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Abstract

We prove existence and uniqueness for the inverse-first-passage time problem for soft-
killed Brownian motion using rather elementary methods relying on basic results from
probability theory only. We completely avoid the relation to a suitable partial differential
equation via a suitable Feynman–Kac representation, which was previously one of the
main tools.
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1. Introduction

Given a random variable ζ with values in (0, ∞), the soft-killing inverse first-passage-time
problem for Brownian motion consists of finding a function b : [0, ∞) →R such that the stop-
ping time τb := inf

{
t > 0 :

∫ t
0 1(−∞,b(s))(Xs) ds > U

}
has the same distribution as ζ , where

(Xt)t≥0 is a Brownian motion and U an independent exponential random variable with rate 1.
This means that b needs to satisfy

Pμ(τb > t) =Eμ

[
exp

{
−

∫ t

0
1(−∞,b(s))(Xs) ds

}]
= P(ζ > t) for all t ≥ 0, (1.1)

where μ denotes the initial distribution of the Brownian motion (Xt)t≥0. We refer to this
problem as the soft-killing (inverse first-passage-time) problem.

The existence of solutions for this soft-killing problem was established in [9] in the case
where the initial distribution of X0 admits a bounded, strictly positive, twice continuously
differentiable density with bounded derivatives and the survival function g : [0, ∞) → [0, 1],
g(t) := P (ζ > t), is twice continuously differentiable and fulfills the condition

0 < h(t) := −g′(t)
g(t)

< 1 for all t ≥ 0. (1.2)

Note that differentiating the required condition (1.1) in t > 0 yields (cf. Lemma 3.1)

Pμ(Xt < b(t), τb > t) = −g′(t) for all t > 0, (1.3)
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which shows that (1.2) is close to the necessary condition for the existence of continuous
solutions. The question concerning uniqueness for the soft-killing inverse first-passage-time
problem for Brownian motion together with another proof of the existence was answered in
[10] under suitable conditions on the initial distribution and the survival function g. Again, the
methods therein are mainly analytic, relying on an associated partial differential equation for
which the existence and uniqueness of weak solutions can be shown.

The classical inverse first-passage-time problem for Brownian motion is to find a function
b such that the first-passage-time τ

fp
b := inf{t > 0 : Xt < b(t)} has the given distribution of ζ .

This means that b needs to satisfy Pμ(τ fp
b > t) = P(ζ > t) for all t ≥ 0, where μ denotes the

initial distribution of the Brownian motion (Xt)t≥0. The classical problem can be seen as the
limit case of the soft-killing problem in the sense that, when substituting U with an exponential
random variable with rate λ > 0, the stopping time τb becomes the first-passage-time τ

fp
b of b as

λ → ∞. The existence of so-called barrier solutions of the classical problem was shown in [3],
which give rise to lower semicontinuous solutions. Much later, the uniqueness of the classical
problem for a one-sided boundary was tackled in [5, 6] by connecting the problem with a
certain partial differential equation. In [6] the authors studied the existence and uniqueness
of viscosity solutions for a related variational inequality; in [5] the authors proved that the
unique solution to the classical problem can be extracted from the solution of this variational
inequality if ζ has no atoms. A probabilistic approach to showing general uniqueness is shown
in [8], consisting of a connection to an optimal stopping problem and solving a time-discrete
version of it. The counterpart of the approach to establishing the uniqueness and properties
of solutions in this present work for the classical problem, using stochastic ordering, can be
found in [20]. Sufficient criteria for the continuity of solutions can be found in [5, 8, 22].
Higher regularity was studied in [4]. A relation of the classical problem to integral equations
for b and g can be found in [15, 21]. An overview of inverse first-passage-time problems is
given by [2]. Another related issue is the modification of the classical problem, where b and
ζ are given and we seek the initial distribution μ such that the distribution of τ

fp
b equals the

distribution of ζ . This problem has been studied in [14, 16, 17].
Both the classical and soft-killing problems can be seen as special cases of the problem of

finding stopping times with given laws as in [7].
In this contribution we present a new, more probabilistic, proof of existence and uniqueness

for the soft-killing inverse first-passage-time problem. In our approach we approximate the
marginal distribution of the Brownian motion at a specific timepoint conditioned to the event
of non-killing up to this timepoint. A major tool to gain control over our approximation will
be the use of the usual stochastic ordering. We will show that this approximation allows us
to extract a sequence of functions that converge to a continuous solution, and that this does
automatically prove the uniqueness. This direct approach has the following advantages:

• It allows us to remove the assumption from [10] that the initial distribution μ of the
Brownian motion has a continuous and strictly positive density, which is contained in
the second Sobolev space H2(R).

• It leads to a possible numerical approximation of the solution due to the fact that the
method is already discrete in time; see, for example, Figure 1. This raises the question
of a rigorous study from the numerical point of view in order to obtain reliable results.

• The method immediately extends to a large class of diffusion processes, as we point out
in the last section. Thus, it gives in some sense an answer to the conjecture in [10]. As
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FIGURE 1. The soft-killing barrier for an exponential distribution with mean 2 and a Lomax distribution
with scale 1 and shape 0.5, and with initial distribution μ =N (0, 0.01).

one of the main motivations from [9] is related to financial mathematics, it is relevant
to allow larger classes of processes in order to have more flexibility in the modeling
process.

• It relies on comparatively elementary probabilistic arguments and fully avoids methods
from the theory of partial differential equations.

The paper is organized as follows. In Section 2 we present our main result regarding exis-
tence and uniqueness, sketch the basic idea, and motivate the relevant notation. In Section 3
we carry out the proof of our main result, for which the auxiliary statements are proved in
Section 4. In Section 5 we argue that our methods for proving the main result extend to a larger
class of Markov processes. In Section 6 we briefly present the Monte Carlo method used to
obtain the simulations of Figure 1.

2. Main result and notation

For a probability measure μ we denote by Pμ a probability measure under which the
process (Xt)t≥0 is a Brownian motion with initial distribution μ. As usual we set Px = Pδx .
If μ is only a sub-probability measure we define Pμ: = μ(R) · Pμ/μ(R). We call a function
g : [0, ∞) → [0, 1] a survival distribution if g(t) = P (ζ > t) for a random variable ζ > 0. For
a probability measure μ and a survival distribution g we denote the set of functions which
solve the soft-killing inverse first-passage-time problem for Brownian motion with respect to a
survival distribution g and a Brownian motion with initial condition μ by

ifptk(g, μ) := {b : [0, ∞) →R measurable | Pμ (τb > t) = g(t) for all t ≥ 0}.

Theorem 2.1. (Existence and uniqueness for continuous solutions.) Let μ be a probability
measure equivalent to the Lebesgue measure. Furthermore, let g be a continuously dif-
ferentiable survival distribution satisfying (1.2). Then there exists exactly one continuous
b ∈ ifptk(g, μ).
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At this point let us give an introduction to the basic idea of our approach and our notation.
If b is a continuous function and μ a probability measure then

Qb
t (μ) := Pμ (Xt ∈ · , τb > t) =Eμ

[
1{Xt∈ ·} exp

{
−

∫ t

0
1(−∞,b(s))(Xs) ds

}]
. (2.1)

The integral in (2.1) could be approximated by a Riemann-type sum. For this, let δ := δ(n) :=
2−n, with n ∈N. Taking the mesh grid [0, t] ∩ δ(n)

N0 results in the expression

Qb
�δ(n) (μ) ≈ Qb,n

�δ(n) (μ) := Eμ

[
1{X

�δ(n)∈ ·} exp

{
−

�∑
k=1

δ(n)1(−∞,b(kδ(n)))(Xkδ(n) )

}]
.

Using the Markov property, this can be written inductively as

Qb,n
kδ(n) (μ)(dx) = exp

{−δ(n)1(−∞,b(kδ(n)))(x)
}
Pδ(n)

(
Qb,n

(k−1)δ(n) (μ)
)
(dx)

and Qb,n
0 (μ) = μ, where, for t ≥ 0 and a sub-probability measure μ, the operator Pt is defined

by

Ptμ(dx) :=
∫
R

1√
2π t

exp

{
− (x − y)2

2t

}
dμ(y) dx.

In the soft-killing problem the function b is unknown, and therefore we have to modify the
terms involving b. One natural approach is to substitute these values with values chosen such
that at the points (kδ(n))k=1,...,� the relation to g is correctly satisfied. Our choice consists of
choosing the sequence (qn

k)k=1,...,� iteratively in the following way:∫
R

exp
{−δ(n)1(−∞,qn

k )(x)
}
Pδ(n)

(
Q+,n

(k−1)δ(n) (μ)
)
(dx) = g(kδ(n)) = Q+,n

kδ(n) (μ)(R), (2.2)

Q+,n
kδ(n) (μ)(dx) = exp

{−kδ(n)1(−∞,qn
k )(x)

}
Pδ(n)

(
Q+,n

(k−1)δ(n) (μ)
)
(dx). (2.3)

In order to condensate the scheme of (2.2) and (2.3), let us define for a finite measure μ and
t > 0, α ∈ [e−tμ(R), μ(R)] the reweighted measure

Rt
α(μ)(dx) := exp

{−t1(−∞,qt
α(μ))(x)

}
μ(dx), (2.4)

where qt
α(μ) := sup{q ∈R :

∫
R

exp
{−t1(−∞,q)(x)

}
μ(dx) ≥ α} with sup ∅ := −∞ is the

reweighting threshold.
Let g be a survival distribution fulfilling (1.2). As an abbreviation we round a timepoint

t ≥ 0 to δ(n)
N0 by �t
n := �t/δ(n)
δ(n).

We can write the iterative scheme of (2.2) and (2.3) with the help of the reweighting
operation Rt

α and define

Q+,n
t (μ) := R

t−�t
n
g(t) ◦ Pt−�t
n ◦ Rδ(n)

g(�t
n) ◦ Pδ(n) ◦ · · · ◦ Rδ(n)

g(δ(n)) ◦ Pδ(n) (μ), (2.5)

which shall serve as our approximation to the unknown Qb
t (μ). Corresponding to the

substitution of the value b(kδ(n)) by qn
k , the function

q(n)(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

inf{q ∈R : μ((−∞, q)) ≥ −g′(0)}, t = 0,

qδ(n)

g(t)(Pδ(n)Q+,n
�t
n−δ(n) (μ)), t ∈ δ(n)

N0 \ {0},
qt−�t
n

g(t) (Pt−�t
nQ+,n
�t
n

(μ)), t /∈ δ(n)
N0,

(2.6)
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can be thought of as an approximation of the unknown solution b. On the other hand, (1.3)
suggests that the function

a(n)(t) := inf{q ∈R : Q+,n
t (μ)((−∞, q)) ≥ −g′(t)} (2.7)

is also a possible approximation for b. By the definition of the reweighting thresholds, we note
that both q(n)(t) and a(n)(t) are certain quantiles. We will see in Lemma 3.2 that their relation
consists of the fact that q(n)(t) is a quantile corresponding to a differential quotient of g, whereas
a(n)(t) is a quantile governed by the derivative of g.

We use stochastic ordering in combination with the operations Pt and Rt
α in order to study

the relation of Q+,n
t (μ) and Qb

t (μ). Let P denote the set of probability measures on R. For
any two measures μ, ν ∈P on R we say μ is dominated by ν in the usual stochastic order,
and write μ �st ν, if μ((−∞, c]) ≥ ν((−∞, c]) for all c ∈R. This concept extends naturally to
finite measures if μ(R) = ν(R), so in general by the notation we do not assume the measures
involved to be probability measures unless mentioned otherwise. Since the usual stochastic
order is closed under convolutions, see [23, Theorem 1.A.3], we have that Pt preserves this
order relation, i.e. if μ �st ν, then

Ptμ �st Ptν. (2.8)

With the uniqueness at hand, the statements for proving the main result summarize to the
following.

Theorem 2.2. Let μ be a probability measure equivalent to the Lebesgue measure.
Furthermore, let g be a continuously differentiable survival distribution satisfying (1.2), and
b ∈ ifptk(g, μ) the unique continuous solution. For fixed t > 0, Q+,n

t (μ) ↘ Pμ (Xt ∈ · , τb > t)
as n → ∞ in the sense of weak convergence, where ↘ refers to the usual stochastic order.
Additionally, on compact intervals q(n) and a(n) converge uniformly to b as n → ∞, with
a(n) ↘ b.

3. Proofs of Theorems 2.1 and 2.2

We begin with the following elementary statement from [10, Lemma 4.2], which shows
that, under appropriate conditions, we can recover the boundary function from Qb

t (μ) and g.

Lemma 3.1. ([10].) Assume that b : [0, ∞) →R is continuous, μ ∈P has no atoms, and g is a
differentiable survival distribution such that b ∈ ifptk(g, μ). Then −g′(t) = Qb

t (μ)((−∞, b(t)))
for all t ≥ 0.

With Lemma 3.1 in mind, as a first step we establish the correct behavior of the mass of
Q+,n

t (μ) below q(n)(t), which will later lead to the convergence of q(n)(t).

Lemma 3.2 Let g be a continuously differentiable survival distribution fulfilling (1.2). As n →
∞, Q+,n

t (μ)((−∞, q(n)(t))) → −g′(t) uniformly in t ∈ [0, T].

We first want to make the following observation regarding the reweighting operator Rt
α . If μ

is a non-atomic sub-probability measure, Rt
α(μ) is again non-atomic and we have Rt

α(μ)(R) =
α and

Rt
α(μ)((−∞, qt

α(μ))) = e−tμ((−∞, qt
α(μ))) = 1

et − 1
(1 − e−t)μ((−∞, qt

α(μ))

= μ(R) − (
e−tμ((−∞, qt

α(μ)) + μ([qt
α(μ), ∞))

)
et − 1

= μ(R) − Rt
α(μ)

et − 1
= μ(R) − α

et − 1
. (3.1)
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Proof of Lemma 3.2. Recall the notation δ := δ(n). We set D := ∪n∈NDn with Dn :=
{kδ(n) : k ∈N0}. Recall the definition of Q+,n

t (μ) from (2.5). In view of (3.1) we have, for
t > 0,

Q+,n
t (μ)((−∞, q(n)(t))) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sg,+,n
�t/δ(n)
−1

(μ)(R) − g(t)

eδ(n) − 1
= g(t − δ(n)) − g(t)

eδ(n) − 1
, t ∈ Dn,

Sg,+,n
�t/δ(n)
(μ)(R) − g(t)

et−�t
n − 1
= g(�t
n) − g(t)

et−�t
n − 1
, t /∈ Dn.

Since g fulfills (1.2), we have g′ ≤ g. Furthermore, g′ is uniformly continuous on [0, T]. For
ε > 0 let n be large enough that |u − r| < δ(n) implies |g′(u) − g′(r)| ≤ ε. We can deduce by the
mean value theorem and the inequality |1 − h/(eh − 1)| ≤ h that

|Q+,n
t (μ)((−∞, q(n)(t))) − ( − g′(t))|

=

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣g′(t) − g′(ξ )
δ(n)

eδ(n) − 1

∣∣∣∣, t ∈ Dn with ξ ∈ [t − δ(n), t],∣∣∣∣g′(t) − g′(ξ )
t − �t
n

et−�t
n − 1

∣∣∣∣, t /∈ Dn with ξ ∈ [�t
n, t]

≤

⎧⎪⎪⎨
⎪⎪⎩

|g′(t) − g′(ξ )| +
∣∣∣∣g′(ξ )

(
1 − δ(n)

eδ(n) − 1

)∣∣∣∣, t ∈ Dn with ξ ∈ [t − δ(n), t],

|g′(t) − g′(ξ )| +
∣∣∣∣g′(ξ )

(
1 − t − �t
n

et−�t
n − 1

)∣∣∣∣, t /∈ Dn with ξ ∈ [�t
n, t]

≤ ε + g(T)δ(n)

for t ∈ [0, T]. Letting n → ∞ yields the statement, since ε can be chosen arbitrarily small. �

Now we shift our attention to analysis of the relation of the discretized measures Q+,n
t from

(2.5) and the measure Qb
t (μ) from (2.1).

Lemma 3.3. Let μ be a probability measure and g a survival distribution fulfilling (1.2). Then,
for b ∈ ifptk(g, μ), Qb

t (μ) �st Q+,n+1
t (μ) �st Q+,n

t (μ) for t ≥ 0.

In order to prove Lemma 3.3 we have to take into account the effect of Pt and Rt
α on the

usual stochastic order. We already mentioned in (2.8) that Pt preserves the order. Regarding
Rt

α , we make use of the following properties, the proofs of which can be found in Section 4.

Lemma 3.4. Let μ, ν be finite measures with μ(R) = ν(R) and μ �st ν. Let t > 0 and α ∈
[e−tμ(R), μ(R)], and assume that Rt

α(μ)(R) = Rt
α(ν)(R). Then Rt

α(μ) �st Rt
α(ν).

Lemma 3.5. Let t, s, u, v > 0, μ be a finite measure, and β ∈ [e−tμ(R), μ(R)], α ∈ [e−sβ, β].
Then Rs

α ◦ Pu ◦ Rt
β ◦ Pv(μ) �st Rs+t

α ◦ Pu+v(μ).

Proof of Lemma 3.3. In the proof we drop the dependency on b in the notation and write
Qt(μ) = Qb

t (μ). Furthermore, we write

Qt,s(μ) := Eμ

[
1{Xt−s∈ ·} exp

{
−

∫ t

s
1(−∞,b(r))(Xr−s) dr

}]
.

As a preparational step we claim that, for t ≥ s > 0,

Qt(μ) �st Rt−s
g(t) ◦ Pt−s(Qs(μ)). (3.2)
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We abbreviate δ = δ(n), write q := qδ
g(kδ)(PδQs(μ)), and let c ≥ q. Then

Rt−s
g(t)(Pt−sQs(μ))((c, ∞))

=
∫

(c,∞)
exp

{−(t − s)1(−∞,q)(x)
}
PQs(μ) (Xt−s ∈ dx)

= PQs(μ) (Xt−s > c) ≥EQs(μ)

[
1{Xt−s>c} exp

{
−

∫ t−s

0
1(−∞,b(r+s))(Xr) dr

}]
= Qt,s(Qs(μ))((c, ∞)) = Qtμ((c, ∞))

by the Markov property. Since Rt−s
g(t)(Pt−sQs(μ))(R) = g(t) = Qtμ(R), it follows that

Rt−s
g(t)(Pt−sQs(μ))((−∞, c]) ≤ Qt(μ)((−∞, c]). Now let c < q. Then

Qt(μ)((−∞, c]) = Qt,s(Qs(μ))((−∞, c])

=EQs(μ)

[
1{Xt−s≤c} exp

{
−

∫ t−s

0
1(−∞,b(r+s))(Xr) dr

}]
≥Eν

[
1{Xt−s≤c}e−(t−s)]

=EQs(μ)
[
1{Xt−s≤c} exp

{−(t − s)1(−∞,q)(Xt−s)
}] = Rt−s

g(t)(Pt−sQs(μ))((−∞, c]).

This shows that Qt(μ) �st Rt−s
g(t)(Pt−sQs(μ)).

As the next step we abbreviate S+,n
k (μ) := Rδ(n)

g(kδ(n))
◦ Pδ(n) ◦ · · · ◦ Rδ(n)

g(δ(n))
◦ Pδ(n) (μ) for k ∈N,

and show by induction over k that

Qkδ(μ) �st S+,n+1
2k (μ) �st S+,n

k (μ) (3.3)

for k ∈N. For this, we assume that Q(k−1)δ(n) (μ) �st S+,n
k−1(μ).

Thus, we can deduce by (3.2), Lemma 3.4, and (2.8) that

Qkδ(μ) �st Rδ
g(kδ)(PδQ(k−1)δ(n) (μ)) �st Rδ

g(kδ)(PδS+,n
k−1(μ)) = S+,n

k (μ).

For the second inequality, assume that S+,n+1
2(k−1)(μ) �st S+,n

k−1(μ). We then have, using Lemma 3.5,
Lemma 3.4, and (2.8),

S+,n+1
2k (μ) = Rδ(n+1)

g(2kδ(n+1)) ◦ Pδ(n+1) ◦ Rδ(n+1)

g((2k−1)δ(n+1)) ◦ Pδ(n+1) ◦ S+,n+1
2(k−1)(μ)

�st Rδ(n)

g(kδ(n)) ◦ Pδ(n) ◦ S+,n+1
2(k−1)(μ)

�st Rδ(n)

g(kδ(n)) ◦ Pδ(n) ◦ S+,n
k−1(μ) = S+,n

k (μ).

The desired (3.3) follows inductively, since for k = 0 all the inequalities are fulfilled.
As the final step, for t > 0 we now have, by (3.2), (3.3), and (2.8),

Qt(μ) = Qt,�t
n (Q�t
n (μ)) �st Rt−�t
n
g(t) ◦ Pt−�t
n(Q�t
n (μ))

�st Rt−�t
n
g(t) ◦ Pt−�t
n (S+,n

�t/δ(n)
(μ)) = Q+,n
t (μ).
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Furthermore, by Lemma 3.5, (3.3), and (2.8),

Q+,n+1
t (μ) = R

t−�t
n+1
g(t) ◦ Pt−�t
n+1 (S+,n+1

�t/δ(n+1)
(μ))

= R
t−�t
n+1
g(t) ◦ Pt−�t
n+1 ◦ R

�t
n+1−�t
n
g(�t
n+1) ◦ P�t
n+1−�t
n (S+,n+1

2�t/δ(n)
(μ))

�st Rt−�t
n
g(t) ◦ Pt−�t
n (S+,n+1

2�t/δ(n)
(μ))

�st Rt−�t
n
g(t) ◦ Pt−�t
n (S+,n

�t/δ(n)
(μ)) = Q+,n
t (μ),

which completes the proof. �

Observe that it directly follows from the definition of Rt
α that, if α ∈ [e−tβμ(R), βμ(R)]

with β > 0,

Rt
α(βμ) = βRt

α/β (μ). (3.4)

This and the Markov property lead to the following alternative representations for Q+,n
t (μ).

Remark 3.1. Let n ∈N. By the definitions of Q+,n
t and the reweighting operator, it follows

inductively that

Q+,n
t (μ) =Eμ

[
1{Xt∈· } exp

{−(t − �t
n)1(−∞,q(n)(t))(Xt)
}

× exp

{
−

�t/δ(n)
∑
�=1

δ1(−∞,q(n)(kδ(n)))(X�δ)

}]
.

By (3.4), another representation is

Q+,n
t (μ)

= g(�t
n)Rt−�t
n
g(t)/g(�t
n) ◦ Pt−�t
n ◦ α−1

�t/δ(n)
Rδ(n)

α�t/δ(n)

◦ Pδ(n) ◦ · · · ◦ α−1

1 Rδ(n)

α1
◦ Pδ(n) (μ),

where αk = g(kδ)/g((k − 1)δ) for k ∈N0.

Now we aim to use the stochastic inequality in order to obtain limits for Q+,n
t (μ) and q(n)(t),

and compare the limits to Qb
t (μ) and b.

Lemma 3.6. Let μ ∈P be equivalent to Lebesgue measure, g be a differentiable survival
distribution fulfilling (1.2), and b ∈ ifptk(g, μ) be continuous. For every t ≥ 0 there exists a
sub-probability measure Q+

t (μ) such that:

(i) Q+,n
t → Q+

t (μ) in the sense of weak convergence as n → ∞;

(ii) Qb
t (μ) �st Q+

t (μ);

(iii) Q+
t (μ) is equivalent to the Lebesgue measure and Q+

t (μ)(R) = g(t);

(iv) q(n)(t) → a(t) as n → ∞ for every t ≥ 0, where a(t) is the unique value determined by
Q+

t (μ)((−∞, a(t))) = −g′(t); and

(v) a(t) ≥ b(t) for all t ≥ 0.
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Proof. In the proof we drop the dependency on b in the notation and write Qt(μ) = Qb
t (μ).

In the case t = 0 we have, by definition, Q+
0 (μ) := Q+,n

0 = μ = Qt(μ), and thus from now on
assume t > 0.

To prove (i) and (iii), by Remark 3.1 we have

e−t
Pμ (Xt ∈ A) ≤ Q+,n

t (μ)(A) ≤ Pμ (Xt ∈ A) (3.5)

for every measurable A ⊆R. By the upper bound of this inequality, the collection
(Q+,n

t (μ))n∈N, seen as finite measures, is tight since Pμ (Xt ∈ · ) is tight. Since Q+,n
t (μ)(R) =

g(t) we can deduce by Prokhorov’s theorem that (Q+,n
t (μ))n∈N is relatively compact. Let σt

be an accumulation point of (Q+,n
t (μ))n∈N in the sense of weak convergence. Then, by the

portmanteau theorem and (3.5) we have, for all closed sets F ⊆R,

σt(F) ≥ lim sup
n→∞

Q+,n
t (μ)(F) ≥ e−t

Pμ (Xt ∈ F) ,

and, for all open sets U ⊆R,

σt(U) ≤ lim inf
n→∞ Q+,n

t (μ)(U) ≤ Pμ (Xt ∈ U) .

Since the measures are regular, it follows that e−t
Pμ (Xt ∈ A) ≤ σt(A) ≤ Pμ (Xt ∈ A) for every

measurable A ⊆R, which implies that σt is equivalent to the Lebesgue measure.
Then, by Lemma 3.3, for every c ∈R we have that the sequence Q+,n

t (μ)((−∞, c]) is mono-
tonic in n and thus, by the equivalence to the Lebesgue measure and the portmanteu theorem,
must converge to σt((−∞, c]). But in view of the equivalence to the Lebesgue measure and the
portmanteau theorem, this already means that Q+,n

t (μ) converges weakly to Q+
t (μ) := σt.

To prove (ii), since Qt(μ) �st Q+,n
t (μ) by Lemma 3.3, this ordering is preserved in the limit

n → ∞, and thus Qt(μ) �st Q+
t (μ).

To prove (iv) and (v), due to the fact that Q+
t (μ) is equivalent to the Lebesgue measure and

g fulfills (1.2), we can find a unique value a(t) such that

Q+
t (μ)((−∞, a(t)]) = −g′(t) = Qtμ((−∞, b(t)),

where the last equality is due to Lemma 3.1. By the inequality Qtμ �st Q+
t (μ), it follows that

b(t) ≤ a(t). Since Q+
t (μ) is equivalent to Lebesgue measure, this directly implies that, for every

(cn)n∈N with Q+,n
t (μ)((−∞, cn]) → −g′(t), cn → a(t) (for the details, see Lemma 4.4). Hence,

considering Lemma 3.2, we have q(n)(t) → a(t). �

We continue with a study of the function a, which is our candidate for a continuous solution
of the soft-killing inverse first-passage-time problem.

Let dP denote the Prokhorov metric for probability measures defined in (B.1). The following
statement will let us deduce that the function a is continuous.

Lemma 3.7. Let g be a differentiable survival distribution fulfilling (1.2), and let μ ∈P . Then
dP

(
g(t)−1Q+

t (μ), g(s)−1Q+
s (μ)

) ≤ 2|t − s|1/4 for every t, s ≥ 0.

In order to prove Lemma 3.7 we will bound the effect of Rt
α in the Prokhorov metric by

the inequality dP ≤ dTV; see (B.3), and the following statement. The proof is to be found in
Section 4.

Lemma 3.8. Let μ, ν ∈P and t, s > 0. Then, for all α ∈ [e−t, 1],

dTV

(
α−1Rt

α ◦ Ps(μ), Ps(ν)
)

≤ dTV (μ, ν) + 1 − α.
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Proof of Lemma 3.7. Since the Prokhorov metric metrizes the weak convergence, it suffices

to show a bound of the type dP

(
g(t)−1Q+,n

t (μ), g(s)−1Q+,n
s (μ)

)
≤ 2|t − s|1/4 + εn, where

(εn)n∈N is a sequence converging to zero. We achieve this by showing bounds with respect
to the total variation distance and using the inequality dP ≤ dTV from (B.3). Without loss of
generality, assume that t ≥ s and |t − s| ≤ 1. By the triangle inequality we observe that

dP

(
g(t)−1Q+,n

t (μ), g(s)−1Q+,n
s (μ)

)
≤ dP

(
g(t)−1Q+,n

t (μ), Pt−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

))
+ dP

(
Pt−s ◦ Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
,
)

Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
+ dP

(
Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
,
)

g(s)−1Q+,n
s (μ) =: I + II + III. (3.6)

To generate a bound for I, we first abbreviate ν = g(�s
n)−1Q+,n
�s
n

(μ). Observe that, in view of
Remark 3.1, with αk := g(kδ)/g((k − 1)δ) we obtain

g(t)−1Q+,n
t (μ)

= g(�t
n)

g(t)
R

t−�t
n
g(t)/g(�t
n) ◦ Pt−�t
n ◦ α−1

�t/δ(n)
Rδ(n)

α�t/δ(n)

◦ Pδ(n) ◦ · · · ◦ α−1

1 Rδ(n)

α1
◦ Pδ(n) (μ)

= g(�t
n)

g(t)
Rt−�t
n

g(t)/g(�t
n) ◦ Pt−�t
n ◦ α−1
�t/δ(n)
Rδ(n)

α�t/δ(n)

◦ Pδ(n) ◦ · · ·

· · · ◦ α−1
�s/δ(n)
+1

Rδ(n)

α�s/δ(n)
+1
◦ Pδ(n)

(
α−1

�s/δ(n)
Rδ(n)

α�s/δ(n)

◦ Pδ(n) ◦ · · · ◦ α−1

1 Rδ(n)

α1
◦ Pδ(n) (μ)

)
︸ ︷︷ ︸

=g(�s
n)−1Q+,n
�s
n

(μ)=ν

= g(�t
n)

g(t)
R

t−�t
n
g(t)/g(�t
n) ◦ Pt−�t
n ◦ α−1

�t/δ(n)
Rδ(n)

α�t/δ(n)

◦ Pδ(n) ◦ · · ·

· · · ◦ α−1
�s/δ(n)
+1

Rδ(n)

α�s/δ(n)
+1
◦ Pδ(n) (ν). (3.7)

Further, we can write

Pt−�s
n(ν) = Pt−�t
n ◦ Pδ(n) ◦ · · · ◦ Pδ(n) (ν). (3.8)

Recall that h(t) = −(∂/∂t) log (g(t)). Then g(t) = exp
{− ∫ t

0 h(y) dy
}
, and thus

αk = exp

{
−

∫ kδ(n)

0
h(y) dy +

∫ (k−1)δ(n)

0
h(y) dy

}
= exp

{
−

∫ kδ(n)

(k−1)δ(n)
h(y) dy

}
.

Iteratively comparing (3.7) with (3.8) yields, in view of Lemma (3.8),

I = dP

(
g(t)−1Q+,n

t (μ), Pt−�s
n (ν)
)

≤ dTV

(
g(t)−1Q+,n

t (μ), Pt−�s
n (ν)
)

≤ 1 − g(t)

g(�t
n)
+

�t/δ(n)
∑
k=�s/δ(n)
+1

(1 − αk)
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= 1 − exp

{
−

∫ t

�t
n

h(y) dy

}
+

�t/δ(n)
∑
k=�s/δ(n)
+1

1 − exp

{
−

∫ kδ(n)

(k−1)δ(n)
h(y) dy

}

≤
∫ t

�t
n

h(y) dy +
�t/δ(n)
∑

k=�s/δ(n)
+1

∫ kδ(n)

(k−1)δ(n)
h(y) dy =

∫ t

�s/δ(n)
δ(n)
h(y) dy

≤ (t − �s/δ(n)
δ(n)) ≤ |t − s| + δ(n), (3.9)

as 0 ≤ h ≤ 1, since g fulfills (1.2).
To find a bound for II, we now observe that, by Corollary B.1,

II = dP

(
Pt−s ◦ Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
,
)

Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
= dP

(
Pt−s ◦ Ps−�s
n (ν), Ps−�s
n(ν)

) ≤ |t − s|1/4. (3.10)

For a bound for III, in a similar manner to above we have

g(s)−1Q+,n
s (μ) = g(�s
n)

g(s)
Rs−�s
n

g(s)
g(�s
n)

◦ Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
.

This means that, with an application of Lemma 3.8,

III = dP

(
Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
, g(s)−1Q+,n

s (μ)
)

≤ dTV

(
Ps−�s
n

(
g(�s
n)−1Q+,n

�s
n
(μ)

)
, g(s)−1Q+,n

s (μ)
)

≤ 1 − g(s)

g(�s
n)
. (3.11)

As the last step, by putting (3.10), (3.9), and (3.11) together, and in view of the triangle
bound in (3.6) and the assumption that |t − s| ≤ 1, we obtain

dP

(
g(t)−1Q+

t (μ), g(s)−1Q+
s (μ)

)
= lim

n→∞ dP

(
g(t)−1Q+,n

t (μ), g(s)−1Q+,n
s (μ)

)
≤ lim

n→∞ |t − s| + δ(n) + |t − s|1/4 +
(

1 − gu(s)

gu(�s
n)

)
= |t − s| + |t − s|1/4 ≤ 2|t − s|1/4,

which completes the proof. �

Corollary 3.1. Let g be a continuously differentiable survival distribution fulfilling (1.2), and
μ ∈P equivalent to the Lebesgue measure. Then the function a : [0, ∞) →R from Lemma 3.6
is continuous.

Proof. Lemma 3.7 yields in particular that t → Q+
t (μ) is continuous in the sense of weak

convergence. Since Q+
t (μ) is equivalent to the Lebesgue measure for every t ≥ 0, this directly

implies that lims→t a(s) = a(t) (for the details, see Lemma 4.4). �

Recall that our approach was motivated by the discretization of the integral into a Riemann-
type sum involving the function q(n). In order to bring this discretization together with the
original form of the integral we use the fact that the function q(n) converges uniformly.

Lemma 3.9. Let g be a continuously differentiable survival distribution fulfilling (1.2), and μ ∈
P equivalent to the Lebesgue measure. Recall the function a : [0, ∞) →R implicitly defined

https://doi.org/10.1017/jpr.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.39


290 A. KLUMP AND M. KOLB

by Q+
t (μ)((−∞, a(t))) = −g′(t). For T > 0, the functions q(n)(t) and a(n)(t) defined in (2.6) and

(2.7) converge uniformly to the function a(t) in t ∈ [0, T].

In the proof of Lemma 3.9 we will use that t �→ Q+,n
t is continuous in the sense of weak

convergence, which is easily deduced from the following auxiliary statement. The proof is to
be found in Section 4.

Lemma 3.10. Let μ ∈P , and let g : [0, ∞) → [0, 1] be continuous with e−t < g(t) < 1 for
every t > 0. Then the mapping [0, ∞) →P , t �→ Rt

g(t)(Ptμ) is continuous in the sense of weak

convergence, where we identify R0
1(μ) = μ.

Proof of Lemma 3.9. Recall that a(n)(t) is implicitly defined by

Q+,n
t (μ)((−∞, a(n)(t))) = −g′(t),

which is possible since Q+,n
t (μ) is equivalent to the Lebesgue measure and g fulfills (1.2).

By Lemma 3.10 we can deduce that t �→ Q+,n
t is continuous in the sense of weak conver-

gence. Now, analogously to the proof of Corollary 3.1, it can be seen that a(n) is continuous.
By the ordering of Lemma 3.3 we have a(t) ≤ a(n+1)(t) ≤ a(n)(t) for every t ≥ 0. Since
Q+,n

t ((−∞, a(n)(t))) → Q+
t ((−∞, a(t)), it directly follows that a(n)(t) → a(t) (for the details,

see Lemma 4.4). In view of this, and by Dini’s theorem amd the continuity of a and a(n), it
follows that supt∈[0,T] |a(n)(t) − a(t)| → 0 as n → ∞. We complete the proof by showing that
supt∈[0,T] |q(n)(t) − a(n)(t)| → 0 as n → ∞. As preparation for this, we fix T > 0 and claim that
there exists a compact set KT ⊂R, only depending on T , such tha,t for all n large enough,
q(n)(t), a(n)(t) ∈ KT for all t ∈ [0, T]. In order to see this, we begin as follows. By Prokhorov’s
theorem the collection of measures (Ptμ)t∈[0,T] is tight. Thus, for ε > 0, by Remark 3.1 we can
find k(ε) > 0 such that, for all n ∈N and t ∈ [0, T],

Q+,n
t (μ)(R \ [ − k(ε), k(ε)]) ≤ Ptμ(R \ [ − k(ε), k(ε)]) ≤ ε.

Thus, we have Q+,n
t (μ)((q(n)(t), ∞)) ≤ ε whenever q(n)(t) > k(ε), and similarly

Q+,n
t (μ)((−∞, q(n)(t)))) ≤ ε whenever q(n)(t) < −k(ε). For a function f , write

‖f ‖[0,T] := supt∈[0,T] |f (t)|. We have, by Lemma 3.2,

Q+,n
t ((q(n)(t), ∞)) = ∣∣g(t) − Q+,n

t
((−∞, q(n)(t)

))∣∣
= ∣∣g(t) + g′(t) + ( − g′(t) − Q+,n

t
((−∞, q(n)(t)

)))∣∣
≥ ∣∣g(t) + g′(t)

∣∣ − ∣∣Q+,n
t

((−∞, q(n)(t)
)) − ( − g′(t))

∣∣
≥ g(T)

∣∣∣∣1 + g′(t)
g(t)

∣∣∣∣ − sup
s∈[0,T]

∣∣Q+,n
s

((−∞, q(n)(s)
)) − ( − g′(s))

∣∣
≥ g(T) inf

s∈[0,T]

∣∣∣∣1 + g′(s)

g(s)

∣∣∣∣ − sup
s∈[0,T]

∣∣Q+,n
s

((−∞, q(n)(s)
)) − ( − g′(s))

∣∣
→ g(T) inf

s∈[0,T]

∣∣∣∣1 + g′(s)

g(s)

∣∣∣∣
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as n → ∞. On the other hand, we have

Q+,n
t (μ)

((−∞, q(n)(t)
))

) ≥ |g′(t)| − ∣∣Q+,n
t (μ)

((−∞, q(n)(t)
)) + g′(t)

∣∣
≥ g(T)

∣∣∣∣g′(t)
g(t)

∣∣∣∣ − sup
s∈[0,T]

∣∣Q+,n
s

((−∞, q(n)(s)
)) − ( − g′(s))

∣∣
≥ g(T) inf

s∈[0,T]

∣∣∣∣g′(s)

g(s)

∣∣∣∣ − sup
s∈[0,T]

∣∣Q+,n
s

((−∞, q(n)(s)
)) − ( − g′(s))

∣∣
→ g(T) inf

s∈[0,T]

∣∣∣∣g′(s)

g(s)

∣∣∣∣.
Now, note that, due to (1.2) and the continuity of g and g′,

εT := 1

2
g(T) min

(
inf

s∈[0,T]

∣∣∣∣1 + g′(s)

g(s)

∣∣∣∣, inf
s∈[0,T]

∣∣∣∣g′(s)

g(s)

∣∣∣∣
)

> 0.

In view of the above, for n large enough we necessarily have that q(n)(t) ≤ k(εT ) and q(n)(t) ≥
−k(εT ) for all t ∈ [0, T]. For a(n)(t), we have

Q+,n
t

((
a(n)(t), ∞)) = g(t) + g′(t) ≥ g(T) inf

s∈[0,T]

∣∣∣∣1 + g′(s)

g(s)

∣∣∣∣,
Q+,n

t (μ)
((−∞, a(n)(t)

))) = −g′(t) ≥ g(T) inf
s∈[0,T]

∣∣∣∣g′(s)

g(s)

∣∣∣∣.
Hence, analogously to above, we necessarily have that |a(n)(t)| ≤ k(εT ) for all t ∈ [0, T]. This
yields the claim by setting KT := [ − k(εT ), k(εT )]. As the next step, assume that

lim sup
n→∞

sup
t∈[0,T]

∣∣q(n)(t) − a(n)(t)
∣∣ �= 0. (3.12)

Then there would exist η > 0, a subsequence (nk)k∈N of N, and a converging sequence (tk)k∈N
contained in [0,T] such that ∣∣q(nk)(tk) − a(nk)(tk)

∣∣ ≥ η (3.13)

for all k ∈N. We write t0 := limk→∞ tk and observe that, since q(n)(t), a(n)(t) ∈ KT

for all t ∈ [0, T], we can assume without loss of generality that limk→∞ q(nk)(tk)
and limk→∞ a(nk)(tk) exist. Write c1 := min( limk→∞ q(nk)(tk), limk→∞ a(nk)(tk)) and c2 :=
max( limk→∞ q(nk)(tk), limk→∞ a(nk)(tk)). By (3.13) it follows that |c1 − c2| ≥ η > 0. Now let

An(t) := (
min

(
q(n)(t), a(n)(t)

)
, max

(
q(n)(t), a(n)(t)

))
and observe that, by Remark 3.1,

Q+,n
tk (μ)(An) ≥ e−T

Pμ

(
Xtk ∈ Ank (tk)

) → Pμ

(
Xt0 ∈ (c1, c2)

)
> 0,

since Ptμ is continuous in t ∈ [0, T] and is equivalent to Lebesgue measure for every t ≥ 0.
But on the other hand we have, in view of Lemma 3.2,

sup
t∈[0,T]

Q+,n
t (μ)(An) = sup

t∈[0,T]

∣∣Q+,n
t (μ)

((−∞, q(n)(t)
)) − Q+,n

t (μ)
((−∞, a(n)(t)

))∣∣
= sup

t∈[0,T]

∣∣Q+,n
t (μ)

((−∞, q(n)(t)
)) − ( − g′(t))

∣∣ → 0.
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Consequently, the assumption in (3.12) has to be false, and it follows that

sup
t∈[0,T]

∣∣q(n)(t) − a(n)(t)
∣∣ → 0,

which completes the proof. �

We are now able to prove that the continuous function a is indeed a solution to the soft-
killing inverse first-passage-time problem.

Proposition 3.1. Let μ ∈P be equivalent to the Lebesgue measure. Furthermore, let g
be a continuously differentiable survival distribution fulfilling (1.2). Recall the function
a : [0, ∞) →R implicitly defined by Q+

t (μ)((−∞, a(t))) = −g′(t). Then

(i) Qa
t (μ) = Q+

t (μ) for every t ≥ 0, and

(ii) a ∈ ifptk(g, μ).

Proof. By Lemma 3.9, q(n) converges to a uniformly on [0, t]. Further, we have that, almost
surely,

∫ t
0 1{0}(a(s) − Xs) ds = 0. By Remark 3.1, the dominated convergence theorem, and

Lemma A.1, we obtain that limn→∞ Q+,n
t (μ)(A) equals

lim
n→∞ Eμ

[
1{Xt∈A} exp

{−(t − �t
n)1(−∞,q(n)(t))(Xt)
}

exp

{
−

�t/δ(n)
∑
�=1

δ1(−∞,q(n)(kδ(n)))(X�δ)

}]

=Eμ

[
1{Xt∈A} lim

n→∞ exp
{−(t − �t
n)1(−∞,q(n)(t))(Xt)

}
exp

{
−

�t/δ(n)
∑
�=1

δ1(−∞,q(n)(kδ(n)))(X�δ)

}]

=Eμ

[
1{Xt∈A} exp

{
−

∫ t

0
1(−∞,a(s))(Xs) ds

}]
= Qa

t (μ)(A),

which means in particular that Q+
t (μ) = Qa

t (μ), and thus a ∈ ifptk(g, μ). �

Now we can prove the existence and uniqueness of continuous solutions.

Proof of Theorem 2.1. Denote the time spent by the Brownian motion under a boundary b
function by �b

t := ∫ t
0 1(−∞,b(r))(Xr) dr. From Proposition 3.1 and Corollary 3.1 it follows that

the function a : [0, ∞) →R implicitly defined by Qa
t (μ)((−∞, a(t))) = −g′(t) is a continuous

solution in ifptk(g, μ). Now let b ∈ ifptk(g, μ) be continuous. From Proposition 3.1 we know
that Qa

t (μ) = Q+
t (μ). In view of Lemma 3.6 we have a ≥ b pointwise. Consequently, we also

have �a
t ≥ �b

t . By

0 ≤Eμ

[
e−�b

t − e−�a
t
] = Pμ (τb > t) − Q+

t (μ)(R) = g(t) − g(t) = 0,

we see that �a
t = �b

t almost surely. If a �= b then due to continuity the Brownian path would
spend more time below b than below a with positive probability, which is a contradiction, and
thus a = b. �

In view of the uniqueness, the limit behaviors of the approximate objects are summarized
in the statement of Theorem 2.2.

Proof of Theorem 2.2. Since a is the unique continuous solution, we have, by Proposition 3.1
and Lemma 3.6, that Q+,n

t (μ) → Qa
t (μ) as n → ∞ in the sense of weak convergence. The

monotonicity of Q+,n
t (μ) follows from Lemma 3.3. The uniform convergence of q(n) and a(n)
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on compact intervals follows from Lemma 3.9. The monotonicity of a(n) was shown in the
proof of Lemma 3.9. �

4. Proofs of auxiliary statements

4.1. Proof of Lemma 3.4

Proof of Lemma 3.4. From μ �st ν follows qt
α(ν) ≥ qt

α(μ), and thus

exp
{−t1(−∞,qt

α(μ))(x)
} ≥ exp

{−t1(−∞,qt
α(ν))(x)

}
.

Now, observe that, for c < qt
α(ν),

Rt
α(μ)((−∞, c]) =

∫
(−∞,c]

exp
{−t1(−∞,qt

α(μ))(x)
}

dμ(x) ≥
∫

(−∞,c]
e−t dμ(x)

≥
∫

(−∞,c]
e−t dν(x) =

∫
(−∞,c]

exp
{−t1(−∞,qt

α(ν))(x)
}

dν(x) = Rt
α(ν)((−∞, c]).

On the other hand, for c ≥ qt
α(ν),

Rt
α(μ)((c, ∞)) =

∫
(c,∞)

exp
{−t1(−∞,qt

α(μ))(x)
}

dμ(x) =
∫

(c,∞)
dμ(x) = μ((c, ∞)) ≤ ν((c, ∞))

=
∫

(c,∞)
exp

{−t1(−∞,qt
α(ν)(x))(x)

}
dν(x) = Rt

α(ν)((c, ∞)).

Since Rt
α(μ)(R) =R

t
α(ν)(R), this means that Rt

α(μ)((−∞, c]) ≥ Rt
α(ν)((−∞, c]), which shows

that Rt
α(μ) �st Rt

α(ν). �

4.2. Proof of Lemma 3.5

In order to prove Lemma 3.5 we show the following two separate statements concerning the
reweighting operation, the convolution operator, and the usual stochastic order.

Lemma 4.1. Let μ be a finite measure, t, s > 0, and α ∈ [e−tμ(R), μ(R)], and assume that
Rt

α(μ)(R) = α. Then PsRt
α(μ) �st Rt

α(Psμ).

Proof. Abbreviate q := qt
α(Psμ). First, let c ≥ q. Then

Rt
α(Psμ)((c, ∞)) =

∫
(c,∞)

exp
{−t1(−∞,q)(x)

}
Psμ(dx) =

∫
R

Psδx((c, ∞))μ(dx)

≥
∫
R

Psδx((c, ∞)) exp
{−t1(−∞,qt

α(μ))(x)
}
μ(dx) = PsR

t
α(μ)((c, ∞)).

Since PsRt
α(μ)(R) = α = Rt

α(Psμ), we have PsRt
α(μ)((−∞, c]) ≥ Rt

α(Psμ)((−∞, c]).
Now let c < q. Then

Rt
α(Psμ)((−∞, c]) =

∫
(−∞,c]

exp
{−t1(−∞,q)(x)

}
Psμ(dx) = e−tPsμ((−∞, c])

≤
∫
R

exp
{−t1(−∞,qt

α(μ))(x)
}
Psδx((−∞, c])μ(dx) = PsR

t
α(μ)((−∞, c]),

which completes the proof. �
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Lemma 4.2. Let t, s > 0, μ be a non-atomic finite measure, β ∈ [e−tμ(R), μ(R)], and α ∈
[e−sβ, β]. Then Rs

α(Rt
β (μ)) �st Rs+t

α (μ).

Proof. First, note that

Rs
α(Rt

β (μ))(dx) = exp
{−s1(−∞,qs

α(Rt
β (μ)))(x) − t1(−∞,qt

β (μ))(x)
}
μ(dx).

Let c < qs+t
α (μ). Then

Rs
α(Rt

β (μ))((−∞, c]) =
∫

(−∞,c]
exp

{−s1(−∞,qs
α(Rt

β (μ)))(x) − t1(−∞,qt
β (μ))(x)

}
μ(dx)

≥
∫

(−∞,c]
e−(s+t)μ(dx) =

∫
(−∞,c]

exp
{−(s + t)1(−∞,qs+t

α (μ))(x)
}
μ(dx) = Rs+t

α (μ)((−∞, c]).

For c ≥ qs+t
α (μ),

Rs+t
α (μ)((c, ∞)) = μ((c, ∞))

≥
∫

(c,∞)
exp

{−s1(−∞,qs
α(Rt

β (μ)))(x) − t1(−∞,qt
β (μ))(x)

}
μ(dx) = Rs

α(Rt
β (μ))((c, ∞)).

Since Rs
α(Rt

β (μ))(R) = α = Rs+t
α (μ)(R), this shows the desired result. �

Proof of Lemma 3.5. Using Lemmas 4.1, 4.2, and 3.4, we can deduce that

Rs
α ◦ Pu ◦ Rt

β ◦ Pv(μ) �st Rs
α ◦ Rt

β ◦ Pu ◦ Pv(μ)

�st Rs+t
α ◦ Pu ◦ Pv(μ) = Rs+t

α ◦ Pu+v(μ),

which completes the proof. �

4.3. Proof of Lemma 3.8

Let μ and ν be absolutely continuous with respect to the Lebesgue measure with densities
f and g. Then

dTV (μ, ν) = 1

2

∫
R

|f (x) − g(x)| dx (4.1)

is the total variation distance from (B.2) (for example, see [11]). We prepare for the proof of
Lemma 3.8 with the following.

Lemma 4.3. Let μ ∈P be absolutely continuous with respect to the Lebesgue measure, and
t > 0. Then, for all α ∈ [e−t, 1], dTV

(
α−1Rt

α(μ), μ
) ≤ 1 − α.

Proof. Let μ = f dx. Then the density of α−1Rt
α(μ) is given by α−1 exp

{−t1(−∞,qt
α(μ))

}
f .

By the representation in (4.1) and the computation in (3.1), we have
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2dTV

(
α−1Rt

α(μ), μ
)

=
∫
R

∣∣f (x) − α−1 exp
{−t1(−∞,qt

α(μ))
}
f (x)

∣∣ dx

=
(

1 − e−t

α

)
μ

((−∞, qt
α(μ)

)) +
(

1

α
− 1

)
(1 − μ

((−∞, qt
α(μ))

))
= α − e−t

α
· 1 − α

1 − e−t
+ 1 − α

α

(
1 − 1 − α

1 − e−t

)

= 1 − α

α
· α − e−t + 1 − e−t − 1 + α

1 − e−t
= 1 − α

α
· 2α − 2e−t

1 − e−t

= 2(1 − α)
1 − (e−t/α)

1 − e−t
≤ 2(1 − α).

This completes the proof. �

Proof of Lemma 3.8. From the coupling representation in (B.2) it directly follows
that dTV (Ptμ, Ptν) ≤ dTV (μ, ν) for probability measures μ, ν. Thus, we can deduce by
Lemma 4.3 and the triangle inequality that

dTV

(
α−1Rt

α ◦ Ps(μ), Ps(ν)
)

≤ dTV

(
α−1Rt

α ◦ Ps(μ), Ps(μ)
)

+ dTV (Ps(μ), Ps(ν))

≤ (1 − α) + dTV (μ, ν) . �

4.4. Proof of Lemma 3.10

In order to prove Lemma 3.10 we will use the following elementary statement.

Lemma 4.4. Let νn → ν in distribution, where ν is a probability measure equivalent to
Lebesgue measure. Let α ∈ (0, 1) and (cn)n∈N be a sequence with νn((−∞, cn]) → α. Then
cn → cα , where cα is uniquely determined by ν((−∞, cα]) = α.

Proof. Assume that lim supn→∞ cn > cα . Now, there has to be a subsequence (cnk )k∈N and
ε > 0 such that limk→∞ cnk > cα + ε. This implies that, by the portmanteau theorem,

α = lim sup
k→∞

ν((−∞, cnk ]) ≥ ν((−∞, cα + ε]) > ν((−∞, cα]) = α,

which is a contradiction. The reasoning for lim infn→∞ cn ≥ cα is analogous, which yields the
statement. �

Proof of Lemma 3.10. For t > 0, since Ptμ is equivalent to the Lebesgue measure we
have, by Lemma 4.4, lims→t qs

g(s)(Psμ) = qt
g(t)(Ptμ). Because of this, as s → t we have, for

continuous and bounded f : R→R,∫
R

f (x)Rs
g(s)(Psμ)(dx) =Eμ

[
f (Xs) exp

{
−s1(

−∞,qs
g(s)(Psμ)

)(Xs)

}]

→Eμ

[
f (Xt) exp

{
−t1(

−∞,qt
g(t)(Ptμ)

)(Xt)

}]

=
∫
R

f (x)Rt
g(t)(Ptμ)(dx),
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due to the continuity of the paths, the fact that Xt = qt
g(t)(Ptμ) has probability 0, and the domi-

nated convergence theorem. For t = 0 the statement is clear, since exp
{−t1(−∞,qt

g(t)(Ptμ))(x)
} →

1 as t → 0. �

5. Markov processes with soft killing

In this section we propose a generalization of the results from Brownian motion to certain
Markov processes. Suppose that (Xt)t≥0 is a Markov process on a filtrated probability space
(�,F , (Ft)t≥0, P) with transition semigroup (Pt)t≥0. Then it is possible to state the inverse
first-passage-time problem for this Markov process with soft killing in the same way as before.
Given a random variable ζ with values in (0, ∞) we search for a function b : [0, ∞) →R such
that (1.1) is fulfilled, i.e.

Eμ

[
exp

{
−

∫ t

0
1(−∞,b(s))(Xs) ds

}]
= P(ζ > t) for all t ≥ 0, (5.1)

where μ is again the initial distribution of (Xt)t≥0. For the aim of generalizing the approach
for the Brownian motion to this case, it turns out that we merely have to impose the following
requirements on the semigroup (Pt)t≥0, where we understand Pt as usual as an operator on the
space of sub-probability measures by the relation

Ptμ(f ) :=
∫
R

E
[
f (Xt)|X0 = x

]
μ(dx)

for continuous and bounded functions f : R→R.

Remark 5.1. In order to obtain uniquely determined quantiles by the reweighting operator Rt
α

in (2.4) and to pass this property through the approximation limit Q+
t (μ), we should assume

that Ptμ is equivalent to the Lebesgue measure for every initial measure μ. Furthermore, for
the continuity of Q+,n

t (μ) in t we should impose that there is a version of (Xt)t≥0 that has
continuous sample paths, as this is used in the proof of Lemma 3.10. Furthermore, for the
properties in Lemma 3.3 we need that Pt preserves the usual stochastic ordering, which can be
established by a suitable coupling for strong Markov processes with continuous sample paths.
For the result of Lemma 3.7, on the one hand we want to use that dTV (Ptμ, Ptν) ≤ dTV (μ, ν),
which holds true for Markov kernels in general. On the other hand, we want to require that for
a tight collection S of probability measures we have

sup
μ∈S

dP(Ptμ, μ) → 0 (5.2)

as t → 0. This is sufficient for the proof of Lemma 3.7 since the family(
Ps−�s
n g(�s
n)−1Q+,n

�s
n
(μ)

)
s∈[0,T]

is tight.
In order to reduce these conditions to some natural requirements we list the following

sufficient properties, which will induce the conditions discussed above, where (5.2) can be
deduced by (iii) as pointed out in Remark B.1.

(i) Ptδx is equivalent to the Lebesgue measure for every x ∈R and t > 0.

(ii) (Xt)t≥0 admits a version which has almost surely continuous sample paths.
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(iii) The process is locally uniformly continuous in probability, i.e. for every compact subset
K ⊂R, limt→0 supx∈K Px (|Xt − X0| > ε) = 0.

Then there is exactly one continuous b : [0, ∞) →R such that (5.1) is fulfilled. This shows
that, for a large class of diffusion processes, the inverse first-passage-time problem with soft
killing has a unique solution. The validity of such a generalization was conjectured in [10] but
instead using conditions on the coefficients directly.

6. Monte Carlo method for an approximate solution

In the following we present our Monte Carlo method for simulating the discrete approxi-
mations from Figure 1.

Let g(t) = P (ζ > t) be a continuously differentiable survival function with random variable
ζ > 0, let μ be a probability measure, and assume that g fulfills (1.2).

Let (X1
t , . . . , XN

t )t≥0 be an N-dimensional Brownian motion with initial configuration
(X1

0, . . . , XN
0 ) ∼ μ⊗N . For n ∈N let timepoints (tnk )k∈N be given by tnk := k · 2−n = kδ(n). We

define the weighting process (ŵk)k∈N0 = (ŵ1
k, . . . , ŵN

k )k∈N0 inductively by ŵi
0 := 1/N for any

i ∈ {1, . . . , N} and, for k ∈N,

ŵi
k := ŵi

k−1 · exp

{
−δ(n)1(

−∞,q̂(n)
k

)(Xi
kδ(n)

)}
,

where

q̂(n)
k := sup

{
q ∈R :

N∑
i=1

ŵi
k−1 exp

{−δ(n)1(−∞,q)
(
Xi

kδ(n)

)} ≥ g(kδ(n))

g((k − 1)δ(n))

N∑
i=1

ŵi
k−1

}
.

Heuristically, q̂(n)
k is an empirical version of q(n)(kδ(n)) from (2.6). A proof for the validity

of this choice, namely that q̂(n)
k → q(n)(kδ(n)) almost surely as N → ∞, can be found in [18,

Theorem 3.3.2].
A simulation of q̂(n) can be seen in Figure 1 for certain distributions with the parameters

n = 6 and N = 106.
While the soft-killing problem intrinsically kills continuously in time, our discretization

procedure for the soft-killing problem provides an approximation of the continuous boundary
at discrete parts only. In contrast to that, in the classical inverse first-passage-time problem a
continuous, piecewise linear approximation in [25] yields a Monte Carlo algorithm to approx-
imate the barrier with error bounds. While in the classical problem several methods are known
to approximate the solutions numerically (see, e.g., [1, 12, 13, 19, 24, 25]), the problem of
obtaining numerical approximations for the solutions of the soft-killing inverse first-passage-
time problem has not been treated in the literature until now. Therefore, a more detailed study
has yet to be provided in order to obtain reliable results.

Appendix A. Approximation of a Riemann integral

For the following basic result about Riemann integrals used in the proof of Theorem 3.1 we
found no direct source in the literature. For completeness we give a proof here.

Lemma A.1. Let f : [0, T] →R be a continuous function with
∫ T

0 1f −1({0})(s) ds = 0.
Furthermore, let fn → f uniformly on [0, T]. Then, for any sequence of partitions (Zn) of [0, T]
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with mesh tending to zero (this means that Zn = {tn0, . . . , tnmn
}, where 0 = t0 < · · · < tm = T and

limn→∞ maxi=1,...,mn |tni − tni−1| = 0),

mn∑
i=1

1(−∞,0)(fn(tni ))(tni − tni−1) →
∫ T

0
1(−∞,0)(f (s)) ds.

Proof. Let (Zn)n∈N be such a sequence of partitions. Let D := {t ∈ [0, T] : s �→
1(−∞,0)(f (s)) is discontinuous at t}. We have D ⊂ f −1({0}), and thus, by the assumption, the
mapping s �→ 1(−∞,0)(f (s)) is almost everywhere continuous on [0, T]. By Lebesgue’s criterion
for Riemann integrability it follows that we have

mn∑
i=1

1(−∞,0)(f (tni ))(tni − tni−1) →
∫ T

0
1(−∞,0)(f (s)) ds.

For ε > 0 let

φε(x) :=

⎧⎪⎨
⎪⎩

0, |x| ≥ 2ε,

(2ε − |x|)/ε, |x| ∈ (ε, 2ε),

1, |x| ≤ ε.

For ε > 0 let n be large enough that supt∈[0,T] |fn(t) − f (t)| < ε. Then∣∣∣∣∣
mn∑
i=1

1(−∞,0)(fn(tni ))(tni − tni−1) −
mn∑
i=1

1(−∞,0)(f (tni ))(tni − tni−1)

∣∣∣∣∣
≤

mn∑
i=1

|1(−∞,0)(fn(tni )) − 1(−∞,0)(f (tni ))|(tni − tni−1)

≤
mn∑
i=1

1(−ε,ε)(f (tni ))(tni − tni−1) ≤
mn∑
i=1

φε(f (tni ))(tni − tni−1)

→
∫ T

0
φε(f (s)) ds

as n → ∞, since φε ◦ f is continuous and thus Riemann integrable. Now, by letting ε → 0 we
get, by the dominated convergence theorem,

lim sup
n→∞

∣∣∣∣∣
mn∑
i=1

1(−∞,0)(fn(tni ))(tni − tni−1) −
mn∑
i=1

1(−∞,0)(f (tni ))(tni − tni−1)

∣∣∣∣∣
≤

∫ T

0
φε(f (s)) ds →

∫ T

0
1{0}(f (s)) ds = 0,

since
∫ T

0 1f −1({0})(s) ds = 0. Thus the desired statement follows. �

Appendix B. Bounds and the use of probability metrics

In this work we use the Prokhorov metric

dP (μ, ν) := inf{ε > 0 : μ(B) ≤ ν(Bε) + ε for all B ∈B(R)}, (B.1)
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where Bε := {x ∈R : infy∈B |x − y| ≤ ε}, and the total variation distance

dTV (μ, ν) := sup
B∈B(R)

|μ(B) − ν(B)| = inf{P (X �= Y) : X ∼ μ, Y ∼ ν}, (B.2)

where the coupling representation can be found in [11]. We have the following bounds [11]:

dP (μ, ν) ≤ dTV (μ, ν) , (B.3)

dP (μ, ν)2 ≤ dW (μ, ν) := inf{E [|X − Y| ∧ 1] : X ∼ μ, Y ∼ ν}, (B.4)

where dW is the Wasserstein metric.
The following is a direct consequence of (B.4).

Corollary B.1. Let N (0, t) denote the normal distribution with mean 0 and variance t > 0.
Then dP (N (0, t) ∗ μ, μ) ≤ t1/4.

Remark B.1. Furthermore, (B.4) implies that for an initial distribution μ and a Markov process
(Xt)t≥0 we have, for every compact set K ⊂R such that μ(K) ≥ 1 − ε, ε ∈ (0, 1),

dP(Pμ (Xt ∈ · ) , μ) ≤ (Eμ [|Xt − X0| ∧ 1] )1/2

≤
(
ε + sup

x∈K
Ex [|Xt − X0| ∧ 1]

)1/2 ≤
(

2ε + sup
x∈K

Px (|Xt − X0| > ε)
)1/2

.

If S is a tight family of probability measures and (Xt)≥0 is locally uniformly continuous in
probability at t = 0, this implies that lim supt→0 supμ∈S dP(Pμ (Xt ∈ · ) , μ) = 0. This property
was required in (5.2).
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