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Free normal-flow (NF) conditions at the plasma boundary are shown to be essential
for three-dimensional magnetohydrodynamic (MHD) simulations to agree with linear
stability theory. A comparative verification study is presented between two different
formulations of the boundary conditions (BCs) for velocity perturbations: (i) fully
consistent free NF implementation and (ii) fixed NF formulation, neglecting flow
perturbations at the numerical boundary. Numerical results are compared with
consolidated figures of merit from the linear theory of external kink modes. We consider
two classes of initial equilibria presenting different numerical challenges: a uniform
current channel surrounded by pure vacuum and a shaped Wesson-like equilibrium, with
smooth (polynomial) radial dependency. Only the fully consistent free NF formulation is
invariably accurate in modelling the plasma interface at the numerical boundary, without
the need of enforcing a pseudovacuum region at the edge of the simulation domain, as in
most analogous past studies. This study employs the cylindrical code SPECYL (Cappello
& Biskamp, Nucl. Fusion, vol. 36, no. 5, 1996, p. 571) that solves a full-MHD model
without pressure gradients, whose fully consistent resistive wall module with free NF
BCs was recently successfully verified against the independent code PIXIE3D (Spinicci
et al., AIP Adv., vol. 13, no. 9, 2023, p. 095111).

Keywords: fusion plasma, plasma instabilities, plasma simulation

1. Introduction

Magnetically confined plasmas aimed at thermonuclear fusion best perform close
to pressure- and current-driven magnetohydrodynamic (MHD) stability boundaries and
are thus subject to a wide spectrum of potentially dangerous large-scale relaxation
phenomena, e.g. the tearing modes, the vertical instabilities, the kink modes, the edge
localised modes (see, e.g. White 2006; Wesson & Campbell 2011). The effect of such
instabilities is generally deleterious (White 2006), unless stable nearby equilibria may be
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attained by nonlinear saturation or through externally imposed magnetic perturbations.
This is the case in hybrid (Piovesan et al. 2017; Burckhart et al. 2023) and advanced
(reversed shear) tokamak scenarios (Gormezano et al. 2008; Zhang et al. 2021), or in
quasi-single-helicity states in the reversed field pinch (RFP) dynamo/flux-pumping effect
(Bonfiglio, Cappello & Escande 2005; Marrelli et al. 2021).

Among the most dangerous MHD instabilities, an important class is represented by the
free-boundary modes. Characterised by a finite fluid velocity at the plasma edge, they may
lead to disruptions in the tokamak configuration (Granetz et al. 1996; Wesson & Campbell
2011); this is the case of vertical instabilities and external kink modes.

Advanced numerical modelling is crucial for understanding such complex and typically
nonlinear dynamics. Starting from the 1980s, an increasing attention has been devoted
to the formulation of realistic magnetic boundary conditions (BCs), mostly relying on
resistive-wall modules (see, e.g. Gimblett 1986; Hender, Gimblett & Robinson 1989;
Haines, Gimblett & Hastie 2013) typically implemented at the numerical boundary of
MHD codes (as in Schnack et al. 1987; Strauss et al. 2004; Marx & Lütjens 2017; Bonotto
et al. 2020; Bunkers & Sovinec 2020; Isernia et al. 2023), but not necessarily (Ferraro
et al. 2016).

The problem of a free (fully consistent) normal velocity boundary has deserved renewed
interest, also prompted by some theoretical studies (see Zakharov 2008; Zakharov, Galkin
& Gerasimov 2012; Zakharov & Li 2015), suggesting that its absence in most present-day
codes may prevent them from reliably modelling the vertical displacement events in
tokamak plasmas. Two numerical studies have specifically investigated the impact of the
velocity boundary formulation, performed, respectively, with the M3D code (Strauss 2014)
and with the NIMROD code (Bunkers & Sovinec 2020), both demonstrating its critical
implications for numerical predictions. Still more recently, realistic velocity BCs have
been indicated among the unresolved demanding challenges for the modelling of tokamak
vertical displacement events (see Artola et al. 2024).

The nonlinear code-to-code verification study of a resistive wall module with a fully
consistent velocity boundary has been recently performed (Spinicci et al. 2023) between
the SPECYL (Cappello & Biskamp 1996) and the PIXIE3D codes (Chacón 2008),
extending a previous nonlinear verification study between the same two codes, where ideal
wall BCs were adopted (see Bonfiglio, Chacón & Cappello 2010). The plasma interface
was modelled as an axisymmetric thin shell (as in Hender et al. 1989), separated from
an outer ideal wall by a vacuum region. The purely perpendicular velocity boundary
featured a free normal-flow (NF) and allowed a fully self-consistent coupling within the
MHD model. The quantitative reliability of both SPECYL’s and PIXIE3D’s NF boundary
implementations was verified by a remarkably general mutual agreement on several test
cases, both in the tokamak and the RFP configurations.

This paper employs the SPECYL code in a comparative study of the fully consistent BCs
with a free NF, just outlined in the previous paragraph, against an approximated fixed NF
formulation that does not allow finite velocity perturbations at the numerical boundary,
often employed in nonlinear codes (analogous BCs are adopted, e.g. in Bonfiglio et al.
(2010), McAdams (2014), Ferraro et al. (2016), Marx & Lütjens (2017) and Ramasamy
et al. (2022)). The reliability of both is measured against well-known figures of merit
from the ideal MHD linear theory of external kink modes (see, e.g. Freidberg 2014). The
thin shell of SPECYL’s BCs can be set to a high enough resistivity for the magnetic field
diffusion through it to be almost instantaneous on the characteristic time scales of the
plasma dynamics. In this condition, here dubbed the transparent wall limit, free-boundary
modes driven by plasma current are expected to be unstable in the presence of a fully
consistent velocity field. We show in this study that only SPECYL’s free NF formulation
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allows proper modelling of the plasma interface through a transparent shell, in optimal
agreement with the linear theory.

Remarkably, external kink modes simulations in the transparent-wall limit substantially
differ from the typical approach adopted by other codes in the past, that leverages a
high-resistivity and low-density pseudovacuum region (PV) to displace the numerical
boundary (where BCs are enforced) away from the plasma interface. In the PV, high
resistivity and vanishing density strongly damp the plasma flow, so that simplified (even
not fully consistent) velocity BCs may be enforced with very low impact on simulations
outcomes.

The paper is organised as follows. In § 2 we start with an overview of SPECYL’s
boundary module. Section 3 presents the numerical set-up, leveraged to pursue both the
free NF velocity boundary approach and the simplified velocity boundary with PV. Section
4 contains the main body of our results: we study the external kink mode stability of
two axisymmetric equilibria, characterised by a uniform current density and a shaped
current density, respectively. Section 5 gives conclusions and outlooks. Four appendices
are also present, dedicated to, respectively, an overview of linear kink stability analysis
(Appendix A), the analytical profiles and growth rates for the simplified initial equilibrium
characterised by a flat current (Appendix B), an overview of the semianalytical tool
employed to produce the theoretical figures of merit for the Wesson-like current density
profile (Appendix C) and a discussion in relation to the remarkable benchmark illustrated
in Ferraro et al. (2016) (Appendix D).

2. The SPECYL code and its BCs

This section aims at a general overview of the SPECYL code and its boundary module,
which is described in detail in Spinicci et al. (2023).

2.1. The SPECYL code
The SPECYL code computes the numerical solution of nonlinear three-dimensional (3-D)
MHD equations by evolving in time t the magnetic field B and the flow velocity field v
according to the following viscoresistive scheme:

ρ(∂tv + v · ∇v) = J × B + ρν∇2v, (2.1)

∂tB = −∇ × E, (2.2)

E = ηJ − v × B, (2.3)

J = ∇ × B, (2.4)

∇ · B = 0. (2.5)

In the equations above, ρ is the axisymmetric mass density, J is the current density, ν
and η are a uniform viscosity and an axisymmetric resistivity, respectively, and E is the
electric field.

All quantities appear in dimensionless units: ρ = ρ̂/ρ0 (where ρ0 = ρ̂|r=0); B = B̂/B0

(where B0 = |B̂|r=0,t=0); v = v̂/vA (vA = B0/
√
μ0ρ0 being the Alfvénic velocity, with μ0

vacuum permeability); t = t̂/τA (τA = rBC/vA being the Alfvénic time and rBC the radial
span of the computational domain, coincident with the plasma radius a unless a PV region
is included); J = Ĵμ0rBC/B0; E = Ê/vAB0. Hatted quantities are in physical units. In
dimensionless units, the scalar kinematic viscosity corresponds to the inverse viscous
Lundquist (or Reynold’s) number, ν = τA/τν ≡ M−1 (where τν = r2

BC/ν is the viscous
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time scale); and resistivity corresponds to the inverse Lundquist number, η = τA/τR ≡ S−1

(where τR = μ0r2
BC/η is the resistive-diffusion time scale).

The geometry consists of a periodic cylinder: a spectral approach is adopted for the
periodic coordinates, 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 2πR (R being the plasma major radius),
while adopting a finite-differences staggered scheme in the radial direction, 0 ≤ r ≤ rBC.
The pressure gradients are neglected, and the axisymmetric density ρ(r) and resistivity
η(r), along with the uniform scalar viscosity ν are kept constant in time. No pressure or
temperature dependence is assumed for ρ and η, thus presently limiting SPECYL’s ability
to accurately model highly nonlinear processes.

2.2. The boundary module
A thin cylindrical shell of arbitrary uniform resistivity is modelled at the plasma edge,
separated from a coaxial ideal conductor by a tuneable-width vacuum region. In our
notation, we call rBC ≥ a the numerical boundary radius (always located at the thin shell
position), and b > rBC the outer ideal wall radial position.

The magnetic boundary leverages the consolidated thin-shell relations (see e.g. Gimblett
1986), descending from the assumption that the radial-B is continuous across the wall, and
prescribing

∂tBr,BC = 1
τw

[∂r(rBr)]+−, (2.6)

Ew = rBC

τw
[r̂ × Bt]+−+E0,0

z êz, (2.7)

where Br,BC = Br|r=rBC , τw = μ0rBCδw/ηw is the resistive time scale of the magnetic field
diffusion through the shell (with δw shell thickness and ηw shell resistivity), Ew is the 3-D
electric field inside the wall, E0,0

z is the uniform electric field representative of the inductive
loop voltage and Bt = Bθ êθ + Bzêz is the tangential magnetic field, êθ and êz being the
azimuthal and axial unit vectors. Here, square brackets indicate the difference of the
enclosed quantity between just outside the wall (in vacuum) and just inside (plasma edge);
the vacuum solution is obtained in SPECYL from the analytical solution of Poisson’s
problem, and from the self-consistent value of Br,BC, as thoroughly described in Spinicci
et al. (2023).

Equation (2.7) provides a boundary condition for Bt by imposing the continuity of the
tangential electric field between wall surface and plasma edge, via Ohm’s law,

Ew(Bt,BC) = ηBC(∇ × BBC)t − (vBC × BBC)t, (2.8)

where the subscript ‘BC’ indicates that quantities are evaluated at numerical boundary.
This is a general set-up, capable of reproducing diverse experimental conditions, from

an ideal wall attached to the plasma (when τw � τsim, τsim being the simulation duration),
to a generic plasma-facing shell of arbitrary resistivity. In addition, the proximity of the
outer ideal conductor can freely vary, from attached to the plasma to a virtually infinite
distance.

If the magnetic diffusion through the resistive wall is instantaneous with respect to
the time scales of plasma dynamics (τw � τdyn), the wall acts as if transparent to the
magnetic field. In this regime, a fully self-consistent boundary module must be capable of
reproducing free-boundary current-driven instabilities, including the external kink modes.
Good quantitative accuracy is expected, as long as SPECYL’s cylindrical geometry can
realistically describe the evolution of a large-aspect ratio plasma, including the linear
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(a) (b)

FIGURE 1. Schematic representation of the two boundary formulations. The plasma is
represented in pink, surrounded by a thin resistive shell (claret) at r = rBC and by an outer ideal
wall at r = b > rBC (in grey). In the free flow formulation (a), the plasma edge corresponds
to the numerical boundary (a = rBC), and a 3-D velocity is permitted: a black dotted contour
suggests self-consistent edge flow modulation compliant with an m = 2 external mode. Fixed
flow boundary conditions are illustrated in (b): in this case, the numerical boundary is separated
from the plasma interface by a PV region (in a lighter pink shade), and no flow perturbation is
present at r = rBC.

growth of the mode, possibly up to low-amplitude saturating kink modes (see Eriksson
& Wahlberg 1997).

A 3-D velocity at the plasma edge, including a free NF, is mandatory for numerical
self-consistency of resistive-wall boundary conditions. Moreover, allowing finite flow into
the wall is required for a hot fusion plasma, which must be set free to impinge on the wall
and annihilate (see Zakharov et al. 2012).

Two sets of velocity BCs hereinafter described are sketched in figure 1; a schematic
view of the poloidal cross-section illustrates the plasma (pink), the thin resistive shell
at r = rBC (claret) and the outer ideal wall (grey). For the case of SPECYL’s free NF
formulation (already described in Spinicci et al. (2023)), rBC = a, and a dotted black
contour suggests fully consistent modulation of the velocity boundary in reproducing an
m = 2 external kink mode. The fixed NF implementation enforces Dirichlet boundary
conditions on velocity fluctuations and is mostly stable to the free-boundary modes, unless
enforcing a suitable PV region (shaded in lighter pink) to displace the plasma interface
away from the numerical boundary.

The free NF velocity boundary of SPECYL aims at an Ew × B drift at the plasma edge,
thus purely perpendicular to the magnetic boundary,

va = Ew × Ba

(Ba)2
, v‖,a = 0. (2.9)

A finite parallel velocity could be enforced by means of, e.g. a Bohm speed at the plasma
boundary, even if its value would still be irrelevant to self-consistency with (2.6)–(2.8), as
they only depend on v⊥.

For the purpose of this comparative study, we will also consider an approximated
fixed normal flow formulation, enforcing Dirichlet boundary conditions for all
non-axisymmetric fluctuations, on the top of a purely one-dimensional (radial and
axisymmetric) pinch flow velocity (analogous to the one in Bonfiglio et al. (2010)), defined
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as

v
0,0
BC = (Ew × BBC · êr)

0,0

(|Bt,BC|2)0,0 êr, v
m,n
BC = 0 for m, n �= 0, (2.10)

where êr is the radial unit vector. Equation (2.10) describes the leading term of (2.9) in the
standard RFP operation regime, while it is typically small in tokamak configuration; for
the sake of this study, (2.10) represents almost a Dirichlet BC also for the axisymmetric
harmonic of NF.

The theoretical figures of merit used throughout this work reproduce well-known results
from the linear stability theory of external kink modes, and are derived leveraging the
energy principle, briefly discussed in appendix A (see also Freidberg 2014). The resulting
linear differential equation for the plasma displacement ξ is numerically solved, unless an
analytical solution can be attained (as for the case reported in Appendix B), for any given
initial axisymmetric equilibrium utilising the semianalytical LENS code (i.e. linear Euler
and Newcomb solver, from the names of the two main differential equations). The LENS is
implemented in the IDL (interactive data language) coding language and has been widely
tested, both against analytical figures of merit and manufactured solutions (see Spinicci
2023). An overview of LENS is reported in Appendix C.

To comply with SPECYL’s implementation, we will enforce the so-called straight
tokamak limit theory (corresponding to a very large plasma aspect ratio), assuming a
cylindrical plasma with a circular cross-section.

3. Numerical set-up

The external kink mode stability will be studied for the two velocity boundary
formulations already reported in figure 1, and for two alternative initial equilibria, each
defined by a specific initial current density distribution,

J0,0
z (r) =

⎧⎨
⎩J0,0

z (0)
(

1 −
( r

a

)2
)λ

if r ≤ a

0 if r > a
. (3.1)

We will refer to the case of λ = 0 as the flat current case, and to the λ = 1 case as the
Wesson current case, since this is the typical equilibrium employed in Wesson’s theoretical
works (see, e.g. Wesson 1978).

Throughout this study we will leverage an initial axisymmetric Ohmic equilibrium (as
in Delzanno, Chacón & Finn 2008), defined as the solution of the force-free condition
J × B = 0 and the parallel Ohm’s law E · B = ηJ · B. The use of these equations is meant
to provide initial equilibrium profiles that are approximate solutions of the full system of
equations solved by SPECYL, apart from the small convection and viscous terms in the
momentum balance equation. The Ohmic equilibrium equations, as well as (2.1)–(2.5),
assume mass-density and a resistivity only depending on r,

η(r) = min {η0(1 + ArB)C; ηmax}, (3.2)

ρ(r) = (1 − ρBC)

[
1
2

− 1
π

arctan (α(r − a))
]

+ ρBC. (3.3)

The ηmax in (3.2) is a truncation value preventing numerically demanding edge values of
η. The two profiles in (3.2) and (3.3), along with the uniform scalar viscosity, are set as
a specific input to each simulation. A uniform loop voltage in the plasma volume yields
the initial equilibrium current density, roughly proportional to plasma conductivity 1/η;
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(a)

(b)

(i)

(i)

(ii)

(ii)

Flat current Wesson’s current

Flat current Wesson’s current

FIGURE 2. Initial equilibria employed in this study. The panels correspond to different velocity
boundary formulations: (a) free NF and (b) fixed NF with PV (shaded). Subpanels (i) and
(ii) report equilibria corresponding to the two alternative initial current profiles enforced. For
each of the four combinations two diagrams are reported: the superior one illustrates SPECYL’s
initial current density and safety factor (in black), in comparison with the analytical model
(coloured dashed lines), whereas the lower one displays the two equilibrium-relevant input
profiles of SPECYL’s density and resistivity (solid lines). The theoretical (infinitely sharp) mass
density profile is also reported as an orange colour dashed line. Unlike elsewhere, the radial
coordinate on horizontal axes is normalised to the plasma radius a for better graphical clarity.

the parameters A,B and C are chosen accordingly, to reproduce the desired initial current
profiles as in (3.1). As for the plasma density, the model parameters α and ρBC are chosen
so to approximate a sharp-step-like profile across the plasma interface; for the case of the
free flow formulation, where the interface is at numerical boundary, we adopt a uniform
density profile (α = 0, ρBC = 1).

Figure 2 illustrates the hereinafter considered Ohmic equilibria. Figure 2(a,b)
correspond to the two alternative choices of BCs: the free and fixed NF formulations,
respectively. Figures 2(a i) and 2(b i) correspond to the equilibria with a flat current
density (λ = 0), while figures 2(a ii) and 2(b ii) represent the Wesson-like initial current
distribution (λ = 1). For each of the four combinations, two diagrams are displayed: in
the upper one the SPECYL’s profiles of current density and safety factor (in black) are
compared with their respective reference profiles (in pink and teal, respectively), whereas
in the lower diagram the two corresponding input profiles of resistivity and mass density
are also represented (solid lines), along with the theoretical sharp-step-like density profile
(orange dashed).

As anticipated, the fully consistent free normal flow implementation allows full
identification of the plasma boundary with the numerical boundary (a = rBC), whereas
the simplified fixed NF boundary requires that we displace the plasma interface away
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Boundary Equilibrium A B C
ηmax

η0
α

ρBC

ρ0
Nr

a
rBC

Free NF Flat current 0 0 0 1 0 1 900 1
Fixed NF + PV Flat current 1.76313 80 1.025 500 104 10−4 1000 0.88
Free NF Wesson’s current −0.99 2 −1 500 0 1 900 1
Fixed NF + PV Wesson’s current −1.29132 2 −1 500 104 10−4 1000 0.88

TABLE 1. Numerical set-up for the initial equilibria represented in figure 2. For each one we
report the coefficients defining the input profiles of plasma resistivity (A, B, C, ηmax/η0) and of
plasma density (α, ρBC/ρ0), the number of radial points (Nr), yielding comparable resolution in
the plasma region, depending on its width (a/rBC).

from the numerical boundary (a < rBC) in order to get it linearly unstable: the resulting
high-resistivity, low-density PV region is shaded.

All along, the displayed level of confidence in reproducing the theoretical reference
profiles appears to be widely acceptable, as the only visible discrepancy – the smooth
transition of the current density profile across r = a for the flat current model with a fixed
NF – is insufficient to produce sensible discrepancies, e.g. in the safety factor profile.

Table 1 presents the main simulation parameters, corresponding to the initial equilibria
represented in figure 2, always enforced in the following unless otherwise specified.

The edge current in Wesson’s model, as much as both J0,0
z and ρ in the PV region,

should be null; this is numerically unfeasible in SPECYL. Instead, table 1 reports
the most extreme values for ηmax/η0, α and ρBC/ρ0 still compliant with numerical
stability of the code time stepping scheme. To recreate more reliably the numerically
challenging Wesson-like equilibrium, we evolve the axisymmetric initial state for a short
time (approximately spanning the initial 1τA) with magnified viscosity and resistivity
(ν = η0 = 10−2, ηmax = 5) to substantially damp unwanted residual flow and current in
the PV region, before starting the non-axisymmetric dynamics.

The plasma region width (a/rBC) for the fixed flow case balances two opposing
and quantitatively relevant requirements. On the one hand, as will be manifest in § 4,
the Dirichlet condition for the velocity fluctuations, enforced by (2.10), produces a
non-physical boundary layer in which the internal plasma flow unnaturally adapts to meet
the imposed value in rBC; this takes approximately the outermost 10 % of the numerical
domain, and should be included in the PV region. On the other hand, since the plasma
density and current in the PV cannot be exactly null, the PV width should remain
significantly thinner than the plasma region width, to provide a negligible contribution
to the integral mass and current (further amplified by the cylindrical Jacobian). Also, in
equally spaced meshes like in SPECYL, a finite PV width proportionally enlarges the
computational cost, by subtracting radial resolution from the plasma core region. For
both initial equilibria, the optimal value of a/rBC had to be determined a posteriori,
maximising the agreement with the theoretical expectations; in both cases, this coincides
with a = 0.88rBC, as reported in table 1. The number Nr of radial mesh points is fixed so
to have approximately the same resolution (∼900 points) for the plasma region with both
fluid boundary formulations.

The dynamical evolution of such equilibria is here described with a two-dimensional (2-D)
spectrum of modes, composed by the axisymmetric one, with the addition of several
non-axisymmetric harmonics with a fixed helical pitch, such that m = 2n. This
configuration is adequate to study the linear stability to the external kink m = 2, n = 1,
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m
n

Nm>0
R
a

b
a

τw

τA
S0 M


t
τA

2 4 20 1 → 100 10−6 104 → 1012 = S0 10−5

TABLE 2. Numerical set-up for the dynamical evolution of SPECYL’s simulations in this study.
We report the adopted values for the 2-D helical pitch (m/n), the number of modes with positive
m (Nm>0), the aspect ratio (R/a), the ideal wall proximity to the plasma edge (b/a), whose typical
value is underlined, the transparent shell time scale (τw/τA), the on-axis Lundquist number and
uniform viscous Lundquist number (S0 and M) and the simulations time step (
t/τA).

already considering just four non-axisymmetric modes with m > 0, plus their conjugates.
The initial destabilising contribution, driving the system towards relaxation, is applied in
the form of a velocity perturbation,

δv2,1
r = A

r
sin

(
πr
rBC

)4

, (3.4)

where A = 10−6. In all simulations we operate with a very fast resistive wall time
scale, τw/τA = 10−6, in compliance with the transparent wall assumption, and enforce a
confidently large aspect ratio R/a = 20, as prescribed for the straight tokamak limit.

Uniform plasma viscosity, ν = M−1, and on-axis resistivity, η0 = S−1
0 , are kept mutually

identical throughout this study (with the exception of Appendix D). Their specific value
will be reported for each case study, individually. In all cases, the enforced values should
tend to ideal plasma conditions (very low dissipation); this, along with the challenging
equilibrium configurations already discussed and the inherently fast dynamics of external
kink modes, requires very small time steps

Table 2 summarises the hitherto described input parameters underlying the dynamical
evolution in our simulations. For some of them (namely, S0, M and b/a) a range of
enforced values is provided; for the ideal wall proximity, b/a, we have underlined the
most commonly adopted value.

4. Numerical results

We present in this section SPECYL’s predictions of linear instability to the external
kink mode 2/1 of the two equilibria introduced in § 3, and leveraging both sets of velocity
BCs. It will be apparent that not only the free NF velocity boundary provides a better
match for the analytical theory, but it also achieves more reliable asymptotic convergence
to the expected outcomes.

4.1. The flat current model
The flat current model is widely present in numerical verification studies (e.g. in Hoelzl
et al. 2014; Ferraro et al. 2016; Marx & Lütjens 2017), owing to its reduced complexity
and to the existence of an exact analytical solution of the Energy principle (see Shafranov
1970; Wesson 1978). In fact, for a 2/1 external kink mode in the straight tokamak limit,
the linear eigenfunction is ξ 2,1

(r) = ξ 2,1
r,a (êr + i êθ )r/a and the dispersion relation reads

γ 2
(τA

ε

)2
= max

{
0; 2

q2
a

(2 − qa)

[
1 − 2 − qa

1 − (a/b)4

]}
, (4.1)
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FIGURE 3. Comparison of linear growth rates for the flat current case study for q0 = qa = 1.5
and for various values of S0 = M. Free NF BCs asymptotically reach the ideal MHD theoretical
value (dotted horizontal line) for vanishing plasma dissipation. The fixed NF BCs cross the
target value around S0 = M = 106 and decrease asymptotically towards stability (which is almost
reached above S0 = M = 1012).

where the characteristic time scale is the toroidal Alfvénic time τA/ε = R/vA, ε = a/R
being the inverse aspect ratio. A complete analytical derivation is available in Appendix B.
For the confidently large aspect ratio enforced and for b/a � 1, the characteristic
dynamical time scale τdyn = 1/γ predicted by (4.1) ranges in the tens of τA; hence, our
choice of τw/τA = 10−6 reliably fulfils the transparent-wall condition.

Figure 3 reports a convergence study to the theoretical growth rate from ideal MHD
theory for a specific value of the uniform safety factor (q(r) = qa = 1.5) and considering
various levels of plasma dissipation. As SPECYL plasma becomes increasingly ideal,
we see that the fully consistent free NF boundary produces an asymptotic convergence
to the expectation. A significantly different trend can instead be observed for the fixed
flow boundary with PV, which non-monotonically oscillates around the target value for
rather dissipative SPECYL plasmas, crossing it before S0 = M = 106 and asymptotically
plummeting towards stability as the plasma gets increasingly ideal (no visible mode growth
can be detected in our simulations above S0 = M = 1012). Indeed, a very ideal plasma
corresponds to a very ineffective PV, owing to the numerical limitations on ηmax/η0 that
keeps vacuum resistivity unphysically finite.

Figure 4 extends the growth rate analysis to a wider range of initial flat current equilibria,
for various values of q(a). The additional normalisation factor q(a)/ε for γ is widely
present in the literature (e.g. in Wesson 1978) and it is therefore employed here as well. For
the free NF formulation we employ S0 = M = 107 (but similar results could be displayed
for 108 or higher), whereas for fixed flow BCs the dissipation level that results in the
best agreement with linear theory has been chosen, corresponding to the target-crossing
simulation (i.e. S0 = M = 106; see figure 3). For the latter set of BCs, slightly more
ideal simulations with S0 = M = 107 are also shown in green, for comparison. Again, the
theoretical dispersion relation (see (4.1)) is reported as a black line. Linear growth rates
from SPECYL are numerically estimated with a logarithmic fit, except for q(a) ≤ 1 and
q(a) ≥ 2 where a fast-oscillating low-amplitude signal is observed, lacking any detectable
global trend.

The simulations performed with a 3-D fluid boundary are in robust agreement with
theoretical values (within 1 %). The SPECYL simulations performed with a fixed velocity
boundary and PV at the target-crossing dissipation level achieve a mostly comparable
agreement with theory in the mode instability window with 1 < q(a) < 2, despite
somewhat lower precision on the left-hand edge of the hill. The effect of sensible plasma
dissipation is, however, manifest in some simulations with q � 2, significantly departing
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(a) (b)

FIGURE 4. Comparison of linear growth rates for the flat current case study, for various values
of q(a). The theoretical dispersion relation is represented as a black contour. (a) The free NF
BCs (blue) stick robustly to the theoretical expectation; (b) the fixed NF BCs with PV are mostly
consistent with the ideal MHD theory in the target-crossing set-up (red), besides slightly lower
precision for q(a) ≤ 1.4 and γ < 0 in the ideally stable domain (due to sensible dissipation
levels). Such an overall positive result is, however, frail, as choosing a slightly more ideal set-up
(green) visibly spoils the previous agreement.

from the ideal mode stability condition γ = 0 with a negative damping rate. Reducing the
plasma dissipation level, the ideal stability condition is recovered, at the cost of a much
weakened agreement with the theoretical expectation in the unstable region.

The radial velocity and magnetic field eigenfunctions for the three set-ups employed in
figure 4 are benchmarked with the ideal MHD predictions, in figure 5, along with the radial
profile of the axial current oscillations. The radial velocity is confronted with the radial
component of the linear plasma displacement: ξ 2,1

r /ξ 2,1
r,∗ = v2,1

r /v2,1
r,∗ (being vr,∗ = vr|r=r∗ ,

and r∗ = 0.9a an arbitrarily chosen position for normalisation). Once again, the reliability
of the free NF is remarkable. The same consideration applies to the fixed flow BCs for
what concerns the plasma domain. Yet its behaviour in the PV is manifestly ill-behaved,
in two main aspects: there is finite (and considerable) flow in the vacuum region, and the
radial magnetic field pitch variation across the plasma edge reveals exaggerated surface
currents. The strong deviation of SPECYL magnetic field in the PV from the vacuum
linear eigenfunction (see (B9)) deteriorates with decreasing plasma dissipation and it
is both sustained by the finite velocity, through a dynamo contribution, and by finite
conductivity effects, allowing stray current fluctuations J 2,1 = ∇ × B2,1.

Figure 5(a/,iii,b/,iii,c/,iii) reports the dominant (axial) contribution to the current
density fluctuations: for each subpanel, the linear current density is normalised to the
amplitude of the magnetic perturbation. The analytical expectation for this case study is
nearly proportional to a Dirac’s delta distribution, centred across the plasma interface:
J2,1

z (r) ≈ J2,1
surf δ(r − a) (as discussed in Appendix B), which is quite well reproduced by

the free NF implementation. The fixed NF formulation instead presents a much broader
current distribution across plasma edge, much of which is on the PV side. Despite
the current peak being lower than for the free NF case, the total surface current is
larger, motivating the exaggerated pitch variation of B2,1

r across interface, as we already
commented.
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(a) (b) (c)

(i) (i) (i)

(ii) (ii) (ii)

(iii) (iii) (iii)

FIGURE 5. Benchmark of eigenfunctions profiles between SPECYL simulations with different
velocity BCs and the analytical theory (black, dashed curves), for the flat current equilibrium.
(i,ii) The SPECYL 2/1 radial velocity and magnetic field are compared with the radial
displacement ξ2,1

r and the radial magnetic eigenfunction of ideal MHD: (a) the free NF
formulation reproduces remarkably the theoretical curves; (b) the target-crossing simulation
with the fixed NF BCs and (c) the slightly more ideal simulation with the same BCs are
mostly reliable in the plasma region, with significant discrepancies in the PV. All profiles
are normalised at r∗ = 0.9a, indicated by vertical dotted lines. (iii) We also report the (axial)
current density oscillations for a unitary magnetic perturbation, compared with the analytical
J2,1

z (r) ≈ J2,1
surf δ(r − a): exceeding currents across plasma interface sustain exaggerated pitch

variation of B2,1
r for the fixed flow formulation.

Up to this point the outer ideal wall in SPECYL’s BCs formulations has always been
kept largely distant from the plasma edge (b/a = 100; see table 2). In figure 6 we explore
the stabilising effect of bringing the ideal shell closer to the plasma edge, for two fixed
flat current equilibria with q(a) ≈ 1.1 and q(a) ≈ 1.5 (qualitatively equivalent results
would be obtained for any other value of 1 < q(a) < 2). The set-up with dissipation
values that mostly agree with the analytical theory (S0 = 107 and S0 = 106 for the free
and fixed NF boundaries, respectively), are benchmarked with (4.1) (black line) showing
remarkable qualitative agreement; until the ideal wall is as far as b = 3a, its effect is
mostly negligible and all numerical datasets correctly saturate to the far-wall limit growth
rates already discussed for figures 3 and 4. As the ideal wall closes in, SPECYL’s modes
2/1 progressively damp, up to the stability threshold proximity (b/a ≈ 1.78 for q0 = 1.1,
b/a ≈ 1.19 for q0 = 1.5), which is accurately reproduced by both sets of BCs. As the ideal
wall approaches further, the time traces of SPECYL’s modes become fast oscillating noisy
signals without any measurable global trend.

As for the quantitative agreement, the reliability of the free NF BCs lies within 6 % (ever
decreasing towards 1 % as the ideal wall moves apart), whereas the level of compatibility
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(a)

(b)

FIGURE 6. Scan on the outer ideal wall proximity b/a, within the flat current model and for two
different equilibria (q(0) = 1.1 in (a), q(0) = 1.5 in (b)): ideal wall stabilisation of MHD activity
becomes increasingly effective as it closes in to the plasma edge (shaded). The best performing
set-ups for both the free and the fixed NF boundary are compared with the theoretical prescription
(black). Two vertical dotted lines highlight the tightest possible proximity with either approach:
owing to finite PV width, the fixed NF formulation cannot reproduce a closer proximity than
rBC/a ≈ 1.136.

of the fixed NF boundary lies within 20 % for q0 = 1.1 and within 6 % for q0 = 1.5. We
highlight with two vertical dotted lines the tightest achievable proximity with either set
of BCs, as b = rBC; the presence of a PV region in the case of the fixed NF prevents
simulating an ideal wall closer that b ≈ 1.136a. For the present case study this inaccessible
parametric region presents reduced interest, but would prevent simulating a portion of the
unstable region for any flat current equilibrium having q(a) ≥ 1.6, unless picking a larger,
less favourable, a/rBC ratio, or using free NF conditions. Furthermore, this limitation
could in principle restrict the ability of the fixed flow boundary to reproduce, e.g. real
experimental conditions when a narrow vacuum interval separates the plasma edge from
the first wall.

The displayed level of agreement for the fixed NF formulation in figure 6(a) is in line
with what previously obtained with the JOREK-STARWALL code enforcing an analogous
set-up for the same case study of a flat current, at q(0) = 1.1 (see McAdams 2014).
Substantially improved agreement with the analytical theory was achieved in Ferraro et al.
(2016) with the M3D-C1 code, by adopting a resistivity profile strongly discontinuous
across the plasma interface; such results can be reproduced also in SPECYL, however,
finding reduced reliability as the resonance radius approaches the plasma interface, as
documented in Appendix D.

4.2. Wesson’s model
Wesson’s current model presents no known analytical solution for its eigenfunction ξ and
eigenvalue γ . Alongside, its self-consistent modelling requires a numerically cumbersome
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FIGURE 7. Convergence study to the theoretical growth rate predicted by the LENS code
(black dotted line) of SPECYL’s simulations with free and fixed NF boundaries, respectively,
employing the Wesson-like equilibrium with q(a) ≈ 1.8, for various levels of plasma dissipation.

fast-ramping resistivity profile at the plasma edge, corresponding to a vanishing current
density at plasma interface, as already visible in figure 2. These are the reasons why it
finds almost no application in verification studies of MHD codes.

Conversely, while certainly more realistic than a uniform current channel surrounded
by pure vacuum, its numerical complexity makes it an important and challenging test for
SPECYL’s new BCs.

Also for this case study, the chosen numerical set-up enforces τw/τA = 10−6 � 1/γ ,
and R/a = 20. Theoretical expectations are obtained through the LENS code.

Figure 7 presents an analogous convergence study to the one presented in figure 3;
the free and fixed NF BCs with PV (in blue and red, respectively) are compared with
the expected theoretical growth rate (black dotted line), for a specific value of q(a) and
at various levels of plasma dissipation. The qualitative trends closely resemble what is
already observed for the flat current equilibrium; only a 3-D and fully consistent free NF
boundary can robustly reproduce the expected ideal MHD dynamical behaviour in the
limit of low plasma dissipation, whereas the fixed NF presents just a (this time narrow)
crossing of the target growth rate and becomes asymptotically stable as the PV becomes
too inviscid and conductive to suppress MHD activity.

The quantitative aspect is yet rather different from figure 3, since even the asymptotic
convergence of the free NF is manifestly less effective, reaching a 17 % discrepancy only
around S0 = M = 1010. The rationale for this is to be sought in the effect of strong and
fast-ramping resistivity profiles at plasma edge. In fact, combining (2.3) and (2.4) from
SPECYL’s MHD model we get

∂tB = ∇ × (v × B)− dη
dr

êr × J − η(∇ × J ). (4.2)

The first term on the right-hand side of (4.2) is the only one prescribed by the ideal MHD
and corresponds to the dynamo action in the magnetic field variation. Of the other two
terms, the one proportional to the resistivity gradient was vastly negligible in the plasma
region in the previous case study with uniform η, as it still is now in the plasma core,
where η is mostly uniform. Conversely, at the plasma edge, both for the free and for the
fixed NF BCs, this same term is now roughly one to two orders of magnitude larger than
the other resistive term, for any assigned value of S0.

The two velocity boundaries produce comparable predictions at high plasma dissipation.
In fact, in such a regime the very high resistivity produces the effect of a PV region at the
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(a) (b)

FIGURE 8. The linear growth rates of several Wesson-like equilibria, corresponding to diverse
values of q(a), are illustrated. We compare the theoretical expectation obtained by the LENS
code with (a) SPECYL’s simulations with the free NF boundary (blue), at a very reduced plasma
dissipation, and (b) SPECYL’s simulations with fixed NF, corresponding to the target-crossing
dissipation level (red), as discussed in figure 7, and for a mildly more ideal plasma set-up (green).
In this challenging numerical test, the free NF formulation retains quantitative and qualitative
reliability, unlike the fixed NF formulation.

plasma edge even for the free NF case, strongly damping the edge velocity and thus making
the two models quantitatively alike.

Looking at the fixed flow boundary simulations in figures 3 and 7 we notice a pretty
similar qualitative trend, where numerical growth rates exceed the theoretical one at high
dissipation and converge to stability for an ideal plasma. This is, however, not the case for
the 3-D flow boundary simulations, that asymptotically converge to the expected growth
rate in the ideal MHD limit, but they do it from below in figure 3 and from above in
figure 7. This effect can be linked to the above mentioned tendency of large edge resistivity
gradients (only present in Wesson’s current modelling) to behave as PV. Notably, the PV
has the function of displacing the effective plasma radius to a more internal position with
respect to rBC. The most direct consequence of this is that the effective edge safety factor
must be evaluated at a more internal position and will thus be lower than the nominal value
of 1.8; as we will see in figure 8, q(a) values slightly below 1.8 are associated with larger
growth rates according to the specific dispersion relation of Wesson’s model.

In figure 8 we extend the verification benchmark to a range of initial Wesson-like
equilibria, each defined by a different value of q(a). The theoretical dispersion relation
is obtained through the LENS code and is represented as a black contour. The least
dissipative set-up of figure 7 is leveraged in SPECYL’s simulations with free NF BCs
(blue circles), whereas for the fixed NF BCs with PV the target-crossing dissipation
level is represented in red, while a slightly more ideal set-up is reported in green. Also
in this quite challenging case, the SPECYL code with its full 3-D velocity boundary
displays a remarkable capability of reproducing the correct dispersion relation. Quite
at the opposite, the fixed NF implementation seems drastically incapable of achieving
even qualitative agreement with the theoretical expectations; not only are single growth
rates strongly incorrect (by up to 190 % for q(a) < 2 for the best performing set-up),
but the instability window is completely inaccurate, predicting as significantly unstable
equilibria that should instead be completely stable to the external kink modes. Internal
resistive tearing modes for q(a) > 2 cannot explain such behaviour, as they should present
drastically lower growth rates for the given set-ups (γ τA/ε ∼ 10−4, as estimated by LENS).
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(a) (b)

(i) (i)

(ii) (ii)

(iii) (iii)

FIGURE 9. Comparison of radial profiles of v2,1
r (i), B2,1

r (ii) and J2,1
z (iii), for free NF (in

blue) and fixed NF BCs with PV (target-crossing case in red). A dashed black line represents
the theoretical profiles of ξ2,1

r /ξ
2,1
r,∗ , B2,1

r /B2,1
r,∗ and J2,1

z /J2,1
z,∗ (r∗ being marked by vertical dotted

lines), as computed by the LENS solver. The large resistivity gradient at plasma edge produces
deviations of SPECYL’s eigenfunctions from the theoretical model, especially visible for the
flow and the current density profiles. For the fixed NF case, the PV behaves as a higher-resistivity
plasma rather than a vacuum: v2,1

r presents the vertical asymptote at resonance (r/a ≈ 1.054,
indicated by a cyan dotted line) typical of tearing modes, while a variation in the pitch of B2,1

r
reveals finite surface currents J 2,1 at the same resonance layer, also clearly visible in (b iii).

Instead, the high resistivity at the plasma edge is once again blurring the interface between
plasma and vacuum, as will appear evident from figure 9; the choice of a more conductive
set-up (as represented by the green circles) importantly reduces the overstretching of the
instability window, however, at the cost of further spoiling the agreement with theory
for q(a) < 2. Interestingly, SPECYL’s numerical results with a fixed NF boundary are
very sensitive to the specific value of a/rBC: slight increase or decrease of such parameter
significantly extend the unstable region beyond q(a) = 2 and may even produce unphysical
kink stability where q(a) � 1.6. In our perspective, such a strong dependence on a set-up
parameter that retains no physical meaning would in itself already drastically undermine
the reliability of fixed NF BCs in modelling free-boundary instabilities for the large class
of equilibria with a vanishing edge plasma current.

A more complete picture can be drawn by looking at the fluid and magnetic radial
eigenfunctions in figure 9. Here, SPECYL’s outcomes with the free and fixed NF boundary
formulations, in blue and red, respectively, are compared with the radial displacement ξ 2,1

r
and the radial magnetic fluctuation B2,1

r , as obtained from the LENS code. Despite the
good agreement with theoretical radial profiles of both formulations within the plasma
core region, high resistivity effects can be seen in all plots at the plasma edge, in the form
of a mild reduction of edge radial velocity and magnetic field, correlated to an excess of
edge current oscillations. It should be noted that the good performance of fixed NF is in
this case, as well as in figure 5, strongly cherry-picked; we already commented on how
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frail the displayed agreement is upon small variations in physical conditions (q(a), S, M)
or in a/rBC.

Looking at the PV, shaded in figure 9(b), we may observe some apparent marks of
resistive plasma dynamics in a region that we would rather regard as vacuum. In particular,
v2,1

r presents a sharp change of sign across r0 ≈ 1.054a, paired with a pitch variation of
B2,1

r across the same radial position, revealing the presence of a (mostly axial, due to
straight tokamak ordering) finite slab current J 2,1, well visible in figure 9(b iii). This is the
signature of a resistive internal (tearing-like) mode across a resonance layer: q(r0) ≈ 2.

5. Final remarks and future perspectives

New resistive wall BCs with a fully consistent 3-D velocity boundary were recently
implemented in the nonlinear MHD codes SPECYL and PIXIE3D. Such a module consists
of a thin shell of tuneable resistivity at plasma edge, separated from an outer ideal
conductor by an arbitrary-width vacuum region. The magnetic boundary enforced at the
plasma edge leverages the resistive Ohm’s law across the thin shell and is self-consistently
coupled with an E × B velocity field, dictated by the internal MHD and by Ohm’s law at
boundary.

In this paper we presented a challenging verification study against ideal MHD external
kink modes theory. The conceptually simplest set-up to perform this study consists in
modelling a free interface at plasma boundary, possibly also including the effect of an
ideally conductive wall at finite distance. In practice, this is achieved by setting SPECYL’s
thin shell resistivity so high that it becomes transparent for the magnetic field dynamics;
such a numerical set-up should be appropriate for the study of linear free-boundary MHD
instabilities driven by plasma current.

With the fully consistent free NF formulation recently implemented in the SPECYL
code, the linear evolution of external kink modes can be properly reproduced already
looking at the transparent shell as a free interface in itself. This is, however, not the case
with a not fully consistent set of velocity BCs, imposing null edge velocity perturbations.
As the latter is mostly stable with a rigid wall attached to the plasma boundary, we
leveraged a high-resistivity, low-density PV region to displace the plasma edge from the
numerical boundary; such an approach is routinely employed in most analogous studies
already present in the literature (see, e.g. Merkel & Strumberger 2015; Marx & Lütjens
2017).

The study considered the instability to external kink modes of two classes of initial
tokamak equilibria characterised by circular cross-section and by a very large aspect ratio.
The first one is defined by a uniform current channel, coincident with the plasma itself, and
the second one features a Wesson-like parabolic current density that vanishes at plasma
edge.

The first case study presents a well-known analytical solution for the linear instability
eigenfunctions and growth rates; along with its reduced numerical complexity, this is
why it is used in most numerical verification studies already present in the literature.
This case study could be remarkably reproduced on a wide range of equilibrium current
intensities and of external ideal wall positions by both sets of boundary conditions, each
for a selected numerical set-up. However, the free NF formulation achieved robust and
asymptotic convergence to the theoretical growth rates and eigenfunctions in the correct
limit of an increasingly ideal plasma set-up, whereas the fixed NF formulation best fitting
set-up was found for intermediate plasma viscoresistive values, while showing asymptotic
stability in the ideal MHD limit. We identify the unavoidable numerical limitations in the
modelling of the PV region as the most likely candidates to explain such behaviour.
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The second case study presents no known analytical solution and needs enforcing a
specific semianalytical solver; along with its increased numerical complexity, this makes
its employment in this work rather exceptional, with respect to past analogous verification
studies of nonlinear MHD codes. Also in this case, a robust and asymptotic convergence
of SPECYL’s free NF simulations was illustrated, even if reached at considerably lower
dissipation levels than in the previous case, owing to increased numerical challenges.
On the other hand, the fixed NF formulation proved itself extremely unreliable even in
predicting bare modes stability. Growth rates analysis for a fixed equilibrium current
intensity found the fixed NF formulation in SPECYL to be substantially incompatible with
the expectation, both in the resistive plasma limit and in the ideal plasma limit (where
it predicts once more full modes stability). Particularly concerning appears the strong
and non-monotonic dependence of simulations outcomes on set-up parameters retaining
no physical meaning, namely the distance of the numerical boundary from the plasma
interface.

The main findings of this work are the following.

(i) A free NF formulation is essential for complete self-consistency of resistive wall
BCs; indeed, it allows reliable modelling of the linear growth of current-driven
external modes identifying the plasma interface with the numerical boundary. As
far as we know, this result is unprecedented for a nonlinear MHD code.

(ii) The enforcement of a PV region at plasma edge is unavoidable in presence of
BCs bearing a velocity formulation in partial consistency with the rest of the
leveraged model. Nonetheless, its usage has general applicability in predictive MHD
modelling, and it allows to describe the nonlinear evolution of external instabilities
(especially in more advanced codes where ρ and η can evolve through time);
its presence can indeed be justified to account for a scrape-off layer in realistic
experimental conditions. Our study has, however, highlighted reasons for concern
when its enforcement aims to account for an actual vacuum region, especially
in the face of physical configurations that are challenging from the numerical
point of view. In particular, the more or less narrow parametric region, where
the theoretical models are matched with acceptable fidelity, appears to be hardly
predictable a priori (unlike the asymptotic convergence to the right theoretical
value, displayed by the fixed NF formulation). Even if a suitable set-up for fixed
NF with PV formulations was eventually found in optimal agreement with Wesson’s
model predictions (possibly, extending the approach explored in Appendix D), an a
posteriori determination of such a set-up might not be completely satisfying for a
numerical tool that aims at performing predictive modelling.

(iii) Albeit the specific set-up featuring a transparent wall, coincident with the plasma
interface, has reduced applicability in predictive simulations, we hope to provide
with it a remarkably challenging and repeatable test for the self-consistency of free
NF BCs in MHD nonlinear codes. The SPECYL’s documented reliability on this
critical set-up is expected to hold in the general case of a finitely conductive wall, or
even considering a cold and sparse scrape-off layer around the plasma core.

Along with the already published verification study against PIXIE3D, this paper
completes the numerical verification process of SPECYL’s resistive wall module. The
code will now be employed in both first-principle studies and predictive numerical
modelling in the tokamak and the RFP configurations. For the RFP, preliminary numerical
studies performed with the SPECYL code enforcing a simplified formulation of its
boundary module with a fixed NF velocity like in (2.10) are reported in Marrelli
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et al. (2021). Analogous modelling work is now being carried out with the free NF
boundary formulation, to extend the validity of previously achieved results and in view
of anticipating the next device RFX-mod2 (Marrelli et al. 2019; Terranova et al. 2024). A
central point of interest for the RFP community concerns the self-organised helical plasma
states at high current regimes, with periodicity m = 1, n = 7 in the RFX-mod device
(see Bonfiglio et al. 2013; Marrelli et al. 2021), which still lack self-consistent numerical
predictability. Stimulated by the promising results presented in this paper we are confident
in SPECYL’s resistive wall module future findings also in this merit.

Free NF BCs are expected to play a determinant role especially in plasma-limiter
configurations, namely including RFP routine operation and tokamak disruptions. The
impact of a fully consistent fluid-magnetic formulation could be of especial interest in
the modelling of externally imposed resonant magnetic perturbations at the plasma edge,
widely used in numerical simulations for the modelling of disparate physical conditions,
e.g. including edge localised modes triggering (Cathey et al. 2020), hybrid tokamak
scenarios (Piovesan et al. 2017) and stimulated QSH states in RFP configuration (Veranda
et al. 2017).

First-principle studies are also being pursued for the numerical validation of Zakharov’s
theory on vertical displacement events in the tokamak configuration. Such a model
predicts the existence of external kink-like instabilities flowing into the wall and sustaining
surface currents in its passive structures; the combination of these currents with the
plasma-confining magnetic field would be at the origin of experimentally observed intense
horizontal loads on device support structures (see Zakharov et al. 2012). Conceptually
similar simulations to the ones presented in this work, but considering more realistic
wall resistivities, will prove if a fully consistent velocity boundary with a normal
velocity perpendicular to the plasma edge is indeed sufficient to produce the so-called
wall-touching kink modes and sustain quantitatively comparable currents with respect to
the model predictions.
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Appendix A. Stability to the kink mode in the straight tokamak limit

The external kink mode is an ideal MHD, free-boundary instability, fruitfully described
to linear order with a variational approach dubbed the ‘energy principle’ (e.g. Freidberg
2014), allowing to find the most energetically favourable plasma shape relaxation, ξ =∑

m,n ξm,n
(r) eimθ−inz/R−iωt, and its linear growth rate γ = Im{ω}. This corresponds to an

extremant of the cost-functional W(ξ), representing the conservative work produced in
the deformation against the restoring force,

ξ such that δW = 0, with W(ξ) = −1
2

∫
Vtot

[J (ξ)× B(ξ)− ∇p(ξ)] · ξ ∗ dV, (A1)

where the integral is intended over the volume of the whole system Vtot = Vplasma + Vvacuum,
and the star indicates complex conjugation. The problem eigenvalue is retrieved from the
linearised energy balance equation,

ω2(ξ) = W(ξ)∫
Vplasma

ρ

2
ξ · ξ ∗ dV

, (A2)

with ξ and W as in (A1). Depending on the sign of W, external kink modes growth rates
can either be null (in case of stability) or strictly positive (instability).

In the straight tokamak limit theory, obtained for an asymptotically large aspect
ratio, pressure gradients become negligible and the geometry reduces to a cylinder. In
such a regime the initial axisymmetric equilibrium and its stability properties under
non-axisymmetric perturbations solely depend on the equilibrium axial current density
profile J0,0

z and on the mass density profile ρ. The assumption of a circular cross-section is
further enforced in this study, to achieve full compliance with SPECYL’s implementation.

The variational problem in (A1) is solved within a Lagrangian approach, yielding the
Euler equation for ξ . In the straight tokamak limit and with the reasonable assumption of
an incompressible displacement, ∇ · ξ = 0, this reads

d
dr

[
f (r)

dξm,n
r

dr

]
= g(r) ξm,n

r , (A3)

for W(ξm,n
) =

∫ a

0

[
f (r)

(
dξm,n

r

dr

)2

+ g(r)(ξm,n
r )2

]
dr + C, (A4)

with suitable scalar functions f , g and C, as follows:

f (r) := 2π2B2
eq,z

μ0R
r3

(
n
m

− 1
q(r)

)2

, g(r) := 2π2B2
eq,z

μ0R
r(m2 − 1)

(
n
m

− 1
q(r)

)2

,

C := 2π2B2
eq,z

μ0R

(
n
m

− 1
qa

)[(
n
m

+ 1
qa

)
+ m

1 + (a/b)2m

1 − (a/b)2m

(
n
m

− 1
qa

)]
(aξm,n

r,a )
2,

⎫⎪⎪⎬
⎪⎪⎭
(A5)

where Beq,z is the axial component of the equilibrium field. Substituting (A3) in (A4) and
integrating by parts, the minimum work is simply expressed as

Wmin(ξ
m,n
r ) =

[
f (r)ξm,n

r
dξm,n

r

dr

]
r=a

+ C, (A6)

which can be employed in (A2) to yield the mode stability analysis.
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Equivalent to Euler’s equation is solving the so called Newcomb’s equation for
the magnetic flux perturbation ψm,n = −irBm,n

r , which is related to the radial plasma
displacement by the frozen-in law of ideal MHD (see, e.g. Freidberg 2014),

ψm,n = F(r)ξm,n
r , where F(r) = mBeq,θ − knrBeq,z, (A7)

with kn = n/R, and with Beq,θ and Beq,z cylindrical components of the equilibrium
magnetic field. Newcomb’s equation is usually derived in a force-free plasma, from the
assumption that the linearised magnetic torque produced by the perturbation is negligible
(see, e.g. the appendix in Fitzpatrick (1999)),

d
dr

(
r
H

dψ
dr

)
=

[
1
r

+ 2mknrσ
H2

− rσ 2

H
+ r(knrBeq,θ + mBeq,z)

FH
dσ
dr

]
ψ, (A8)

where H = m2 + k2
nr2 and

σ = μ0
J eq · Beq

|Beq|2 . (A9)

Equations (A3) and (A8) are completely equivalent for an asymptotically large aspect ratio
(see, e.g. § 3.7 in Spinicci (2023)).

The Newcomb’s equation, combined with Faraday’s law and with the solenoidal
property of B, yields useful relations for the spatial components of magnetic field and
current density linear fluctuations,

Bm,n
r = iψm,n

r
, (A10)

Bm,n
θ = knrσψm,n

H
− m

H
dψm,n

dr
, (A11)

Bm,n
z = mσψm,n

H
+ knr

H
dψm,n

dr
, (A12)

Jm,n
r = σ

μ0
Bm,n

r , (A13)

Jm,n
θ = σ

μ0
Bm,n
θ − Beq,θ

μ0

dσ
dr
ξm,n

r , (A14)

Jm,n
z = σ

μ0
Bm,n

z − Beq,z

μ0

dσ
dr
ξm,n

r . (A15)

Appendix B. Analytical solutions to the flat current model

The flat current model is characterised by a uniform distribution of axial current and
mass density with a sharp step profile at plasma edge (see Shafranov 1970),

J0,0
z (r) = J0,0

z,0Θ(a − r), ρ(r) = ρ0Θ(a − r). (B1a,b)

For this simplified configuration, Euler’s equation reduces to

d
dr

(
r3 dξm,n

r

dr

)
= r(m2 − 1)ξm,n

r , (B2)

whose solution is, via regularity conditions on axis, ξm,n
r = ξm,n

r,a (r/a)
m−1. Enforcing now

the incompressibility assumption for vanishing ε (i.e. in the straight tokamak limit), the
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whole displacement eigenvector results as

ξm,n = (êr + iêθ ) ξm,n
r,a

( r
a

)m−1
ei(mθ−n(z/R)). (B3)

Correspondingly, the associated minimum conservative work produced by the plasma
deformation is

Wmin = 2π2B2
eq,z

μ0R

(
aξa

qa

)2 2
m
(m − nqa)

[
m − nqa

1 − (a/b)2m
− 1

]
, (B4)

while the kinetic term in the linearised energy balance (A2) reads

∫
Vplasma

ρ

2
ξ · ξ ∗ dV = 2π2ρ0R

(aξa)
2

m
. (B5)

The resulting dispersion relation is hence

γ 2
(τA

ε

)2
= 2

q2
a

(m − nqa)

[
1 − m − nqa

1 − (a/b)2m

]
, (B6)

where the toroidal Alfvénic time τA/ε naturally emerges from the analytical computation.
To derive the magnetic fluctuation eigenfunction, it is convenient to solve Newcomb’s

equation, which also greatly simplifies. Retaining only the leading order in the small
parameter ε we get in both the plasma and the vacuum region

d
dr

(
r

dψm,n

dr

)
= m2

r
ψm,n, (B7)

whose solution is, via regularity conditions, ψm,n(r) = ψm,n
a (r/a)m inside plasma and

ψm,n(r) = ψm,n
a (a/r)m outside, so that the radial magnetic eigenfunction results from

(A10) as

Bm,n
r = Bm,n

r,a

( r
a

)m−1
ei(mθ−n(z/R)) inside plasma, (B8)

Bm,n
r = Bm,n

r,a

(a
r

)m+1
ei(mθ−n(z/R)) inside vacuum, (B9)

where Bm,n
r,a = iψm,n

a /a.
In § 4, alongside ξ 2,1

r and B2,1
r , we also discuss of current density oscillations. These

can be obtained from (A11)–(A15). It is, however, immediately manifest, without making
any calculation, that the leading terms in equations (A13)–(A15) are those proportional
to σ ′ (the prime here means radial derivative). In fact, from (A9) it appears that this term
contains the derivative of J0,0

z , which in turn is proportional to a Dirac’s delta centred at
the plasma interface.

From this consideration we can argue that the radial current oscillations will be
mostly negligible with respect to the other two spatial components. These two will thus
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approximately read

Jm,n
θ ≈ −Beq,θ

μ0

dσ
dr
ξm,n

r ei(mθ−n(z/R)), (B10)

Jm,n
z ≈ −Beq,z

μ0

dσ
dr
ξm,n

r ei(mθ−n(z/R)). (B11)

Finally, the axial component should largely dominate over the azimuthal, since Beq,z �
Beq,θ via the tokamak ordering, as long as qa = Beq,zε/Beq,θ � 1.

Appendix C. The LENS code and numerical solutions of Wesson’s model

In the general case, (A3) and (A8) present no known analytical solution. A
semianalytical solver is hence mandatory to predict the linear dynamics of MHD
perturbations.

This appendix aims at presenting an overview of our such code, dubbed LENS (i.e.
linear Euler and Newcomb solver), which is implemented in the IDL coding language and
has been thoroughly verified against analytical figures of merit and manufactured solutions
(see Spinicci 2023). The LENS code solves (A3) and (A8), along with (A10)–(A15) and
∇ · ξm,n = 0, to determine the radial profiles of linear perturbations in ξm,n and Bm,n. The
modes stability analysis for the external kink mode is obtained from (A2) and (A6) in the
straight tokamak limit, while suitable dispersion relations are also provided for tearing
modes stability, as in Wesson & Campbell (2011), Furth, Rutherford & Selberg (1973),
Bondeson & Sobel (1984) and Porcelli (1987). A wide variety of built in graphical routines
help visualise the obtained results.

We consider in this study a class of initial equilibria (Wesson & Campbell 2011), defined
by initial current density profiles as in (3.1) (reported as follows for clarity),

J0,0
z (r) =

⎧⎨
⎩J0,0

z (0)
(

1 −
( r

a

)2
)λ

if r ≤ a

0 if r > a
, (C1)

of which, only the simplified case with λ = 0 is amenable of analytical solution, as already
discussed in Appendix B.

Figure 10 illustrates the modes stability analysis and the 2-D profiles of the perturbation
for the external kink mode instability, produced by LENS for a cylindrical plasma with a
circular cross-section, surrounded by pure vacuum. In figure 10(a), the dispersion relation
is solved numerically for several values of q(a), considering diverse current-peaking
factors (λ) in (C1). In general, the instability domain of an m/n mode corresponds to
m − 1 ≤ nq(a) ≤ m. It is, however, apparent the stabilising effect of finite magnetic shear,
positively scaling with λ; this becomes increasingly effective as we move to high-m modes,
while the m = 1 mode (∀n) is completely insensitive of λ. For the flat current case, here
solved numerically in optimal agreement with (B6), in the absence of magnetic shear,
growth rates can only scale with J0,0

z (0); such a dependency is, however, eliminated by
the chosen normalisation γ q(a)τA/ε, since q(a) ∝ 1/J0,0

z (0). Analogous figures in the
literature perfectly compare with what described here.

In figure 10(b), below each corresponding instability domain, the projection onto
the plasma poloidal cross-section (shaded in pink) of the displacement and magnetic
eigenfunctions is represented for the flat current profile. Formally similar figures would be
obtained for different values of λ. Looking at displacement patterns, we see for each mode
the characteristic incompressible deformation of corresponding m-periodicity; such modes
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(a)

(b)

FIGURE 10. Example of LENS’s graphical elaboration: (a) stability analysis to the external kink
mode of several initial equilibria as in (C1), corresponding to various values of q(a) and λ; (b)
poloidal projections of fluid and magnetic linear eigenfunctions in the case of a flat equilibrium
current. Along with linear eigenfunctions, for each case the external resonance radius is indicated
with a green dashed contour, and the axial surface currents codirected and counterdirected with
respect to J0,0

z are indicated in blue and red, respectively. The illustrated predictions are perfectly
in line with analogous figures on the past literature and with the analytical predictions described
in Appendix A.

are destabilised by an external resonance near plasma interface (green dashed contour).
The magnetic field fluctuations are offset by π/2m with respect to ξm,n, in compliance
with the frozen-in law: Bm,n

r = iF(r)ξm,n
r /r (see (A7) and (A10)). Their vorticity across the

plasma interface is sustained by intense and predominantly axial surface currents, whose
sign is discordant with the equilibrium current (which enters the page) on the side of the
growing instability (blue), and concordant where the interface moves inwards (red), in
agreement with the analytical theory (see, e.g. Wesson 1978; Zakharov et al. 2012).

Appendix D. Rendering of PV with a discontinuous resistivity profile

Remarkable benchmark agreement with the linear theory of external kink modes has
been achieved in the past with the M3D-C1 code (see Ferraro et al. 2016), enforcing
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(a)

(b)

Flat current

FIGURE 11. Initial flat current equilibrium, employed in Appendix D. (a) The SPECYL’s
unperturbed current density and safety factor (in black) are compared with the corresponding
theoretical profiles (pink and teal, respectively). (b) The two equilibrium-relevant input profiles
of density (black) and resistivity (red) are reported, along with the theoretical infinitely sharp
mass-density profile (orange). The strongly discontinuous resistivity profile as in Ferraro et al.
(2016) is able to produce an almost vanishing equilibrium current in the PV region.

Dirichlet boundary conditions for the velocity (fixed NF formulation) and PV. The study is
conducted against the flat current model, and employs a strongly discontinuous resistivity
profile across the plasma interface.

The same approach has been pursued also in SPECYL: the corresponding initial
equilibrium is displayed in figure 11. The resulting current density profile indeed more
closely resembles the theoretical current channel, with respect to the alternative approach
leveraged for this case study in the rest of our work, as it is significantly more damped in
the PV region. The ratio of PV to core resistivity is constrained by numerical stability; in
this appendix we focus on equilibria where its value is 105.

The optimal benchmark agreement obtained in the figure 2 of Ferraro et al. (2016) is
successfully reproduced with SPECYL in figure 12, using the same physical parameters
(q(a) ≈ 1.1, a = 0.88rBC). The best performing dissipation level has been chosen to be
S0 = 108, M = 2 × 107, and is represented in the plot with full red dots. A new set
of simulations has been performed with the free NF formulation, enforcing the same
dissipation level (S0 = M = 108) and is reported in blue. Red empty contours mark the
positions of fixed NF simulations already reported in figure 6, while a black line illustrates
the theoretical expectation (see (B6)). The new set-up is here found in remarkable
agreement with the model, especially when b ≥ 3a, where it performs comparably, with
respect to the free NF simulations. A slight shift in the critical ideal wall proximity is
visible, as the mode stability seems to be achieved around b/a ≈ 1.74 instead of 1.78.
This is likely related to a slight upwards shift in the q(r) profile inside the PV region with
respect to the corresponding analytical profile, as already visible in figure 11, as if the
effective qa was slightly higher; such an effect was previously prevented when enforcing
(3.2), as some residual Jz in the PV region compensated for the missing core current due
to the unavoidably smooth current decay at the plasma edge. Even this way, compatibility
lies within 2 % for most the plot.

In figure 13 we extend the analysis just performed to a full scan on the value of q(a)
for the flat current model, keeping the ideal wall at large distance from the plasma
interface. As we did before, along with the new set of SPECYL’s simulations (full red
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FIGURE 12. The SPECYL’s simulations with a flat current and q(0) = 1.1, for various
proximities of the ideal wall to the plasma edge. The analytical growth rate is reported in
black. The SPECYL’s simulations with the most favourable plasma dissipation set-up and
discontinuous resistivity across plasma edge (full red dots) lie in remarkable agreement with
the expectation, apart from a slight mismatch in the critical proximity. Fixed NF simulations
already presented in figure 6 are also reported as empty red circles, while free NF simulations
with the same plasma resistivity S0 = M = 108 are reported in blue. This figure successfully
reproduces figure 2 in Ferraro et al. (2016).

(a) (b)

FIGURE 13. Comparison of the linear theory growth rates for several values of q(a) for the
flat current model (black line), with the best-performing set-ups for the fixed NF formulation,
with a continuous resistivity across plasma interface (red empty circles, as in figure 4b) and
with a discontinuous resistivity (full red dots). The latter reliably captures the correct stability
boundaries and the expected growth rates as q(a) � 1, but gradually detaches from the model
predictions as the magnetic resonance approximates the plasma interface.
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dots), we also report the free NF simulations performed with the same dissipation level
(blue dots), and the corresponding values obtained with a continuously varying S(r) across
plasma edge (empty red circles). It can be seen that the discontinuous resistivity profile
is successful in reproducing the correct stability boundaries, also obtaining significantly
more accurate predictions for 0 < q(a) < 1.5 than the other fixed NF set-up. The quality
of the agreement is, however, spoiled as the magnetic resonance moves closer to the plasma
edge, where the resistivity presents a numerically demanding radial gradient.

A great variability of the dynamical behaviour as q(a) � 2 is found in SPECYL’s
simulations on the choice of S0 and M, but also on small variations of the interface
radius a/rBC. This seems to suggest that a wisely tailored set-up should be viable for
SPECYL to reproduce the linear expectations within reasonable fidelity, as obtained with
the XTOR-2F code in Marx & Lütjens (2017) with a tightly fitting ideal wall, enforcing
an analogous set-up. Such a configuration would, however, resent of the same general
limitations of the PV approach, already discussed in the rest of this paper; reduced
robustness (and predictability) of the most suitable set-up, and cumbersome physical
relevance of parameters that should retain no physical meaning, like a/rBC.
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