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Super-resolution of turbulence with dynamics
in the loss
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Super-resolution of turbulence is a term used to describe the prediction of high-resolution
snapshots of a flow from coarse-grained observations. This is typically accomplished with
a deep neural network and training usually requires a dataset of high-resolution images.
An approach is presented here in which robust super-resolution can be performed without
access to high-resolution reference data, as might be expected in an experiment. The
training procedure is similar to data assimilation, wherein the model learns to predict an
initial condition that leads to accurate coarse-grained predictions at later times, while only
being shown coarse-grained observations. Implementation of the approach requires the
use of a fully differentiable flow solver in the training loop to allow for time-marching of
predictions. A range of models are trained on data generated from forced, two-dimensional
turbulence. The networks have reconstruction errors which are similar to those obtained
with ‘standard’ super-resolution approaches using high-resolution data. Furthermore,
the methods are comparable to the performance of standard data assimilation for state
estimation on individual trajectories, outperforming these variational approaches at initial
time and remaining robust when unrolled in time where performance of the standard
data-assimilation algorithm improves.

Key words: machine learning, low-dimensional models

1. Introduction

The rise of convolutional neural networks (CNNs) in computer vision has spurred a
flurry of applications in fluid mechanics (Brunton, Noack & Koumoutsakos 2020), where
there is natural crossover due to local or global equivariances and the expectation of
lower-dimensional dynamics beneath the high-dimensional observations. One example
of successful crossover from computer vision to fluid mechanics is ‘super-resolution’
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(Dong et al. 2016) where a CNN is trained to generate a realistic high-resolution image
from a low-resolution input. This is typically done by showing a neural network many
examples of high-resolution snapshots which have been coarse-grained; the network
then learns a data-driven interpolation scheme rather than fitting a low-order polynomial
(Fukami, Fukagata & Taira 2019).

CNNs trained to perform super-resolution have demonstrated a remarkable ability to
generate plausible turbulent fields from relatively scarce observations (Fukami et al. 2019;
Fukami, Fukagata & Taira 2021). Recent efforts have focused on accurate reproduction
of terms in the governing equation, or on the reproduction of spectral properties of the
flow (Fukami, Fukagata & Taira 2023), which is often attempted with additional terms
in the loss function used to train the model. Almost all examples rely on a dataset of
high-resolution ground-truth images, with some recent focus on maintaining accuracy in
a low-data limit (Fukami & Taira 2024). One exception to this is the study from Kelshaw,
Rigas & Magri (2022) in low-Reynolds-number Kolmogorov flow, where high-resolution
images were generated by minimising a loss evaluated on the coarse grids, which includes
a small contribution from a term encouraging the solution to satisfy the governing
equations at each point on the coarse grid.

This paper introduces a robust super-resolution algorithm for high-Reynolds-number
turbulence which does not require high-resolution data, but instead is trained by attempting
to match the time-advanced, super-resolved field to a coarse-grained trajectory. A key
component in this approach is the use of a fully differentiable flow solver in the training
loop, which allows for the time marching of neural network outputs and, hence, the use
of trajectories in the loss function. The inclusion of a ‘solver in the loop’ (Um et al.
2020) when training neural networks has been shown to be a particularly effective way
to learn new numerical schemes (Kochkov et al. 2021) and to learn effective, stable
turbulence parameterisations (List, Chen & Thuerey 2022). With the coarse-grained
trajectory comparison used here, the optimisation problem for network training is very
similar to variational data assimilation (4DVar; see Foures et al. 2014; Li et al. 2019; Wang
& Zaki 2021). For 4DVar of three-dimensional (3-D) homogeneous turbulence, a key
bottleneck to accurate reconstruction of the smaller scales is the level of coarse-graining,
with a consensus emerging on a critical length scale of lC ≈ 5πηK (Lalescu, Meneveau &
Eyink 2013; Li et al. 2019), where ηK is the Kolmogorov scale (note that in wall-bounded
flows there are different criteria involving the Taylor microscale; Wang & Zaki 2021, 2022;
Zaki 2024). The hope with incorporating a neural network in this optimisation process is
that, through exposure to a wide range of time evolutions, the model can learn an efficient
parameterisation of the inertial manifold and thus generate plausible initial conditions
where 4DVar would be expected to struggle.

2. Flow configuration and neural networks

2.1. Two-dimensional turbulence
The super-resolution approach developed in this paper is applied to monochromatically
forced, two-dimensional (2-D) turbulence on the two-torus (Kolmogorov flow). Solutions
are obtained by time integration of the out-of-plane vorticity equation,

∂tω + u · ∇ω = 1
Re
�ω − αω − n cos(ny). (2.1)

The velocity u = (u, v) may be obtained from the vorticity via solution of the Poisson
problem for the streamfunction�ψ = −ω, where u = ∂yψ and v = −∂xψ . Equation (2.1)
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Figure 1. Snapshots of spanwise vorticity from example trajectories at Re = 100 ((a), contours run between
±10) and Re = 1000 ((b), contours run between ±15). The black grids in the leftmost panels highlight
coarse-graining by a factor of 16 (thin lines) or 32 (thick lines) relative to the simulation resolution. The Taylor
microscale (relative to the length scale L∗

x/(2π)) is indicated by the labelled vertical red lines, while the blue
line measures 5πηK .

has been non-dimensionalised with a length scale based on the fundamental wavenumber
for the box, 1/k∗ = L∗

x/2π, and a time scale defined as (k∗χ∗)−1/2, where χ∗ is the
strength of the forcing per unit mass in the momentum equations. This results in a
definition of the Reynolds number Re := (χ∗/k∗3)1/2/ν. As in previous work (Chandler
& Kerswell 2013; Page, Brenner & Kerswell 2021; Page et al. 2024) the number of forcing
waves is set at n = 4, while the box has unit aspect ratio such that its size is Lx = Ly = 2π
in dimensionless units.

Two Reynolds numbers are considered in this work, Re = 100 and Re = 1000. For the
latter, a linear damping term is included in (2.1) with coefficient α = 0.1 to prevent the
build up of energy in the largest scales. Representative snapshots of the vorticity at both
Reynolds numbers are reported in figure 1, where the Taylor microscale is also indicated
as well as the ‘critical’ length scale for assimilation lC := 5πηK . Note that while the
latter scale has been observed to be critical in 3-D flows, the scales for synchronisation
in two dimensions will differ due to the dual cascades. However, we find that these scales
still provide a good characterisation of where assimilation struggles in this configuration.
Equation (2.1) is solved using the fully differentiable JAX-CFD solver (Kochkov et al.
2021). The pseudospectral version (Dresdner et al. 2023) of this solver is used here, with
resolution Nx × Ny = 128 × 128 at Re = 100 and Nx × Ny = 512 × 512 at Re = 1000.

2.2. Super-resolution problem and neural network architecture
The objective of super-resolution is to take a coarse-grained flow field, here a velocity
snapshot, and interpolate it to a high-resolution grid. The coarse-graining operation
considered here, denoted C : R

Nx×Ny×2 → R
Nx/M×Ny/M×2, is defined by sampling the

original high-resolution data at every M > 1 gridpoint in both x and y, motivated by
observations that may be available in an experiment with sparse sensors. There is nothing
in the approach outlined in the following that is reliant on a particular form of the operator
C (for example, average pooling or a Gaussian filter might be used instead). A function
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N : R
Nx/M×Ny/M×2 → R

Nx×Ny×2 is then sought which takes a coarse-grained turbulent
snapshot C(u) and attempts to reconstruct the high-resolution image. The function N
is defined by a CNN (LeCun et al. 1998) described in the following, and is found via
minimisation of a loss function. In ‘standard’ super-resolution (Fukami et al. 2019, 2021)
this loss usually takes the form

LSR = 1
NS

NS∑

j=1

‖uj − NΘ ◦ C(uj)‖2, (2.2)

where NS is the number of snapshots in the training set and Θ are the weights defining
the neural network. Note that in this work only reconstruction of velocity is used, due
to challenges in estimating vorticity from coarse-grained experimental data. Models
trained on vorticity outperform the velocity networks in a variety of ways, particularly
in reproduction of the spectral content (not shown).

Various approaches have added additional terms to (2.2) to encourage the output to be
more physically realistic (e.g. solenoidal, prediction of specific terms in the governing
equation; see Fukami et al. 2023). In this work incompressibility is built into the network
architecture (see the following), while the loss considered here does include additional
physics but this is done using trajectories obtained from time marching (2.1):

LTF = 1
NSNT

NS∑

j=1

Nt∑

k=1

‖ϕtk(uj)− ϕtk ◦ NΘ ◦ C(uj)‖2, (2.3)

where ϕt is the time-forward map (with conversion from velocity to vorticity and back) of
(2.1), and tk ∈ {0,�t, . . . (Nt − 1)�t} with �t = Mδt, where δt is a simulation timestep.
The unroll time, T = (Nt − 1)�t, and coarsening factor M are design choices. Here the
temporal coarsening is set to match the coarsening in space, M ≡ 2n, with either n ∈ {4, 5}.
The selection of the unroll time is constrained by the Lyapunov time for the system. In this
work T = 1.5 at Re = 100, while results will be shown at both T ∈ {0.5, 1} at Re = 1000.
These choices were guided by the performance of data assimilation at the finer value of
M = 16, shown alongside the super-resolution results in § 3, where reconstruction errors
after an unroll time are O(2 %) at Re = 100 and O(1 %) at Re = 1000 (with T = 1).
Training a neural network with a loss like (2.3) requires backpropagation of derivatives
with respect to parameters through the time-forward map. This is accomplished here
through use of the fully differentiable flow solver JAX-CFD which was created for this
purpose (Kochkov et al. 2021; Dresdner et al. 2023).

While (2.3) incorporates time evolution, it still requires access to high-resolution
reference trajectories. An alternative loss, inspired by data assimilation, can be defined
based only on coarse observations,

LTC = 1
NSNT

NS∑

j=1

Nt∑

k=1

‖ C ◦ ϕtk(uj)︸ ︷︷ ︸
(i)

− C ◦ ϕtk ◦ NΘ ◦ C(uj)︸ ︷︷ ︸
(ii)

‖2. (2.4)

The highlighted terms represent: (i) a coarse-grained trajectory, accomplished here by
coarse-graining the output of the flow solver, but conceptually this could also be a set of
experimental measurements at a set of sequential times; and (ii) the forward trajectory of
the super-resolved prediction, which is then coarse-grained for comparison with (i).

While in this work the solver is used to unroll the reference data in term (i) of (2.4)
(and the corresponding term in (2.3)), there is no need for a solver here in the general
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case: (i) represents training data. The solver is always required in the second term (ii),
however, where it is used to advance the high-resolution prediction of the network. Note
that while unrolling in time is used in the loss to train the model, the neural network NΘ

must produce a high-resolution field from a single coarse-grained snapshot, C(u). Thus,
at runtime the approach differs substantially from variational data assimilation, which
performs a trajectory-specific optimisation.

The neural networks used in this study are purely convolutional with a residual network
(‘ResNet’) structure (He et al. 2016). If the coarsening reduces the dimension of the
input by a factor of 2n, then n residual layers with upsampling by a factor of 2 are
used to reconstruct the high-resolution field. The output of the n residual convolutions
is a field, ũ′, with the correct dimensionality (resolution Nx × Ny and two channels for
u and v). However, ũ′ does not by default satisfy the divergence-free constraint. Rather
than add a soft constraint to the loss, an additional layer is included in the neural
network which performs a Leray projection to produce the divergence free-prediction
for the high-resolution velocity, P(ũ′) = ũ′ − ∇Δ−1∇ · ũ′. This operation is defined
as a custom layer within a Keras neural network (Chollet 2015), and is performed in
Fourier space where inversion of the Laplacian is trivial (full source code is provided in
the repository https://github.com/JacobSRPage/super-res-dynamical, while weights for all
neural networks presented here are available at https://doi.org/10.7488/ds/7858). Without
the Leray layer, the predictions of the model typically feature a non-solenoidal component
in the highest wavenumbers, which is removed in a single timestep of the solver. The
inclusion of the Leray layer does not have a noticeable effect on model performance, but
ensures that the initial conditions satisfies the physical constraint ∇·u = 0.

The full architecture is sketched in figure 2. A fixed number of 32 filters is used at each
convolution, apart from the final layers where only 2 channels are required for the velocity
components. The kernel size is fixed at 4 × 4 across the network and periodic padding is
used in all convolutions throughout the network so that the periodic boundary conditions
in the physical problem are retained when upsampling. In this work downsampling is
performed by a factor of either 16 or 32, which results in a total number of trainable
parameters of either N16 ∼ 1.33 × 105 or N32 ∼ 1.67 × 105, respectively. While some
experimentation was performed with varying the kernel size through the network, the
architecture has not been heavily optimised and more complex configurations may be more
effective. Either GeLU (Hendrycks & Gimpel 2016) or linear (no) activation functions are
used between layers, as indicated in figure 2.

The models examined in § 3.1 were trained on datasets of Nlong = 60 trajectories at
each Re. Each trajectory is of length Tlong = 100 and is sampled every �Tlong = 2 to
generate Ns = 50 initial conditions for Nlong × Ns = 3000 short trajectories of length T
for use in the dynamic loss functions ((2.3) and (2.4)). Data augmentation of random
shift reflects and rotations was applied during training. Networks were all trained using an
Adam optimiser (Kingma & Ba 2015) with a learning rate of η = 10−4 and a batch size of
16 for 50 epochs, where the model with best-performing validation loss (evaluated on 10 %
of data partitioned off from the training set) was saved for analysis. In addition, models
were also trained on a much smaller dataset of 500 short (length T) trajectories. These
trajectories were contaminated with noise and serve to both (i) investigate the low-data
limit and (ii) the robustness of the algorithm to noisy measurements. These results are
reported in § 3.2. All results are reported on separate test datasets generated in the same
manner as the training data.

Note that the rather large downsampling factors used in the models result in a set of
coarse-grained observations which are either spaced roughly a Taylor microscale, λT ,
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Figure 2. Schematic of the neural network architecture adopted in this study. ‘U.S.’ indicates upsampling.
The output of the network is time marched to compute the loss function ((2.3) or (2.4)).

apart (M = 16) or spaced further than the microscale (M = 32). As a result, ‘standard’
data-assimilation strategies struggle at both resolutions, which is discussed further in
the following. The coarsened grids, λT and lC, were all included earlier in figure 1 for
comparison.

3. Super-resolution with dynamics

3.1. Large dataset results
The performance of the ‘dynamic’ loss functions ((2.3) and (2.4)), with training on the
larger datasets described above, is now assessed. The test average (and standard deviation)
of the snapshot reconstruction error,

εj(t) = ‖ϕt(uj)− ϕt ◦ NΘ ◦ C(uj)‖
‖ϕt(uj)‖ , (3.1)

is reported both at t = 0 and t = T for all models in figure 3. The unroll time T = 1.5 for
all results at Re = 100, while at Re = 1000 two values are used; T = 0.5 when M = 16
and T = 1 when M = 32. Other models were trained with various similar T-values (not
shown) and those presented here were found to be the best performing.

Figure 3 includes results obtained with standard super-resolution (loss function (2.2))
along with both dynamic loss functions ((2.3) and (2.4)). When high-resolution data are
available, the average errors in figure 3 indicate that including time evolution in the loss
(2.3) does not have a significant effect on reconstruction accuracy relative to the ‘standard’
super-resolution approach in most cases. The error after the model outputs have been
unrolled by T is comparable to that at initial time for all coarsenings and Re values.

The Re = 100 results are noticeably worse than those at Re = 1000. This is perhaps
unsurprising given that coarse-graining at the lower Re value, particularly at M = 32,
means that observations are available on a scale which is larger than typical vortical
structures and much larger than the ‘critical’ length lC; see figures 1 and 3(c). In contrast,
the M = 32 coarsening at Re = 1000 is not as significant relative to lC, though the spacing
is still larger than this value.

Most interestingly, the performance of the models trained without high-resolution data
(loss function (2.4), red symbols in figure 3), is also strong. The reconstruction errors at
initial time t = 0 are comparable to those obtained with high-resolution models, e.g. at
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Figure 3. Summary of network performance at both Re = 100 and Re = 1000. (a) Average test-set errors
(symbols; lines show ± a standard deviation). Models trained using ‘standard’ super-resolution loss (2.2) are
shown in green, time-advancement loss on the high-resolution grid (2.3) is shown in blue and the coarse-only
time-dependent loss (2.4) is shown in red. (b) As (a) but errors are now computed after advancing ground truth
and predictions forward in time by T . (c) Example model performance for a single snapshot at both Re and
coarsening factors. Streamwise velocity is shown with contours running between ±3. The output of models
trained with losses (2.3) and (2.4) is shown.

Re = 1000 the M = 32 error is ∼1.5× that from the high-resolution models. A visual
inspection of the reconstruction shows faithful reproduction of the larger scale features in
the flow. Examples of this behaviour are included in figure 3(c), where it is challenging
to distinguish the differences by eye between the coarse and fine models at Re = 1000.
The reconstruction errors decrease as the predictions from the coarse models are marched
forward in time and at t = T are near-identical to, and sometimes lower than, those
obtained via the high-resolution approaches.

The drop in ε(T) relative to ε(0) for the coarse-grained-only approach at Re = 1000
mimics observations of variational data assimilation in turbulent flows (Li et al. 2019;
Wang & Zaki 2021). Data assimilation is also considered here as a point of comparison
for the performance of models trained only on coarse observations. Given coarse-grained
observations of a ground truth trajectory {C ◦ ϕtk(u0)}NT−1

k=0 , an initial condition v0 is
sought to minimise the following loss function:

LDA(v0) := 1
NT

NT∑

k=1

‖C ◦ ϕtk(u0)− C ◦ ϕtk(v0)‖2. (3.2)

Equation (3.2) is minimised here using an Adam optimiser (Kingma & Ba 2015) in an
approach similar to the training of neural networks outlined previously. Gradients are
evaluated automatically using the differentiability of the underlying solver rather than
by construction of an adjoint system. Since data assimilation is performed on velocity
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0 1 2

t

0.2

0.4

0 1 2
t

0.1

0.2

ε

TSR TDA
TSR

TDA

(b)(a)

Figure 4. Comparison of model predictions under time advancement at Re = 1000 to variational data
assimilation for example evolutions at both M = 16 (a) and M = 32 (b). Black lines are the time-evolved
predictions from data assimilation, red lines the performance of ‘standard’ super-resolution, while blue lines
show the performance of the time-dependent loss functions ((2.3) and (2.4)). Solid blue is the coarse-only
version, and the symbols identify times where the fields are visualised in figures 5 and 6. Grey regions highlight
the assimilation window, where TDA = 1, and the unroll times to train the networks, T = 0.5 at M = 16 and
T = 1 at M = 32.

(rather than the vorticity), gradients are projected onto a divergence-free solution prior
to updating the initial condition. An initial learning rate of η = 0.2 is used throughout
and the number of iterations is fixed at Nit = 50. The initial condition for the optimiser
is the coarse-grained field C(u0) interpolated to the high-resolution grid with bicubic
interpolation (note that reconstruction of a high-resolution field directly via simple bicubic
interpolation leads to large errors, e.g. ε � 0.3 at M = 16, both in the initial condition and
under time evolution).

Example evolutions of the reconstruction error at Re = 1000 and both M ∈ {16, 32}
are reported in figure 4 for networks trained with all loss functions ((2.2)–(2.4)), as well
as for the data assimilation described above. The data assimilation was performed on
equispaced snapshots separated by Mδt in time within the grey box labelled TDA, before
the prediction is then unrolled to T = 2.5. The neural networks, on the other hand, were
trained on separate data as described in § 2 with the various loss functions ((2.2)–(2.4))
The grey boxes labelled TSR in figure 4 highlight the unroll time used to train the networks
with dynamic loss functions, but the network predicts the high resolution field NΘ ◦ C(u)
from a single snapshot at t = 0, which is then marched in time. As expected based on
the statistics in figure 3, the error between the coarse-only neural network and the ground
truth drops rapidly when time marching, becoming nearly indistinguishable from models
trained on high-resolution data.

Notably, the neural networks outperform data assimilation as state estimation for the
initial condition. This is most significant at M = 32 where the reconstruction error from
assimilation is > 40 % (the coarse-graining at M = 32 means observations are spaced
farther apart than the critical length lC and assimilation is expected to struggle; see Lalescu
et al. 2013; Li et al. 2019; Wang & Zaki 2021). At first glance, this is somewhat surprising
since the assimilation is performed over the time windows highlighted in grey in figure 4,
i.e. for this specific trajectory, while the neural network must make an estimation based
only on a single coarse-grained snapshot from the unseen test dataset. Presumably, the
improved performance is a result of the model seeing a large number of coarse-grained
evolutions during training and hence building a plausible representation of the solution
manifold, while each data-assimilation computation is independent. The assimilated field
does lead to better reconstruction at later times and at M = 16 remains close to ground
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Figure 5. Evolution of the out-of-plane vorticity at Re = 1000, above the evolution of the reconstructed field
from data assimilation and using the coarse-only super-resolution model (coarse-graining here is M = 16).
Note the snapshots correspond to the trajectory reported in figure 4 and are extracted at the times indicated
by the symbols in that figure. Contours run between ±15. For t ∈ {0, 0.1}, a low-pass-filtered vorticity has
been overlayed in red/blue lines to show the reproduction of the larger-scale features which would otherwise
be masked with small-scale noise. The cutoff wavenumber for the filter matches the coarse-graining and the
contours are spaced by �ω = 3.

truth beyond the assimilation window, though on average the super-resolution approach is
more accurate for t < TDA. The super-resolved field from the coarse-only network has a
similar time evolution to the standard super-resolution approaches.

A comparison of the time evolution of vorticity for the M = 16 coarse-only model
and the output of the data-assimilation optimisation is reported in figure 5. In both
approaches the initial vorticity is contaminated with high-wavenumber noise, though the
low-wavenumber reconstruction is relatively robust (see additional line contours at early
times in figure 5). For the neural network output, these small-scale errors quickly diffuse
away and the vorticity closely matches the reference calculation by t ∼ 0.25 (half of the
unroll training time). In contrast, the assimilated field retains high-wavenumber error
for much longer (it is still noticeable in the vorticity snapshot at t = 1), although the
large-scale structures are maintained on the whole.

These trends are exaggerated at the coarser value of M = 32, as shown in u-evolution
reported in figure 6. Again, the coarse-only neural network faithfully reproduces the
larger-scale structures in the flow, with agreement in the smaller scales emerging
under time marching. In contrast, the assimilated field remains contaminated by
higher-wavenumber noise throughout the early evolution. These differences in spectral
content are examined in figure 7: both the super-resolved and assimilated fields reconstruct
the low-wavenumber amplitudes before the Nyquist cutoff kN , with the super-resolved
field falling away more rapidly leading to relatively flat spectral content just beyond kN
(resulting in under- and then over-prediction of the spectral content in the true field). The
assimilated field matches the scaling of the direct cascade (here ∼k−4) over a slightly
wider range of scales than the network prediction, but with significant energy in the small
scales. In contrast, the super-resolved field has much lower-amplitude small-scale noise;
the spectrum rapidly adjusts to match ground truth under time evolution (see figure 7b).
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Figure 6. Evolution of streamwise velocity at Re = 1000, above the evolution of the reconstructed field from
data assimilation and using the coarse-only super-resolution model (coarse-graining here is M = 32). Note
the snapshots correspond to the trajectory reported in figure 4 and are extracted at the times indicated by the
symbols in that figure. Contour levels run between ±3.
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Figure 7. Energy spectra for coarse-grained network and assimilated fields. (a) Energy in the initial condition
for evolution in figure 6 (grey), energy spectrum for the assimilated field (black) and super-resolved field
(from coarse observations only, blue). (b) Energy spectra in the time-advanced super-resolved field (blue) at
times indicated in figure 6 up to and including t = 1. Time-averaged energy spectrum of the true evolution is
shown with the grey dashed line. Vertical lines indicate the forcing wavenumber kf = 4 and the Nyquist cutoff
wavenumber associated with the filter. Red lines show the scaling E(k) ∝ k−4.

3.2. Small dataset results with and without noise
The effect of noise on the training (and test) data is now considered briefly as a test of
the robustness of the algorithm presented previously. The model architecture and training
approach described in § 2 is identical to that discussed before, though models are trained
on a smaller dataset of 500 short trajectories of length T = 1, with results here reported on
a test dataset of 50 trajectories of this length. All results are obtained at Re = 1000, with
coarsening of M = 32, using the ‘coarse-data-only’ loss function (2.4).
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Figure 8. Effect of noise on network performance. Mean reconstruction errors (3.1) at t = 0 (a) and t = T
(b) for networks trained on corrupted data with σ = 0 (blue), σ = 0.05 (green) and σ = 0.1 (red); vertical lines
show ± one standard deviation. The test dataset is contaminated with noise of varying levels, σ ∈ {0, 0.05, 0.1},
as indicated on the x-axes (blue/red data have been offset horizontally slightly to aid visualisation).

During training noise is added to the reference trajectories in the loss in the following
manner (see a similar approach in Wang & Zaki 2021):

ϕtk(uj) → ϕtk(uj)+ ηj(tk), (3.3)

where the noisy contribution to the velocity is normally distributed based on the
local absolute velocity ηj(x, tk) ∼ N(0, σ |ϕtk(uj)(x)|) (streamwise component shown for
illustration). Noise amplitudes of σ ∈ {0, 0.05, 0.1} are considered, and noise of the same
form is also added to the coarse-grained velocity field which is the input to the neural
network.

Summary statistics for all three new models are reported in figure 8, where the test
dataset has been contaminated with noise of varying levels. Notably, the noise-less results
on the small dataset are comparable to the much larger training set considered in § 3.1,
with a roughly ∼4 % increase in relative error at both t = 0 and t = T . Figure 8 indicates
that the algorithm is robust to low-amplitude noise (both in the training and test data),
with performance at the lower value σ = 0.05 being indistinguishable from the network
trained on uncorrupted data. While the stronger σ = 0.1 noise leads to poor reconstruction
at t = 0, all models improve after the unroll time t = T . These are promising results in the
context of training on experimental data.

4. Conclusions

In this paper an approach to super-resolution has been presented which is similar in spirit
to variational data assimilation: the models are trained by requiring that the output of
the network can be marched in time while remaining close to the target trajectory. One
consequence of this training procedure is that robust models can be trained without seeing
high-resolution data: they are trained to match the evolution of the coarse observations
only. The resulting models perform comparably to networks trained with high-resolution
data, and perform robustly in comparison with data assimilation for state estimation.

The focus in this study has been on periodic, 2-D flow, but there is nothing fundamental
in the training loop that restricts the method to this simple configuration. Extension to
3-D problems with walls would require (1) a differentiable flow solver capable of handling
other boundary conditions and (2) minor modification of the convolutional architecture
(e.g. Dirichlet boundary conditions would naturally imply zero-padding in a convolutional
layer). More complex geometries, or the flow past bodies, would necessitate alternative
network architectures, though the training approach would remain the same. One thing to
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bear in mind is the increased cost of the training for 3-D problems: while the network is
small and can be trained without a dedicated GPU if only the ‘standard’ super-resolution
loss (2.2) is used, the time-dependent versions rely on Navier–Stokes simulations and
back-propagation of derivatives through trajectories. Training is equivalent to performing
many data assimilations in parallel over minibatches: for context 50 epochs on the large
dataset here with a batch size of 16 is equivalent to ∼9000 assimilations (training rate is
roughly an epoch/hour on an 80 GB A100) though at test time a single call to the network
is required in place of assimilation. High-Reynolds-number problems may therefore need
to exploit scale invariance of particular flow structures to facilitate transfer learning from
smaller-scale flows (see, e.g. Fukami & Taira 2024).

The outlook is therefore promising for the problem of state estimation in situations
where only coarse observations are available, though a key bottleneck is clearly a reliance
on a large amount of training data. Exploring the low-data limit, which was touched on
in § 3.2, is an important next step. There may also be scope to use the super-resolution
predictions to better initialise ‘standard’ 4DVar: this has already shown promise with
a learned inverse operator trained on high-resolution data (Frerix et al. 2021). Finally,
the training procedure on coarse-only observations could be modified to try and improve
the spectral content of the initial conditions. This should be relatively straightforward to
address in the loss function, for example by weighting early snapshots in the sequence
more strongly (such a strategy has been shown to improve the high-wavenumber errors in
4DVar; see Wang, Wang & Zaki 2019).
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