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Abstract

In recent years, the extraction of overlapping relations has received great attention in the field of natural
language processing (NLP). However, most existing approaches treat relational triples in sentences as iso-
lated, without considering the rich semantic correlations implied in the relational hierarchy. Extracting
these overlapping relational triples is challenging, given the overlapping types are various and rela-
tively complex. In addition, these approaches do not highlight the semantic information in the sentence
from coarse-grained to fine-grained. In this paper, we propose an end-to-end neural framework based
on a decomposition model that incorporates multi-granularity relational features for the extraction of
overlapping triples. Our approach employs an attention mechanism that combines relational hierarchy
information with multiple granularities and pretrained textual representations, where the relational hier-
archies are constructed manually or obtained by unsupervised clustering. We found that the different
hierarchy construction strategies have little effect on the final extraction results. Experimental results on
two public datasets, NYT and WebNLG, show that our mode substantially outperforms the baseline system
in extracting overlapping relational triples, especially for long-tailed relations.

Keywords: Relational extraction; Relational hierarchy; Multi-granularity information; Long-tail classification

1. Introduction

Relation extraction (RE) extracts the semantic relations between entities in unstructured text.
Traditional pipeline approaches ignore the interaction and correlation between entity detection
and relational classification and are prone to error propagation (Li and Ji 2014). Recent works
(Yu and Lam 2010; Miwa and Sasaki 2014; Ren et al. 2017) also show that jointly integrating the
information of entities and relations can solve this problem.

However, due to the inherent complexity of language, there may be multiple entities in a
sentence, and some relational triples (subject, relation, and object) in a sentence may share
one or more entities among themselves in which the triples are called overlapping relational
triples (see Figure 1). For example, “But in the fall of 2004, Asia ’s broadest economic shoul-
ders, China and Japan, bumped over a pipeline to ship Siberian oil.” has two triples (Asia,
/location/location/contains, China) and (Asia, /location/location/contains, Japan), which exhibit
SingleEntityOverlap. Another case is “In Baghdad, Mr. Gates talked to enlisted service members on
the second day of his visit to Iraq.” The sentence has two triples (Iraq,/location/location/contains,
Baghdad) and (Irag,/location/country/capital, Baghdad), which exhibit EntityPairOverlap.
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Table 1. Statistics of datasets. Note that a sentence can belong to both
the EPO class and SEO class

NYT WebNLG
Category Train Test Train Test
Normal 37013 3266 1596 246
EPO 9782 978 227 26
SEO 14735 1297 3406 457
All 56195 5000 5019 703
Relation 24 171
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Figure 1. Examples of overlapping relation patterns, e.g., Normal, SingleEntityOverlap (SEO) and EntityPairOverlap (EPO).

We can find that the overlapping entities in different triples may have different semantic informa-
tion, for example, in the example of EntityPairOverlap, “Baghdad” not only means a region of Iraq
but also the capital of “Irag,” making it difficult to extract relationships with overlapping entities.

Sentences in the New York Times (NYT) (Riedel et al. 2010) and WebNLG (Gardent et al.
2017) datasets commonly contain multiple overlapping relational triples. Statistics of the NYT and
WebNLG datasets are described in Table 1. In the NYT training set, the sentences with overlapping
triples account for 43% of the sentences, and in the WebNLG training set, they account for 72.3%.
It is observed that the sentences with overlapping triples have a proportion that cannot be ignored
in the two datasets.

The previously mentioned methods cannot identify overlapping relational triples effectively.
Most existing models identify overlapping triples based on two groups of methods, decoder-based
and decomposition-based. Decoder-based models rely on the encoder-decoder architecture,
where the decoder decodes one word or triple each time (Zeng et al. 2018; 2019; Nayak and Ng
2020). Decomposition-based models first distinguish between all the candidate subjects involved
in the target relations and then sequentially identify the corresponding object entities and relations
for each extracted subject entity (Yu et al. 2020; Wei et al. 2020).

Despite their success, previous works on overlapping relational extractions still leave much to
be desired. Specifically, these methods focus on relational extractions without considering the cor-
relations in the relational hierarchy and ignore the coarse-to-fine-grained semantic information
from the category level to the instance level.

We take an example from the NYT (Riedel et al. 2010) dataset, as shown in Figure 2, in
which the hierarchical structure of relations is manually annotated. Based on this work’s (Han
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Figure 2. Hierarchical structure of NYT dataset.

et al. 2018) understanding of the relational hierarchy, for example, the relation /people /per-
son/nationality in NYT indicates that the relation is labeled under the people category. In the
relation /people/person/nationality, /person/nationality contains instance-level information,
while /people contains the category-level information. There are some other relations under the
people category, such as /people/person/place_lived, /people/person/place_of birth and /peo-
ple/person/children. These relations are closely associated with each other and may have some
relevant semantic information.

Therefore, these relational hierarchies may reveal the semantic similarity of relations between
entities. McCallum et al. (1998) utilized the hierarchies of the classes to improve classification
models. Hu et al. (2015) and Xie et al. (2016) used the hierarchical information of entities from
KGs. They demonstrated it to be effective for knowledge graph completion and triple extraction
tasks, especially for the data with a long-tailed distribution. Zhang et al. (2018) constructed a
three-level hierarchical relation structure (HRS) to learn knowledge representation by leveraging
rich hierarchical relation information. They achieved significant improvements compared with
the baselines on link prediction and triple classification tasks. Han et al. (2018) also incorporated
the hierarchical information of relations into the relation extraction task, which is especially help-
ful for extracting those rare relations. Real-world datasets always have a skewed distribution with
a long tail with a small number of relation types (i.e., head relation types) occur more frequently,
which make up most of the data, and, in contrast, most relations (i.e., long-tail relations) have
only a few training instances (Liang et al. 2021). Our preliminary experiments also suggest that the
hierarchical information from different semantic levels is of great value for relational extraction.
For long-tailed rare relation types, coarse-grained semantic knowledge of entities can enhance the
model’s ability to identify semantically similar relations, whereas fine-grained information can
help capture different semantic of the same entity in different overlapping triples.

To handle overlapping relational triples, combined with knowledge of relational hierarchies, in
this paper, we propose an end-to-end neural framework using coarse-to-fine-grained attention for
overlapping triple extraction. Our model employs the attention mechanism combining the rela-
tional hierarchy to incorporate the multi-granularity relational features ranging from the category
level to the instance level in the model (Wei et al. 2020), which is based on first extracting the sub-
ject entities and then extracting the object entities related to the subject and relationship. Our
model improves the overlapping relationship extraction by incorporating multi-granular rela-
tionship features from the category level to the instance level. Different from existing relational
hierarchy methods (Han et al. 2018), the hierarchy of relationships is obtained either manually
with labels or automatically by clustering. The attention mechanism using the relational hierarchy
has two levels. The global attention level captures common features among multiple related rela-
tions in a relational cluster, called category-level features. The local attention level focuses on more
specific features of the relationships in sentence instances, called instance-level features. Thus, the
attention mechanism using relational hierarchy provides both the coarse and the fine granularity
of relational features.
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We conducted experiments for overlapping relation extraction on two public datasets: NYT
(Riedel et al. 2010) and WebNLG (Gardent et al. 2017). As shown in Table 1, in both datasets,
there is a nonnegligible overlapping relationship in the sentences. Nearly, 70% of the relations are
long-tailed in the NYT dataset (Zhang et al. 2019; Li et al. 2020), as is the WebNLG dataset (as
shown in Figure 7).

Experimental results show that the proposed method can obtain coarse-to-fine-grained rela-
tion information effectively for overlapping relational extraction tasks and outperforms other
baseline methods, even compared to the recent state-of-the-art models, especially for long-tail
relations.

The research contributions of this paper can be summarized as follows:

(1) We propose an end-to-end neural framework that has an attention mechanism using rela-
tional hierarchy to improve the overlapping problem in triple extraction. This attention
mechanism enables the capture of semantics from entities to relations by considering the
multi-granularity features. Experiments show that our model outperforms previous works
and achieves state-of-the-art results on the benchmark datasets.

(2) We obtained the relational hierarchy by using manually annotated relational structures or
by using automatic clustering. Our experiments show that the difference between the two
methods of constructing the relationship hierarchy is not significant for the final extraction
effect. And whether or not category labels are incorporated in the relation names during
clustering also has little effect on the final results.

(3) By employing the attention mechanism using relational hierarchy, we fuse multi-
granularity relational knowledge to achieve knowledge sharing of similar semantics and
knowledge differentiation of different semantics in multiple overlapping triples. Further
analysis shows that our model not only improves the extraction of overlapping relations
but also improves the triple extraction of long-tail relations.

2. Related work

Extracting relational triples from unstructured texts is an important task in information extraction
(IE). Early pipeline methods (Mintz et al. 2009; Gormley et al. 2015) usually suffer from the error
propagation problem. They also overlook the strong association between entity recognition and
relation extraction. Feature-based models (Yu and Lam 2010; Li and Ji 2014; Miwa and Sasaki
2014; Ren et al. 2017) heavily rely on feature engineering and require intensive manual effort.
Neural network-based methods (Gupta et al. 2016; Zheng et al. 2017) can reduce the manual work
and often jointly learn the entities and relations. However, they ignore the problem of overlapping
relational triples.

To address the overlapping triples problem, researchers have proposed a variety of neural net-
works (Zeng et al. 2018; 2020; 2019; Nayak and Ng 2020; Yu et al. 2020; Wei et al. 2020; Bekoulis
et al. 2018; Fu et al. 2019; Wang et al. 2020; Zheng et al. 2021; Zhang et al. 2021; 2022). Existing
models can be categorized as decoder-based and decomposition-based models. Decoder-based
models use an encoder—-decoder architecture, in which the decoder extracts one word or one
triple at a time, similar to machine translation models. Zeng et al. (2018) analyzed three pat-
terns of overlapping triples existing in the task. They propose an encoder-decoder model with a
copy mechanism to handle relation triples with overlapping entities but during decoding, this
CopyRE model fails to generate multiword entities. As a supplement, CopyMTL (Zeng et al.
2020) proposes a multitask learning framework that completes the entities by adding an auxiliary
sequence labeling task to CopyRE. Another variation of CopyRE, called OrderCopyRE (Zeng et al.
2019), applies reinforcement learning under the encoder-decoder architecture to deal with mul-
tiple triples; Nayak and Ng (2020) employs the WDec decoder to extract each word in a sequence,
which allows extracting overlapping relation triples with multitoken entities.
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Decomposition-based models extract all possible candidate subject entities first and then
extract the corresponding object entities and relations according to each extracted entity.
ETL-Span (Yu et al. 2020) presents a unified sequence labeling framework based on a novel
decomposition strategy that can decode triples hierarchically. However, this method can only
recognize SEO relations in the sentence and fail to extract EPO triples. To handle EPO cases,
CasRel (Wei et al. 2020) is a novel cascade binary tagging framework based on the BERT
backbone, which first identifies subject entity candidates in a sentence and then extracts the
corresponding object entities given the possible relation for each subject entity.

Other types of models, such as MultiHead (Bekoulis et al. 2018), distinguish between all the
candidate entities first and then formulate the task as a multihead selection problem. GraphRel
(Fu et al. 2019) utilizes a graph convolutional network (GCN) to extract overlapping relations by
splitting entity mention pairs into several word pairs and considering all the pairs for prediction.

However, these models ignore the rich semantic similarity among the relations, regarding each
relation as isolated, especially the hierarchical information of those relations. Hierarchical infor-
mation is widely applied for model enhancement, especially for classification models (Rousu et al.
2005; Weinberger and Chapelle 2009; Zhao et al. 2011; Bi and Kwok 2011; Xiao et al. 2011; Verma
et al. 2012). Hu et al. (2015) learns entity representation by considering the entire entity hierarchy
of Wikipedia. Xie et al. (2016) uses a hierarchical-type structure to help learn knowledge graph
representations. Zhang et al. (2018) learns knowledge representation by constructing a three-level
hierarchical relational structure that makes use of rich hierarchical relational information. Han
et al. (2018) uses the hierarchical information of relationships for relation extraction.

Learning from the above works, to improve the performance of overlapping relation extrac-
tion, we design an attention mechanism using relational hierarchy to obtain the multi-granularity
semantic features. We have two approaches in obtaining the relationship hierarchy, using manual
annotation or automatic clustering. Our model applies the attention mechanism using relational
hierarchy to capture the coarse-to-fine-grained semantic features of multiple overlapping triples in
a sentence, which can improve the extraction of overlapping triples, as well as triples with long-tail
relations.

3. Framework

In this section, we elaborate on the framework of the model, which integrates hierarchical rela-
tional information based on decomposition-based models. Then, we describe every part of the
model in detail.

Given a sentence s, we adopt our models to extract all the triples (subject, relation, and object)
whether they are normal or EPO, SEO type. Learn from Casrel (Wei et al. 2020), the basic idea
is to model relations as functions that map subjects to objects. In other words, we extract all the
subjects in the input sentence first and then select all the object entities related to the subject entity
and relations. The target relations here are all in the set R. As illustrated in Figure 3, the overall
framework of our model includes the BERT encoder, Subject Recognizer, Hierarchical Relation,
Information Infusion, and Object Recognizer. The BERT encoder encodes the sentences to obtain
a semantic representation. The Subject Recognizer is used to obtain all the subject entities in
the sentences. In the Hierarchical Relation Module, there are two levels of relational hierarchy
including category level and instance level, which are obtained using manual annotation or auto-
matic clustering, and then the semantic information of the sentence related to each level of the
relationship is obtained as multi-granularity semantic information through an attention mecha-
nism. Information Infusion fuses one of the candidate entities, the representation of each token in
the sentence, and the multi-granularity semantic information related to the sentence. Finally, the
Object Recognizer determines all the corresponding objects for the selected subject entity.
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Figure 3. Framework of our model.
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Figure 4. Anillustration of our model. The left panel is an overview of our joint extraction model, and the right panel shows
the acquisition of the hierarchical structure of relations and how to obtain coarse-to-fine granularity relation information
through the attention mechanism. For WebNLG datasets without manually annotated hierarchical relations, the hierarchical
structure of the relations is obtained by clustering automatically; for the NYT dataset with a manually annotated relational
structure, we use clustering to obtain the hierarchy or utilize the annotated relational structure. Here, we use a two-level
structure to unify the number of relational hierarchies of the NYT and WebNLG datasets and take a sentence in the NYT
training set as an input example.

3.1. Bertencoder
Given a sentence s = {wy, w2, . . ., W, } as a sequence of tokens, we apply a pretrained BERT model
(Devlin et al. 2019) to encode the sentence into its corresponding embeddings.

The input representation of each token in BERT is constructed by the summation of the cor-
responding token, segment, and position embeddings. In our work, the input contains only one
sentence, so all its segment IDs are set to zero. In addition, the special tokens [CLS] and [SEP]
are placed at the start and end of the sentence. As shown in Figure 4, Module 1 shows the BERT
encoder, which extracts feature information from the input sentence s. The final hidden vector
is $= {T[CLS], T, T, ..., Ty, Tsep) }, where T|cLs) € RH and T(sep) € RH are the final hidden
vectors of the special [CLS] and [SEP] tokens, respectively, and T; € R¥ is the final hidden vector
for the i-th token. (H=768)

3.2. Subject Recognizer

The Subject Recognizer aims to recognize all the candidate subjects in the input sentence. The
sentence representation encoded by BERT is used as the input of the module. Then, this module
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detects whether each token is the start or end position of a subject entity by adopting two binary
classifiers and labeling a binary tag as 0 or 1. As shown in Figure 4, Module 2 shows the details of
the Subject Recognizer. The start and end positions of the entities in the figure are represented by
colored horizontal or vertical line rectangles, respectively; that is, the binary tag of the start or end
of the token is 1. Formally, the operations of tagging the start and end positions on each token are
Equations (1) and (2), respectively:

p=* = Sigmoid (WT; + b°) 1)

P = Sigmoid (W°T; + b°) )

sub_s

where W) is the trainable weight and b®) is the bias. p{**~* and p$“*~¢ denote the probability of
distinguishing the i-th token in the input sentence as the start and end positions of the subject
entity, respectively. If the probability exceeds a certain threshold, the corresponding token will be
assigned Label 1; otherwise, it will be assigned 0.

The Subject Recognizer optimizes the following likelihood function to identify the span of

subjects sub given a sentence representation S:

posub| =[] ﬁ(pﬁ)lhﬁ:l} (1_p5)1{y5:°} 3)

le{sub_s, sub_e } i=1

where I {x} =1 if x is true and 0 otherwise. yf”lu and ys-”b*e

; represent the binary labels of the
subject entity start and end positions for the i-th token in s, respectively. The parameter # is the
length of the input sentence. 6 represent the module’s parameters, § = { W*, b*, W, b¢}.

Since there will be multiple subject entities, we adopt the nearest start—end pair match principle
to decide the span of any subject based on the results of the start and end position taggers (Wei
et al. 2020). For example, as illustrated in Figure 4, “New” is a starting position token, and the
ending position tokens are “Zealand” and “Wellington”. According to the principle of proximity,
the nearest end position token matching the starting position token “New” is “Zealand”; hence,
one of the entities in the sentence is “New Zealand”.

3.3. Hierarchical relation

We adopt the Hierarchical Relation Module to capture the multi-granularity semantic features of
the multiple overlapping relational triples in the input sentence. Accordingly, we need to obtain
the relational hierarchy structure of the dataset and the vector representation of all relations of
each level.

Because the sentences in both the NYT and WebNLG datasets usually contain multiple
relational triples, these two datasets are very suitable as evaluation models for extracting over-
lapping relational triples. Relations of the NYT dataset are already manually annotated with
the hierarchy structure. As shown in Figure 2, for relations such as /people/person/place_lived,
this relation belongs to the people category. In the relation /people/person/place_lived, /per-
son/place_lived contains instance-level information, while /people contains the category-level
information. However, relations of the WebNLG dataset do not possess a hierarchical structure
annotated manually, for example, birthPlace and capital. To ensure that the number of levels of
the relational structure is consistent with both datasets, and to make full use of the instance-level
and category-level hierarchies that NYT has labeled, we unify the relational structure into two
levels. Therefore, to obtain the relational hierarchy, we have two approaches, using manual anno-
tation or automatic clustering. Hence, for the NYT dataset, the two-level relationship structure
can be constructed not only directly from manual annotation but also through clustering. For the
WebNLG dataset, we can have two levels of the relational structure through clustering.
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Figure 5. The relationship weight of input sentences at different levels is achieved by the attention mechanism.

In this experiment, we apply the affinity propagation (Frey and Dueck 2007) algorithm to
cluster to obtain higher-level relations. Affinity propagation is used to measure the similarity algo-
rithm, which considers all data points as potential exemplars simultaneously. By treating each data
point as a node in a network, affinity propagation transmits real-valued messages along the edges
of the network until a good set of exemplars and corresponding clusters emerges. Compared with
the K-means algorithm, the affinity propagation algorithm does not need to specify the number
of final clusters, and the sum of squares error is low. Because of its insensitivity to the initial value,
the results of multiple executions are identical. Although the complexity of affinity propagation is
higher than that of K-means, in both datasets, the dataset with the most relationships, WebNLG,
only has 171 relationships, so the time consumption of affinity propagation is tolerable.

In the following sections, we describe how to obtain the two-level relational hierarchy and the
relational representation of each level by clustering, or from the two datasets, and how to use the
relational hierarchy to obtain semantic information of the multiple overlapping relational triples
through the attention mechanism.

3.3.1. Acquisition of relational hierarchy and the representation of relations

In this section, we focus on how to obtain the two levels’ relational hierarchical structure and
the relational representation of each level. For datasets that already have a manually labeled rela-
tionship hierarchy, we can use the manually labeled relationship hierarchy or obtain it through
clustering, such as for NYT; for datasets without a relationship hierarchy, we can only obtain it
through clustering, such as for WebNLG. Given a dataset, we define the relational collection R as
the following equation:

RE={rl 57k o s rhum, | (LENY) (4)

> ‘numy,

where L is the number of levels of the relationship; when L is 1, it denotes the base level. numy,
is the number of relationships at the L-th level and ¥ is the i-th relation of the L-th level. For
example, for the NYT dataset with a manually annotated hierarchy, we select two levels from the
annotated hierarchy. As shown in Figure 5, taking the relation /people/person/place_live as an
example, we choose the category of people as one of the relations in the higher level, that is, L is 2,
then the complete presentation /people/person/place_live is one of the relations in the base level,
thatis, Lis 1.

WL denotes the sequence of words in rF, where the length of the sequence is k. For example,
the i-th relation rF at the base level RL in NYT is /people/person/place_live, where L is 1. After
converting nonalphabetic symbols such as “/” and “_” to spaces, the relation - consists of a series
of words W' /people/person/place_live:

L L L L L
Wi = {Wil’ Wigs Wiz>* ++ ’Wik} (5)
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where wiLv denotes the v-th word of the i-th relation at the L-th level. For each relation in the base-
level, that is, L=1, we apply the feature-based approach without fine-tuning any of the parameters
of BERT (Devlin et al. 2019) to obtain a representation of each relation TZ-L in the base level:

= {dh k) 9

1

where té € R% is the final hidden vector corresponding to ws Then, we obtain the embedding of
each relation at the base level by the mapping function, as shown in Equation (8):

ef =f(T7) ®
Here, we apply the “average” or “sum” function as the mapping function. el € R% denotes the
final embeddings of the i-th relation r! at the L-th level:

L L L L L
E 2{61’62’63"" ’enumL} )

As shown in Eq. 9, E* represents the collection of the final embeddings of all relations at the
L-th level. For the relationship hierarchy using manual annotation, the process of obtaining the
base-level relationship representation and the higher-level relationship representation is the same,
as shown in Equations 6-9.

To obtain the relational hierarchy using clustering, we cluster the embeddings of the
L-th-level relations EL and use the affinity propagation clustering algorithm to obtain the
hierarchy of the L+1-th-level relations. Thus, we divide EL into numpiq disjoint clusters

{C]L lj=Ags 255 - s A, }, where CJ.L, Nirj C].L =fand E- = U}r.l:u;n“l C]-L. Correspondingly,
we use AL = (Af; )»é; cee AﬁumH 1) to show the clustering result and denote the cluster label of
relation er by Aan €{1,2,---, num 41}, that is, eJ]f € CiL . Therefore, we cluster the base-level

relations R (L=1) to obtain the relation of the L+1 level with the following equation:
Al =AP(E") (10)

Before clustering, we need to perform data normalization and dimensionality reduction. Here,
we choose zero-mean normalization to normalize the obtained base-level relation vectors EF
(L=1) and use the PCA dimension reduction method (Tipping and Bishop 1999) to reduce the
dimensionality of these high-dimensional relationship features before clustering.

Different choices of mapping functions for the relations at the base level can lead to different
embeddings of the obtained relations and therefore affect the clustering results. The clustering
results are shown in Figure 6. For the WebNLG dataset, as shown in Figure 6(a) and (b), when
the “average” mapping function is used for the base-level relation, the number of clustering
results of 171 base-level relations is 22, and when the “sum” mapping function is used, the
number of clustering results is 29. Similarly, the NYT dataset, which has a manually annotated
relational hierarchy, has different clustering results depending on the chosen mapping func-
tion, although the number of clustering results is 10. The results are presented in Figure 6(c)
and (d). For example, when the “average” mapping function is used in the WebNLG dataset, the
number of clustering results of 171 relationships is 22, of which the relationships in cluster 0
are 1st_runway_SurfaceType, LCCN_number, birthPlace, currentTenants, ethnicGroups, and
runwayLength.

After obtaining the clustering results of the relationships at the L-th level, it is further necessary
to obtain the representation of the relationships at the L+1-th level.

The centroid of each category obtained by the affinity propagation algorithm is the existing
data points in the sample, rather than the clustering center obtained by averaging multiple data
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Figure 6. Clustering results of different datasets. (a) and (b) are the clustering results of the WebNLG dataset when the
mapping functions of obtaining the overall representation of base-level relations are the “average” and “sum”; when the
“average” and “sum” are the mapping functions of the NYT dataset to obtain the overall representation of base-level

relations, (c) and (d) are the clustering results.

points. To obtain more of the other characteristics in the category, we do not use the centroid
of each category as the representation of higher-level relations. Thus, the representations of all
relations for each cluster at the L-th level are passed through the mapping function to obtain the
overall representation of each cluster in the L+1-th level, as shown in Eq. 11:

¢ =1(c))

(11)

Here, we apply the “average,” “max,” or “sum” function as the mapping function. .«311.“Jrl € R

L
T,
J
embeddings of all relations EX*! at the L+1-th level.

denotes the final embeddings of the j-th relation

+1 at the L+1-th level. Then, we can obtain the

3.3.2. Acquisition of multi-granularity relational information through an attention mechanism using the

relational hierarchy

We use the final hidden state corresponding to [CLS] as the aggregate representation for the input

sentence (Devlin et al., 2019).
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Given the representation of the input sentence Es = T[crs), the base-level relation EL and the
higher-level relation ELt1 where L is 1, we use an attention mechanism for each level relation
to capture the different potential levels of the relational semantics in the input sentence. In the
L-th-level relations, we compute the attention score o for each embedding el of the relation
r to indicate how much the input sentence semantics are related to this relation. We assign a
query vector g, to the embedding of each relation ef. The formulas for obtaining the relational
information associated with the sentence semantics at each level are shown below:

hE=q wiet (12)
hL
ol = # (13)
Z exp(h )
qr = E; (14)
numy,
"= afef (15)
i=1

L

where W is the weight matrix. The attention scores «; can be used in Eq. 15 to compute the

L-th-level relation information I* € R%implied in the sentence. For simplicity, we denote such
an attention operation as the following equation:

= ATT(qy, E") (16)

There are two levels of relations. We can compute the relational information associated with
the sentence semantics of the base level I' and the higher level I? through Eq. 16, respectively.

As shown in Figure 5, the attention score is calculated by the input sentence and the relations in
each level. The attention scores are multiplied by the sentence, and the latent relational knowledge
of each level contained in the sentence can be obtained by “sum.” During the training process,
because the base-level relations always suffer from data sparsity, those higher-level relations have
more sentences for training than those base-level relations. Thus, the latent relational information
in the sentence obtained from higher-level relations contains more knowledge than that obtained
from the base-level relations, namely, the knowledge obtained from the global attention can make
up for the information captured from the local attention, especially for those long-tail relations.

After obtaining the latent relational knowledge of each level contained in the sentence, we can
add them up as the final multi-granularity relational representation:

Ihier = Add({I', - ,1"}) (17)

where n is 2 in our experiments. Representation Ij,;,, € R4 will be finally infused with other infor-
mation for recognizing objects. Note that those higher representations I**! are coarse-grained,
and those base representations I* are fine-grained. Hierarchical attention can accumulate more
information than single-level attention, especially for long-tail relations.

3.4. Information fusion

Information fusion is used to fuse the relevant knowledge and provide rich semantic features to
the next module, Object Recognizer. We need to extract the corresponding objects in the next
module based on the given subject and the knowledge of the multi-granularity relations implied
in the sentence. The specific fusion operations for each token are as follows:

Ifeature = Add(Ihiers Suhk) (18)

Ii= Addeeature» Ti) (19)
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where suby is the encoded representation vector of the k-th subject detected in the Subject
Recognizer module. Note that the subjects are usually composed of multiple tokens, and we need
to keep the vector dimensions of Iy, and suby consistent. Hence, we take the averaged vector
representation between the start and end tokens of the k-th subject as suby. Iqr,re represents the
fusion information of the given k-th subject and the multi-granularity relational knowledge, and
I; denotes the embeddings of the i-th token after fusion with the relevant knowledge.

In this way, the presentation of each token can integrate the coarse-to-fine-grained relational
features and provide more semantic knowledge for the next step of object recognition.

3.5. Object Recognizer

The structure of the Object Recognizer module is similar to the Subject Recognizer, and the goal
is to recognize all the objects and relations with the subject according to the given subject. As
illustrated in Figure 4, it consists of a set of relation-specific Object Recognizer that can obtain the
corresponding objects for each detected subject at the same time. The detailed operations of the
relation-specific Object Recognizer on each token are as follows:

p?bj‘s = Sigmoid (W;I; + b}) (20)

p°bJ ¢ = Sigmoid (W¢I; + bf) (21)

where W) and b" are the trainable weight and the bias of the specific relation r that maps the

subject to the object. p; %5 and pfhj‘e represent the probability of identifying the i-th token in
the input sentence as the start and end positions of the object, respectively. For each subject, we
employ the same decoding process. The Object Recognizer for relation RE(L=1) optimizes the
following likelihood function to recognize the span of objects obj given a sentence representation
S and a subject sub:

pissbn= 1 1 )P gy b 2)

le{obj_s,obj_e} i=1

where yfbj and yfbj’eare the binary labels of the object start and end positions for the i-th token
in s, respectively. 6 represents the module’s parameters, 6 = {Wﬁ, b, Wy, bﬁ} For a given sub-
ject and corresponding relationship, no object is identified, which means that there is no such

relationship between that subject entity and other entities. So, for a “null” object objy;, the label

obj Sy obj_ey
=y, =0foralli

Note that the relation is also decided by the output of the Object Recognizer; thus, this
module is capable of simultaneously identifying the relations and objects about the subjects
detected in the Subject Recognizer. As shown in Figure 4, the relation /location/administrative_
division/country does not hold between the detected subject “New Zealand” and the candidate
object “Wellington,” but the relation holds between the detected subject “Wellington” and the
candidate object “New Zealand”. Consequently, the Object Recognizer for the relation /loca-
tion/administrative_division/country will not extract the span of “Wellington” with the given
subject “New Zealand” and outputs the span of the candidate object “New Zealand” when the
given subject is “Wellington” instead.

3.6. Training objective
We define the objective as below:

D .
Zl | [ZsubeTuplej log pa(sub| S) + ZreTuplejlsub log pro(obj | S, sub)

_ (23)
+ ZreR\Tuplejlsub log pro (ObJ(Z) S, sub)]
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where D is the training set, one of sentences from D is s, a set of potentially overlapping triples
Tuple; = {(sub, 1, obj)} arein s, and Tuple; | sub is the set of triples led by the subject sub in Tuple;.
R\ Tuple; | sub means all relations except those led by sub in Tuple;. Note that all other relations
necessarily have no object in the sentence.

4. Experiments
4.1. Datasets

To compare our model with previous work, we use the NYT (Riedel et al. 2010) and WebNLG
(Gardent et al. 2017) datasets for evaluation. The NYT dataset was originally produced by the
distant supervision method. It has 24 predefined relation types. The WebNLG dataset is used for
natural language generation tasks. The original WebNLG dataset contains 246 predefined rela-
tional types, but the relation number of this dataset is 171 in many previous works (Zeng et al.
2018; Fu et al. 2019; Zeng et al. 2019; Yu et al. 2020; Nayak and Ng 2020). In our experiments, we
use the WebNLG with 171 relations.

4.2. Evaluation

There are two different evaluation metrics selectively adopted from among previous works. The
widely used one is the Partial Match, in which an extracted relational triple (subject, relation,
and object) is regarded as correct only if the relationship and the start of both the subject and
object are all correct. The strict one is an Exact Match where an extracted relational triple (subject,
relation, and object) is regarded as correct only if the relationship and the whole span of subject
and object are all correct. For example, a gold triple is (Amy Grant, /people/person/place_lived,
and Nashville), for Partial Match, the pred triple (Amy, /people/person/place_lived, and Nashville)
can be regarded as correct, and the pred triple (Amy Grant, /people/person/place_lived, Nashville)
is regarded as correct.

In our implementation, we apply Partial Match as the evaluation metrics. To compare with
other models using exact entity matching, we also use exact entity matching to obtain the final
results of the best training model in the two datasets. Following the popular choice, we also mea-
sure and report the standard micro precision (Prec.), Recall (Rec.), and F1 scores are consistent
with all the baselines.

4.3. Implementation details

Before clustering, we use the PCA dimensionality reduction method and n_components is set
to 2. We use the base-cased-english BERT model. The number of stacked bidirectional trans-
former blocks N is 12. The size of the hidden state H is 768. We set the batch size to 6 and the
learning rate to le-5. We apply the early stop mechanism to prevent model overfitting, which
terminates the training course before exceeding 100 epochs. When the performance of the ver-
ification set has not been improved for at least seven consecutive periods, we stop the training
process. According to previous works, we set the maximum length of the input sentence to 100
and the threshold of the start and end position taggers to 0.5. All the hyperparameters are tuned
on the validation set.

4.4. Comparison models
We compare our model with several strong state-of-the-art models.
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(1) CopyRE (Zeng et al. 2018) adopts a sequence-to-sequence learning model with a copy
mechanism, which can extract relevant relational facts from the sentences of these classes.

(2) GraphRel (Fu et al. 2019) employs GCNs to better extract hidden features for jointly
learning entities and relations.

(3) OrderCopyRE (Zeng et al. 2019) adds reinforcement learning to an encoder-decoder
model to generate multiple triples, which is an extension of CopyRE.

(4) MrMep (Chen et al. 2019) proposes a novel encoder-decoder architecture that includes
a binary CNN classifier for identifying all possible relations maintained in the text and
multihead attention to extract the entities corresponding to each relation.

(5) HRL (Takanobu et al. 2019) applies a hierarchical reinforcement learning (HRL) frame-
work for joint entity and relation extraction.

(6) ETL-Span (Yu et al. 2020) decomposes the joint extraction task into HE extraction and
TER extraction. The former subtask distinguishes between all subject entities, and the latter
identifies the corresponding object entities and relations for each extracted subject entity.

(7) WDec (Nayak and Ng 2020) proposes a representation scheme for relational triples that
enables the decoder to generate one word and a pointer network-based decoding approach
where an entire triple is generated at every time step.

(8) CasRel (Wei et al. 2020) is based on the BERT backbone, which can first extract all the
possible subject entities and then identify all the relevant relations and the corresponding
object entities.

(9) RSAN (Yuan et al. 2020) uses a relation-specific attention network (RSAN) with sequence
labeling to jointly extract the entities and relations.

(10) RIN (Kai et al. 2020) designs a recurrent interaction network to explicitly capture the
intrinsic connections between the entity recognition task and relational classification task.

(11) CGT (Yeetal.2021) introduces a transformer-based generative model for contrastive triple
extraction.

4.5. Experimental results and analysis

4.5.1. Main results

Table 2 reports the different results of the relational triple extraction between our model and other
baseline models on two datasets, including experimental results using Partial entity matching and
Exact entity matching. We present the results of the BERT-based model and non-BERT model
separately. We discover that our model outperforms all the baselines in terms of recall and F1.
Since relations in the WebNLG dataset have no hierarchical structure, the hierarchical structure
of the relations can only be gained through clustering. Consequently, there is just one result on the
WebNLG datasets. Take the results of Partial entity matching as an example, our model improves
the Rec-score by 2.6% and the F1-score by 0.4% over the best state-of-the-art model (Wei et al.
2020) on WebNLG.

Although relations in the NYT dataset have an identical hierarchical structure, we still clus-
ter the base-level relations to obtain the hierarchical structure to make a fair comparison. Hence,
there are two results on the NYT dataset. Ourcy,s.r which fuses the hierarchical relation structure
obtained by clustering, improves the F1-score by 0.2%, and Oury,,,q1 fuses the manually anno-
tated hierarchical relation structure of the dataset, which improves the F1-score by 0.3%. We note
that the effect of Oury,p,,41 is better than that of Ourcyyse,. This may be caused by the error prop-
agation of the clustering, which causes the relational hierarchical information integrated into the
model to also have errors.
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Table 2. The main results for partial entity matching and exact entity matching. The datasets labeled & are
the results of exact entity matching and vice versa for partial entity matching. The CasRelgegr marked with *
is the result of our reimplementation, and the results marked with 1 are on the validation dataset. The highest
scores are marked in bold. These comparison model results are quoted directly from the original papers

NYT WebNLG NYT& WebNLGS
Model Prec. Rec. F1  Prec. Rec. F1 Prec. Rec. F1  Prec. Rec. F1
CopyRE 61.0 56.6 587 377 364 371 - - - - - -
GraphRel 639 60.0 619 447 411 429 - - - - - -

OrderCopyRE 779 672 721 633 599 616 - - - - - -
MrMep - - - - - - 779 766 771 694 770 73.0
HRL - - - - - - 781 771 776 695 629 66.0

ETL — Span 849 723 781 740 915 876 8.5 717 780 843 820 831

Whec 945 762 844 - - - 81 761 8.7 - - -
CasRelyst 842 830 836 869 806 837 - - - - - -
RSAN - - - - - - 857 836 846 805 838 821
RIN - - - - - - 839 855 847 773 768 77.0
CGTaerr - - - - - - 947 842 891 929 756 834

CasRelperr 89.7 895 89.6 93.4 901 918 - - - - - -
CasRelgerr™  87.6 902 889 902 905 904 893 885 889 876 851 863
OUrcluster 90.1 894 89.8 916 927 92.2 892 90.1 89.7 879 857 86.8
OUrvanual 89.4 90.4 89.9 - - - 896 896 896 - - -
CasRelgerr*t 885 913 89.8 912 913 913 89.8 888 893 836 845 865
Ourciustert 90.9 903 90.6 922 93.0 92.6 894 90.3 89.8 87.6 883 87.9

OUrvianualt 90.5 913 90.9 - - - 900 898 89.9 - - -

4.5.2. Ablation study

To demonstrate the role of the attention mechanism for each level, we remove the attention mech-
anism one level at a time to see its impact on performance. From these ablations shown in Table 3,
we report the results without fusing the relational hierarchy knowledge, which is CasRelpgrr, fus-
ing only the local-level relational knowledge and fusing only the global-level relational knowledge.
We observe that when the relationship information obtained from the local attention is removed,
then the F1 score decreases by 0.3% and 0.48% for the NYT dataset for the relational hierar-
chy obtained from both automatic clustering and manual annotation, respectively, and by 0.56%
for the WebNLG dataset. When the relationship information obtained from global attention is
removed, the F1 score decreases by 0.45% and 0.88% for the NYT dataset for both the relationship
hierarchy obtained by automatic clustering and the relationship hierarchy using manual annota-
tion, respectively, and by 0.76% for the WebNLG dataset. We find that the relational information
obtained from the local attention and global attention can provide effective information for the
extraction of relational triples, and both are indispensable. Moreover, for multiple overlapping
triples with the same entities in a sentence, similar semantic information obtained from global
attention is more useful for the extraction of relational triples than different semantic information
obtained from local attention.
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Table 3. An ablation study of the Partial entity matching results of our model on the validation
set. The model that does not combine with knowledge of relational hierarchies is CasRelgggr,
where our reimplementation is marked by *. The results obtained by Ourcyyster Or OUrygnyar in
different datasets with the most worked mapping function, thatis, Ourcjyster Uses the “AvgAvg”
mapping function in NYT and the “SumAvg” mapping function in WebNLG, while Ourygnyal
uses the “SumAvg” mapping function in NYT

NYT WebNLG
Model Prec. Rec. F1 Prec. Rec. F1
CasRelpgrr™ 88.51 91.31 89.89 91.29 91.37 91.33
OUrCluster 90.91 90.38 90.65 92.25 93.08 92.67
-local 90.44 90.26 90.35 91.88 92.54 92.11
-global 90.52 89.88 90.20 91.91 91.91 91.91
Ouryanual 90.54 91.31 90.92 - - -
-local 89.88 91.01 90.44 - - -
-global 90.08 90.01 90.04 - - -

Table 4. Fl-score of sentences with the different overlapping patterns using
Partial entity matching. Baselines are all quoted directly from Wei et al. (2020)
except for the ETL-Span. The results of ETL-Span are reproduced from official
implementation

NYT WebNLG
Model Normal EPO SEO Normal EPO SEO
CopyRE 66.0 55.0 48.6 59.2 36.6 33.0
GraphRel 69.6 58.2 51.2 65.8 40.6 38.3
OrderCopyRE 71.2 72.8 69.4 65.4 67.4 60.1
ETL — Span 88.5 60.3 87.6 87.3 80.5 91.5
CasRelgerr 87.3 92.0 91.4 89.4 94.7 92.2
Ours 87.9 92.3 91.3 89.4 95.3 92.6

4.5.3. Detailed results on different types of overlapping triples

To verify the ability of our model to extract triples of overlapping relations, we experiment on
different types of sentences and compare them with previous works. Table 4 shows the results.
For the three different overlapping modes, most models in normal, EPO, and SEO modes show
a downward trend. This shows that the extraction of the SEO mode is the most difficult, while
the extraction of the normal mode is the least difficult. The F1-score of our model not only does
not decrease with increasing extraction difficulty but also has a better effect than the CasRelpgrr
model on the WebNLG dataset.

For the WebNLG dataset, although the F1-score of our model is the same as the state-of-the-art
model on the normal mode, it improves by 0.6% on the EPO mode and 0.4% on the SEO mode
in terms of the F1-score, over the CasRelggrr. For the NYT dataset, our model is only 0.6% and
0.3% higher on the F1-score than the CasRelggrr model on normal and EPO modes, respectively.
This may be because there are 171 relation types in the WebNLG dataset, more than the NYT
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Table 5. F1-score of sentences with different triple numbers using Partial entity matching. The data source is
the same as Table 4

NYT WebNLG
Model N=1 N=2 N=3 N=4 N>5 N=1 N=2 N=3 N=4 N>5
CopyRE 67.1 58.6 52.0 53.6 30.0 59.2 42.5 31.7 24.2 30.0
GraphRel 71.0 61.5 57.4 55.1 41.1 66.0 48.3 37.0 321 321

OrderCopyR 1.7 72.6 72.5 7.9 45.9 63.4 62.2 64.4 57.2 55.7
ETL — Span 85.5 82.1 4.7 75.6 76.9 82.1 86.5 914 89.5 91.1
CasRelperr 88.2 90.3 91.9 94.2 83.7 89.3 90.8 94.2 92.4 90.9

Ours 88.7 90.6 92.1 94.4 83.2 89.3 91.1 95.5 92.1 91.1

dataset has with its 24 relation types. Accordingly, when integrating the multi-granularity relation
information, the more types of relations in the dataset, the more common knowledge between
similar semantics can be captured by the model.

We also validate our model’s capability in extracting relational triples from sentences with a
different number of triples. The detailed results are presented in Table 5. It can be seen that the
performance of most models will decline with an increase in the number of triples in the sentence,
while our model has less impact. For the NYT dataset, the F1 scores of our model are higher
than those of the state-of-the-art model in N<5 modes except in N > 5 mode. Similarly, on the
WebNLG dataset, our model also has higher F1 scores than the state-of-the-art model in N<4 and
N > 5 modes, except in N=4 mode. This may be because the more relational triples overlap in a
sentence, the more demanding it is for the model to capture and distinguish the different semantic
information between these triples.

The experimental results in Tables 4 and 5 show that our model can improve the extraction of
overlapping relations by applying relational hierarchy obtained by manual labeling or unsuper-
vised clustering, across different overlapping patterns and different amounts of overlap. Thus, the
experiments show that the relational hierarchy we constructed contains the necessary knowledge
for extracting overlapping relational triples.

4.5.4. Influence of different ways for acquiring relational hierarchy on model results

The construction of the relationship hierarchy in this model can be either manually labeled or
obtained by unsupervised clustering. When obtained by clustering, the different mapping func-
tions of the base-level and higher-level relationships can affect the representations of each level
relations, and thus the clustering results which can lead to different final results. The following is
an analysis of the influence of the different mapping functions of the base-level and higher-level
relationships on the model results.

For the WebNLG dataset without manually annotated hierarchical relations, higher-level rela-
tion sets can only be obtained by clustering automatically. The mapping functions for obtaining
the representation of the base-level relations are “average” and “sum”, while the mapping func-
tions for getting the representation of higher-level relations are “average”, “maximum,” and
“sum”. Therefore, there are six different combinations of mapping functions for base-level and
high-level relations. For example, the first “Avg” in “AvgAvg” is the mapping function of the
base-level relation, and the second “Avg” is that of the higher-level relation.

For the NYT dataset with a manually annotated relational structure, there are two approaches
to obtain the relational hierarchy, automatic clustering, and manual annotation. “Average” and
“sum” mapping functions are used to obtain the representation of the base-level relations on
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Table 6. Different results with different mapping functions on validation set for representing base-level and
higher-level relations in two datasets. The highest score of the model in different datasets is marked in bold
when using clustering or not. “w/ category prefix” indicates that at the base-level relationship clustering, the
relationship name isincorporating category labels; “w/o category prefix” indicates that the relationship name
is not incorporating category labels

w/o category prefix w/ category prefix
Dataset Clustering  Pooling method Prec. Rec. F1 Prec. Rec. F1
WebNLG yes AvgAvg 0.9198 0.9272 0.9235 - - -
AvgMax 0.9165 0.9272 0.9218 - - -
AvgSum 0.9244 0.9227 0.9236 - - -
SumAvg 0.9225 0.9308 0.9267 - - -
SumMax 0.9243 0.9218 0.9231 - - -
SumSum 0.9073 0.9326 0.9198 - - -
NYT yes AvgAvg 0.9086  0.8973 0.9029  0.9091 0.9038  0.9065
AvgMax 0.9061 0.9018 0.9040 0.8997  0.9076  0.9036
AvgSum 0.9026  0.9043 0.9035 0.9066  0.8996  0.9031
SumAvg 0.8987 0.9106 0.9046 0.8955 0.9134 0.9044
SumMax 0.8962 0.9094 0.9027 0.9163 0.8961 0.9061
SumSum 0.8999 0.9066 0.9033 0.8987 0.9105 0.9045
no AvgAvg - - - 0.9078 0.9073 0.9076
AvgSum - - - 0.9078 0.9045 0.9061
SumAvg - - - 0.9054 0.9131 0.9092
SumSum - - - 0.9059  0.9041 0.9050

both approaches. The mapping functions of higher-level relations are the same as that of the
WebNLG dataset when employing automatic clustering approach to obtain the hierarchy struc-
ture. However, the mapping functions of the higher-level relations are “average” and “sum,” when
using the manually annotated hierarchy.

Also, since the relations in the NYT dataset contain category labels, such as the name of relation
/people/person/nationality contains the category labels /people/person. To determine whether
category labels have an impact on the final results when constructing the relational hierarchy,
the names of relations are constructed in two ways at the base-level relationship clustering, with
category labels, that is, using /person/person/nationality as the relationship name, or without
category labels, that is, using nationality as the relationship name.

It is observed in Table 6, that when the mapping functions of relations are “sum” or “average,”
the model easily obtains a better result. The relationship names in the WebNLG dataset do
not contain category labels, so when using the unsupervised clustering method to obtain the
relational hierarchy, only the “w/o category prefix” results are available, and the model results
are better when the mapping function is “SumAvg.” The relationship names in the NYT dataset
contain category labels, so when using the manually annotated hierarchy, the model works better
with the mapping function “SumAvg.” When using the clustering method to obtain the relational
hierarchy, the model with the mapping function “AvgAvg” worked better if the names of relations
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Figure 7. Label frequency distribution of positive relations in NYT and WebNLG datasets.

contained category labels; otherwise, the model with the mapping function “SumAvg” worked bet-
ter. The reason why the mapping function works better when it consists of “sum” or “average” may
be that “sum” or “average” has the potential to obtain more comprehensive information about the
relationship, while “maximum” ignores the small but useful information about the relationship.

We can also observe in Table 6 that in the NYT dataset, when constructing the relational hierar-
chy, there is little difference in the results of the model between clustering and manual annotation.
And, when constructing relational hierarchy by unsupervised clustering, the final results with or
without the inclusion of category labels in the relationship names show that the incorporation of
category labels has little effect on the final results.

In addition, we also analyze the effect of whether or not to incorporate category labels on the
clustering results. See Appendix for details.

4.5.5. Influence of integrating hierarchical relational information on long-tail relation extraction

In this subsection, we analyze the effectiveness of fusing hierarchical relationship information
in extracting long-tail relationships. Figure 7 depicts the label frequency distribution of positive
relations in the NYT and WebNLG datasets. It shows that each dataset has approximately 70%
of the relationships that occur very infrequently in the sentences. This problem seriously disrupts
the balance of the data. To validate the effectiveness of our model and the attention mechanism
in each level for extracting long-tail relationships, we use a subset of the extracted test dataset to
test the model, in which the training instances of all the relations are less than 100/200 (Han et al.
2018).

We report average F1 values, micro-F1 values, and macro-F1 values for the long-tail rela-
tionships in the dataset. Since the average microscore typically ignores the effect of long-tail
relationships, we use average macroscores to highlight long-tail relationships in the test set, which
has often been overlooked in previous work. Table 7 presents the detailed results comparing the
scores with the state-of-the-art model where the number of relations in the test dataset is less than
100/200 instances in the training dataset.

From Table 7, we observed that our model employing the attention mechanism using rela-
tional hierarchy does improve the extraction of long-tail relationships over the Casrelpgrr model
that does not use it. Our model is better for the extraction of long-tail relationships than using only
the local attention mechanism, or only the global attention mechanism, to obtain the relationship
information, where the enhancement effect of the relationship information obtained through the
global attention mechanism is greater than that of information obtained through the local atten-
tion mechanism for long-tail relationship extraction. This indicates that the use of coarse-grained
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Table 7. Mean-F1, Micro-F1, and Macro-F1 using Partial entity matching between our model and the state-of-
the-art model on relations with fewer than 100/200 training instances

<100 <200
Dataset Model Micro-F1 Macro-F1 Mean-F1 Micro-F1 Macro-F1 Mean-F1
WebNLG CasRelgerr 92.68 88.92 86.71 92.45 89.39 87.52
OUrcluster 93.63 90.96 89.43 93.52 91.34 90.06
-local 93.36 89.10 87.62 93.15 89.69 88.45
-global 92.37 89.07 87.40 92.02 89.38 87.97
NYT CasRelggerr 89.65 90.90 89.33 89.26 90.63 89.29
OUrciuster 93.33 93.80 93.14 95.34 94.41 93.89
-local 85.71 81.18 79.80 93.02 85.63 83.99
-global 85.71 81.18 79.80 90.69 84.82 83.19
OUryanual 93.33 93.80 93.14 91.56 93.05 92.58
-local 90.32 91.54 91.00 90.39 91.26 90.83
-global 87.50 87.49 85.14 89.88 88.32 86.64

and fine-grained semantic information can improve the extraction of long-tail relationships, and
the coarse-grained semantic information is more useful for the extraction of overlapping triples
of long-tailed relations.

We also found that for the NYT dataset, whether using clustering to obtain hierarchies or
manually labeled hierarchies, our model employing the attention mechanism using relational hier-
archy showed almost no change in the results for relationships with less than 100 instances in the
training set, but for relationships with less than 200 instances in the training set, clustering to
obtain relational hierarchies were extracted significantly better than manually labeled hierarchies.
However, the results in Table 2 show that the hierarchy obtained by clustering is not as effective as
that obtained by manual labeling in the NYT dataset, indicating that the clustering error has more
influence on the extraction effect of the head relations that occur more frequently, but for the
relations with instances greater than 100 and less than 200 in the training set, multi-granularity
relationship knowledge provides more useful information.

5. Conclusion

This paper proposes an end-to-end neural framework that merges the multi-granularity rela-
tional features for overlapping triple extractions. We employ an attention mechanism that uses
a relational hierarchy to capture the coarse-to-fine semantic information hidden in multiple over-
lapping relational triples. The relational hierarchy can be obtained by using manual annotation or
automatic clustering.

We evaluated our model on the NYT and WebNLG datasets and conducted various exper-
iments. Experimental results show that our model outperforms previous work in extracting
overlapping relational triples, where the relational hierarchies obtained by automatic clustering
are not much worse than those obtained by manual annotation, and the integration of multi-
granularity relational knowledge is indeed effective in improving the extraction of long-tailed
data.
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In the future, we plan to construct three levels of relationship hierarchies to compare the impact
on different construction methods of the results and also consider ways to reduce the infor-
mation redundancy after incorporating the multi-granularity relationship features of the head
relationships.
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Appendix
Influence of removing category prefixes on the clustering results

In this section, we also analyze how removing the category prefixes affects the clustering results.
As seen in Figure 8, removing category labels makes the clustering results different, even if the
mapping functions of the base-level relations are the same. For example, when using “average”
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Figure 8. Clustering results for different mapping functions of base-level relationships in the NYT dataset. (a) and (c) are
the clustering results when the mapping functions of base-level relations are “average”, while (b) and (d) are the clustering
results when the mapping functions of base-level relations are “sum”. “w/ category prefix” indicates that at the base-level
relationship clustering, the relationship name is incorporating category labels; “w/o category prefix” indicates that the
relationship name is not incorporating category labels.

as the mapping function of the base-level relations, the number of clusters is 10 if the names of
relations contain category labels and 8 if the names of relations do not contain category labels. In
Table 8, we analyze the effect of category labels on the clustering results, we collated the classifi-
cation results for cluster 0 and cluster 1 when “average” was used as the mapping function for the
base-level relationship.

We can clearly find that removing the category labels from the relationship names affects the
classification results to some extent which is shown by the fact that the classification results of
clusters are somewhat different from the manually labeled ones.

Thus, Table 8 and the above results show that although removing the category label of the
names of relations can affect the classification results, the change in classification results has a
weak influence on the final results of the model. Therefore, in datasets where there is no manually
labeled hierarchy, the relational hierarchy can be obtained using unsupervised clustering.
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Table 8. Samples of clustering results including the cluster 0 and the cluster 1 in the NYT dataset when the base-level
relations using the “average” mapping function. “w/ category prefix” indicates that we cluster relation names with using
explicit category prefixes; “w/o category prefix” indicates that we cluster relation names without using explicit category

prefixes.
Clustering results w/ category prefix w/o category prefix
cluster 0 /business/company/advisors /business/company/founders
/business/company/industry /business/person/company
/business/company/major_shareholders /people/ethnicity/people
/people/person/profession
cluster 1 /business/company/founders /business/company/advisors

/business/company/industry
/location/administrative_division/country
/location/location/contains
/sports/sports_team/location

Cite this article: Su H, Wang H, Luo X and Xie S (2023). An end-to-end neural framework using coarse-
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