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Abstract

We consider a Lévy process Y(t) that is not continuously observed, but rather inspected
at Poisson(ω) moments only, over an exponentially distributed time Tβ with parameter
β. The focus lies on the analysis of the distribution of the running maximum at such
inspection moments up to Tβ , denoted by Yβ,ω. Our main result is a decomposition:
we derive a remarkable distributional equality that contains Yβ,ω as well as the running
maximum process Ȳ(t) at the exponentially distributed times Tβ and Tβ+ω. Concretely,
Y(Tβ ) can be written as the sum of two independent random variables that are distributed
as Yβ,ω and Y(Tβ+ω). The distribution of Yβ,ω can be identified more explicitly in the
two special cases of a spectrally positive and a spectrally negative Lévy process. As
an illustrative example of the potential of our results, we show how to determine the
asymptotic behavior of the bankruptcy probability in the Cramér–Lundberg insurance
risk model.
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2020 Mathematics Subject Classification: Primary 60K25
Secondary 60G51; 91G05

1. Introduction

We consider a general real-valued Lévy process Y ≡ {Y(t), t � 0} that is inspected at the
epochs I1, I2, . . . of an independently evolving Poisson process with intensity ω> 0. Our aim
is to compare the distributions of the running maximum of the Lévy process under continuous
observation and its counterpart at the inspection epochs. We do this until an, independently
sampled, exp(β)-distributed ‘killing time’ Tβ (for β � 0). This also covers the case of an infi-
nite time horizon: let β go to 0, imposing the additional assumption of the Lévy process’s mean
being negative to avoid the running maximum drifting to ∞.

The motivation behind our study lies in the fact that in many real-life situations the stochas-
tic process under study is not, or cannot, be continuously observed, but is rather inspected
at discrete times. Examples abound in reliability and healthcare, where an object or person is
checked regularly during their lifetime. Our interest in this topic mainly stems from an applica-
tion in insurance risk, and in particular from the classical Cramér–Lundberg model. That model
represents the surplus process of an insurance company that earns money (at a constant rate)
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via premiums, and that pays claims to its clients according to a compound Poisson process.
The main quantity of interest is the ruin probability p(u), i.e. the probability that the surplus
level becomes negative when starting with initial capital u> 0. This model was relaxed in [3],
which observed that companies can sometimes continue doing business even when they are
technically ruined. More specifically, it distinguished between ruin and bankruptcy, the latter
occurring when the surplus is negative at an inspection epoch. It is obvious that the probabil-
ity of bankruptcy p̃(u) is smaller than p(u), but we would like to quantify the difference. The
bankruptcy probability in the Cramér–Lundberg setting with exponentially distributed claim
sizes was determined in [6]; in [10] this was generalized to the case of generally distributed
claim sizes. In both papers, the inspection rate was allowed to depend on the current surplus
level. In [2, 10], a related queueing (or inventory) model was also studied, where a server
works even when there are no customers (or orders), building up storage that is removed at the
Poisson inspection epochs.

While the results in the present paper allow us to get a better insight into the relation between
the ruin and bankruptcy probabilities in the Cramér–Lundberg model and some of its (Lévy)
generalizations, our motivation is also to a large extent theoretical. We prove that there is a
remarkably simple relation between the running maximum Y(Tβ ) of the supremum of the Lévy
process Y until the exp(β) killing epoch and the running maximum Yβ,ω of Y at inspection
epochs until that killing: our main result (Theorem 2.2) is that

Y(Tβ )
d= Yβ,ω + Y(Tβ+ω), (1.1)

the two quantities on the right-hand side being independent. The proof of this result relies
on known results from the Wiener–Hopf theory for Lévy processes, and is surprisingly
straightforward.

Our main result, the decomposition in (1.1), is proved in Section 2, where we also show
how it can, alternatively, be obtained by applying results from [4]. The latter paper also served
as an important source of inspiration for us, as it presents several beautiful identities relating
exit problems for Lévy processes under permanent observation and their counterparts under
Poisson inspections; see also [5]. While Section 2 focuses on a general Lévy process, we
restrict ourselves in Section 3 to spectrally one-sided Lévy processes. In the spectrally posi-
tive case, we succeed in expressing the transform of Yβ,ω explicitly in terms of the Laplace
exponent of the driving Lévy process Y . In the spectrally negative case we prove that Yβ,ω is
exponentially distributed, with an atom at zero. As an illustration of the application potential
of our results, we study in Section 4 the asymptotics (for large initial capital u, that is) of the
bankruptcy probability in the setting of the Cramér–Lundberg model, distinguishing between
the cases of light-tailed and heavy-tailed claim sizes. At various places we explicitly exploit
the relation between fluctuation-theoretic concepts and their queueing counterparts, effectively
resting on a duality between Lévy-type insurance risk models and corresponding queueing
models; regarding this duality, see, e.g., the account in [7, Section III.2]. In addition, we fre-
quently use the fact that, due to the Wiener–Hopf decomposition, the increment of Y between
two inspection epochs can be written as the difference between two independent positive ran-
dom variables, which enables us to write the quantities under study in terms of waiting times
in associated queueing models.

2. Decomposition

This section establishes the decomposition in (1.1), and relates it to results that have recently
appeared in [4].
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2.1. The main decomposition result

Let Y ≡ {Y(t), t � 0} be a general real-valued Lévy process. In addition, let Ȳ be the asso-
ciated running maximum process, Y(t) := sups∈[0,t] Y(s). We consider the setting in which, for
some intensity ω> 0, the Lévy process is inspected at Poisson(ω) moments I1, I2, . . . , so that
the number of inspections up to time t has a Poisson distribution with mean ωt. We consider
the resulting inspected process until ‘killing’, which happens at an exponentially distributed
time Tβ with parameter β � 0, sampled independently from Y .

To analyze the process Y at inspection moments, we denote by Zm the increment of the
Lévy process Y(t) between the two consecutive inspection times Im−1 and Im (with I0 := 0),
conditioned on the process not having been killed. We also define S0 := 0, Sn := ∑n

m=1 Zm

for n ∈N, and the corresponding running maximum process Sn := max{S0, S1, . . . , Sn}. We
wish to analyze the running maximum of the inspected process until killing. The number of
inspections Nβ,ω before killing is shifted-geometric, with the ‘killing probability’ given by
β/(β +ω):

P(Nβ,ω = n) =
(

ω

β +ω

)n
β

β +ω
.

The random variable of interest is

Yβ,ω := SNβ,ω = sup
n=0,1,...,Nβ,ω

Sn. (2.1)

Observe that we have the identity

E e−αYβ,ω =
∞∑

n=0

(
ω

β +ω

)n
β

β +ω
E e−αSn . (2.2)

Theorem 2.1. For any α > 0,

E e−αYβ,ω = exp

(
−
∫ ∞

0

∫
(0,∞)

1

t
e−βt(1 − e−ωt)(1 − e−αx) P(Y(t) ∈ dx) dt

)
. (2.3)

Proof. As pointed out in [18], applying the Wiener–Hopf theory for random walks,

∞∑
n=0

(1 − p)np E e−αSn = exp

(
−
∫

(0,∞)

∞∑
n=1

1

n
(1 − e−αx)(1 − p)n

P(Sn ∈ dx)

)
;

see also, e.g., [13, Section 3.3]. As a consequence,

E e−αYβ,ω = exp

(
−
∫

(0,∞)

∞∑
n=1

1

n
(1 − e−αx)

(
ω

β +ω

)n

P(Sn ∈ dx)

)
.

Now realize that, with E(n, a) an Erlang random variable with shape parameter n ∈N and

scale parameter a> 0, conditional on the process not having been killed, Sn
d= Y(E(n, β +ω)),

so that

P(Sn ∈ dx) =
∫ ∞

0
(β +ω)ntn−1 e−(β+ω)t

(n − 1)! P(Y(t) ∈ dx) dt.
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We thus obtain

E e−αYβ,ω = exp

(
−
∫ ∞

0

∫
(0,∞)

1

t

∞∑
n=1

1

n! (1 − e−αx)(ωt)n e−(β+ω)t
P(Y(t) ∈ dx) dt

)

= exp

(
−
∫ ∞

0

∫
(0,∞)

1

t
(eωt − 1)(1 − e−αx) e−(β+ω)t

P(Y(t) ∈ dx) dt

)

= exp

(
−
∫ ∞

0

∫
(0,∞)

1

t
e−βt(1 − e−ωt)(1 − e−αx) P(Y(t) ∈ dx) dt

)
.

This proves the claim. �

We can let ω→ ∞ in the above theorem to recover a classical Wiener–Hopf factorization
result for general Lévy process Y .

We now state and prove our main result, a decomposition theorem for a Lévy process with
Poisson inspection epochs.

Theorem 2.2. The following distributional equality applies:

Y(Tβ )
d= Yβ,ω + Y(Tβ+ω), (2.4)

with the two terms on the right-hand side being independent.

Proof. By applying the Wiener–Hopf theory for Lévy processes, as presented in, e.g., [17,
Theorem 6.15] or [13, Section 3.3], for any ζ > 0,

E e−αY(Tζ ) = exp

(
−
∫ ∞

0

∫ ∞

0

1

t
e−ζ t(1 − e−αx) P(Y(t) ∈ dx) dt

)
.

Taking ζ = β and ζ = β +ω, and using Theorem 2.1, we obtain E e−αY(Tβ ) =E e−αYβ,ω ·
E e−αY(Tβ+ω), which implies the stated result. �

Remark 2.1. A striking aspect of the decomposition, besides its remarkably straightforward
proof, is that the impact of ω in the first term on the right-hand side of (2.4) apparently equals
the impact of ω in the second term, but ‘with opposite sign’; to this end, observe that the
left-hand side of (2.4) does not involve ω at all. Observe that the first term on the right-hand
side is increasing in ω (as the inspection process takes place at an increasingly high frequency,
with the length of the interval held fixed), whereas the second term is decreasing in ω (as a
supremum over an increasingly small interval is taken).

Remark 2.2. As is to be expected, SNβ,ω can also be decomposed as the sum of SNβ,ω and
SNβ,ω := infn=0,1,...,Nβ,ω Sn, with the latter two quantities being independent. To verify this,

first observe that E eαiZm = (β +ω)/
(
β +ω− log E eαiY(1)

)
. Hence,

E eαiSNβ,ω = β

β +ω−ω E eαiZ
= 1 +ω/(β − log E eαiY(1))

1 +ω/β

= exp

(
−
∫ ∞

0

∫
(−∞,∞)

1

t
e−βt(1 − e−ωt)(1 − eαix) P(Y(t) ∈ dx) dt

)
.

In the last step we have used the Frullani integral [17, Lemma 1.7],

1 + ω

a
= exp

( ∫ ∞

0

1

t
e−at(1 − e−ωt) dt

)
,
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with both a = β and a = β − log E eαiY(1). Finally, observe that, by symmetry, the running
minimum can be dealt with in precisely the same manner as the running maximum, in that
the transform of SNβ,ω is as given in (2.3), but with the integration interval (0,∞) replaced by
(−∞, 0).

2.2. Relation to a result in [4]

In this subsection we outline the relation between Theorem 2.2 and some results from [4].
In preparation, we take a closer look at the increments Zm between inspection epochs, and we
mention the powerful concept of Wiener–Hopf factorization for Lévy processes; see, e.g., [17,
Chapter 6] or [13, Section 3.3].

The Wiener–Hopf decomposition entails each Zm being written as Zm = Z+
m − Z−

m , with Z+
m

and Z−
m independent and both non-negative. Here, Z+

m (resp. Z−
m ) is distributed as the supremum

(resp. minus the infimum) of the Lévy process Y , when started anew at zero at inspection epoch
Im−1, over the interval between Im−1 and Im (whose length is exp(β +ω)). To get some feeling
for this property, it is useful to observe that a time-reversibility argument for Lévy processes
implies that, with Y(t) denoting the running minimum process, we have

Y(t) − Y(t) = Y(t) − inf
s∈[0,t]

Y(s) = sup
s∈[0,t]

(Y(t) − Y(s))
d= sup

s∈[0,t]
Y(s) = Y(t) (2.5)

(but, evidently, for a given t, Y(t) and Y(t) are not independent). In the following, Z+ (resp.
Z−) is a generic random variable distributed as Z+

m (resp. Z−
m ).

Albrecher and Ivanovs [4] considered a Lévy process X ≡ {X(t), t � 0}, starting at u, which
is also being inspected at Poisson(ω) epochs I0 = 0, I1, . . . If X attains a negative value, then
ruin is said to occur, whereas if it is negative at an inspection epoch, then bankruptcy is said
to occur. Recall that the all-time ruin probability starting at surplus level u is denoted by p(u),
and the (obviously smaller) corresponding bankruptcy probability by p̃(u). The starting point
in [4] is their elegant Proposition 1, which (in our notation) states that

p(u) =E p̃(u − Z+), (2.6)

where the process X relates to our Y through the relation X(t) = u − Y(t) for t � 0. The focus
in [4] lies not on deriving decompositions, but the proof of (2.6) in fact implicitly reveals
such a decomposition, which can be used to rederive our decomposition of Theorem 2.2. They
introduced (again adapted to our notation) the partial sums, for i = 1, 2, . . . ,

σ̂0 := 0, σ̂i := −
i∑

j=1

Zj,

σ0 := −Z+
1 , σi := −

i∑
j=1

(
Z+

j+1 − Z−
j

)
,

and then concluded that {σ̂i − Z+}i=0,1,...
d= {σi}i=0,1,..., and hence p(u) = P(− mini�0 σi �

u) = P
(− mini�0 σ̂i + Z+

1 � u
)=E p̃

(
u − Z+

1

)
. Observe that this identity implicitly entails the

decomposition − mini=0,1,... σi
d= − mini=0,1,... σ̂i + Z+

1 .
Let us now turn to the case with ‘killing’, as considered in Theorem 2.2, i.e. the process

ends at Tβ ∼ exp(β). We note that [4, Remark 3] briefly mentions the option of killing, at an
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inspection epoch Ii. It is stated there, without proof, that the finite-time ruin and bankruptcy
probabilities before inspection time Ii are related via

p(u, Ii) = P

(
− min

j=0,1,...,i−1
σj � u

)
= P

(
− min

j=0,1,...,i−1
σ̂j + Z+

1 � u
)

=E p̃
(
u − Z+

1 , Ii−1
)
; (2.7)

here, p(u, t) (resp. p̃(u, t)) is the probability of ruin (resp. bankruptcy) before time t, given
an initial surplus u. To translate this observation to the setting of Theorem 2.2, let us assume
that the system is inspected at the Poisson(β +ω) epochs I0 = 0, I1, . . . The inspection inter-
vals now are exp(β +ω) distributed and, accordingly, in the distributions of the Z+ and
Z− the parameter ω should be replaced by β +ω. The ‘β-inspection’ is preceded by Nβ,ω
‘ω-inspections’ at epochs I1, . . . , INβ,ω . Now consider the three terms in Theorem 2.2, and
compare them with the three main random elements featuring in (2.7). Firstly, observe that

Z+
1

d= Y(Tβ+ω), (2.8)

as both are distributed as the supremum of the Lévy process Y over an exp(β +ω) interval.
Secondly, noticing that if Ii = Tβ then Nβ,ω = i − 1, we have

− min
j=0,1,...,Nβ,ω

σ̂j = sup
j=0,1,...,Nβ,ω

j∑
k=0

Zk
d= Yβ,ω.

Thirdly,

− min
j=0,1,...,Nβ,ω

σj = sup
j=0,1,...,Nβ,ω

j∑
k=0

(
Z+

k+1 − Z−
k

) d= Y(Tβ ),

as the latter supremum is the supremum of the Y process until Tβ . We thus conclude that
Theorem 2.2 can be recovered in this way from the middle equality in (2.7).

3. The two spectrally one-sided cases

In this section we consider two special cases for which the various components of
Theorem 2.2 can be obtained through an explicit characterization. Section 3.1 considers the
case that the driving Lévy process Y is spectrally positive, and Section 3.2 its spectrally
negative counterpart.

3.1. The spectrally positive case

Suppose that Y is spectrally positive, i.e. it has no downward jumps. Define its Laplace
exponent by ϕ(α) := log E exp (−αY(1)), and ψ(β) its right-inverse; cf. [17, Section 3.3]. It is
well known [17, Section 6.5.2] that, for ζ � 0,

E e−αY(Tζ ) = ζ

ζ − ϕ(α)

ψ(ζ ) − α

ψ(ζ )
. (3.1)

By substituting first ζ = β and then ζ = β +ω, we obtain from (3.1) and Theorem 2.2 the
following expression for the Laplace–Stieltjes transform (LST) of Yβ,ω.
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Proposition 3.1. If Y is spectrally positive, then, for α � 0,

E e−αYβ,ω = α−ψ(β)

β − ϕ(α)

β

ψ(β)

β +ω− ϕ(α)

α −ψ(β +ω)

ψ(β +ω)

β +ω
. (3.2)

Remark 3.1. We also provide an alternative derivation of Proposition 3.1, using a relation
with an associated queueing model. First observe that Z− is minus the running minimum of
Y over an interval between two successive Poisson(ω) inspection epochs, given that the latter
epoch occurs before the killing epoch Tβ ; such an inspection interval is exp(β +ω) distributed.
Hence, Z− is exp(ψ(β +ω)) distributed, just like −Y(Tβ+ω); see, e.g., [17, Section 6.5.2].
Furthermore,

E e−αZ =E e−αY(Tβ+ω) = β +ω

β +ω− ϕ(α)
.

Hence, because Z = Z+ − Z−, with Z+ and Z− being independent,

E e−αZ+ = β +ω

β +ω− ϕ(α)

ψ(β +ω) − α

ψ(β +ω)
; (3.3)

indeed, cf. (3.1), Z+ d= Y(Tβ+ω), as we already noticed in (2.8). Now observe, cf. (2.1), that
Yβ,ω can be interpreted as the waiting time of the Nβ,ωth customer of an M/G/1 queue with
generic interarrival time Z− and generic service time Z+, with the first customer arriving in an
empty system. Its LST is given by

∞∑
n=1

(
ω

β +ω

)n
β

β +ω
E e−αWn ,

with Wn denoting the waiting time of the nth such customer. The next step is to use the
expression from [12, (II.4.77)] for the generating function of E e−αWn . After some elementary
calculations, (3.2) is recovered.

Remark 3.2. Considering the special case that the spectrally positive Lévy process is a com-
pound Poisson process, our model corresponds to the Cramér–Lundberg insurance risk model.
In particular, taking ϕ′(0)> 0 so that eventual ruin is not certain, the LST of Yβ,ω with β = 0
immediately yields the LST of the (all-time) bankruptcy probability in the Cramér–Lundberg
model with initial capital u. That quantity was studied in [6] for exponentially distributed claim
sizes, and in [10] for generally distributed claim sizes.

Through the duality relation between the Cramér–Lundberg model and its queueing coun-
terpart, our results also provide insight into the M/G/1 queue. In particular, Theorem 2.2 entails
for the special case β = 0 and ϕ′(0)> 0 that the steady-state workload is distributed as the
sum of two independent quantities: (i) Y(Tω), the supremum of the workload until the first
Poisson(ω) inspection epoch, and (ii) Y0,ω, the steady-state workload (or waiting time) in an
M/G/1 queue with exp(ψ(ω))-distributed interarrival times and service times distributed as the
Z+ defined above (with β = 0).

Remark 3.3. In many real-life applications, it may be more natural to have inspection intervals
that are constant, or at least have a small coefficient of variation, instead of being expo-
nentially distributed. In this remark we outline how we can use the alternative derivation of
Proposition 3.1, as described in Remark 3.1, to determine the LST of the running maximum at
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Erlang(k, kω)-distributed inspection moments, with k ∈N. Note that the mean inspection inter-
val still equals 1/ω, and that its squared coefficient of variation equals 1/k, so that the case of
a large k emulates constant inspection intervals. We shall again denote by Yβ,ω the running
maximum at inspection moments until killing epoch Tβ ∼ exp(β), and by Nβ,ω the number of
inspections before killing. We now have

P(Nβ,ω = n) =
(

kω

kω+ β

)kn(
1 −

(
kω

kω+ β

)k)
, n = 0, 1, . . .

Indeed, the first factor on the right-hand side denotes the probability that at least kn intervals
∼ exp(kω) occur before Tβ , while the second factor denotes the probability that, subsequently,
less than k such exp(kω) intervals occur, i.e. the (n + 1)th inspection does not occur before Tβ .

Denote by Z−
1 , . . . , Z−

k the negatives of the running minima, and by Z+
1 , . . . , Z+

k the run-
ning maxima, over k consecutive exp(kω) intervals which together compose one inspection
interval. Since Y is a spectrally positive Lévy process, it follows that Z−

1 , . . . , Z−
k are indepen-

dent and identically distributed (i.i.d.) exp(ψ(β + kω)) distributed. We furthermore note that
Z+

1 , . . . , Z+
k are i.i.d., and the reasoning leading to (3.3) shows that their LST is given by

E e−αZ+ = β + kω

β + kω− ϕ(α)

ψ(β + kω) − α

ψ(β + kω)
.

Moreover, all the Z−
i and Z+

j are independent. Now Yβ,ω, as a supremum of partial sums

Sn =∑n
m=1 Zm with Zm =∑k

i=1 Z+
m,i −

∑k
i=1 Z−

m,i, can be interpreted as the waiting time of

the Nβ,ωth customer of an Ek/G/1 queue with generic interarrival time
∑k

i=1 Z−
i and generic

service time
∑k

i=1 Z+
i , with the first customer arriving in an empty system. Its LST, and hence

the LST of Yβ,ω, is given by

∞∑
n=1

P(Nβ,ω = n) E e−αWn =
(

1 −
(

kω

β + kω

)k) ∞∑
n=1

(
kω

β + kω

)kn

E e−αWn .

Finally, we can use [20, Theorem 25, p. 44] for the generating function of E e−αWn in the
Ek/G/1 queue.

We close this remark by once more focusing on the bankruptcy probability in insurance
risk. In Section 2.2 we saw that the probability of bankruptcy before Tβ is given by p̃(u, Tβ ) =
P(Yβ,ω > u). Hence, the LST of the bankruptcy probability, in the case of a spectrally positive
Lévy process and Erlang(k, kω) inspection intervals, immediately follows from the LST of
Yβ,ω.

Remark 3.4. The decomposition can be used to determine all moments of Yβ,ω from the
(known) corresponding moments of Y(Tβ ) and Y(Tβ+ω). In this remark we demonstrate this
by providing such a computation for the mean and variance of Yβ,ω. Clearly, it suffices to be
able to determine the mean and variance of Y(Tζ ) for some ζ > 0:

E Y(Tζ ) = 1

ψ(ζ )
− ϕ′(0)

ζ
, (3.4)

Var Y(Tζ ) = ϕ′′(0)

ζ
+
(
ϕ′(0)

ζ

)2

−
(

1

ψ(ζ )

)2

.
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A decomposition for Lévy processes inspected at Poisson moments 565

Due to the independence of the terms on the right-hand side of the decomposition of
Theorem 2.2, the mean and variance of Yβ,ω immediately follow by successively plugging
in ζ = β and ζ = β +ω, and subtracting the resulting expressions.

3.2. The spectrally negative case

Suppose that Y is spectrally negative, i.e. it has no upward jumps. Consider an exp(ζ )-
distributed interval. Define the cumulant	(α) := log E exp (αY(1)) and its right-inverse
(β).
As follows directly from, e.g., [17, Section 6.5.2], the running maximum Y(Tζ ) is exponen-
tially distributed with rate 
(ζ ). Using this result with ζ = β and ζ = β +ω, and applying
Theorem 2.2, we obtain an expression for the LST of Yβ,ω in the spectrally negative case.

Proposition 3.2. If Y is spectrally negative, then, for α � 0,

E e−αYβ,ω = 
(β)


(β) + α


(β +ω) + α


(β +ω)
. (3.5)

Using Proposition 3.2, an elementary computation reveals that Yβ,ω has an atom at zero, i.e.

P(Yβ,ω = 0) = 
(β)


(β +ω)
,

and is exp(
(β)) distributed with the complementary probability 1 − P(Yβ,ω = 0).

Remark 3.5. Just like in Remark 3.1, we could also have obtained the LST of Yβ,ω by observ-
ing that Yβ,ω can be interpreted as the waiting time of the Nβ,ωth customer in a single-server
queue with generic interarrival time Z− and generic service time Z+, with the first customer
arriving in an empty system. In this case Z+ is exp(
(β +ω)) distributed. Hence, we can now
use [12, (II.3.100)] for the generating function

∑∞
n=1 rn

P(Wn < s), with Wn denoting the wait-
ing time of the nth customer in the G/M/1 queue. We close this remark by observing that Y0,ω
is distributed as the steady-state waiting time (if it exists) in the above-described G/M/1 queue;
that waiting time is also exponentially distributed with an atom at zero.

4. Asymptotics in the compound Poisson setting

In this section we demonstrate the potential of our results by using them to establish the
asymptotics of the bankruptcy probability for large initial capital u. The driving Lévy process
is a compound Poisson process with drift, characterized through its Laplace exponent ϕ(α) =
rα − λ(1 − b(α)); here, λ can be viewed as the claim arrival rate, r as the premium rate, and b(·)
as the LST of a generic claim size B. We are interested in the behavior of p̃(u) = P(Y0,ω > u)
for large u, which can be interpreted as the bankruptcy probability in the Cramér–Lundberg
insurance risk model for large initial capital u. We assume that λEB< r, as otherwise ruin
and bankruptcy are certain. Section 4.1 treats the case of a light-tailed jump-size distribution,
and Section 4.2 that of a heavy-tailed jump-size distribution. Here, light-tailed means that
b(α) is finite for some α < 0 or, equivalently, that P(B> x) = O(e−ax) for some a> 0. Heavy-
tailed means that b(α) is infinite for all α < 0; we shall restrict ourselves to the well-known
subclass S�.

4.1. The bankruptcy probability in the light-tailed case

We assume in this subsection that B is light-tailed in the sense that there is a unique strictly
positive solution θ� of the equation ϕ(−θ�) = 0. Our aim is to identify the asymptotic behavior
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of p̃(u), and to compare it to the classic result for the asymptotic ruin probability p(u) in the
same model (which coincides with the asymptotic behavior of the waiting-time tail in the dual
M/G/1 queue). The well-known Cramér–Lundberg approximation [7, Theorem 5.3] states that

p(u) ∼ γ e−θ�u, (4.1)

with f (u) ∼ g(u) denoting f (u)/g(u) → 1 as u → ∞, and

γ = − ϕ′(0)

ϕ′(−θ�) . (4.2)

To determine the asymptotics of p̃(u) we return to an observation made in Remark 3.1: Yβ,ω
can be interpreted as the waiting time of the Nβ,ωth customer of an M/G/1 queue with generic
(exponentially distributed) interarrival time Z− and generic service time Z+. For β = 0, Y0,ω
becomes the steady-state waiting time for that queue. Notice that EZ− = 1/ψ(ω) while, as Z+
is distributed as Y(Tω), it follows from (3.4) that EZ+ = 1/ψ(ω) − ϕ′(0)/ω. As ϕ′(0) = r −
λEB> 0, we have EZ− >EZ+, so the steady-state waiting-time distribution indeed exists. As
a consequence, we can (again) rely on the Cramér–Lundberg approximation, or (equivalently)
the tail asymptotics of the M/G/1 queue with generic interarrival time Z− and generic service
time Z+, cf. (4.1): p̃(u) ∼ γ̃ e−θ̃ �u, u → ∞. Our next task is to determine the constants θ̃ � and γ̃ .
The customer arrival rate in the auxiliary M/G/1 queue is 1/EZ− =ψ(ω), the generic service
time Z+ has LST (cf. (3.3))

E e−αZ+ = ω

ω− ϕ(α)

ψ(ω) − α

ψ(ω)
,

and the service speed or premium rate equals one. Hence, θ̃ � is the unique positive solution of
ϕ̃(−θ̃ �) = 0, with ϕ̃(α) := α −ψ(ω)(1 −E e−αZ+

):

θ̃ � −ψ(ω)

(
1 − ω

ψ(ω)

ψ(ω) + θ̃ �

ϕ(−θ̃ �) −ω

)
= 0.

It readily follows that θ̃ � = θ� satisfies this equation (as ϕ(−θ�) = 0), while otherwise there is
only the negative solution θ̃ � = −ψ(ω). The implication is that the bankruptcy probability p̃(u)
has the same decay rate θ� as the ruin probability p(u).

Let us now determine the prefactor γ̃ . Using (4.2) with ϕ(α) replaced by ϕ̃(α), we find:

γ̃ = − ϕ̃′(0)

ϕ̃′(−θ̃ �) = − 1 −ψ(ω)EZ+

1 +ψ(ω) d
dαE e−αZ+ ∣∣

α=−θ̃ �
.

A brief calculation, using (4.2), results in

γ̃ = γ
ψ(ω)

ψ(ω) + θ�
. (4.3)

We have established the main result of this subsection.

Proposition 4.1. Assume B is light-tailed. As u → ∞,

p̃(u)

p(u)
→ γ �ω := ψ(ω)

ψ(ω) + θ�
.
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This result shows that γ �ω ↑ 1 as the inspection rate ω grows large. In addition, using that
ϕ(α) − rα + λ→ 0 as α→ ∞ implies that ψ(θ ) − (θ + λ)/r → 0 as θ → ∞, it can be verified
that limω→∞ ω(1 − γ �ω) = rθ�, which means that, for ω large, γ �ω behaves as 1 − rθ�/ω. This
relation can be used to determine a ‘rule of thumb’ by which one can determine the minimally
required inspection rate ω such that the information loss due to Poisson inspection is below a
given threshold.

4.2. The bankruptcy probability in the heavy-tailed case

In this subsection we study the asymptotic behavior of the bankruptcy probability when B is
heavy-tailed. More specifically, we assume that B ∈ S�, a class introduced in [16]. A random
variable U on R belongs to S� if and only if its complementary distribution function FU(x) :=
P(U > x) is positive for all x, and

∫ x
0 FU(x − y)FU(y) dy ∼ 2mU FU(x) as x → ∞; here, mU

denotes the mean of U, restricted to the positive half-axis. S� is a class that is contained in, but
is also very close to, the well-known class S of subexponential distributions. The class S� has
the convenient property that if U ∈ S� then both U and Ures, the latter random variable being
characterized through

P(Ures � x) =
∫ x

0

P(U > y)

mU
dy,

are subexponential.
In our analysis of the asymptotics of p̃(u), we shall use a well-known result from [14]

concerning the supremum Mσ of a random walk {Sn}n∈N over an interval [0, σ ], with σ some
random variable (see also [15, Theorem 1] for the more general case of σ being a stopping
time, and [7, p. 309] for the special case of a constant σ ). If the increments of the random
walk are in S�, with distribution function F(·) and complementary distribution function F(·),
then

lim
u→∞

P(Mσ > u)

F(u)
=E σ . (4.4)

Notice that the increments attain values in R, i.e. not necessarily in R
+. If we take F(·) to

be the distribution function of a claim size minus a claim interarrival time, then we can apply
(4.4) by considering the random number of claim arrivals in an exp(ω) interval. This yields:

P
(
Y(Tω)> u

)∼ λ

ω
F̄(u) ∼ λ

ω
P(B> u). (4.5)

In order to use this result to determine the asymptotic behavior of the bankruptcy probability,
we observe the following:

(i) Y(Tω) has the same distribution as Z+, cf. (2.8) with β = 0. Hence, Z+ ∈ S�, and
Z+,res is subexponential.

(ii) Y0,ω can be viewed as the steady-state waiting time in an M/G/1 queue with generic
service time Z+ and arrival rate ψ(ω), so with load ρ := EZ+/EZ−. Hence, we
can use a standard result for the waiting-time tail in the M/G/1 queue, in which the
residual service time Z+,res is subexponential:

P(Y0,ω > u) ∼ ρ

1 − ρ
P(Z+,res > u).
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This result holds equivalently for the ruin probability in the dual Cramér–Lundberg
model, see, e.g., [7, Theorem X.2.1], and hence we conclude that

p̃(u) = P(Y0,ω > u) ∼ EZ+

EZ− −EZ+P(Z+,res > u)

= 1

EZ− −EZ+

∫ ∞

u
P(Z+ > y) dy

= ω

r − λEB

∫ ∞

u

λ

ω
P(B> y) dy.

Here, the last equality follows using EZ− = 1/ψ(ω) and (cf. (3.4)) EZ+ = 1/ψ(ω) −
ϕ′(0)/ω with ϕ′(0) = r − λEB> 0, and applying (4.5).

Combining (i) and (ii) yields the main result of this subsection.

Proposition 4.2. Assume B ∈ S�. As u → ∞,

p̃(u) ∼ λEB

r − λEB
P(Bres > u).

Notice, looking at the statement in (ii) above regarding the tail behavior in an M/G/1 queue,
that p̃(u) has the exact same tail asymptotics as p(u). In particular, the asymptotics of p̃(u) do
not depend on the inspection rate ω. This may look surprising at first sight, but realize that
for B ∈ S� there is the intuition that ‘a single big jump’ is responsible (with overwhelming
probability as u → ∞) for exceeding a high level. This suggests that when ruin occurs, it is
highly likely that the capital is still below zero at the next inspection moment.

Remark 4.1. In the special heavy-tailed case of regularly varying claim sizes, we can identify
the tail asymptotics of p̃(u) in a more straightforward way by applying [9, Theorem 8.1.6] to
the LST of Y0,ω (as given by (3.5) with β = 0).

Remark 4.2. As suggested in [1], we could alternatively obtain the asymptotics of this section
via [4, (2)], which in our notation reads as p̃(u) =E p(u + Z−) (see also (2.6)). Use dominated
convergence to take the limit inside the expectation of this equation, and observe that Z− is
exp(ψ(ω)) distributed in this spectrally positive case. In the light-tailed case we can then see
that θ̃ � = θ� and that γ̃ = γE e−θ�Z−

, thus yielding (4.3). In the heavy-tailed case the follow-
ing holds for a subexponential random variable X : P(X > u) ∼ P(X > u + Z−), and hence the
subexponential asymptotics for the continuously observed and discretely observed processes
are the same.

5. Discussion and concluding remarks

The main finding presented in this work is a decomposition result involving the running
maximum value of a Lévy process at Poisson inspection times as well as the running maxi-
mum of the continuously observed process. It allows the translation of known results for the
continuously observed process in terms of the Poisson-observed process; such a translation
procedure has been followed to find an explicit characterization of the running maximum value
of spectrally one-sided Lévy processes at Poisson inspection times, and to find tail asymptotics
of the bankruptcy probability in the celebrated Cramér–Lundberg model.

Many extensions can be conceived. In the first place, we could think of the inter-inspection
times being phase-type; to this end, ideas from [11, Section 5.1] and [8] could potentially
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be used. It would also be interesting to see whether we can have similar decompositions to
Theorem 2.2 for overshoots, cf. [4]. From a practical perspective, it would further be relevant to
allow the inspection rate to depend on the process level. Finally, the connection with Poisson-
observed Lévy-driven storage systems can be explored, e.g. to study whether the results in the
present paper can be used for hypothesis testing purposes [19].
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