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1. Introduction. In this paper we show that the (p + 1)st homotopy group of the p-spun
trefoil knot is nontrivial. This result was obtained for p = 1 in [1] using duality arguments.
Here we take a totally different approach via the algorithm given in [3] and a module repre-
sentation giving a simpler and more natural argument.

The first homotopy group of the complement of the trefoil knot k contained in the standard
3-Ball is given by

T, (B> —k) = (x,t : txt = xtx)

DEerFINITION 1.1.  One obtains the (p+ 1)-dimensional knot K?*! by p-spinning a knot &
as follows:

SP*3 = (87 x B})u(DP*! x 8B%)
identified along:
S? x 0B® = oD**! x 0B
and:
KP*! = (8% x k)u (DP*! x ok)
identified along:
SP x 0k = dDP*! x ok.

LemMa 1.2, 7,(SP*3—-KP*Y) = n, (B k).

Proof. See [4].

LemMa 1.3, 71, (SP*3=KP* D) = (X : (1 -1+ x0)X).
Proof. Via [3] we have

e (SPH— KPP = <X,9"-'X> >
ox

where r = xtxt~'x~'t~!, which will yield the lemma.

2. Module representations.

DEerFINITION 2.1, If M and M’ are left modules over rings R and R’ respectively, then a
pair of homomorphisms (¢, ¢) is a module representation of M in M’ if and only if
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(1) ¢: R— R’ is a ring homomorphism.
(2) 6: M > M’ is a group homomorphism, and
3) o(rm) = ¢(r)o(m) for all me M and reR.

Given a representation (¢, o), we say that ¢ is induced by ¢, as condition (3) ensures that ¢
is a left-module map, where the action of R on M’ is via ¢.

THEOREM 2.2. The (p+ 1)st homotopy group of the p-spun trefoil knot is nontrivial.

Proof. Consider the group of the trefoil H = (t,x : txt = xtx) and form the group ring
over the integers ZH = R. If we p-spin the trefoil, we obtain the (p + 1)st homotopy module

M =(X : (1—-t+x)X).

Consider the group S, and form the groupring ZS, = R'. ThegroupM' =Zz+Z;+Zz+Z,
(Z3 = Inlegers mod 8) can be considered as a left R’-module by letting S, act on M' by per-
muting the natural basis for M’. A single nontrivial representation will prove the theorem.
However, we find all module representations of M in M’ such that the homomorphism ¢:
R— R’ is induced by a group homomorphism of H into S, and such that ¢(z) = (1234). If
¢(t) = (1234), then ¢(x) must be a four-cycle because of the relation xtx = txt. Five of the six
choices give rise to module representations of M in M’. These choices are

$(x) a(X)
(1) (1234) 0
(2) (1342) (—4,-2,-3,D)X
(3) (1423) (-2,-3,1,-49x
(4) (1243) (-3,1,-4,-2)X
(5) (1324) (1,-4,-2,-3)x

Here X is an arbitrary element of Zg. For similar calculations of a(X) see [2]. For each ¢(X) we
may calculate 6(X) by observing that o((1 —¢+x£)X) = 0.
In case (1) we have

(1= (1234) +(13)(24))o(X) = 0,

which leads to the following system of equations

Yi=Yatys=0
V2= Yi+ye=0
Yy3—ya+y; =0
Ya—y3+y,=0,

where  o(X) = (¥1, Y2, V3s Va)-
In case (2) we have

(1 —(1234) + (143))a(X) = 0,
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which leads to the following system of equations

Yi—Vatys=0
Y2=Yi+y,=0
Ya—=Y2+ya=0
Ya—V3+y; =0.

Calculating these two maps we obtain (1) and (2) above. The calculations of the remaining
maps may be simplified by observing that each of the maps ¢ defined in (3)~(5) is a conjugate
by (1234) of the preceding map and then showing that the choice of ¥ = a(X)is ¢(¢)Y’, where
Y’ is the choice for the preceding map.

Thus we see that the (p+ 1)st homotopy group of the p-spun trefoil knot has several non-
trivial representations in the module M’, which provides another more generalized proof and

result of the major result of [1], the nontrivialness of higher homotopy groups of higher
dimensional knots.
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