Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T12:18:25.663Z Has data issue: false hasContentIssue false

DIVIDING LINES BETWEEN POSITIVE THEORIES

Published online by Cambridge University Press:  06 December 2023

ANNA DMITRIEVA
Affiliation:
SCHOOL OF MATHEMATICS, UNIVERSITY OF EAST ANGLIA, NORWICH, UK E-mail: a.dmitrieva@uea.ac.uk
FRANCESCO GALLINARO*
Affiliation:
MATHEMATISCHES INSTITUT, ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG, FREIBURG, GERMANY URL: https://fgallinaro.github.io/
MARK KAMSMA
Affiliation:
DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, LONDON, UK E-mail: mark@markkamsma.nl URL: https://markkamsma.nl

Abstract

We generalise the properties $\mathsf {OP}$, $\mathsf {IP}$, k-$\mathsf {TP}$, $\mathsf {TP}_{1}$, k-$\mathsf {TP}_{2}$, $\mathsf {SOP}_{1}$, $\mathsf {SOP}_{2}$, and $\mathsf {SOP}_{3}$ to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having $\mathsf {TP}$ and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we show that a thick theory T has $\mathsf {OP}$ iff it has $\mathsf {IP}$ or $\mathsf {SOP}_{1}$ and that T has $\mathsf {TP}$ iff it has $\mathsf {SOP}_{1}$ or $\mathsf {TP}_{2}$, analogous to the well-known results in full first-order logic where $\mathsf {SOP}_{1}$ is replaced by $\mathsf {SOP}$ in the former and by $\mathsf {TP}_{1}$ in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belkasmi, M., Contributions à la théorie des modèles Positive, Ph.D. thesis, Université Claude Bernard Lyon 1, Lyon, 2012.Google Scholar
Ben-Yaacov, I., Positive model theory and compact abstract theories . Journal of Mathematical Logic , vol. 03 (2003), no. 01, pp. 85118.10.1142/S0219061303000212CrossRefGoogle Scholar
Ben-Yaacov, I., Simplicity in compact abstract theories . Journal of Mathematical Logic , vol. 03 (2003), no. 02, pp. 163191.10.1142/S0219061303000297CrossRefGoogle Scholar
Ben-Yaacov, I., Thickness, and a categoric view of type-space functors . Fundamenta Mathematicae , vol. 179 (2003), pp. 199224.10.4064/fm179-3-2CrossRefGoogle Scholar
Ben-Yaacov, I., Berenstein, A., Henson, C. W., and Usvyatsov, A., Model theory for metric structures , Model Theory with Applications to Algebra and Analysis , vol. 2 (Chatzidakis, Z., Macpherson, D., Pillay, A., and Wilkie, A., editors). Cambridge University Press, Cambridge, 2008, pp. 315427.10.1017/CBO9780511735219.011CrossRefGoogle Scholar
Conant, G., Dividing lines in unstable theories. Manuscript. 2012.Google Scholar
Dobrowolski, J. and Kamsma, M., Kim-independence in positive logic . Model Theory , vol. 1 (2022), no. 1, pp. 55113.10.2140/mt.2022.1.55CrossRefGoogle Scholar
Dobrowolski, J. and Mennuni, R., The amalgamation property for automorphisms of ordered abelian groups, preprint, 2023, arXiv:2209.03944.Google Scholar
Grossberg, R. and Lessmann, O., Shelah’s stability spectrum and homogeneity spectrum in finite diagrams . Archive for Mathematical Logic , vol. 41 (2002), no. 1, pp. 131.CrossRefGoogle Scholar
Haykazyan, L. and Kirby, J., Existentially closed exponential fields . Israel Journal of Mathematics , vol. 241 (2021), no. 1, pp. 89117.10.1007/s11856-021-2089-1CrossRefGoogle Scholar
Kamsma, M., Bilinear spaces over a fixed field are simple unstable . Annals of Pure and Applied Logic , vol. 174 (2023), no. 6, p. 103268.10.1016/j.apal.2023.103268CrossRefGoogle Scholar
Kamsma, M., Positive indiscernibles , preprint, 2023, arXiv:2305.14127.Google Scholar
Kim, B., Kim, H.-J., and Scow, L., Tree indiscernibilities, revisited . Archive for Mathematical Logic , vol. 53 (2014), no. 1, pp. 211232.10.1007/s00153-013-0363-6CrossRefGoogle Scholar
Mutchnik, S., On NSOP2 theories, preprint, 2022, arXiv:2206.08512.Google Scholar
Pillay, A., Forking in the category of existentially closed structures . Quaderni di Matematica , vol. 6 (2000), pp. 2342.Google Scholar
Poizat, B. and Yeshkeyev, A., Positive Jonsson theories . Logica Universalis , vol. 12 (2018), no. 1, pp. 101127.10.1007/s11787-018-0185-8CrossRefGoogle Scholar
Shelah, S., Finite diagrams stable in power . Annals of Mathematical Logic , vol. 2 (1970), no. 1, pp. 69118.10.1016/0003-4843(70)90007-0CrossRefGoogle Scholar
Shelah, S., The lazy model-theoretician’s guide to stability . Logique et Analyse , vol. 18 (1975), no. 71/72, pp. 241308.Google Scholar
Shelah, S., Classification Theory and the Number of Nonisomorphic Models , second ed., North-Holland, Amsterdam, 1990.Google Scholar
Shelah, S., Toward classifying unstable theories . Annals of Pure and Applied Logic , vol. 80 (1996), no. 3, pp. 229255.10.1016/0168-0072(95)00066-6CrossRefGoogle Scholar
Tent, K. and Ziegler, M., A Course in Model Theory , Cambridge University Press, Cambridge, 2012.10.1017/CBO9781139015417CrossRefGoogle Scholar