 1.1 and c0 ∪ b0 �= 0. Then the Zp-rank of T0
m

is the largest integer n for which there exists an ordinary deformation ρ : GQ,p� →
GL2(Fp[ε]/(ε

n)) of ρ̄c0 such that det(ρ) = ωk−1
p , tr(ρ(g)) = 2 for all g ∈ I�, and the set

{tr(ρ(g)) | g ∈GQ,p�} generates Fp[ε]/(ε
n) as an Fp-algebra.

1.4. Sketch of the proofs of main results

We will now give a brief outline of the proof of Theorem A. We first analyze the space
of deformations (t,d) : GQ,p� → Fp[ε]/(ε

2) of (tr(ρ̄0), det(ρ̄0)) which are p-ordinary and

�-unipotent with determinant χk−1
p to obtain its properties. To be precise, we prove that

the space of such deformations has dimension either 1 or 2 (see Lemma 3.4) and this
space is one-dimensional if c0∪ b0 �= 0 (see Lemma 3.6).

So we split the proof of Theorem A in two cases. In the first case, we assume either

k = 2 or c0 ∪ b0 �= 0, and in the second case, we assume k > 2 and c0 ∪ b0 = 0. In

the first case, we know that the tangent space of Tm/(p) has dimension 1, and hence
its Eisenstein ideal is principal. We then prove that in this case, all the first order

deformations of (tr(ρ̄0), det(ρ̄0)) arising from Tm are reducible. From Lemma 3.12, we

know that these reducible pseudo-representations arise from actual representations if
and only if c0∪a0 = 0. On the Hecke side, we know, from Lemma 4.2, that the pseudo-

representation (τ0� ,δ
0
� ) : GQ,p� → T0

m arises from an ordinary deformation ρT0 : GQ,p� →
GL2(T

0
m) of ρ̄c0 . Therefore, combining these two facts, we see that if rankZp

(T0
m)> 1 then

c0∪a0 = 0.

On the other hand, suppose c0 ∪ a0 = 0. Let φ : Rpd,ord
ρ̄0,k

(�) → Rdef,ord
ρ̄c0

,k (�) be the map

induced by the universal deformation taking values in Rdef,ord
ρ̄c0

,k (�) and F : Tm → T0
m be

the natural surjective map. Then we prove, using Lemma 4.2, that φT(ker(φ))⊂ ker(F ),

and Lemma 3.12 implies that φT(ker(φ)) ⊂ (p,m2). Combining these facts along with

the principality of the Eisenstein ideal, [26, Theorem 5.1.2] and [19, Proposition II.9.6]
(which give the index of Eisenstein ideal in T0

m), we show that rankZp
(T0

m) > 1, which

proves Theorem A in the first case.

In the second case, we split the proof of Theorem A in two steps. In the first step we
prove that rankZp

(T0
m)> 1 if c0∪b0 = 0 and p | k (Theorem 5.5). To prove this, we use the

relation between the tame inertia group and the Frobenius, techniques from Generalized

Matrix Algebras (GMAs) along with [26, Theorem 5.1.2] and [26, Theorem 5.1.1] (which
describes the biggest quotient of Tm in which (τ�,δ�) is reducible) to prove that the

Eisenstein ideal is not principal. To prove rankZp
(T0

m)> 1 when c0∪ b0 = 0 and p � k, we

combine Theorem 5.5 and a result of Jochnowitz ([15]) about finiteness of the space of
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p-ordinary modular forms modulo p. Indeed, the result of Jochnowitz, along with some
standard duality results, implies that the Zp-rank of T0

m is same as the Zp-rank of the

corresponding Hecke algebra of weight k′ for any k′ >k such that k′ ≡ k(mod p−1). After

taking such a k′ with p | k′, we use Theorem 5.5 to prove the result.

1.5. Structure of the paper

In §2, we define various deformation rings that we will be working with throughout the

article. In §3, we gather several preliminary results from deformation theory which will

be used crucially in the proofs of main theorems. In §4, we define the Hecke algebras that
we will be working with and gather their properties. In §5, we state and prove the main

theorems of this article, as well as their corollaries.

1.6. Notation

In this subsection, we will develop some notation that will be used in the rest of the
article. Recall that we denoted the absolute Galois groups of Qp and Q� by GQp

and GQ�
,

respectively, and their inertia groups by Ip and I�, respectively. Denote the Frobenius

at � by Frob�. Fix embeddings i� : GQ�
→ GQ,p� and ip : GQp

→ GQ,p�. Note that such
embeddings are well-defined up to conjugacy. For a representation ρ of GQ,p�, we denote

the representation ρ◦ i� (resp. ρ◦ ip) by ρ|GQ�
(resp. by ρ|GQp

) and denote the restriction

of ρ|GQ�
(resp. of ρ|GQp

) to I� (resp. to Ip) by ρ|I� (resp. by ρ|Ip). By abuse of notation,
we also denote ωp|GQp

and χp|GQp
by ωp and χp, respectively.

Now (tr(ρ̄0), det(ρ̄0)) : GQ,p� → Fp is a 2-dimensional pseudo-representation of GQ,p�

(in the sense of Chenevier ([8])). See [5, Section 1.4] for the definition and properties of

2-dimensional pseudo-representations. In this article, we will only consider 2-dimensional
pseudo-representations. If (t,d) : G → R is a pseudo-representation and I is an ideal of

R, then we denote by (t(mod I),d(mod I)) the pseudo-representation G→R/I obtained

by composing (t,d) with the quotient map R → R/I. All the representations, pseudo-
representations and cohomology groups that we consider are assumed to be continuous

unless mentioned otherwise.

If (t,d) :GQ,p� → Fp[ε]/(ε
2) is a pseudo-representation deforming (tr(ρ̄0), det(ρ̄0)), then

we call it a first order deformation of (tr(ρ̄0), det(ρ̄0)). If ρ :GQ,p� →GL2(Fp[ε]/(ε
2)) is a

deformation of ρ̄c0 , then we call it a first order deformation of ρ̄c0 .

If G is either a quotient of a class group of exponent p or a Galois cohomology group of

an Fp-representation of either a local or a global Galois group, then we denote by dim(G)
the Fp-dimension of G. If ρ is a representation of GQ,p� and c ∈ Hi(GQ,p�,ρ), then we

denote by c|GQ�
the image of c under the restriction map Hi(GQ,p�,ρ)→ H1(GQ�

,ρ). If

c and c′ are two Galois cohomology classes (either local or global), then denote by c∪ c′

their cup product.

Let C be the category of local complete noetherian rings with residue field Fp. If R is

an object of C, then denote its maximal ideal by mR, denote its tangent space by tan(R)
and denote the Fp-dimension of tan(R) by dim(tan(R)). By abuse of notation, we denote

the character GQ,p� →R× obtained by composing χp with the natural map Z×
p →R× by

χp. If p= 0 in R, then sometimes we will denote it by ωp.
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Let ν be the highest power of p dividing �− 1 and vp(k) be the highest power of p

dividing k (i.e., the p-valuation of k).

2. Deformation rings

Let Rpd
ρ̄0

be the universal deformation ring of the pseudo-representation (tr(ρ̄0), det(ρ̄0)) :

GQ,p� →Fp in C. Note that the existence ofRpd
ρ̄0

is proved in [8]. Let (T univ,Duniv) :GQ,p� →
Rpd

ρ̄0
be the universal pseudo-representation deforming (tr(ρ̄0), det(ρ̄0)). We will now define

the deformation problems (and their deformation rings) that we will be working with.

Definition 2.1. Given an object R of C, a pseudo-representation (t,d) : GQ,p� → R is

called a p-ordinary, �-unipotent deformation of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p if

the following conditions hold:

(1) (t,d)(mod mR) = (tr(ρ̄0), det(ρ̄0)),

(2) d :GQ,p� →R× is the character χk−1
p ,

(3) t(g) = 2 for all g ∈ I�,

(4) For all g′ ∈GQ,p� and g,h ∈ Ip, t(g
′(g−χk−1

p (g))(h−1)) = 0.

Let Rpd,ord
ρ̄0,k

(�) be the object of C representing the functor from C to the category of sets
which sends an object R of C to the set of p-ordinary, �-unipotent pseudo-representations

(t,d) :GQ,p� →R with determinant χk−1
p deforming (tr(ρ̄0), det(ρ̄0)).

It is easy to verify that Rpd,ord
ρ̄0,k

(�) exists and it is given by the quotient of Rpd
ρ̄0

by the

ideal Ik generated by the set

{Duniv(g)−χk−1
p (g) | g ∈GQ,p�}∪{T univ(g)−2 | g ∈ I�}

∪{T univ(g′(g−χk−1
p (g))(h−1)) | g′ ∈GQ,p�,g,h ∈ Ip}. (1)

Note that our notion of p-ordinariness, given by point (4) of Definition 2.1, is inspired
from the notion of ordinary pseudo-representations defined by Calegari and Specter ([7,

Definition 2.5]). But we have slightly changed their notion to make it suitable for our

purpose.

Remark 2.2. The auxiliary parameter α appearing in the definition of the p-ordinary

pseudo-representations in [7, Definition 2.5] is required to account for the presence of
the Hecke operator Tp in the Hecke algebra, especially in the non-p-distinguished case.

But we are assuming that k is even, which means that 1 �= ωk−1
p (i.e., we are in the

p-distinguished case), so we do not need this auxiliary parameter.

Definition 2.3. Given an object R of C, a p-ordinary, �-unipotent deformation (t,d) :

GQ,p� →R of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p is called Steinberg-or-unramified at

� if for any lift g� ∈GQ�
of Frob�, we have

t(g(g�− �
k
2 )(h−1)) = 0,

for every h ∈ I� and g ∈GQ,p�.
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Let Rpd,st
ρ̄0,k

(�) be the object of C representing the functor from C to the category of sets

which sends an object R of C to the set of p-ordinary, Steinberg-or-unramified at � pseudo-
representations (t,d) :GQ,p� →R with determinant χk−1

p deforming (tr(ρ̄0), det(ρ̄0)). It is

easy to verify that Rpd,st
ρ̄0,k

(�) exists and it is given by the quotient of Rpd
ρ̄0

by the ideal Jk
generated by the ideal Ik along with the set

{T univ(g(g�− �
k
2 )(h−1)) | g� ∈GQ�

is a lift of Frob�,h ∈ I�,g ∈GQ,p�}.

Note that our notion of a Steinberg-or-unramified at � pseudo-representation is inspired

from the unramified-or-Steinberg at � condition defined and studied by Wake and Wang-
Erickson in [29, Section 3.4]. In an unpublished version of [7], Calegari and Specter also

define a similar notion (which they call ordinary at � pseudo-representation).

Lemma 2.4. Suppose p−1 � k, k is even and the ω1−k
p -component of the p-part of the class

group of Q(ζp) is trivial. Then dim(H1(GQ,p�,ω
1−k
p )) = 2 and dim(ker(H1(GQ,p�,ω

1−k
p )→

H1(Ip,ω
1−k
p ))) = 1.

Proof. As we are assuming that the ω1−k
p -component of the p-part of the class group

of Q(ζp) is trivial, it follows that ker(H1(GQ,p,ω
1−k
p ) → H1(GQp

,ω1−k
p )) is trivial. As

p−1 � k, it follows, from local Euler characteristic formula, that dim(H1(GQp
,ω1−k

p )) = 1
and hence, dim(H1(GQ,p,ω

1−k
p ))≤ 1. As ω1−k

p is odd, global Euler characteristic formula

implies that dim(H1(GQ,p,ω
1−k
p ))≥ 1. So, we have dim(H1(GQ,p,ω

1−k
p )) = 1.

Thus, by the Greenberg–Wiles formula ([31, Theorem 2]), we get that ker(H1(GQ,p,
ωk
p )→H1(GQp

,ωk
p )) is trivial. Therefore, we conclude that

ker(H1(GQ,p�,ω
k
p)→H1(GQp

,ωk
p)×H1(GQ�

,ωk
p)) = 0.

Hence, we get that

dim(H1(GQ,p�,ω
1−k
p )) = 1+dim(H0(GQp

,ωk
p ))+dim(H0(GQ�

,ωk
p)) = 1+0+1 = 2.

So 1 ≤ dim(ker(H1(GQ,p�,ω
1−k
p ) → H1(GQp

,ω1−k
p ))) ≤ 2. Now we can view H1(GQ,p,

ω1−k
p ) as a subgroup of H1(GQ,p�,ω

1−k
p ), and we have seen that ker(H1(GQ,p,ω

1−k
p ) →

H1(GQp
,ω1−k

p )) is trivial. Hence, it follows that dim(ker(H1(GQ,p�,ω
1−k
p ) → H1(GQp

,

ω1−k
p ))) = 1. As ω1−k

p |GQp
�= 1, we see that

ker(H1(GQ,p�,ω
1−k
p )→H1(GQp

,ω1−k
p )) = ker(H1(GQ,p�,ω

1−k
p )→H1(Ip,ω

1−k
p )).

This proves the lemma.

Recall that we have fixed a generator c0 ∈ ker(H1(GQ,p�,ω
1−k
p ) → H1(Ip,ω

1−k
p )).

Note that there exists a g0 ∈ Ip such that ωk−1
p (g0) �= 1. Fix such a g0 ∈ Ip. Let

ρ̄c0 : GQ,p� → GL2(Fp) be the representation such that ρ̄c0(g0) =

(
1 0

0 ωk−1
p (g0)

)
and

ρ̄c0(g) =

(
1 ∗
0 ωk−1

p (g)

)
for all g ∈GQ,p�, where ∗ corresponds to c0.
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Definition 2.5. Let Rdef,ord
ρ̄c0

,k be the universal ordinary deformation ring (in the sense of

Mazur) of ρ̄c0 with constant determinant χk−1
p in C. So it represents the functor from C

to the category of sets which sends an object R of C to the set of equivalence classes of

representations ρ :GQ,p� →GL2(R) such that

(1) ρ (mod mR) = ρ̄c0 ,

(2) There exists an isomorphism ρ|GQp
�
(
η1 ∗
0 η2

)
, where η2 is an unramified character

of GQp
lifting the trivial character 1,

(3) det(ρ) = χk−1
p .

As c0 �= 0, the existence of Rdef,ord
ρ̄c0

,k follows from [20] and [24].

Let ρuniv : GQ,p� → GL2(R
def,ord
ρ̄c0

,k ) be the universal ordinary deformation of ρ̄c0 with

constant determinant χk−1
p . Let Rdef,ord

ρ̄c0
,k (�) := Rdef,ord

ρ̄c0
,k /I, where I is the ideal of Rdef,ord

ρ̄c0
,k

generated by the set {tr(ρuniv(g))−2 | g ∈ I�}. Let ρuniv,� :GQ,p� →GL2(R
def,ord
ρ̄c0

,k (�)) be the

representation obtained by composing ρuniv with the natural surjective map Rdef,ord
ρ̄c0

,k →
Rdef,ord

ρ̄c0
,k (�).

3. Preliminary results

In this section, we gather various preliminary results which will be crucially used in the

proofs of the main theorems. We begin by recalling the notion of Generalized Matrix

Algebras from [4].

3.1. Generalized Matrix Algebras

Let R be a complete noetherian ring with residue field Fp, and let A be a topological

Generalized Matrix Algebra (GMA) over R of type (1,1) as defined in [2, Section 2.2,

Section 2.3]. This means that there exist topological R-modules B and C such that

A=

(
R B
C R

)
(i.e., every element of A can be written as

(
a b
c d

)
with a,d ∈R, b ∈B and

c ∈ C), and there exists a continuous morphism m :B⊗RC →R of R-modules such that

A becomes a (not necessarily commutative) topological R-algebra under the addition and

multiplication given by:

(1) Addition: (
a1 b1
c1 d1

)
+

(
a2 b2
c2 d2

)
=

(
a1+a2 b1+ b2
c1+ c2 d1+d2

)
,

(2) Multiplication:(
a1 b1
c1 d1

)
.

(
a2 b2
c2 d2

)
=

(
a1a2+m(b1⊗ c2) a1b2+d2b1

d1c2+a2c1 d1d2+m(b2⊗ c1)

)
.

We refer the reader to [2, Section 2.2, Section 2.3] for more details.
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From now on, we assume that all the GMAs that we consider are topological GMAs of
type (1,1) unless mentioned otherwise.

Definition 3.1. Let A =

(
R B

C R

)
be a GMA over R as above. Keeping the notation

developed above, we say that the GMA A is faithful if m(b⊗ c) = 0 for all c ∈ C implies

that b= 0 and m(b⊗ c) = 0 for all b ∈B implies that c= 0.

Given a GMA A over R with R-modules B and C and the multiplication map m :

B⊗RC →R as given above, we denote m(b⊗ c) by bc for all b ∈B,c ∈ C, and we denote
by BC the image of the map m :B⊗RC →R.

3.2. General results

If R is a complete noetherian local ring with residue field Fp and (t,d) : GQ,p� → R is a

pseudo-representation deforming (tr(ρ̄0), det(ρ̄0)), then [8, Lemma 3.8] implies that the
pseudo-representation (t|I�,d|I�) : I� →R (i.e., the restriction of the pseudo-representation

(t,d) to I�) factors through the Zp-quotient of the tame inertia group at �. Fix a lift i� ∈ I�
of a topological generator of this Zp-quotient of I�.
Recall that in §2, we have fixed a g0 ∈ Ip such that ωk−1

p (g0) �= 1. We will now prove a

result relating pseudo-representations with GMAs and establishing various properties of

these GMAs. It will be extensively used throughout the article.

Lemma 3.2. Suppose k is even, the ω1−k
p -component of the p-part of the class group of

Q(ζp) is trivial and dimFp
(H1(GQ,p,ω

k−1
p )) = 1. Let R be a complete noetherian ring with

residue field Fp and (t,d) :GQ,p� →R be a p-ordinary, �-unipotent pseudo-representation
with determinant χk−1

p deforming (tr(ρ̄0), det(ρ̄0)). Then there exists a faithful GMA

A =

(
R B

C R

)
over R (in the sense of Definition 3.1 above) and a representation ρ :

GQ,p� →A× such that

(1) tr(ρ) = t, det(ρ) = d and BC ⊂mR,

(2) If ρ(g) =

(
ag bg
cg dg

)
, then ag ≡ 1(mod mR) and dg ≡ ωk−1

p (g)(mod mR) for all

g ∈GQ,p�,

(3) ρ(g0) =

(
a0 0

0 d0

)
and R[ρ(GQ,p�)] =A,

(4) ρ|I� factors through the tame Zp-quotient of I�, ρ(i�) =

(
1+x b�
c� 1−x

)
with x∈mR

and B =Rb� (i.e., B is generated by b� as an R-module).

(5) There exists c′ ∈R such that C is generated by the set {c�,c′} as an R-module.

(6) If g ∈ Ip, then ρ(g) =

(
1 0

cg χk−1
p (g)

)
.
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Proof. The existence of A =

(
R B
C R

)
and ρ : GQ,p� → A× satisfying parts (1), (2) and

(3) of the lemma follows directly from [2, Proposition 2.4.2]. Moreover, it also implies

that B and C are finitely generated R-modules. The description of ρ(i�) follows from the

assumption that t(g) = 2 for all g ∈ I�. Since (t|I�,d|I�) factors through the Zp-quotient
of the tame inertia group at � and A is a faithful GMA, ρ|I� also factors through this

Zp-quotient of I�.

If B = 0, then faithfulness implies that C = 0 and vice versa. All the parts of the lemma
are clearly true in this case. So assume B �= 0 and C �= 0.

Let h ∈ Ip, and let ρ(h) =

(
ah bh
ch dh

)
. As (t,d) is p-ordinary, we have for all g ∈GQ,p�

tr(ρ(g)(ρ(g0)−χk−1
p (g0))(ρ(h)−1)) = 0. (2)

As R[ρ(GQ,p�)] =A, we get that, for all g′ ∈A,

tr(g′(ρ(g0)−χk−1
p (g0))(ρ(h)−1)) = 0.

For c ∈ C, let gc =

(
0 0

c 0

)
∈A. Then

tr(gc(ρ(g0)−χk−1
p (g0))(ρ(h)−1)) = (a0−χk−1

p (g0))bhc.

As a0 ≡ 1(mod mR) and ωk−1
p (g0) �= 1, it follows that a0 −χk−1

p (g0) ∈ R×, and hence

bhc= 0 for all c ∈ C. As A is faithful, we get that bh = 0 for all h ∈ Ip.

Taking g′ =

(
1 0
0 0

)
in (2), we get (a0−χk−1

p (g0))(ah− 1) = 0 for all h ∈ Ip. As a0−

χk−1
p (g0) ∈R×, we get that ah = 1 for all h ∈ Ip. As det(ρ(h)) = χk−1

p (h), it follows that

dh = χk−1
p (h) for all h ∈ Ip. This proves part (6) of the lemma.

Let B′ :=B/Rb�. Suppose φ :B′/mRB
′ → Fp is a map of R-modules. Then it induces a

map φ∗ :A→M2(F) of R-algebras which sends

(
a b

c d

)
to

(
a(mod mR) φ(b)

0 d(mod mR)

)
.

So the image of φ∗ defines an element of H1(GQ,p�,ω
1−k
p ).

Thus, we get a map f : Hom(B′/mRB
′,Fp)→H1(GQ,p�,ω

1−k
p ) of Fp-vector spaces. It

is easy to verify, using R[ρ(GQ,p�)] = A, that this map is injective (see the proofs of [4,

Theorem 1.5.5] and [9, Lemma 2.5] for more details). Note that if x ∈ H1(GQ,p�,ω
1−k
p )

lies in the image of f, then part (6) of the lemma implies that x is unramified at p. As
ρ|I� factors through the tame Zp-quotient of I�, the definitions of i� and b� imply that

x is also unramified at �. Since we are assuming that the ω1−k
p -component of the p-part

of the class group of Q(ζp) is trivial, it follows that x = 0. As f is injective, we see that
B′ = 0, which means B =Rb�. This finishes the proof of part (4) of the lemma.

Repeating the argument of the previous paragraph for C ′ =C/Rc�, we get an injective

map f ′ : Hom(C ′/mRC
′,Fp) → H1(GQ,p�,ω

k−1
p ) of Fp-vector spaces. Now ρ|I� factors

through the tame Zp-quotient of I�. Therefore, from the definitions of i� and c�, it follows

that if x is in the image of f ′, then x is unramified at �. Hence, the image of f ′ lies

in H1(GQ,p,ω
k−1
p )⊂H1(GQ,p�,ω

k−1
p ). As we are assuming that dim(H1(GQ,p,ω

k−1
p )) = 1
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and f ′ is injective, we get that C ′ is either 0 or it is generated by one element as an

R-module. This gives us part (5) of the lemma.

Reducible pseudo-representations deforming (tr(ρ̄0), det(ρ̄0)) will play an important role
in the proofs of our main results. Their importance is already highlighted in Wake’s work

([26]). We will now prove a basic result about reducible pseudo-representations which is

an analogue of [3, Lemme 1]. Its proof is also similar to that of [3, Lemme 1]. But we
give it here for the benefit of the reader. We will use it extensively while working with

reducible pseudo-representations.

Lemma 3.3. Let (t,d) :GQ,p� →R be a pseudo-representation deforming (tr(ρ̄0), det(ρ̄0)).

Suppose A=

(
R B
C R

)
is a (not necessarily faithful) GMA over R and ρ :GQ,p� → A× is

a representation such that

(1) t= tr(ρ) and d= det(ρ).

(2) If g ∈ GQ,p� and ρ(g) =

(
ag bg
cg dg

)
, then ag ≡ 1(mod mR) and dg ≡ ωk−1

p (g)

(mod mR).

(3) ρ(g0) =

(
a0 0
0 d0

)
and R[ρ(GQ,p�)] =A.

Let I be an ideal of R. Then t(mod I) = χ1 +χ2, for some characters χ1,χ2 : GQ,p� →
(R/I)× deforming 1 and ωk−1

p , if and only if BC ⊂ I. Moreover, if this condition is

satisfied, then ag(mod I) = χ1(g) and dg(mod I) = χ2(g) for all g ∈GQ,p�.

Proof. It is easy to see, from the description of ρ(g), that if BC ⊂ I, then tr(ρ)(mod I) =
χ1+χ2 for some characters χ1 and χ2 deforming 1 and ωk−1

p . Indeed, we can take χ1(g) =

ag(mod I) and χ2(g) = dg(mod I) for all g ∈GQ,p�.

Now suppose tr(ρ)(mod I) is a sum of two characters lifting 1 and ωk−1
p . If r ∈R, then

denote its image in R/I by r. Suppose g ∈ GQ,p� and ρ(g) =

(
ag bg
cg dg

)
. Then t(gg0) =

a0ag +d0dg. By our assumption on I, we know that

a0ag +d0dg = χ1(g0g)+χ2(g0g). (3)

Now d(g0) = a0d0, and hence a0 and d0 are roots of the polynomial f(X) =X2−t(g0)X+

d(g0) ∈R[X].

Let f̄(X) ∈R/I[X] be the reduction of f modulo I. So a0 and d0 are the roots of f̄(X).

Now as p > 2, d(g) = t(g)2−t(g2)
2 (see [5, Section 1.4]). As t(mod I) = χ1+χ2, it follows

that t(g) = χ1(g)+χ2(g) and d(g) = χ1(g)χ2(g). So χ1(g0) and χ2(g0) are also roots of
f̄(X). Therefore, we get that a0 = χ1(g0) and d0 = χ2(g0) by matching their reductions

modulo the maximal ideal of R/I.

Hence, by (3), we get a0ag +d0dg = χ1(g)a0+χ2(g)d0. On the other hand, ag +dg =
χ1(g)+χ2(g). So, we get ag(d0−a0) = χ1(g)(d0−a0) and dg(a0−d0) = χ2(g)(a0−d0).

As a0−d0 ∈ R×, we get that ag = χ1(g) and dg = χ2(g). This proves the second part of

the lemma.
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Now if g,g′ ∈ GQ,p�, then ρ(gg′) = ρ(g)ρ(g′). So we get agg′ = agag′ + bgcg′ and dgg′ =

dgdg′ +cgbg′ . From the previous paragraph, we know that agg′ ≡ agag′(mod I) and dgg′ ≡
dgdg′(mod I). Hence, for all g,g′ ∈ GQ,p�, we have bgcg′ ∈ I and cgbg′ ∈ I. So we get
BC ⊂ I which proves the lemma.

3.3. First order deformations

We will now focus on the p-ordinary, �-unipotent pseudo-representations (t,d) :GQ,p� →
Fp[ε]/(ε

2) with determinant ωk−1
p deforming (tr(ρ̄0), det(ρ̄0)). Note that such pseudo-

representations arise from the tangent space of Rpd,ord
ρ̄0,k

(�)/(p). We start with determining

the possible dimensions of the space of such deformations. This will be useful in studying
the structures of the Hecke algebras of interest and their Eisenstein ideals.

Let (T,D) : GQ,p� → Rpd,ord
ρ̄0,k

(�) be the universal p-ordinary, �-unipotent deformation

of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p . Recall from §1.6 that we denote the tangent

space of Rpd,ord
ρ̄0,k

(�)/(p) by tan(Rpd,ord
ρ̄0,k

(�)/(p)).

Lemma 3.4. 1≤ dim(tan(Rpd,ord
ρ̄0,k

(�)/(p)))≤ 2.

Proof. Suppose η1,η2 :GQ,p� → (Fp[ε]/(ε
2))× are characters such that η1(Ip) = 1, η1(i�) =

1+ ε and η2 = ωk−1
p η−1

1 . By class field theory and the definition of i�, it follows that such

characters exist and are unique. Note that η1 is a deformation of 1, η2 is a deformation

of ωk−1
p and η1η2 = ωk−1

p . It is easy to verify that the pseudo-representation

(η1+η2,η1η2) :GQ,p� → Fp[ε]/(ε
2)

is a p-ordinary, �-unipotent deformation of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p .

Hence, we get that 1≤ dim(tan(Rpd,ord
ρ̄0,k

(�)/(p))).

On the other hand, suppose (t,d) : GQ,p� → Fp[ε]/(ε
2) is a reducible, p-ordinary, �-

unipotent deformation of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p . So there exist two

characters χ1,χ2 : GQ,p� → (Fp[ε]/(ε
2))× such that χ1 lifts 1, χ2 lifts ωk−1

p and χ1χ2 =

ωk−1
p . From part (6) of Lemma 3.2, we get that χ1|Ip = 1 and χ2|Ip = ωk−1

p .

As χ1 is unramified at p, it follows, from class field theory and the definition of i�,
that χ1 = ηm1 and χ2 = ωk−1

p η−m
1 for some integer m ≥ 0. So in the space of first order

deformations of (tr(ρ̄0), det(ρ̄0)), the deformation (t,d) = (ηm1 +ωk−1
p η−m

1 ,ωk−1
p ) lies in

the subspace generated by the deformation (η1 + η2,η1η2) found above. So the space
of reducible, p-ordinary, �-unipotent, first order deformations of (tr(ρ̄0), det(ρ̄0)) with

determinant χk−1
p has dimension 1.

Let m0 be the maximal ideal of Rpd,ord
ρ̄0,k

(�), and let R := Rpd,ord
ρ̄0,k

(�)/(p,m2
0). So

dim(tan(R)) = dim(tan(Rpd,ord
ρ̄0,k

(�)/(p))). Denote the pseudo-representation GQ,p� → R

obtained by composing (T,D) with the natural surjective map Rpd,ord
ρ̄0,k

(�) → R by

(t,d). Let A =

(
R B
C R

)
be the faithful GMA over R and ρ : GQ,p� → A× be the

representation associated to (t,d) by Lemma 3.2. If BC = 0, then (t,d) is reducible.

Hence, we conclude from the discussion above that dim(tan(R)) = 1. Therefore, we get

that dim(tan(Rpd,ord
ρ̄0,k

(�)/(p))) = 1.

https://doi.org/10.1017/S1474748023000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000129


The Eisenstein ideal of weight k and ranks of Hecke algebras 997

Suppose B �= 0 and C �= 0. Now ρ(i�) =

(
1+x b�
c� 1−x

)
. As d = ωk−1

p , we see that

d(i�) = 1. This means det(ρ(i�)) = 1, which implies that b�c� = −x2. As x ∈ mR and

m2
R = 0, we get b�c� = 0. As A is faithful, part (4) of Lemma 3.2 implies that c� = 0.

Hence, by part (5) of Lemma 3.2, it follows that C is generated by 1 element over R. Let

c be a generator of C as R-module and let x′ = b�c ∈R. So BC = (b�c) = (x′).
By Lemma 3.3, we get that (t(mod (x′)),d(mod (x′))) :GQ,p� → R/(x′) is a reducible,

p-ordinary, �-unipotent deformation of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p . So any

first order deformation of (tr(ρ̄0), det(ρ̄0)) arising from R/(x′) is reducible. Hence, from

above, we conclude that dim(tan(R/(x′))) ≤ 1. This implies that dim(tan(R)) ≤ 2.

Therefore, we get dim(tan(Rpd,ord
ρ̄0,k

(�)/(p)))≤ 2 and the lemma follows.

The next result will be used in determining the generators of the cotangent spaces of
the Hecke algebras.

Lemma 3.5. Let R be a quotient of Rpd,ord
ρ̄0,k

(�) and (t,d) : GQ,p� → R be the pseudo-

representation obtained by composing (T,D) with the quotient map Rpd,ord
ρ̄0,k

(�) → R.

Let A be the faithful GMA over R and ρ : GQ,p� → A× be the representation attached

to (t,d) by Lemma 3.2. Let ρ(i�) =

(
1+x b�
c� 1−x

)
. If dim(tan(R/(p))) = 1 and the

deformation (t′,d′) : GQ,p� → R/(p,m2
R) of (tr(ρ̄0), det(ρ̄0)) obtained by composing (t,d)

with the quotient map R→R/(p,m2
R) is reducible, then mR is generated by p and x.

Proof. As dim(tan(R/(p))) = 1, we see that R/(p,m2
R) � Fp[ε]/(ε

2). So (t′,d′) gives us
a nontrivial Fp[ε]/(ε

2)-valued pseudo-representation. We will now use this identification.

Since (t′,d′) is reducible, t′ = χ1+χ2, where χ1,χ2 :GQ,p� → (Fp[ε]/(ε
2))× are characters

deforming 1 and ωk−1
p , respectively. From the proof of Lemma 3.4, we know that χ1|Ip =1,

χ2|Ip =ωk−1
p , χ1(i�)= 1+aε and χ2(i�)= 1−aε for some nonzero a∈Fp. From Lemma 3.3,

we get that the image of 1+x in R/(p,m2
R) � Fp[ε]/(ε

2) is 1+aε. Therefore, the image

of x in R/(p,m2
R) � Fp[ε]/(ε

2) generates the ideal (ε). Hence, we conclude that mR is
generated by (p,x).

Recall that we have chosen a nonzero generator b0 of H1(GQ,p,ω
k−1
p ) and have denoted

the cup product of c0 and b0 by c0 ∪ b0. So c0 ∪ b0 ∈ H2(GQ,p�,1). We now give a

necessary condition, in terms of this cup product, for the existence of a first order
deformation of (tr(ρ̄0), det(ρ̄0)) which is p-ordinary, �-unipotent with determinant ωk−1

p

and is not reducible. This lemma is the first step towards establishing the link between

the principality of the Eisenstein ideal and the nonvanishing of the cup product c0∪ b0.

The proof uses techniques similar to the ones used in [1].

Lemma 3.6. If dim(tan(Rpd,ord
ρ̄0,k

(�)/(p))) = 2, then c0∪ b0 = 0.

Proof. If dim(tan(Rpd,ord
ρ̄0,k

(�)/(p))) = 2, then the proof of Lemma 3.4 implies that there

exists a pseudo-representation (t,d) : GQ,p� → Fp[ε]/(ε
2) such that (t,d) is a p-ordinary,

�-unipotent deformation of (tr(ρ̄0), det(ρ̄0)) with determinant ωk−1
p and (t,d) is not

reducible. Let (t0,d0) be such a deformation.
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Let A=

(
Fp[ε]/(ε

2) B
C Fp[ε]/(ε

2)

)
be the faithful GMA over Fp[ε]/(ε

2) and ρ :GQ,p� →

A× be the representation attached to (t0,d0) by Lemma 3.2. So both B �= 0 and C �= 0.

Now we know, from part (4) of Lemma 3.2, that ρ(i�) =

(
1+x b�
c� 1−x

)
with x ∈ (ε). As

d0(i�) = 1, we get that b�c� =−x2 = 0. We also know, from part (4) of Lemma 3.2, that

B = Fp[ε]/(ε
2).b�. Since B �= 0, we get that b� �= 0, and hence c� = 0. So we conclude, from

part (5) of Lemma 3.2, that C is also generated by one element over Fp[ε]/(ε
2).

Let c be a generator of C. As BC ⊂ (ε), we get εBC = 0. As A is faithful, we get that

εB =0 and εC =0. Hence, both B and C are isomorphic to Fp as Fp[ε]/(ε
2)-modules. The

choice of generators b� for B and c for C identifies both B and C with Fp. In particular,

if g ∈GQ,p�, then ρ(g) =

(
1+agε bgb�
cgc ωk−1

p (g)+dgε

)
with ag,bg,cg,dg ∈ Fp.

Since ρ is a representation and εb� = εc = 0, we get that the map GQ,p� → Fp sending

g to cg defines an element of H1(GQ,p�,ω
k−1
p ) and the map GQ,p� → Fp sending g to

ω1−k
p (g)bg defines an element of H1(GQ,p�,ω

1−k
p ). As Fp[ε]/(ε

2)[ρ(GQ,p�)] = A, it is easy

to verify (using proof of Lemma 3.2) that both these elements are nonzero.

Note that part (6) of Lemma 3.2 implies that bh =0 for all h∈ Ip. Hence, the cohomology
class defined by bg lies in ker(H1(GQ,p�,ω

1−k
p ) → H1(Ip,ω

1−k
p )). Since c� = 0 and ρ|I�

factors through the tame Zp-quotient of I� (part (4) of Lemma 3.2), the definition of i�
implies that the cohomology class defined by cg lies in H1(GQ,p,ω

k−1
p ).

Since both these spaces are one-dimensional and generated by c0 and b0, respectively,
it follows that there exist nonzero elements α,β ∈ Fp such that cg = αb0(g) and

bg = βωk−1
p (g)c0(g) for all g ∈ GQ,p�. Let γ ∈ Fp such that b�c = γε. So γ �= 0. Now we

have

1+aghε= (1+agε)(1+ahε)+ bgchγε= (1+agε)(1+ahε)+αβγωk−1
p (g)c0(g)b0(h)ε.

So we have agh − ag − ah = αβγωk−1
p (g)c0(g)b0(h) for all g,h ∈ GQ,p�. As αβγ �= 0, it

follows, from the definition of the cup product, that c0∪b0 = 0 (see [25, Section 2.1]).

We will now give a criteria for the vanishing of the cup product c0∪ b0.

Lemma 3.7. Suppose Vandiver’s conjecture holds for p. Then c0∪ b0 = 0 if and only if∏p−1
j=1(1−ζjp)

jk−2 ∈ (Z/�Z)× is a p-th power in (Z/�Z)×, where ζp ∈ (Z/�Z)× is a primitive
p-th root of unity.

Proof. By [25, Proposition 2.4.1], we know that c0∪b0 =0 if and only if c0|GQ�
∪b0|GQ�

=0.
Note that c0|GQ�

,b0|GQ�
∈H1(GQ�

,1). Since c0|GQ�
is ramified at �, we see that c0|GQ�

�= 0.

On the other hand, b0|GQ�
is unramified at �. So c0|GQ�

∪b0|GQ�
=0 if and only if b0|GQ�

=0.

Now let ρ̄b0 : GQ,p → GL2(Fp) be the representation given by

(
ωk−1
p ∗
0 1

)
, where ∗

corresponds to b0, and let K ′ be the extension of Q fixed by ker(ρ̄b0). So b0|GQ�
= 0 if

and only if � splits completely in K ′. As p | �−1, � splits completely in K ′ if and only if

� splits completely in K ′(ζp).
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Let U = Z[ζp,p
−1]×. So

U
Up

is a Gal(Q(ζp)/Q)-module. For any integer i, let
U
Up

[ωi
p] be

the ωi
p-component of

U
Up

. Using the inflation-restriction exact sequence and Kummer

theory, we get that
U
Up

[ω2−k
p ] is isomorphic to a subgroup of H1(GQ,p,ω

k−1
p ). Since

Vandiver’s conjecture holds for p, we know, from Remark 1.3, that dim(H1(GQ,p,ω
k−1
p )) =

1 (which is consistent with the hypothesis (3) of Setup 1.1). Observe that
U
Up

[ω2−k
p ] is

an Fp-vector space of dimension 1, and hence, H1(GQ,p,ω
k−1
p )� U

Up
[ω2−k

p ]. We refer the

reader to the discussion in [25, Section 5.3] appearing just before [25, Theorem 5.3.2] for
more details.

Hence, if Ξ ∈ U is an element such that Ξ �∈ Up and g(Ξ) ≡ Ξω2−k
p (g)(mod Up) for all

g ∈Gal(Q(ζp)/Q), then K ′(ζp) is obtained by attaching a p-th root of Ξ to Q(ζp).

Now let Ξ =
∏p−1

j=1(1 − ζjp)
jk−2

. Observe that g(Ξ) ≡ Ξω2−k
p (g)(mod Up) for all

g ∈Gal(Q(ζp)/Q). Recall that, by our assumption, Vandiver’s conjecture holds for p.

Therefore, by combining [17, Lemma 2.7], [30, Lemma 8.1] and [30, Theorem 8.2], we get

that the set {1− ζap | a ∈ Z,0 < a < p/2} is a Z-basis of the free part of U . As k is even,
this implies that Ξ ∈ U \Up. Hence, we conclude that the extension K ′(ζp) is obtained

by attaching a p-th root of
∏p−1

j=1(1− ζjp)
jk−2

to Q(ζp) (see also [26, Remark 3.2.1]).

So � splits completely in K ′(ζp) if and only if
∏p−1

j=1(1−ζjp)
jk−2

is a p-th power in Q�. By

Hensel’s lemma,
∏p−1

j=1(1−ζjp)
jk−2

is a p-th power in Q� if and only if
∏p−1

j=1(1−ζjp)
jk−2 ∈

(Z/�Z)× is a p-th power in (Z/�Z)× which proves the lemma.

3.4. Pseudo-representations and representations

Let Rdef,ord
ρ̄c0

,k (�) be the deformation ring introduced in Definition 2.5 and ρuniv,� :GQ,p� →
GL2(R

def,ord
ρ̄c0

,k (�)) be the corresponding deformation. Note that (tr(ρuniv,�), det(ρuniv,�)) :

GQ,p� →Rdef,ord
ρ̄c0

,k (�) is a deformation of (tr(ρ̄0), det(ρ̄0)). Note that det(ρuniv,�) = χk−1
p .

As ρuniv,� is p-ordinary, it follows that, under a suitable basis, ρuniv,�(g) =(
χp(g)

k−1 bg
0 1

)
for all g ∈ Ip. So (ρuniv,�(g)−χp(g)

k−1)(ρuniv,�(h)− 1) =

(
0 0
0 0

)
for

all g,h ∈ Ip. Hence, (tr(ρ
univ,�), det(ρuniv,�)) is p-ordinary. Moreover, it is �-unipotent by

definition.

Therefore, (tr(ρuniv,�), det(ρuniv,�)) induces a map φ :Rpd,ord
ρ̄0,k

(�)→Rdef,ord
ρ̄c0

,k (�).

Lemma 3.8. The map φ :Rpd,ord
ρ̄0,k

(�)→Rdef,ord
ρ̄c0

,k (�) induced by (tr(ρuniv,�), det(ρuniv,�)) is
surjective.

Proof. To prove the lemma, it suffices to prove that if ρ :GQ,p� →GL2(Fp[ε]/(ε
2)) is an

ordinary deformation of ρ̄c0 such that det(ρ) = ωk−1
p and tr(ρ) = 1+ωk−1

p , then ρ� ρ̄c0 .

Denote Fp[ε]/(ε
2) by R and let ρ be such a representation. By [10, Lemma 3.1], after

replacing ρ by a suitable element in its equivalence class if necessary, we can assume that

https://doi.org/10.1017/S1474748023000129 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000129


1000 S. V. Deo

ρ(g0) =

(
a0 0
0 d0

)
. Since a0 ≡/ d0(mod(ε)), [2, Lemma 2.4.5] implies that there exist ideals

B,C ⊂R such that R[ρ(GQ,p�)] =

(
R B
C R

)
.

Note that R[ρ(GQ,p�)] is a GMA over R with multiplication of B and C given by

multiplication in R. As ρ(mod (ε)) = ρ̄c0 , it follows that B = R. Now (tr(ρ), det(ρ)) is

reducible. Hence, applying Lemma 3.3 to the GMA R[ρ(GQ,p�)], we get that BC = 0. As

B =R, we have C = 0. Moreover, Lemma 3.3 also implies that ρ(g) =

(
1 bg
0 ωk−1

p (g)

)
for

all g ∈GQ,p�.

So if f1,f2 : GQ,p� → Fp are functions such that bg = f1(g) + ε(f2(g)), then

ω1−k
p f1,ω

1−k
p f2 ∈ H1(GQ,p�,ω

1−k
p ). As ρ is p-ordinary, it follows that ρ|Ip � 1⊕ ωk−1

p .
Hence, by changing the basis if necessary, we can assume that bh = 0 for all h ∈ Ip.

Thus, we see that ω1−k
p f1,ω

1−k
p f2 ∈ ker(H1(GQ,p�,ω

1−k
p ) → H1(Ip,ω

1−k
p )). From

Lemma 2.4, we know that ker(H1(GQ,p�,ω
1−k
p ) → H1(Ip,ω

1−k
p )) is generated by c0.

Hence, there exist α,β ∈ Fp such that ω1−k
p f1 = αc0 and ω1−k

p f2 = βc0. Note that α = 1

as ρ(mod (ε)) = ρ̄c0 . So conjugating ρ by

(
(1+ εβ)−1 0

0 1

)
gives us ρ̄c0 which proves the

lemma.

Definition 3.9.

(1) Let I0 be the ideal of Rdef,ord
ρ̄c0

,k (�) generated by the set {tr(ρuniv,�(Frobq)) −
(1+ qk−1) | q is a prime �= p,�}. We call it the Eisenstein ideal of Rdef,ord

ρ̄c0
,k (�).

(2) Let J0 be the ideal of Rpd,ord
ρ̄0,k

(�) generated by the set {T (Frobq)− (1 + qk−1) |
q is a prime �= p,�}. We call it the Eisenstein ideal of Rpd,ord

ρ̄0,k
(�).

We will now give an upper bound on the index of I0 in Rdef,ord
ρ̄c0

,k (�) in terms of ν and

vp(k) introduced in §1.6.

Lemma 3.10. The ideal I0 has finite index in Rdef,ord
ρ̄c0

,k (�) and Rdef,ord
ρ̄c0

,k (�)/I0 is cyclic of

order at most pν+vp(k).

Proof. Note that the ideal generated by φ(J0) in Rdef,ord
ρ̄c0

,k (�) is I0 where φ :Rpd,ord
ρ̄0,k

(�)→
Rdef,ord

ρ̄c0
,k (�) is the surjective map obtained in Lemma 3.8. By definition of J0, it follows that

Rpd,ord
ρ̄0,k

(�)/J0 � Zp. Indeed, it is the kernel of the map Rpd,ord
ρ̄0,k

(�) → Zp induced by the

pseudo-representation (1+χk−1
p ,χk−1

p ). So Rdef,ord
ρ̄c0

,k (�)/I0 is a quotient of Zp, and hence it

is cyclic.
Let R = Rdef,ord

ρ̄c0
,k (�)/I0 and ρ : GQ,p� → GL2(R) be the representation obtained by

composing ρuniv,� with the natural surjective map Rdef,ord
ρ̄c0

,k (�)→Rdef,ord
ρ̄c0

,k (�)/I0. Note that

tr(ρ) = 1+χk−1
p and det(ρ) = χk−1

p . Using the arguments of Lemma 3.8, we conclude
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that (after replacing ρ with a representation in its equivalence class if necessary)

ρ=

(
1 ∗
0 χk−1

p

)
, where ∗ is nonzero and is unramified at p.

As ρ lifts ρ̄c0 , it follows, from the definition of i�, that ρ(i�) =

(
1 b�
0 1

)
and b� ∈

(Rdef,ord
ρ̄c0

,k (�)/I0)
×. Let g� ∈ GQ�

be a lift of Frob�. As ρ(g�i�g
−1
� ) = ρ(i�)

�, we get that

(�1−k − �)b� = 0. Since b� is a unit, we get that �k−1 = 0. Hence, it follows that R/I0 is

finite (as it is a quotient of Zp) and |R/I0| ≤ |Zp/(�
k −1)Zp|. Now the highest power of

p dividing �k−1 is ν+vp(k), and the lemma follows from this.

We will now give a necessary and sufficient condition for the existence of a reducible, p-

ordinary first order deformation of ρ̄c0 with determinant ωk−1
p . Before proceeding further,

let us develop some notation.

Let Ad(ρ̄c0) be the adjoint representation of ρ̄c0 . So it is the space of 2×2 matrices over
Fp on which g ∈ GQ,p� acts by conjugation by ρ̄c0(g). Let Ad0(ρ̄c0) be the subspace of

trace 0 matrices of Ad(ρ̄c0) and V be the subspace of Ad0(ρ̄c0) given by upper triangular

matrices.
It is easy to verify that V is a GQ,p�-subrepresentation of Ad0(ρ̄c0) and it is isomorphic

to ρ̄′c0 := ρ̄c0 ⊗ω1−k
p . Note that Ad0(ρ̄c0)/ρ̄

′
c0
∼=ωk−1

p . So the natural map H1(GQ,p�,ρ̄
′
c0)→

H1(GQ,p�,Ad
0(ρ̄c0)) is injective.

By class field theory, we know that dim(ker(H1(GQ,p�,1)→H1(Ip,1))) = 1. Recall that

we have chosen a generator a0 of ker(H1(GQ,p�,1) → H1(Ip,1)) and have denoted by

c0∪a0 the cup product of c0 and a0. So c0∪a0 ∈H2(GQ,p�,ω
1−k
p ).

Let R be an object of C. We say that a deformation ρ : GQ,p� → GL2(R) of ρ̄c0 is

reducible if there exist characters χ1,χ2 :GQ,p� →R× deforming 1 and ωk−1
p , respectively,

such that tr(ρ) = χ1+χ2.
We will now prove one of the key lemmas which link first order reducible deformations

of (tr(ρ̄0), det(ρ̄0)) with the vanishing of the cup product c0∪a0.

Lemma 3.11. There exists a p-ordinary deformation ρ : GQ,p� → GL2(Fp[ε]/(ε
2)) of

ρ̄c0 with determinant ωk−1
p which is reducible and not isomorphic to ρ̄c0 if and only if

c0∪a0 = 0.

Proof. Let ρ :GQ,p� →GL2(Fp[ε]/(ε
2)) be a deformation of ρ̄c0 with determinant ωk−1

p .

Let R = Fp[ε]/(ε
2). From [10, Lemma 3.1], we can assume, by changing the basis if

necessary, that ρ(g0) =

(
a0 0

0 d0

)
with a0(mod (ε)) = 1 and d0(mod (ε)) = ωk−1

p (g0).

Now [2, Lemma 2.4.5] implies that there exists an ideal C ⊂R such that R[ρ(GQ,p�)] =(
R R
C R

)
. By Lemma 3.3, it follows that ρ is reducible if and only if C = 0 and in this

case, ρ �
(
χ1 ∗
0 χ2

)
, where χ1 and χ2 are characters of GQ,p� deforming 1 and χk−1

p ,

respectively.
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Note that ρ corresponds to an element of x ∈ H1(GQ,p�,Ad
0(ρ̄c0)). So from the

previous paragraph, it follows that ρ is reducible if and only if x ∈ H1(GQ,p�,ρ̄
′
c0) ⊂

H1(GQ,p�,Ad
0(ρ̄c0)). Since χ1 is a lift of 1 and χ2 is a lift of ωk−1

p , it follows that if ρ is
reducible, then ρ is p-ordinary if and only if ρ|Ip � 1⊕ωk−1

p .

So ρ is reducible and p-ordinary if and only if x ∈ ker(H1(GQ,p�,ρ̄
′
c0) → H1(Ip,ρ̄

′
c0)).

Thus, there exists a nontrivial, reducible, p-ordinary deformation ρ : GQ,p� →
GL2(Fp[ε]/(ε

2)) of ρ̄c0 with determinant ωk−1
p if and only if ker(H1(GQ,p�,ρ̄

′
c0) →

H1(Ip,ρ̄
′
c0)) �= 0.

Note that an element x of H1(GQ,p�,ρ̄
′
c0) gives a representation ρ′x : GQ,p� → GL3(Fp)

such that

ρ′x(g) =

⎛
⎝ω1−k

p (g) c0(g) F (g)

0 1 b(g)

0 0 1

⎞
⎠ for all g ∈GQ,p�.

Note that b ∈ H1(GQ,p�,1). So x ∈ ker(H1(GQ,p�,ρ̄
′
c0) → H1(Ip,ρ̄

′
c0)) if and only if

b(Ip) = 0 and F (Ip) = 0 in the corresponding ρ′x (after changing the basis if necessary).

Hence, ker(H1(GQ,p�,ρ̄
′
c0) → H1(Ip,ρ̄

′
c0)) �= 0 if and only if there exists a representation

ρ′ :GQ,p� →GL3(Fp) such that

ρ′(g) =

⎛
⎝ω1−k

p (g) c0(g) F (g)

0 1 a0(g)
0 0 1

⎞
⎠ for all g ∈GQ,p� and F (Ip) = 0.

Now if such a ρ′ exists, then it is easy to verify that the coboundary of −F :GQ,p� → Fp

is c0∪a0, and hence c0∪a0 = 0.

On the other hand, suppose c0 ∪a0 = 0 and let F : GQ,p� → Fp be the map such that

the coboundary of −F is c0∪a0. Since c0 is unramified at p and ω1−k
p |GQp

�= 1, it follows

that c0|GQp
= 0. Hence, F |GQp

∈H1(GQp
,ω1−k

p ).

Since we are assuming that the ω1−k
p -component of the p-part of the class group

of Q(ζp) is trivial, we know that ker(H1(GQ,p,ω
1−k
p ) → H1(GQp

,ω1−k
p )) = 0. From the

proof of Lemma 2.4, we know that dim(H1(GQ,p,ω
1−k
p )) = dim(H1(GQp

,ω1−k
p )) = 1. So

the restriction map H1(GQ,p,ω
1−k
p )→H1(GQp

,ω1−k
p ) is an isomorphism. Hence, we can

change F by a suitable element of H1(GQ,p,ω
1−k
p ) to assume that F (Ip) = 0.

This means that there exists a representation ρ′ : GQ,p� → GL3(Fp) such that ρ′(g) =⎛
⎝ω1−k

p (g) c0(g) F (g)

0 1 a0(g)

0 0 1

⎞
⎠ for all g ∈ GQ,p� and F (Ip) = 0. This completes the proof of

the lemma.

We say that a pseudo-representation (t,d) : GQ,p� → R arises from a representation if
there exists a representation ρ :GQ,p� →GL2(R) such that tr(ρ) = t and det(ρ) = d.

Lemma 3.12. Suppose (t,d) : GQ,p� → Fp[ε]/(ε
2) is a nontrivial, reducible, p-ordinary,

�-unipotent pseudo-representation with determinant ωk−1
p deforming (tr(ρ̄0), det(ρ̄0)).

Then (t,d) arises from a p-ordinary representation deforming ρ̄c0 if and only if c0∪a0 =0.
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Proof. Suppose ρ :GQ,p� →GL2(Fp[ε]/(ε
2)) is a p-ordinary deformation of ρ̄c0 such that

t = tr(ρ) and d = det(ρ). As (t,d) is nontrivial, reducible and d = ωk−1
p , Lemma 3.11

implies that c0∪a0 = 0.

Now suppose c0 ∪ a0 = 0. Then Lemma 3.11 implies that there exists a nontrivial,

reducible, p-ordinary deformation ρ : GQ,p� → GL2(Fp[ε]/(ε
2)) of ρ̄c0 with determinant

ωk−1
p . So tr(ρ) = χ1+χ2, where χ1,χ2 : GQ,p� → (Fp[ε]/(ε

2))× are characters deforming
1 and ωk−1

p , respectively. Since ρ is p-ordinary, χ1 is unramified at p. If g ∈ I�, then

χ1(g) = 1+agε for some ag ∈ Fp. As d(g) = χ1(g)χ2(g) = ωk−1
p (g) = 1, we have χ2(g) =

(1+ agε)
−1 = 1− agε. So tr(ρ(g)) = 2 for all g ∈ I�. Therefore, (tr(ρ), det(ρ)) : GQ,p� →

Fp[ε]/(ε
2) is a nontrivial, reducible, p-ordinary, �-unipotent pseudo-representation with

determinant ωk−1
p deforming (tr(ρ̄0), det(ρ̄0)).

From the proof of Lemma 3.4, we know that the space of first order deformations of
(tr(ρ̄0), det(ρ̄0)) which are reducible, p-ordinary, �-unipotent with determinant ωk−1

p has

dimension 1. Therefore, we can find a deformation ρ′ of ρ̄c0 in the subspace of the first

order deformations of ρ̄c0 generated by ρ such that tr(ρ) = t and det(ρ) = d. This proves

the lemma.

4. Hecke algebras

We will now introduce the Hecke algebras that we will be working with and collect

their properties. We will mostly follow [26] in this section. Let Mk(�,Zp) be the space of
classical modular forms of level Γ0(�) and weight k with Fourier coefficients in Zp, and let

Sk(�,Zp) be its submodule of cusp forms. Let T be the Zp-subalgebra of EndZp
(Mk(�,Zp))

generated by the Hecke operators Tq for primes q �= � and the Atkin–Lehner operator w�

at �. Let T0 be the Zp-subalgebra of EndZp
(Sk(�,Zp)) generated by the Hecke operators

Tq for primes q �= � and the Atkin–Lehner operator w� at �.

The restriction of the action of Hecke operators from Mk(�,Zp) to Sk(�,Zp) gives a

surjective morphism T→ T0. Let Ieis be the ideal of T generated by the set {w�+1,Tq−
(1 + qk−1) | q �= � is a prime}. It is easy to verify that Ieis is a prime ideal T and it

corresponds to the Eisenstein series of level Γ0(�) and weight k having w�-eigenvalue −1

(see [26, Section 2] for more details). Let m be the ideal of T generated by p and Ieis.
So m is a maximal ideal of T. Denote by Tm and T0

m the completion of T and T0 at m,

respectively. It follows from [26] that T0
m is nonzero. Note that the surjective map T→T0

induces a surjective map F : Tm → T0
m.

Let m0 be the maximal ideal of T0. As T is a finite Zp-module, [13, Corollary 7.6]
implies that Tm is the localization of T at m and it is a finite Zp-module. Similarly, T0

m

is the localization of T0 at m0 and it is a finite Zp-module. Note that both T and T0 are

reduced. As Tm and T0
m are localizations of T and T0, respectively, we get that both Tm

and T0
m are reduced.

The residue field of both Tm and T0
m is Fp. Denote the maximal ideals of Tm and T0

m bym

and m0, respectively. By abuse of notation, denote by Ieis the ideal of Tm generated by the
set {w�+1,Tq−(1+qk−1) | q �= � is a prime}. We call it the Eisenstein ideal of Tm. Denote

by Ieis,0 the ideal of T0
m generated by the set {w�+1,Tq − (1+ qk−1) | q �= � is a prime}.

We call it the Eisenstein ideal of T0
m.
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We will now collect some of the properties of Tm and T0
m. We begin by relating Tm

with the pseudo-deformation ring Rpd,ord
ρ̄0,k

(�) introduced in §2.

Lemma 4.1. There exists a pseudo-representation (τ�,δ�) :GQ,p� → Tm such that (τ�,δ�)

is a p-ordinary, Steinberg-or-unramified at � deformation of (tr(ρ̄0), det(ρ̄0)) with deter-
minant χk−1

p and τ�(Frobq) = Tq for all primes q � p�. The morphism φT :Rpd,ord
ρ̄0,k

(�)→ Tm

induced by (τ�,δ�) is surjective.

Proof. For k > 2, the lemma follows from [26, Section 3.2]. For k = 2, the lemma
follows from [28, Proposition 4.2.4]. Indeed, the pseudo-representation (τ�,δ�) is obtained

by gluing the pseudo-representations corresponding to the semi-simple p-adic Galois

representations attached to the modular eigenforms of level Γ0(�) and weight k lifting
ρ̄0. Here we say that an eigenform f of level Γ0(�) and weight k lifts ρ̄0 if aq(f)≡ 1+qk−1

(mod �f ) for all primes q �= �, where aq(f) is the Tq-eigenvalue of f and�f is a uniformizer

of the ring of integers of the finite extension of Qp obtained by attaching the Hecke
eigenvalues of f to Qp.

Suppose f is an eigenform of level Γ0(�) and weight k lifting ρ̄0 and ρf is the semi-

simple p-adic Galois representation attached to f. Then the Tp-eigenvalue of f is a p-adic

unit, and hence ρf is p-ordinary. This means that the pseudo-representation attached
to ρf is also p-ordinary (see §3.4). As f is of level Γ0(�), we know that ρf |GQ�

is either

unramified or Steinberg. Hence, the pseudo-representation attached to ρf is Steinberg-

or-unramified at � (see [29, Observation 1.9.2]). This proves the desired properties of the
pseudo-representation (τ�,δ�). The surjectivity of φT can be concluded in the same way

as in [28, Proposition 4.2.4].

We now prove that the T0
m-valued pseudo-representation obtained by composing (τ�,δ�)

with the natural surjective map F : Tm → T0
m arises from an actual representation.

Lemma 4.2. There exists a p-ordinary deformation ρT0 :GQ,p� →GL2(T
0
m) of ρ̄c0 with

determinant χk−1
p such that tr(ρT0(Frobq)) = Tq for all primes q � p� and tr(ρT0(g)) = 2

for all g ∈ I�. The morphism φT0 :Rdef,ord
ρ̄c0

,k (�)→ T0
m induced by ρT0 is surjective.

Proof. Composing (τ�,δ�) with the surjective map F : Tm → T0
m gives us a pseudo-

representation (τ0� ,δ
0
� ) : GQ,p� → T0

m which is a p-ordinary, Steinberg-or-unramified at �

deformation of (tr(ρ̄0), det(ρ̄0)) with determinant χk−1
p . Let A=

(
T0
m B
C T0

m

)
be the GMA

over T0
m and ρ :GQ,p� →A× be the representation associated to (τ0� ,δ

0
� ) by Lemma 3.2.

Note that T0
m is reduced. Let K0 be the total fraction ring of T0

m. So, by [4, Proposition

1.3.12], we can assume that B and C are fractional ideals of K0 and the multiplication
between B and C is given by the multiplication in K0. If I = BC, then τ0� (mod I) is a

sum of two characters. But the minimal primes of T0
m correspond to cuspidal eigenforms

f of level Γ0(�) and weight k lifting ρ̄0. Hence, if P is a minimal prime of T0
m, then (τ0�

(mod P ),δ0� (mod P )) is not reducible as it is the pseudo-representation corresponding to

the p-adic Galois representation attached to the cuspidal eigenform corresponding to P.

So I is not contained in any minimal prime of T0
m. So B �= 0.
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If αB = 0, then we have αI = 0. So α should be in every minimal prime of T0
m. As T

0
m

is reduced, it means that α= 0. Now if ρ(i�) =

(
1+x b�
c� 1−x

)
, then part (4) of Lemma

3.2 implies that B is generated by b� over T0
m. Hence, B is a free T0

m-module of rank 1
generated by b� over T0

m. As I is not contained in any of the minimal primes of T0
m, it

follows that b� ∈K×
0 .

So

(
b−1
� 0
0 1

)
A

(
b� 0
0 1

)
=

(
T0
m T0

m

I T0
m

)
. Hence, conjugating ρ by

(
b−1
� 0
0 1

)
gives us a

representation ρ′ : GQ,p� → GL2(T
0
m). As tr(ρ) = τ0� , it follows that tr(ρ′) = τ0� . Hence,

we get tr(ρ′(g)) = 2 for all g ∈ I�. From part (6) of Lemma 3.2, it follows that ρ(h) =(
1 0

ch χk−1
p (h)

)
for all h∈ Ip. Hence, ρ

′ is p-ordinary as it is a conjugate of ρ by a diagonal

matrix.

Therefore, ρ′(mod m0) =

(
1 ∗
0 ωk−1

p

)
where ∗ is nonzero and unramified at p (i.e., ρ′

(mod m0) arises from an element of ker(H1(GQ,p�,ω
1−k
p )→H1(GQp

,ω1−k
p ))). By Lemma

2.4, it follows that ker(H1(GQ,p�,ω
1−k
p ) → H1(GQp

,ω1−k
p )) is generated by c0. Hence,

conjugating ρ′ with a suitable diagonal matrix gives us the representation ρT0 :GQ,p� →
GL2(T

0
m) satisfying the statement of the lemma.

The existence of ρT0 implies that the map Rpd,ord
ρ̄0,k

(�)→ T0
m induced by (τ0� ,δ

0
� ) factors

through Rdef,ord
ρ̄c0

,k (�) to give the map φT0 induced by ρT0 . Hence, the surjection of φT0

follows from Lemma 4.1.

We now show that the space of first order deformations of (tr(ρ̄0), det(ρ̄0)) arising from

Tm always contains reducible deformations.

Lemma 4.3. If dim(tan(Tm/(p))) = 1, then Ieis is principal and the pseudo-

representation (τ�(mod (p,m2)),δ�(mod (p,m2))) :GQ,p� → Tm/(p,m
2) is reducible.

Proof. If dim(tan(Tm/(p))) = 1, then Tm is a quotient of Zp�X�. As Tm/I
eis � Zp,

it follows that Ieis is principal. For k > 2, the reducibility of (τ�(mod (p,m2)),δ�
(mod (p,m2))) follows from [26, Theorem 5.1.1].

Suppose k = 2. Then the lemma follows from work of Calegari and Emerton (by
combining [6, Proposition 3.12] and [6, Proposition 5.5]). However, we will give a different

proof here as we are not using the deformation conditions studied by them. It follows

from [19] that dim(tan(Tm/(p))) = 1 and Ieis is principal. So Tm/(p,m
2) � Fp[ε]/(ε

2).

Denote Tm/(p,m
2) by R and (τ�(mod (p,m2)),δ�(mod (p,m2))) by (t,d). Suppose (t,d) is

not reducible.

Let A be the faithful GMA over R and ρ :GQ,p� →A× be the representation associated

to (t,d) by Lemma 3.2. From the proof of Lemma 3.6, it follows that there exist nonzero

constants α,β,γ ∈ Fp such that if ρ(g) =

(
ag bg
cg dg

)
, then bgcg = αβγωk−1

p (g)c0(g)b0(g)ε

for all g ∈GQ,p�. Let Kc0 be the extension of Q fixed by the kernel of the representation
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(
ω1−k
p ∗
0 1

)
defined by c0 and Kb0 be the extension of Q fixed by the kernel of the

representation

(
ωk−1
p ∗
0 1

)
defined by b0.

By Chebotarev density theorem, there exists a prime q such that q � p�, p | q−1 and q is
not totally split in both Kc0 and Kb0 . This means that c0(Frobq) �= 0 and b0(Frobq) �= 0.

So if ρ(Frobq) =

(
a b

c d

)
, then bc �= 0. Now a = 1+ xε, d = 1+ yε with x,y ∈ Fp and

det(ρ(Frobq)) = 1. Hence, it follows that x+ y �= 0. Therefore, tr(ρ(Frobq))− q− 1 �= 0,

and hence it generates the cotangent space of R. The image of Tq under the surjective

map Tm →R is tr(ρ(Frobq)). Hence, it follows that p and Tq−q−1 generate the maximal
ideal m of Tm. Note that Tq−q−1∈ Ieis and Tm/(p,Tq−q−1)� Fp. As Tm/I

eis �Zp, we

get that Tq−q−1 generates Ieis. Since q is not a nice prime in the sense of Mazur ([19]),

[19, Proposition II.16.1] gives a contradiction. Hence, (t,d) is reducible which implies the
lemma.

We will now briefly review modular forms modulo p as they form a crucial ingredient

of the proof of Theorem 5.6 and Corollary A.

Let i > 0 be an even integer and Mi(�,Zp) be the space of classical modular forms of

level Γ0(�) and weight i with Fourier coefficients in Zp. Using the q-expansion principle,
we identify Mi(�,Zp) with a submodule of Zp�q�. Let Mi(�,Fp) be the image of Mi(�,Zp)

under the natural surjective map Zp�q� → Fp�q� obtained by reducing the coefficients of

power series modulo p. So Mi(�,Fp) is the space of modular forms modulo p of weight i
and level Γ0(�) (in the sense of Serre and Swinnerton-Dyer).

Let Ti be the Zp-subalgebra of EndZp
(Mi(�,Zp)) generated by the Hecke operators Tq

for primes q �= � and the Atkin–Lehner operator w� at �. So, under the notation developed
above, we have Tk =T. Let n be a maximal ideal of Ti, and let (Ti)n be the completion of

Ti at n. As Ti is a finite Zp-module, [13, Corollary 7.6] implies that (Ti)n is the localization

of Ti at n and Ti = (Ti)n×S, where S is the product of localizations of Ti at maximal

ideals other than n.
Let Mi(�,Zp)n be the localization of Mi(�,Zp) at n. From the product decomposition

of Ti given in the previous paragraph, we conclude that Mi(�,Zp)n is a submodule of

Mi(�,Zp) and moreover, it is a direct summand of Mi(�,Zp). Note that (Ti)n is the largest
quotient of Ti acting faithfully on Mi(�,Zp)n.

The action of Ti on Mi(�,Zp) also gives an action of Ti on Mi(�,Fp) and this action

factors through Ti/(p). Let Mi(�,Fp)n be the localization of Mi(�,Fp) at the maximal
ideal n. As Ti/(p) is Artinian, it follows that Mi(�,Fp)n is the submodule of Mi(�,Fp)

consisting of generalized eigenvectors corresponding to the system of eigenvalues defined

by n. In other words, Mi(�,Fp)n = {f ∈Mi(�,Fp) | nk.f = 0 for some k > 0}.
Under the mod p reduction map Mi(�,Zp) → Mi(�,Fp), Mi(�,Zp)n gets mapped onto

Mi(�,Fp)n. Thus the action of Ti on Mi(�,Fp)n factors through (Ti)n/(p).

Lemma 4.4. If (p−1) � i, then (Ti)n/(p) is the largest quotient of (Ti)n acting faithfully

on Mi(�,Fp)n.
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Proof. As p is odd and w� is an involution, it follows that the image of w� in (Ti)n is

either 1 or −1. Since i > 0, we get, from [22, Corollary 2.1.4], a perfect pairing

G : (Ti)n×Mi(�,Zp)n → Zp

which sends (T,f) to a1(Tf), where a1(Tf) is the coefficient of q in the q-expansion of
Tf .

Let Ti be the largest quotient of (Ti)n acting faithfully on Mi(�,Fp)n. As (p− 1) � i,

we know that no nonzero modular form in Mi(�,Fp) has constant Fourier expansion i.e.,
Mi(�,Fp)\{0}⊂Fp�q�\Fp (see the discussion on Page 459 of [14] for more details). Hence,

by applying [22, Corollary 2.1.4] again, we get that the map

Ḡ : Ti×Mi(�,Fp)n → Fp

which sends (T,f̄) to a1(T f̄) is a perfect pairing.

As G is a perfect pairing, we get that the Zp-ranks of (Ti)n and Mi(�,Zp)n are equal.
Recall thatMi(�,Fp)n is the reduction ofMi(�,Zp)n modulo p. So, we conclude that the Fp-

dimension of Mi(�,Fp)n is same as the Zp-rank of Mi(�,Zp)n. Since Ḡ is a perfect pairing,

the Fp-dimensions of Ti and Mi(�,Fp)n are the same. Therefore, the Fp-dimensions of Ti

and (Ti)n/(p) are equal. As (Ti)n/(p) surjects onto Ti, we infer that (Ti)n/(p)� Ti.

We will now relate the principality of Ieis,0 with that of Ieis. This result will be used in

the proof of Theorem 5.5. Recall that F : Tm → T0
m is the map induced from the natural

surjective map T→ T0.

Lemma 4.5. Ieis is principal if and only if Ieis,0 is principal.

Proof. Since Ieis,0 is the ideal generated by F (Ieis), it follows that Ieis,0 is principal if

Ieis is principal.
Now suppose Ieis,0 is principal. From Lemma 3.4 and Lemma 4.1, we know that there

exists a surjective map f : Zp�x,y� → Tm. Moreover, we can choose this map so that

f(x),f(y)∈ Ieis, and hence Ieis = (f(x),f(y)). As Ieis,0 is principal and F is surjective, we

get, using Nakayama’s lemma, that Ieis is either (F (f(x))) or (F (f(y))). Hence, ker(F )
contains either f(y)− rf(x) for some r ∈ Tm or f(x)− r′f(y) for some r′ ∈ Tm.

Suppose f(y)−rf(x)∈ ker(F ) for some r ∈Tm. Recall that f(y)−rf(x)∈ Ieis. Suppose

the Zp-rank ofMk(�,Zp)m is d. Note that the Eisenstein subspace Ek(�,Zp)m ofMk(�,Zp)m
has Zp-rank 1 and the cuspidal subspace Sk(�,Zp)m of Mk(�,Zp)m has Zp-rank d−1 (see

[26, Section 2.2] for more details).

Now Ek(�,Zp)m ∩ Sk(�,Zp)m = {0}. Hence, if g ∈ Mk(�,Zp)m, then there exist g′ ∈
Ek(�,Zp)m, h ∈ Sk(�,Zp)m and an integer n ≥ 0 such that g =

g′−h

pn
. Thus, if σ ∈ Ieis,

then σ(g′) = 0, σ(h) ∈ Sk(�,Zp)m and σ(g) ∈ Mk(�,Zp)m. Therefore, we conclude that
σ(g) ∈ Sk(�,Zp)m, and hence σ.Mk(�,Zp)m ⊂ Sk(�,Zp)m.

Since f(y)−rf(x)∈ Ieis∩ker(F ), (f(y)−rf(x))2.Mk(�,Zp)m =0 i.e. (f(y)−rf(x))2 =0.

Recall that Tm is reduced. Therefore, we get that f(y)−rf(x) = 0. As Ieis = (f(x),f(y)),

we conclude that Ieis is principal.
Using the same argument as above, we get that if f(x)− r′f(y) ∈ ker(F ) for some

r′ ∈ Tm, then Ieis is a principal ideal. This finishes the proof of the lemma.
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We will now consider Ieis as a Tm-module and determine its annihilator. This result

will be crucially used in the proofs of Theorem 5.5 and Part (1) of Theorem B.

Lemma 4.6. The annihilator of the Tm-module Ieis is ker(F ).

Proof. Suppose α ∈ ker(F ) and β ∈ Ieis. Recall, from the proof of Lemma 4.5, that

βMk(�,Zp)m ⊂ Sk(�,Zp)m. So αβMk(�,Zp)m = 0. Therefore, it follows that αβ = 0 for all
β ∈ Ieis and α ∈ ker(F ).

On the other hand, suppose α ∈ Tm and αIeis = 0. As Tm is reduced, α �∈ Ieis. Since Tm

has Krull dimension 1 and Tm/I
eis � Zp, I

eis is a minimal prime ideal of Tm. Let S be
the set of all minimal prime ideals of Tm which are different from Ieis. As T0

m is nonzero,

S is nonempty. So, if P ∈ S, then Ieis �⊂ P , and hence α ∈ P . Thus, α ∈ ∩P∈SP .

Now we have Ieis ker(F ) = 0. Therefore, if P ∈ S, then ker(F ) ⊂ P . As Tm is a local
ring of Krull dimension 1, S is the set of all primes of Tm which are minimal over ker(F ).

Since T0
m � Tm/ker(F ) is reduced, we conclude that ∩P∈SP = ker(F ). Therefore, we get

that α ∈ ker(F ).

5. Main results

We are now ready to prove our main results. We know, from [19] and [26], that
dim(tan(Tm/(p)))≥ 1.

Theorem 5.1. Suppose dim(tan(Tm/(p))) = 1. Then rankZp
(T0

m) = 1 if and only if c0∪
a0 �= 0.

Proof. As dim(tan(Tm/(p))) = 1, Lemma 4.3 implies that Ieis is principal. Let x0 ∈ Tm

be a generator of Ieis. Then m= (p,x0) and (p,m2) = (p,x2
0). So Tm/(p,m

2) =Tm/(p,x
2
0)�

Fp[ε]/(ε
2). Let f : Tm → Fp[ε]/(ε

2) be the map obtained by composing the isomorphism

obtained above with the natural surjective map Tm → Tm/(p,m
2). Now Lemma 4.3 also

implies that the pseudo-representation (t,d) : GQ,p� → Fp[ε]/(ε
2) obtained by composing

(τ�,δ�) with the surjective map f : Tm → Fp[ε]/(ε
2) is reducible.

If rankZp
(T0

m) > 1, then dim(tan(T0
m/(p))) ≥ 1. As dim(tan(Tm/(p))) = 1, we get that

dim(tan(T0
m/(p))) = 1. Therefore, the map f factors through T0

m. Thus Lemma 4.2

implies that (t,d) arises from a nontrivial first order p-ordinary deformation of ρ̄c0 with

determinant ωk−1
p . Hence, Lemma 3.11 implies that c0∪a0 = 0.

Now suppose c0 ∪ a0 = 0. Recall that φ : Rpd,ord
ρ̄0,k

(�) → Rdef,ord
ρ̄c0

,k (�) is the surjective

morphism induced by (tr(ρuniv,�), det(ρuniv,�)). As (t,d) is reducible, Lemma 3.12 implies

that there exists a map f ′ : Rdef,ord
ρ̄c0

,k (�) → Fp[ε]/(ε
2) such that the following diagram

commutes:

Rpd,ord
ρ̄0,k

(�) Tm Fp[ε]/(ε
2)

Rdef,ord
ρ̄c0

,k (�)

φT

φ

f

f ′

Hence, φT(ker(φ))⊂ (p,x2
0).
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On the other hand, Lemma 4.2 implies that the following diagram commutes:

Rpd,ord
ρ̄0,k

(�) Tm T0
m

Rdef,ord
ρ̄c0

,k (�)

φT

φ

F

φ
T0

So φT(ker(φ))⊂ ker(F ).

Now suppose rankZp
(T0

m) = 1. As Ieis = (x0), [26, Theorem 5.1.2] and [19, Proposition

II.9.6 ] imply that F (x0) = pν+vp(k).u for some u ∈ Z×
p (see [26, Remark 5.1.3] for more

details). Since the image of x0 in Tm/(p) generates its cotangent space, it follows that
ker(F ) = (x0−pν+vp(k).u).

Note that J0, which is the Eisenstein ideal of Rpd,ord
ρ̄0,k

(�), is the inverse image of Ieis under

the surjective map φT. Then I0 is generated by φ(J0), and Lemma 3.10 implies that there
is a y ∈ ker(φ) such that y= pe+y0 with y0 ∈ J0 and e≤ ν+vp(k). So φT(y) = pe+φT(y0)∈
ker(F ). As y0 ∈ J0, φT(y0)∈ (x0), and hence φT(y0) = x0α for some α ∈Tm. So pe+x0α ∈
(x0 − pν+vp(k).u). As Tm/(x0) � Zp, it follows that pe + x0α = (x0 − pν+vp(k).u)(x0β+
pe

′
u′) for some e′ ≥ 0, u′ ∈ Z×

p and β ∈ Tm, and hence pe =−uu′pν+vp(k)+e′ .

Since e ≤ ν + vp(k), we get that e′ = 0, and hence pe
′
u′ + x0β ∈ T×

m. Therefore, we
conclude that m = (p,pe+x0α). But pe+x0α ∈ φT(ker(φ)) ⊂ (p,x2

0). Hence, we see that

p generates the maximal ideal of Tm which is a contradiction as dim(tan(Tm/(p))) = 1.

Therefore, we conclude that if c0 ∪a0 = 0, then rankZp
(T0

m) > 1. This finishes the proof

of the theorem.

Corollary 5.2. If k = 2, then rankZp
(T0

m) = 1 if and only if c0∪a0 �= 0.

Proof. If k = 2, then [19, Proposition II.16.6] implies that dim(tan(Tm/(p))) = 1. So the
corollary follows from Theorem 5.1.

Corollary 5.3. If k > 2 and c0∪ b0 �= 0, then rankZp
(T0

m) = 1 if and only if c0∪a0 �= 0.

Proof. If k > 2 and c0 ∪ b0 �= 0, then Lemma 3.4, Lemma 3.6 and Lemma 4.1 together

imply that dim(tan(Tm/(p))) = 1. Hence, the corollary follows from Theorem 5.1.

Let ξ′MT ∈ Fp be the derivative of the Mazur–Tate ζ function defined by Wake in [26,

Section 1.2.2].

Corollary 5.4. If c0∪ b0 �= 0, then ξ′MT �= 0 if and only if c0∪a0 �= 0.

Proof. If co ∪ b0 �= 0, then we know that Ieis is principal. Hence, the corollary follows

from Corollary 5.3 and [26, Theorem 1.2.4].

Note that the statement of Corollary 5.4 is purely elementary but its proof is not

elementary. We are not aware of any direct proof of this corollary.
We now move on to the case of c0∪ b0 = 0.

Theorem 5.5. If c0∪ b0 = 0 and p | k, then Ieis,0 is not principal and rankZp
(T0

m)> 1.
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Proof. If rankZp
(T0

m) = 1, then every ideal of T0
m is principal, and hence Ieis,0 is principal.

So it suffices to prove that Ieis,0 is not principal to prove the theorem. Suppose c0∪b0 =0,
p | k and Ieis,0 is principal. By Lemma 4.5, we get that Ieis is principal. Since Tm/I

eis �Zp,

it follows that Tm is a quotient of Zp�X�, and hence dim(tan(Tm/(p))) = 1.

Let A =

(
Tm B

C Tm

)
be the faithful GMA over Tm and ρ : GQ,p� → A× be the

representation attached to (τ�,δ�) by Lemma 3.2. By Lemma 4.3, we know that the first
order deformation of (tr(ρ̄0), det(ρ̄0)) arising from Tm is reducible. So Lemma 3.5 implies

that m is generated by p and x, where ρ(i�) =

(
1+x b�
c� 1−x

)
. As det(ρ(i�)) = 1, we get

that b�c� =−x2.

Let g� be a lift of Frob� in GQ�
and suppose ρ(g�) =

(
a b

c d

)
. Now ρ(g�i�g

−1
� ) = ρ(i�)

�.

As b�c� =−x2, it follows that ρ(i�)
� =

(
1+ �x �b�
�c� 1− �x

)
. So we have

(
a b

c d

)(
1+x b�
c� 1−x

)
=

(
1+ �x �b�
�c� 1− �x

)(
a b

c d

)
.

Thus b�c+d(1−x) = �bc�+d(1− �x). Now part (4) of Lemma 3.2 implies that B = Tmb�
and so b= rb� for some r ∈ Tm. Since b�c� =−x2, there exists an r′ ∈ Tm such that

b�c= dx(1− �)+x2r′. (4)

Let I = BC. So, by Lemma 3.3, we know that tr(ρ)(mod I) is reducible. Moreover,

if ρ(g) =

(
ag bg
cg dg

)
for g ∈ GQ,p�, then the map χ1 : GQ,p� → (Tm/I)

× sending g to ag

(mod I) is a character of GQ,p� lifting the trivial character. Recall, from Part (4) of

Lemma 3.2, that the representation ρ is tamely ramified at �. So, the character χ1 is
also tamely ramified at �. Therefore, by the Kronecker–Weber theorem, we get that the

order of χ1(I�) divides �− 1. Hence, χ1(i�)
�−1 = 1 which means (1+x)�−1(mod I) = 1

(i.e., (1+x)�−1−1 ∈ I).
We know that x2 ∈ I. Since (1+x)�−1−1 ∈ I, we get that pνx ∈ I. On the other hand,

Lemma 3.3 and [26, Theorem 5.1.1] imply that Tm/I �
Zp�X�

(X2,pνX)
. Since we have already

seen that m= (p,x), there is a surjective morphism Zp�X� → Tm sending X to x. Hence,

by combining all this, we get that I = (x2,pνx).
Now as we are assuming c0∪ b0 = 0, the proof of Lemma 3.7 implies that b0|GQ�

= 0.

Let C ′ = C/Tmc�. Then, following the proof of part (4) of Lemma 3.2, we get an

injective map ψ : Hom(C ′/mC ′,Fp)→H1(GQ,p,ω
k−1
p ). So if its image is nonzero, then it

is generated by b0. From the construction of ψ along with the fact b0|GQ�
= 0, we see that

the image of c in C ′/mC ′ is 0. So c∈mC+Tmc�. Therefore, b�c∈ (x2,pν+1x) as m= (p,x)

and BC = (x2,pνx).
Now d ∈ T×

m. Hence, from (4), we get x(pν + pν+1z+ xr′′) = 0 for some z ∈ Zp and

r′′ ∈ Tm. From Lemma 4.6, we know that the annihilator of Ieis is ker(F ). As (x) = Ieis,

it follows that pν +pν+1z+xr′′ ∈ ker(F ).
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So, |T0
m/(F (x))| ≤ pν . Since (x) = Ieis, it follows that (F (x)) = Ieis,0. We know, from

[26, Theorem 5.1.2], that T0
m/F (x) = T0

m/I
eis,0 � Z/pν+vp(k)Z. Since p | k, vp(k)> 0, and

hence this gives us a contradiction. Therefore, we get rankZp
(T0

m) > 1, which proves the

theorem.

We will now prove Theorem 5.5 without the assumption that p | k. We will crucially
use the theory of modular forms modulo p (recalled in §4) along with Theorem 5.5 in its

proof. Note that if i ≥ 2, then the action of Tp on Mi(�,Fp) coincides with the action of

the operator U considered in [15, Section 1] (note that the prime � of [15] corresponds to

the prime p in our context).

Theorem 5.6. If c0∪ b0 = 0 and k > 2, then Ieis,0 is not principal and rankZp
(T0

m)> 1.

Proof. We have already proved the theorem for p | k. So assume p � k and c0 ∪ b0 = 0.

Recall that it suffices to prove that Ieis,0 is not principal.

Now let k′ be an integer such that k′ > k, p− 1 | (k′ − k) and p | k′. Let T′ be the
Zp-subalgebra of EndZp

(Mk′(�,Zp)) generated by the Hecke operators Tq for primes q �= �

and the Atkin–Lehner operator w� at �. Let T′
m be the completion of T′ at its maximal

ideal generated by the set {p,w�+1,Tq − (1+ qk
′−1) | q �= � is a prime}.

Let Ep−1 be the Eisenstein series of level 1 and weight p− 1 such that the constant
term of the q-expansion Ep−1(q) of Ep−1 is 1. Note that Ep−1(q) ∈ Zp�q�. Let Ep−1(q) ∈
Mp−1(�,Fp) be the reduction of Ep−1(q) modulo p. Then we know that Ep−1(q) = 1.

Therefore, by using the multiplication by (Ep−1(q))
k′−k
p−1 map, we can identify Mk(�,Fp)

as a subspace of Mk′(�,Fp), and we will denote this subspace by Mk(�,Fp) as well.

As k > 2, k′ > p+ 1, by [15, Lemma 1.9] we know that there exists an integer
n > 0 such that Tn

p (Mk′(�,Fp)) ⊂ Mk(�,Fp). Hence, after localizing at m, we get

that Tn
p (Mk′(�,Fp)m) ⊂ Mk(�,Fp)m. As Tp − 1− pk

′−1 ∈ m, it follows that Tp ∈ (T′
m)

×.
Therefore, Tp is an invertible operator on Mk′(�,Fp)m. So, it follows that Mk(�,Fp)m =

Mk′(�,Fp)m.

As p− 1 | (k′ − k) and p− 1 � k, it follows that p− 1 � k′. Hence, by Lemma 4.4, the
largest quotient of T′ (resp. of T) acting faithfully on Mk′(�,Fp)m (resp. on Mk(�,Fp)m)

is T′
m/(p) (resp. Tm/(p)). Since Mk(�,Fp)m =Mk′(�,Fp)m, T

′
m/(p)� Tm/(p).

Now suppose Ieis is principal. Then Tm is a quotient of Zp�X�, which means
dim(tan(Tm/(p))) = 1. By combining Theorem 5.5 and Lemma 4.5, we get that the Eisen-

stein ideal of T′
m is not principal. Therefore, Lemma 4.3 implies that dim(tan(T′

m/(p)))>

1, and hence dim(tan(Tm/(p)))> 1. This gives us a contradiction. Thus, we conclude that
Ieis is not principal. So by Lemma 4.5, we get that Ieis,0 is not principal. This finishes

the proof of the theorem.

We will now prove Corollaries A, B and C. We begin with the proof of Corollary A.

Proof of Corollary A. By combining Theorem 5.5 and Theorem 5.6, we get that if
Ieis,0 is principal, then c0∪ b0 �= 0. Now suppose c0∪ b0 �= 0. Then, by combining Lemma

3.4, Lemma 3.6 and Lemma 4.1, we get that dim(tan(Tm/(p))) = 1. So, Lemma 4.3 implies

that Ieis is principal. Hence, by Lemma 4.5, we get that Ieis,0 is principal. If Vandiver’s
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conjecture holds for p, then we know, from Lemma 3.7, that c0 ∪ b0 �= 0 if and only if∏p−1
i=1 (1− ζip)

ik−2 ∈ (Z/�Z)× is not a p-th power. This proves the corollary.

Before proving Corollary B and Corollary C, we first prove a result that relates vanishing

of cup product with class groups.
Recall that we denoted Q(ζ

(p)
� ,ζp) by K and denoted its class group of by Cl(K).

Let L be the unramified abelian extension of K such that Gal(L/K) = Cl(K)/Cl(K)p.

Note that L is also Galois over Q and Gal(L/K) is a normal subgroup of Gal(L/Q).
As Gal(L/K) = Cl(K)/Cl(K)p is abelian, we get an action of Gal(K/Q) on it. Now

Gal(K/Q) = Gal(Q(ζ
(p)
� )/Q)×Gal(Q(ζp)/Q). So we have an action of Gal(Q(ζp)/Q)

on Cl(K)/Cl(K)p. Denote by (Cl(K)/Cl(K)p)[ω1−k
p ] the subspace of Cl(K)/Cl(K)p on

which Gal(Q(ζp)/Q) acts by ω1−k
p .

Proposition 5.7. Suppose k is an even integer, p−1 � k, and the ω1−k
p -component of the

p-part of the class group of Q(ζp) is trivial. The following are equivalent:

(1) c0∪a0 = 0,

(2) dim((Cl(K)/Cl(K)p)[ω1−k
p ])≥ 2,

(3) The image of
∏�−1

i=1 i
(
∑i−1

j=1 j
k−1) in (Z/�Z)× is a p-th power.

Proof. As we are assuming that the ω1−k
p -component of the p-part of the class group of

Q(ζp) is trivial, the equivalence between parts (2) and (3) follows from [17, Theorem 1.9].

To prove that part (1) implies part (2), we follow the proof of [28, Proposition 11.1.1].

Suppose c0 ∪ a0 = 0. Therefore, there exists a representation ρ : GQ,p� → GL3(Fp) such

that

ρ(g) =

⎛
⎝ω1−k

p (g) c0(g) F (g)

0 1 a0(g)
0 0 1

⎞
⎠ for all g ∈GQ,p�.

Here F :GQ,p� →Fp is a cochain such that the coboundary of −F is c0∪a0. From the proof
of Lemma 3.11, it follows that we can change F by a suitable element of H1(GQ,p,ω

1−k
p )

to assume F (GQp
) = 0.

Let M be the extension of Q fixed by ker(ρ). So Gal(M/K) � Z/pZ×Z/pZ and its

image under ρ is {

⎛
⎝1 a b
0 1 0

0 0 1

⎞
⎠ | a,b ∈ Fp}. As c0 is unramified at p and F (Ip) = 0, it

follows that M is unramified over all primes of K lying above p.
As ω1−k

p (I�) = 1, it follows that ρ(I�) is a p-group, and hence ρ is tamely ramified at �.

This means that |ρ(I�)| = p. So the image of I� in Gal(M/Q) has cardinality p and the

image of I� in Gal(K/Q) also has cardinality p. Hence, M is unramified over all primes
of K lying above �. Therefore, we conclude that M is an unramified extension of K.

From the description of ρ and the description of ρ(Gal(M/K)), it follows that

Gal(Q(ζp)/Q) acts via ω1−k
p on Gal(M/K). As Gal(M/K) � Z/pZ × Z/pZ, it
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follows that

dim((Cl(K)/Cl(K)p)[ω1−k
p ])≥ 2

which shows that part (1) implies part (2).
We will now prove that part (2) implies part (1). Suppose dim((Cl(K)/Cl(K)p)[ω1−k

p ])≥
2. Let M be the subfield of L such that Gal(M/K) = (Cl(K)/Cl(K)p)[ω1−k

p ]. Note that

M is also Galois over Q.
So V := Gal(M/K) is an Fp vector space on which the cyclic p-group Gal(Q(ζ

(p)
� )/Q)

acts. Let α be a generator of Gal(Q(ζ
(p)
� )/Q). Let M ′ be the subfield of M such that

Gal(M ′/K) � V/(α− 1)V . As (α− 1)V is a subspace of V stable under the action of

Gal(K/Q), it follows that (α− 1)V is a normal subgroup of Gal(M/Q), and hence M ′

is also Galois over Q. As Gal(Q(ζ
(p)
� )/Q) acts trivially on Gal(M ′/K), it follows that

Gal(M ′/Q(ζp)) is an abelian p-group. Note that Gal(Q(ζp)/Q) acts on Gal(M ′/K) via
ω1−k
p and it acts trivially on Gal(K/Q(ζp)). Hence, Gal(M ′/Q(ζp))� F⊕r

p for some r ≥ 2

and as a Gal(Q(ζp)/Q)-representation, Gal(M ′/Q(ζp))� Fp(ω
1−k
p )⊕r−1⊕Fp.

Therefore, from subfields of M ′, we get r− 1 elements of H1(GQ,p�,ω
1−k
p ) which are

linearly independent over Fp. Now the prime of Q(ζp) lying above p is unramified in K.
As M ′ is unramified over K, it follows that the prime of Q(ζp) lying above p is also

unramified in M ′. So the r−1 elements of H1(GQ,p�,ω
1−k
p ) arising from subfields of M ′

are all unramified at p. Hence, Lemma 2.4 implies that r− 1 = 1. Therefore, M ′ is a
Z/pZ extension of K. Since c0 generates the space of classes of H1(GQ,p�,ω

k−1
p ) which

are unramified at p, we get that M ′ =K.Kρ̄c0
, where Kρ̄c0

is the extension of Q fixed by

ker(ρ̄c0).
Now let M ′′ be the subfield of M such that Gal(M ′′/K) � V/(α− 1)2V . By our

assumption, we have dim(V ) ≥ 2 and we have just proved that dim(V/(α− 1)V ) = 1.

So, we have dim(V/(α− 1)2V ) ≥ 2 and Gal(M ′′/Q(ζp)) is not abelian as α does not

act trivially on V/(α− 1)2V . Note that K.Kρ̄c0
= M ′ ⊂ M ′′. Denote the image of

GQ�
in Gal(M ′′/Q) by D�. As � splits completely in Q(ζp), it follows that D� lies in

Gal(M ′′/Q(ζp)). Since M ′′ is unramified over K and K is abelian over Q, it follows that

D� is abelian.
Suppose c0|GQ�

�= βa0|GQ�
for any β ∈ Fp. Note that c0|GQ�

�= 0 and a0|GQ�
�= 0. So

the image of D� in Gal(M ′/Q(ζp)) has cardinality p2, and hence this image is all of

Gal(M ′/Q(ζp)). Now Gal(M ′′/K) is an abelian group and it is normal in Gal(M ′′/Q(ζp))
with their quotient given by Gal(K/Q(ζp))� Z/pZ. As

Gal(M ′′/M ′) = (α−1)V/(α−1)2V ⊂Gal(M ′′/K),

Gal(K/Q(ζp)) acts trivially on it. Hence, Gal(M ′′/M ′) is in the center of Gal(M ′′/Q(ζp)).

We have already seen that D� gets mapped surjectively on Gal(M ′/Q(ζp)) under

the surjective map Gal(M ′′/Q(ζp)) → Gal(M ′/Q(ζp)). Therefore, Gal(M ′′/Q(ζp)) =
D�.Gal(M ′′/M ′). As D� is abelian and Gal(M ′′/M ′) is in the center of Gal(M ′′/Q(ζp)), it

follows that Gal(M ′′/Q(ζp)) is abelian. But this gives a contradiction as we have already

seen that Gal(M ′′/Q(ζp)) is not abelian.
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So we have c0|GQ�
= βa0|GQ�

for some β ∈ Fp. This means that c0|GQ�
∪ a0|GQ�

= 0.

From [25, Proposition 2.4.1], we get that c0 ∪ a0 = 0 which completes the proof of the

proposition.

Proof of Corollary B and Corollary C. Corollary B follows directly by Corollary 5.2

and Proposition 5.7. Corollary C follows directly by Theorem 5.6, Proposition 5.7 and
Lemma 3.7.

We will end this article by proving the R= T theorems mentioned in the introduction

(Theorem B).

Proof of Theorem B. Part (1): Recall that we denoted by (T,D) : GQ,p� →
Rpd,ord

ρ̄0,k
(�) the universal pseudo-representation deforming (tr(ρ̄0), det(ρ̄0)). Let A =(

Rpd,ord
ρ̄0,k

(�) B

C Rpd,ord
ρ̄0,k

(�)

)
be the faithful GMA over Rpd,ord

ρ̄0,k
(�) and ρ : GQ,p� → A×

be the representation attached to (T,D) by Lemma 3.2. Suppose ρ(i�) =

(
1+x b�
c� 1−x

)

and ρ(g0) =

(
a0 0

0 d0

)
. Let g� be a lift of Frob� in GQ�

and suppose ρ(g�) =

(
a b

c d

)
.

Now Lemma 3.6 implies that dim(tan(Rpd,ord
ρ̄0,k

(�)/(p))) = 1. So the proof of Lemma 3.4

implies that any p-ordinary, �-unipotent pseudo-representation (t,d) :GQ,p� → Fp[ε]/(ε
2)

with determinant ωk−1
p which deforms (tr(ρ̄0), det(ρ̄0)) is reducible. Thus, Lemma 3.5

implies that m = (p,x) where m is the maximal ideal of Rpd,ord
ρ̄0,k

(�). As tr(ρ(g0i�))−
tr(ρ(g0)) = (a0−d0)x ∈ J0 and a0−d0 ∈ (Rpd,ord

ρ̄0,k
(�))×, it follows that x ∈ J0. Since m=

(p,x) and Rpd,ord
ρ̄0,k

(�)/J0 � Zp, we get that J0 = (x).

Note that the relation ρ(g�i�g�)
−1 = ρ(i�)

� implies that ab�+ b(1−x) = b(1+ �x)+ �b�d
(see the proof of Theorem 5.5 for more details). So we have b�(a− �d) = bx(1+ �) which

means b�c�(a− �d) = bc�x(1+ �). By part (4) of Lemma 3.2, we have B = Rpd,ord
ρ̄0,k

(�)b�.

Thus, b= rb� for some r ∈Rpd,ord
ρ̄0,k

(�). As b�c� =−x2, we get that x2(a− �d) = x3r(1+ �).

Since J0 = (x) is the Eisenstein ideal of Rpd,ord
ρ̄0,k

(�), Lemma 3.3 implies that a≡ 1(mod (x))

and d ≡ χk−1
p (Frob�)(mod (x)). Therefore, we get x2(1− �k + xr′) = x3r(1 + �) which

means x2(1− �k+xr′′) = 0.
Denote the image of r ∈ Rpd,ord

ρ̄0,k
(�) in (Rpd,ord

ρ̄0,k
(�))red by r̄. As J0 is a prime ideal

of Rpd,ord
ρ̄0,k

(�), it contains the nilradical of Rpd,ord
ρ̄0,k

(�). Let J red
0 be the image of J0 in

(Rpd,ord
ρ̄0,k

(�))red. So J red
0 = (x̄). From the previous paragraph, we get that x̄2(1−�k+xr′′) =

0. Therefore, x̄(1− �k + xr′′) = 0. As 1− �k = pν+vp(k).u for some u ∈ Z×
p . Hence,

|J red
0 /(J red

0 )2| ≤ pν+vp(k).

As Tm is reduced, the map φT : Rpd,ord
ρ̄0,k

(�)→ Tm factors through (Rpd,ord
ρ̄0,k

(�))red to get

a map φ′
T : (Rpd,ord

ρ̄0,k
(�))red → Tm. Note that φT is a surjective morphism of augmented

Zp-algebras, and hence φ′
T is also a surjective morphism of augmented Zp-algebras. The

kernels of the surjective morphisms (Rpd,ord
ρ̄0,k

(�))red → Zp and Tm → Zp are J red
0 and Ieis,

respectively.
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From Lemma 4.6, it follows that the annihilator of Ieis is ker(F ). Therefore, Tm/(I
eis+

ker(F )) � T0
m/I

eis,0 and [26, Theorem 5.1.2] and [19, Proposition II.9.6 ] imply that
T0
m/I

eis,0 �Z/pν+vp(k)Z. So, |J red
0 /(J red

0 )2| ≤ |T0
m/I

eis,0|. Hence, Wiles–Lenstra numerical

criterion ([11, Criterion I]) implies that φ′
T is an isomorphism of local complete intersection

rings. This proves the first part of the theorem.
Part (2): We now move on to the second part of the theorem. Let (T ′,D′) : GQ,p� →

Rpd,st
ρ̄0,k

(�) be the universal pseudo-representation deforming (tr(ρ̄0), det(ρ̄0)). Let A =(
Rpd,st

ρ̄0,k
(�) B

C Rpd,st
ρ̄0,k

(�)

)
be the faithful GMA over Rpd,st

ρ̄0,k
(�) and ρ : GQ,p� → A× be the

representation attached to (T,D) by Lemma 3.2. Suppose ρ(i�) =

(
1+x b�
c� 1−x

)
. Let g�

be a lift of Frob� in GQ�
and suppose ρ(g�) =

(
a b

c d

)
.

Note that the pseudo-representation (1+χk−1
p ,χk−1

p ) : GQ,p� → Zp is unramified at �.

Hence, J0 contains the kernel of the surjective map Rpd,ord
ρ̄0,k

(�)→Rpd,st
ρ̄0,k

(�). Let J ′
0 be the

image of J0 in Rpd,st
ρ̄0,k

(�). Using the arguments of the first case of the theorem, we get that

J ′
0 = (x).

Now the Steinberg-or-unramified at � condition implies tr(ρ(g)(ρ(g�)− �k/2)(ρ(i�)−
1)) = 0 for all g ∈ GQ,p�. As Rpd,st

ρ̄0,k
(�)[ρ(GQ,p�)] = A, it follows that tr(g′(ρ(g�) −

�k/2)(ρ(i�)−1)) = 0 for all g′ ∈A. Putting g′ =

(
1 0

0 0

)
, we get (a− �k/2)x+ bc� = 0.

As B is generated by b� (by part (4) of Lemma 3.2) and b�c� = −x2, it follows that
bc� = x2r for some r ∈ Rpd,st

ρ̄0,k
(�). As J ′

0 = (x), Lemma 3.3 implies that a ≡ 1(mod (x)).

Therefore, (a− �k/2)x+ bc� = x(1− �k/2−xr′+xr) = 0. As vp(1− �k/2) = ν+ vp(k/2) =
ν+vp(k), it follows that |J ′

0/(J
′
0)

2| ≤ pν+vp(k).

Note that ψT is a surjective morphism of augmented Zp-algebras. The kernels of the

surjective morphisms Rpd,st
ρ̄0,k

(�) → Zp and Tm → Zp are J ′
0 and Ieis, respectively. We

have already seen in the proof of part 1 of the theorem that Tm/(I
eis + ker(F )) �

T0
m/I

eis,0 � Z/pν+vp(k)Z. Hence, we have |J ′
0/(J

′
0)

2| ≤ |T0
m/I

eis,0|. So Wiles–Lenstra

numerical criterion ([11, Criterion I]) implies that ψT is an isomorphism of local complete

intersection rings. This proves the second part of the theorem.
Part (3): We now come to the last part of the theorem. By [10, Lemma 3.1], one

can choose the universal deformation ρuniv,� : GQ,p� → GL2(R
def,ord
ρ̄c0

,k (�)) of ρ̄c0 such that

ρuniv,�(g0) =

(
a0 0

0 d0

)
.

Suppose ρuniv,�(i�) =

(
1+x b�
c� 1−x

)
. Let φ : Rpd,ord

ρ̄0,k
(�)→ Rdef,ord

ρ̄c0
,k (�) be the surjective

map induced by (tr(ρuniv,�), det(ρuniv,�)). Now we know from the proof of the first part

of the theorem that J0 = (T (g0i�)−T (g0)). The ideal generated by φ(J0) is I0. So I0 =

(tr(ρuniv,�(g0i�))− tr(ρuniv,�(g0))) = (x). The ideal generated by φT0(I0) is the Eisenstein

ideal Ieis,0 of T0
m, so Ieis,0 = (φT0(x)).
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As I0 = (x), it follows that the maximal ideal of Rdef,ord
ρ̄c0

,k (�) is generated by p and x.

So we have a surjective map F1 : Zp�X� →Rdef,ord
ρ̄c0

,k (�) which sends X to x. Composing F1

with φT0 , we get a surjective map F2 : Zp�X�→ T0
m such that F2(X) = φT0(x). As Zp�X�

is a UFD and T0
m is finite and flat over Zp, it follows that ker(F2) is a principal ideal.

Now [26, Theorem 5.1.2] and [19, Proposition II.9.6] imply that T0
m/(φT0(x))=T0

m/I
eis,0 �

Z/pν+vp(k)Z. Hence, we can find a generator α of ker(F2) such that α= pν+vp(k)+Xf(X)

for some f(X) ∈ Zp�X�.
Since I0 = (x) = (F1(X)), Lemma 3.10 implies that there exists a β ∈ ker(F1) such that

β = pe+Xg(X) for some g(X)∈Zp�X� and e≤ ν+vp(k). As ker(F1)⊂ ker(F2), it follows

that there exists some h(X) ∈ Zp�X� such that pe+Xg(X) = h(X)(pν+vp(k)+Xf(X)).
So the constant term of h(x) is pe

′
for some e′ ≥ 0. Now e ≤ ν + vp(k), which means

e′ = 0. Hence, h(X) is a unit which means ker(F2) ⊂ ker(F1). Therefore, we conclude

that ker(F2) = ker(F1). As F1 is surjective, it follows that φT0 is injective. As φT0 is

also surjective, it follows that φT0 is an isomorphsim which proves the final part of the
theorem.
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