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Abstract
The importance of network meta-analysis (NMA) methods for time-to-event (TTE) that do not rely on the
proportional hazard (PH) assumption is increasingly recognized in oncology, where clinical trials evaluating
new interventions versus standard comparators often violate this assumption. However, existing NMA methods
that allow for time-varying treatment effects do not directly leverage individual events and censor times that
can be reconstructed from Kaplan–Meier curves, which may be more accurate than discrete hazards. They are
also challenging to implement given reparameterizations that rely on discrete hazards. Additionally, two-step
methods require assumptions regarding within-study normality and variance. We propose a one-step fully Bayesian
parametric individual patient data (IPD)-NMA model that fits TTE data with the exact likelihood and allows
for time-varying treatment effects. We define fixed or random effects with the following distributions: Weibull,
Gompertz, log-normal, log-logistic, gamma, or generalized gamma distributions. We apply the one-step model to
a network of randomized controlled trials (RCTs) evaluating multiple interventions for advanced melanoma and
compare results with those obtained with the two-step approach. Additionally, a simulation study was performed
to compare the proposed one-step method to the two-step method. The one-step method allows for straightforward
model selection among the “standard” distributions, now including gamma and generalized gamma, with treatment
effects on either the scale alone or with multivariate treatment effects. Generalized gamma offers flexibility to
model U-shaped hazards within a network of RCTs, with accessible interpretation of parameters that simplifies to
exponential, Weibull, log-normal, or gamma in special cases.

Highlights
What is already known

Network meta-analysis (NMA) methods that do not rely on the proportional hazard assumption (for time-
to-event outcomes) are often required in oncology. Individual event and censor times from clinical trials can
typically be reconstructed from published Kaplan–Meier curves, but existing NMA methods used to synthesize
these trials do not directly leverage this individual-level data.
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What is new

We propose using a one-step fully Bayesian parametric NMA model that leverages individual event and censor
times with the exact likelihood and allows for time-varying treatment effects. By using the exact likelihood
specification, this model offers a flexible fit while avoiding certain assumptions/approximations required with
existing approaches. The Bayesian framework ensures that model selection and interpretation is straightforward
and efficient computation for fitting the model can be done using Stan software.

Potential impact for RSM readers outside the authors’ field

Flexible NMA methods are particularly important when there are differences in the survival distributions for
the different treatments being compared, and relative treatment effects need to be extrapolated beyond the
available trial data for a cost-effectiveness analysis. In this context, the one-step parametric NMA model offers
a valuable tool that leverages individual-level data.

1. Introduction

Network meta-analysis (NMA) is a widely used statistical technique that expands upon standard
pairwise meta-analysis, enabling simultaneous direct and indirect comparisons of multiple interventions
within a unified statistical model.1–3 Given that randomized controlled trials (RCTs) in oncology rarely
compare the new intervention to all relevant comparators, NMAs are often needed to synthesize time-
to-event outcomes (TTE), such as progression-free survival (PFS) and overall survival (OS).4

The synthesis of TTE outcomes is typically based on hazard ratios (HRs)5 derived from the
Cox proportional hazards (PH) model.6,7 However, for many reasons, the PH assumption may be
implausible,8–10 for example, due to treatment effects that vary over time, treatment crossover, delayed
treatment effects, competing risks, time-varying covariates, and differential dropout.11–13 When the PH
assumption does not hold, NMAs that rely on trial-specific HRs may yield biased estimates that result
in poor predictions,14 which are important for cost-effectiveness modeling.

Several methods have been proposed as alternatives to NMAs based on reported HRs, which
have been reviewed by Cope et al.14 Crowther et al.15 proposed a model for individual patient data
(IPD) meta-analysis using Poisson regression models that allows for non-proportional hazards by
prespecifying specific time-points at which the HR between two treatments is allowed to change.
Freeman and Carpenter16 proposed NMA models using cubic splines to model the log-cumulative
hazard functions. While flexible, these cubic spline models are restricted to HRs that specifically vary
with log-time. Another possibility, proposed by Petit et al.17 is to consider the difference in restricted
mean survival time at a prespecified time horizon as an alternative to the HR and to fit a standard
univariate NMA. While practical, prespecifying the time horizon of interest in accordance with clinical
interest may be challenging.

Ouwens et al.18 and Jansen19 proposed using multivariate parametric NMA models that allow for
the HR to change over time. A single parametric survival distribution is used to model interventions in
each trial with multivariate relative treatment effects, which are pooled and indirectly compared across
trials. This means that interventions can impact both the shape and scale of a selected distribution,
resulting in a time-varying treatment effect, which improves model fit and predictions. However, these
models were proposed prior to the development of an algorithm to reconstruct event and censor times
from the published Kaplan–Meier (KM) curves.20 Consequently, they derived discrete hazards from
“binned” events over time assuming a binomial likelihood per interval, which may be less accurate than
assuming the actual event and censor times follow the likelihood for a particular distribution. Moreover,
parameters for these models were transformed to a linear scale, and as a consequence, implementation
of these models can be challenging given that the parameterization does not align with standard software
(i.e., flexsurv in R).21

To address these limitations, Cope et al.22 proposed a two-step NMA approach, first fitting
parametric survival distributions using frequentist maximum likelihood estimation to each arm of
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each trial (using the flexsurv R package23). In the second step, the arm-specific parameter estimates,
their standard errors, and the correlation between the parameters were synthesized using a Bayesian
multivariate Normal NMA.24

Burke et al.25 and Debray et al.26 discuss the pros and cons of two-step approaches for IPD
meta-analysis relative to one-step approaches. Specifically, the two-step approach for NMA by Cope
et al.22 offers practical benefits in terms of using established statistical software packages and possibly
improving computational burden.14,27 However, it was only applied to a subset of relevant standard
distributions (Weibull, Gompertz, log-normal, and log-logistic), with parameters transformed to be
on a linear scale as in Ouwens et al.18 It also relies on bootstrapping to account for parameter
correlation26,28 and requires assumptions regarding within-study normality and variance.25,29 Given that
these assumptions can result in certain unexpected biases, Jackson and White29 recommend that, when
possible, to use one-step methods that make fewer normality assumptions. Therefore, there is a need for
one-step NMA models with time-varying treatment effects that can also be applied to distributions such
as gamma and generalized gamma that relate the available IPD (whether available or reconstructed)
directly to the likelihoods of interest without complex reparameterizations.

In this article, a one-step parametric IPD-NMA framework for TTE outcomes is proposed, which
allows for time-varying (i.e., multivariate) treatment effects with the exact likelihood. In Section 2, we
extend existing one-step PH models (exponential, Weibull, and Gompertz) or accelerated failure time
models (Weibull, log-logistic, gamma, log-normal, and generalized gamma)27,30,31 to have time-varying
treatment effects. In Section 3, we evaluate the proposed method in a simulation study, and in Section
4, we apply the model to a network of RCTs evaluating multiple interventions for advanced melanoma
regarding OS. We conclude in Section 5 with a general discussion, where we explain that proposed
models provide the foundation for extensions to the multilevel network meta-regression (ML-NMR)
framework to synthesize IPD and aggregate data (AD), while adjusting for potential prognostic factors
and effect modifiers.31

2. A parametric IPD-NMA model for TTE outcomes

We follow the parametrization used by Phillippo31 and adopt the reference treatment parameterization
defining 𝑡𝑖 𝑗𝑘 and 𝑦𝑖 𝑗𝑘 as the event time and censoring indicator, respectively, of individual i, in study j,
with treatment k, for i in 1,. . .,N, for j in 1,. . .,J, and for k in 1,. . .,K. Importantly, k = 1 is considered
the “reference treatment.” We outline the logic and formulas for the Weibull, which can be extended to
other standard distributions.

Phillippo31 defines a PH Weibull likelihood for IPD (without covariates) as

𝐿𝑖, 𝑗 ,𝑘
(
𝑡, 𝑦𝑖, 𝑗 ,𝑘

)
= 𝑆 𝑗 ,𝑘 (𝑡)𝜆 𝑗 ,𝑘 (𝑡)

𝑦𝑖, 𝑗,𝑘 , (1)

where the hazard function is

𝜆 𝑗 ,𝑘 (𝑡) = 𝜐 𝑗 𝑡 (
𝜐 𝑗−1)𝛼 𝑗 exp (𝛾𝑘 ) (2)

and the survivor function is

𝑆 𝑗 ,𝑘 (𝑡) = exp
(
−𝛼 𝑗 exp (𝛾𝑘 ) 𝑡

𝜐 𝑗
)
, (3)

where 𝛾1= 0, as treatment 1 is the “reference treatment.” As such, each study has a unique baseline
hazard function (𝜆 𝑗 ,1(𝑡) = 𝜐 𝑗 𝑡𝜐 𝑗−1𝛼 𝑗 ) defined by the shape parameter, 𝜐 𝑗 , and scale parameter, 𝛼 𝑗 , for
study j, in 1,. . .,J. This specification restricts the scale and shape parameters to 𝛼 𝑗> 0 and 𝜐 𝑗> 0, for
j in 1,. . .,J, and for k in 1,. . .,K. It is noteworthy that when the shape parameter, 𝜐 𝑗 , is <1, the hazard
rate decreases over time, whereas when 𝜐 𝑗 is >1, the hazard rate increases over time. When 𝜐 𝑗 = 1, the
hazard rate is constant over time, and the Weibull reduces to the exponential distribution.
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The treatment effect is represented by 𝛾𝑘 , and Phillippo31 proposes that priors for the model
parameters can be specified as

log
(
αj
)
∼ Normal

(
0, 1002) , for 𝑗 in 1, . . . , 𝐽; (4)

υj ∼ Uniform (0, +∞) , for 𝑗 in 1, . . . , 𝐽; and (5)

γk ∼ Normal
(
0, 1002) , for 𝑘 in 2, . . . , 𝐾. (6)

We extend the PH Weibull model proposed by Phillippo31 by defining the hazard function as:

𝜆 𝑗 ,𝑘 (𝑡) = 𝜐 𝑗 ,𝑘 𝑡 (
𝜐 𝑗,𝑘−1)𝛼 𝑗 ,𝑘 (7)

and the survivor function as

𝑆 𝑗 ,𝑘 (𝑡) = exp
(
−𝛼 𝑗 ,𝑘 𝑡

𝜐 𝑗,𝑘
)
, (8)

where 𝛼 𝑗 ,𝑘 is the scale parameter and 𝜐 𝑗 ,𝑘 is the shape parameter for the k-th treatment in the j-th study.
An NMA model with an arm-based likelihood31 is then specified as(

log
(
𝛼 𝑗 ,𝑘

)
log

(
𝜐 𝑗 ,𝑘

) ) = (
𝜇1, 𝑗

𝜇2, 𝑗

)
+

(
𝛿1, 𝑗 ,𝑘

𝛿2, 𝑗 ,𝑘

)
, (9)

where 𝛿1, 𝑗 ,1 = 𝛿2, 𝑗 ,1 = 0, for j in 1,. . .,J. It is noteworthy that, in this notation, the first subscript
used for 𝜇 and 𝛿 differentiates between the shape and scale parameters. Also note that the PH Weibull
model from Phillippo31 can be recovered by setting: 𝛿1, 𝑗 ,𝑘 = 𝛾𝑘 , 𝜇1, 𝑗 = 𝛼 𝑗 , exp

(
𝜇2, 𝑗

)
= 𝜐 𝑗 , and

exp
(
𝛿2, 𝑗 ,𝑘

)
= 1.

A fixed-effect (FE) NMA model sets 𝛿1, 𝑗 ,𝑘 = 𝑑1,𝑘 and 𝛿2, 𝑗 ,𝑘 = 𝑑2,𝑘 , for k in 1,. . .,K, so that
treatment effects are not study-specific. Alternatively, a random-effects (RE) NMA model is specified
with study-specific treatment effects such that, for j in 1,. . .,J, we define the following multivariate
normal distribution:

��������

𝛿1, 𝑗 ,2
𝛿2, 𝑗 ,2
...

𝛿1, 𝑗 ,𝐾
𝛿2, 𝑗 ,𝐾

	





�
∼ MVN

��������

��������

𝑑1,2
𝑑2,2
...

𝑑1,𝐾
𝑑2,𝐾

	





�
, Σ𝛿

	





�
, (10)

where Σ𝛿 , the 2(K−1) by 2(K−1) covariance matrix (following Cope et al.22), is defined as

Σ𝛿 =

���������

Σ 1
/
2 Σ · · · 1

/
2 Σ

Σ
... 1

/
2 Σ

. . .
...
Σ

	






�
,with

Σ =

(
𝜎2

1 𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

)
. (11)

For both the FE and RE models, the 𝑑1,𝑘 and 𝑑2,𝑘 parameters represent the relative effect of treatment
k versus treatment 1 within each of the J study populations (see White et al.32).
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All Bayesian models require defining priors for all model parameters. For j in 1,. . .,J, and for k in
2,. . .,K, wide Normal priors with a mean of 0 and a variance of 1,000 can be specified for 𝜇1, 𝑗 , 𝜇2, 𝑗
and for 𝑑1,𝑘 and 𝑑2,𝑘 (also following Cope et al.22):

𝜇1, 𝑗 ∼ Normal (0, 1, 000),
𝜇2, 𝑗 ∼ Normal (0, 1, 000),

𝑑1,𝑘 ∼ Normal (0, 1, 000), and
𝑑2,𝑘 ∼ Normal (0, 1, 000).

In the RE NMA, a prior is also needed for Σ (or alternatively for the individual 𝜎1, 𝜎2, and 𝜌
parameters). Following Cope et al.22 and Jansen 19 we can define the following Inverse-Wishart prior:

Σ ∼ IW (𝑃, 2) ,

where P is a given 2 by 2 scale matrix.
It is noteworthy that, alternatively, a somewhat less complex RE model could be defined whereby

RE are specified for only one of the two treatment effect parameters. This simpler model could be
useful when there are reasons to believe that one parameter varies between studies while the rest remain
relatively constant. For example, a model could define study-specific treatment effects with respect to
the scale parameter, while the shape parameter would remain fixed across studies. For instance, one
could define, for k in 1, . . .,K, 𝛿2, 𝑗 ,𝑘=𝑑2,𝑘 , and for j in 1,. . ., J:

������
𝛿1, 𝑗 ,2
𝛿1, 𝑗 ,3
...

𝛿1, 𝑗 ,𝐾

	



�
∼ MVN

���������
������
𝑑1,2
𝑑1,3
...

𝑑1,𝐾

	



�
,

���������

𝜎2 𝜎2/
2 · · · 𝜎

2/
2

𝜎2 ... 𝜎2/
2

. . .
...
𝜎2

	






�

	






�
. (12)

We also note that alternative prior specifications are also possible, and various parameterizations
of the variance–covariance matrix specified in equations (11) and (12) could be considered (see Wei
and Higgins33). Our multivariate Weibull NMA model can be easily generalized to other parametric
distributions. We outline standard parametric models in Table 1, including the Weibull, Gompertz, log-
normal, log-logistic, gamma, and generalized gamma distributions. The generalized gamma distribution
is characterized by three parameters and in our NMA model; only two of these three parameters
are study- and treatment-specific. The third parameter, Q, is assumed to have the same value for all
individuals across all studies and treatments within the network.

3. Simulation study

In this section, we consider a simple simulation study to investigate the validity of the proposed one-
step model and compare it to the two-step model. In this simulation study, both the proposed one-step
model and two-step model from Cope et al.22 are used to analyze 5,000 simulated datasets, assuming FE
with the Weibull distribution. Jackson and White29 suggest that a one-step approach may be preferable
due to the “hidden normality” assumptions required with a two-step approach, which can, at least in
theory, “have serious implications for the accuracy of the resulting statistical inference.” The simulation
study is based on the work in Section 7.3 of Phillippo,31 where a single simulated dataset is considered
consisting of two RCTs: one trial comparing treatments A versus B, and the other trial comparing
treatments A versus C. Here, we extend the network to include a third trial comparing treatments C
versus D. In the Supplementary Material, additional analyses are presented to demonstrate how the
proposed one-step model fits when different distributions are assumed.
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Table 1. Survival and hazard functions for standard parametric survival models.

Parameters

Survival distribution Flexsurv Model Survival and hazard functions

Weibull (PH
parameterization
from Flexsurv)

𝑎 𝜐 𝑗 ,𝑘 𝑆 𝑗 ,𝑘 (𝑡) = exp
(
−𝛼 𝑗 ,𝑘 𝑡

𝜐 𝑗,𝑘
)

𝑚 𝛼 𝑗 ,𝑘 𝜆 𝑗 ,𝑘 (𝑡) = 𝜐 𝑗 ,𝑘 𝑡 (𝜐 𝑗,𝑘−1)𝛼 𝑗 ,𝑘

Gompertz 𝑎 log
(
𝜐 𝑗 ,𝑘

)
𝑆 𝑗 ,𝑘 (𝑡) = exp

(
−

𝛼𝑗,𝑘

log(𝜐 𝑗,𝑘)

(
exp

(
𝑡 log

(
𝜐 𝑗 ,𝑘

) )
− 1

) )
𝑏 𝛼 𝑗 ,𝑘 𝜆 𝑗 ,𝑘 (𝑡) = 𝛼 𝑗 ,𝑘 exp

(
𝑡 log

(
𝜐 𝑗 ,𝑘

) )
Log-normal 𝜇 log

(
𝛼 𝑗 ,𝑘

)
𝑆 𝑗 ,𝑘 (𝑡) = 1 −Φ

(
𝜌 𝑗 ,𝑘 (𝑡)

)
𝜎 𝜐 𝑗 ,𝑘 𝜆 𝑗 ,𝑘 (𝑡) =

𝜙(𝜌 𝑗,𝑘 (𝑡))
𝑡 𝜐 𝑗,𝑘Φ(𝜌 𝑗,𝑘 (𝑡))

Log-logistic b 𝛼 𝑗 ,𝑘 𝑆 𝑗 ,𝑘 (𝑡) = 1
1+

(
𝑡

𝛼𝑗,𝑘

)𝜐𝑗,𝑘

a 𝜐 𝑗 ,𝑘 𝜆 𝑗 ,𝑘 (𝑡) =

( 𝜐𝑗,𝑘
𝛼𝑗,𝑘

) (
𝑡

𝛼𝑗,𝑘

)𝜐𝑗,𝑘−1

1+
(

𝑡
𝛼𝑗,𝑘

)𝜐𝑗,𝑘

Gamma 𝛼 𝜐 𝑗 ,𝑘 𝑆 𝑗 ,𝑘 (𝑡) = 1 − 1
Γ(𝜐 𝑗,𝑘)

𝛾
(
𝜐 𝑗 ,𝑘 , 𝑡𝛼 𝑗 ,𝑘

)
𝜎 𝛼 𝑗 ,𝑘 𝜆 𝑗 ,𝑘 (𝑡) =

𝛼𝑗,𝑘
𝜐 𝑗,𝑘 𝑡

𝜐𝑗,𝑘−1 exp(−𝛼𝑗,𝑘 𝑡)
Γ(𝜐 𝑗,𝑘)𝑆 𝑗,𝑘 (𝑡)

Generalized gamma
𝜇 log

(
𝛼 𝑗 ,𝑘

)
𝑆 𝑗 ,𝑘 (𝑡) = 1 −

𝛾

(
𝑄−2 ,𝑄−2 exp(𝑄𝜌 𝑗,𝑘 (𝑡))

Γ(𝑄−2)
, if 𝑄 ≠ 0

𝑆 𝑗 ,𝑘 (𝑡) = 1 −Φ
(
𝜌 𝑗 ,𝑘 (𝑡)

)
, if 𝑄 = 0

𝜎 𝜐 𝑗 ,𝑘 𝜆 𝑗 ,𝑘 (𝑡) =
|𝑄 | (𝑄−2)

𝑄−2

𝜐 𝑗,𝑘 𝑡Γ(𝑄−2)𝑆 𝑗,𝑘 (𝑡)
×

𝑄 𝑄 exp
{
𝑄−2 [

𝑄𝜌 𝑗 ,𝑘 (𝑡) − exp
(
𝑄𝜌 𝑗 ,𝑘 (𝑡)

) ]}
Note: For reference, the parameterization used (“standard parameterization”) corresponds to that used in the flexsurv R package23 following the
equivalences listed in the “Parameters” columns. Recall that our model specification (equation (9)) restricts the scale and shape parameter to be
strictly positive (i.e., 𝛼𝑗,𝑘 > 0 and 𝜐 𝑗,𝑘 > 0, for j in 1,. . .,J, and for k in 1,. . .,K). Note that 𝜙 (•) and 𝛷 (•) denote the probability density
function and the cumulative density function of the standard normal distribution, respectively; 𝛤 (•) and 𝛾 (•, •) denote the gamma function and
the incomplete gamma function, respectively; and 𝜌 𝑗,𝑘 (𝑡) =

[
log(𝑡) − log

(
𝛼𝑗,𝑘

) ]
/𝜐 𝑗,𝑘 .

3.1. Data-generating mechanism

As illustrated in Figure 1, each artificial dataset includes survival data for three two-arm RCTs: Study
j = 1 compares treatment k = 2 to k = 1 (henceforth, “Study AB” comparing intervention B with A);
Study j = 2 compares treatment k = 3 to k = 1 (“Study AC”); and Study j = 3 compares treatment
k = 4 to k = 3 (“Study CD”). Each study consists of Nstudy individuals randomly assigned (with a 1:1
randomization ratio) to one of the two treatment arms. We considered two scenarios: (1) with Nstudy = 36
and (2) with Nstudy = 100.

We simulated survival times to obtain time-varying treatment effects. Specifically, survival times
were simulated from Weibull distributions corresponding to the FE Weibull model outlined in equations
(7)–(9) using the cumulative distribution function inversion method (as implemented in the R package
simsurv34) with the following parameters: 𝜇1,1 = 𝜇1,2 = 𝜇1,3 = 1.5, 𝜇2,1 = 𝜇2,2 = 𝜇2,3 = 0.5,
𝑑1,2 = 1.2, 𝑑2,2 = 0.6, 𝑑1,3 = 0.5, 𝑑2,3 = −0.3, 𝑑1,4 = −0.5, and 𝑑2,4 = −0.7.
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Figure 1. Network diagram of artificial randomized controlled trials.

Figure 2. Kaplan–Meier survival curves for simulated event times, for each treatment (colors) in each
study (panels). Censored events are marked with a cross (“+”).

Potential censoring times were simulated independently of event times from a Uniform(0,1)
distribution, and a random 10% of individuals were selected for potential censoring. An individual was
ultimately censored if their survival time was greater than their potential censoring time. All individuals
who had not experienced an event by 1 year were censored at 1 year. KM plots illustrate the event and
censor times for one of the simulated datasets in Figure 2.

3.2. Methods to estimate treatment effects based on the simulated data

The relative treatment effects for the competing interventions based on the artificial RCTs in the
network were assessed using a one-step FE IPD-NMA model assuming a Weibull distribution for event
times (as outlined in equations (7)–(9)). For comparison, we also fit the data using the two-step approach
of Cope et al.,22 also assuming an FE model and a Weibull distribution. Both the one-step and two-step
models used the parameterization specified in Table 1. The parameters for these models were estimated
using the Markov Chain Monte Carlo (MCMC) method using R (packages: rstan, loo, and flexsurv23)
and Stan,35–37 where an initial series of 2,000 iterations from the sampler was discarded (i.e., burn-in)
and inferences were based on subsequent 2,000 iterations using four chains.

Results for each dataset were summarized in terms of the posterior medians and 95% credible
intervals (CrIs). For each of the two Nstudy scenarios, across all 5,000 datasets, the mean bias, mean
credible interval coverage, and mean credible interval width were calculated.

3.3. Results

Results are summarized in Table 2 and suggest that the NMA estimates obtained from both the one-step
and two-step models have little to no bias and that both methods provide 95% CrIs with approximately
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Table 2. Results from the simulation study: for each parameter, the average estimate (averaged over
the 2,000 simulated datasets); the bias (average estimate—truth); 95% CrI coverage (proportion of
simulation for which the 95% CrI contained the true parameter value); and average 95% CrI width
(averaged over the 5,000 simulated datasets).

Estimate Bias 95% CrI coverage 95% CrI width

Two- One- Two- One- Two- One- Two- One-
Nstudy Parameter Truth step step step step step step step step

36 𝑑1,2 1.20 1.316 1.299 0.116 0.099 0.941 0.939 2.524 2.534
𝑑1,3 0.50 0.555 0.550 0.055 0.050 0.943 0.941 2.131 2.138
𝑑1,4 −0.50 −0.544 −0.541 −0.044 −0.041 0.932 0.933 2.938 2.949
𝑑2,2 0.60 0.604 0.604 0.004 0.004 0.933 0.942 1.053 1.081
𝑑2,3 −0.30 −0.289 −0.29 0.011 0.010 0.935 0.940 1.053 1.078
𝑑2,4 −0.70 −0.703 −0.705 −0.003 −0.005 0.935 0.940 1.510 1.543
𝜇1,1 1.50 1.630 1.584 0.130 0.084 0.944 0.944 1.348 1.357
𝜇1,2 1.50 1.634 1.588 0.134 0.088 0.940 0.942 1.353 1.362
𝜇3,3 1.50 1.624 1.575 0.124 0.075 0.935 0.937 2.692 2.700
𝜇2,1 0.50 0.559 0.541 0.059 0.041 0.927 0.944 0.749 0.766
𝜇2,2 0.50 0.557 0.540 0.057 0.040 0.927 0.941 0.750 0.767
𝜇3,3 0.50 0.551 0.529 0.051 0.029 0.928 0.940 1.286 1.314

100 𝑑1,2 1.20 1.244 1.238 0.044 0.038 0.948 0.947 1.421 1.425
𝑑1,3 0.50 0.514 0.512 0.014 0.012 0.949 0.948 1.205 1.205
𝑑1,4 −0.50 −0.522 −0.521 −0.022 −0.021 0.943 0.943 1.664 1.665
𝑑2,2 0.60 0.603 0.603 0.003 0.003 0.947 0.946 0.627 0.633
𝑑2,3 −0.30 −0.301 −0.301 −0.001 −0.001 0.950 0.950 0.627 0.632
𝑑2,4 −0.70 −0.705 −0.706 −0.005 −0.006 0.950 0.950 0.900 0.906
𝜇1,1 1.50 1.541 1.525 0.041 0.025 0.944 0.941 0.772 0.774
𝜇1,2 1.50 1.544 1.528 0.044 0.028 0.944 0.944 0.775 0.776
𝜇3,3 1.50 1.546 1.529 0.046 0.029 0.945 0.945 1.517 1.518
𝜇2,1 0.50 0.521 0.515 0.021 0.015 0.935 0.938 0.446 0.450
𝜇2,2 0.50 0.522 0.516 0.022 0.016 0.938 0.948 0.448 0.451
𝜇3,3 0.50 0.521 0.513 0.021 0.013 0.947 0.948 0.766 0.771

Note: Survival times were simulated from Weibull distributions corresponding to the FE Weibull model with the following parameters: 𝜇1,1 =
𝜇1,2 = 𝜇1,3 = 1.5, 𝜇2,1 = 𝜇2,2 = 𝜇2,3 = 0.5, 𝑑1,2 = 1.2, 𝑑2,2 = 0.6, 𝑑1,3 = 0.5, 𝑑2,3 = −0.3, 𝑑1,4 = −0.5, and 𝑑2,4 = −0.7. Bolded values
indicate smaller bias value (comparing two-step vs. one-step).

correct coverage (i.e., the 95% CrIs obtained contain the true parameter value ~95% of the time).
For almost all parameter estimates, the one-step method appears to be less biased than the two-step
method. The average widths of the 95% CrIs are very similar for the one-step and two-step models,
suggesting that both approaches are equally efficient. Comparing results from the Nstudy = 36 scenario
with those from the Nstudy = 100 scenario, we see that with smaller sample sizes (i.e., with Nstudy = 36),
the estimates have larger biases, and the 95% CrIs are perhaps slightly too narrow. Finally, with respect
to the computational resources required, the one-step model took about twice as long to fit compared to
the two-step model when Nstudy = 36 and about three times as long to fit when Nstudy = 100.

4. Illustrative examples with existing empirical data

The illustrative example was based on a network of studies concerning the treatment of advanced
(Stage IIIc or IV) melanoma. Details of the network have been presented previously in Jansen et al. 38
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Figure 3. Network of evidence for melanoma randomized controlled trials. Node size and line
thickness correspond to the number of studies, including the treatment and the treatment comparison.
Abbreviations: DTIC, dacarbazine; IFN, interferon (IFN).

Figure 4. Kaplan–Meier plots of the reconstructed individual event and censoring times obtained for
each randomized controlled trial. Abbreviations: DTIC, dacarbazine; IFN, interferon (IFN).

and Cope et al.22 Notably, these studies are somewhat dated, having been published between 1991 and
2004, and we refer readers to Boutros et al.39 for a review of the current treatment landscape.

Ten RCTs identified in a systematic literature review formed a connected network, illustrated in
Figure 3, evaluating four treatments: dacarbazine (DTIC) monotherapy, DTIC + Interferon (IFN),
DTIC + Non-IFN, and Non-DTIC. For each treatment arm in each RCT, the reported KM curves were
digitized (DigitizeIt; http://www.digitizeit.de/), and the reconstructed individual event and censoring
times were obtained using the Guyot et al.20 algorithm (which was recently recommended by Saluja
et al.40 following an assessment of its reliability, accuracy, and precision) (see Figure 4).
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Table 3. For each of the 10 studies in the melanoma network: the number of patients per arm, the
number of overall survival events per arm, the median survival time per arm, and the p-value obtained
from applying the Grambsch and Therneau test for proportional hazard (PH) assumption.

Study Arm N at risk

Total
number

of events

Median
survival time

(months)

p-value
obtained from
the Grambsch
and Therneau

test for PH

Avril et al.41 DTIC 117 111 5.44 0.534Non-DTIC 112 105 7.36
Bajetta et al.42 DTIC 82 49 11.80 0.167DTIC + IFN 76 48 12.84
Chapman et al.43 DTIC 121 117 6.65 0.359DTIC + non-IFN 119 112 8.10
Chiarion Sileni et al.44 DTIC 19 17 6.84 0.021DTIC + non-IFN 41 40 9.61
Cocconi et al.45 DTIC 34 33 5.06 0.805DTIC + non-IFN 39 39 9.67
Falkson et al.46 DTIC 30 26 10.12 0.063DTIC + IFN 30 26 17.85
Falkson et al.47 DTIC 69 61 9.73 0.912DTIC + IFN 68 61 9.69

DTIC + non-IFN 66 56 9.97
Middleton et al.48 DTIC 149 127 3.43 0.198Non-DTIC 156 132 5.04
Thomson et al.49 DTIC 82 76 9.20 0.689DTIC + IFN 87 83 7.83
Young et al.50 DTIC 31 28 5.20 0.169DTIC + IFN 30 20 8.43

For each of the 10 studies in the melanoma network, Table 3 lists the number of patients per arm, the
number of OS events per arm, the median survival time per arm, and the p-value obtained from applying
the Grambsch and Therneau test for PH.51 Notably, there is evidence of non-PH in the Chiarion 1992
study, which compared DTIC and DTIC + non-IFN (p-value = 0.021), and therefore, according to
Cope et al.14 and recent guidance (e.g., “if the PH assumption is deemed to be implausible for one or
more comparisons in the network, then (network) meta-analysis of HRs should not be carried out”52),
a method that does not require the PH assumption should be used for analysis.

4.1. Methods

We fit the one-step and two-step multivariate NMA models with both the fixed and the REs using
MCMC with R and Stan35–37 as described in Section 3. We defined REs on both the shape and scale
parameters (following equation (10)) and specified an Inverse-Wishart prior for Σ (following equation
(11)) with:

𝑃 =

(
1/10 0

0 1/10

)
.
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Consistent with Cope et al.,22 we considered four different distributions for the likelihood: the
Weibull, the Gompertz, the log-normal, and log-logistic. It is noteworthy that, for the two-step
approach, the parameterization originally used by Cope et al.22 was based on models originally
proposed by Ouwens et al.18 In contrast, we fit all models with the more familiar parameterization
detailed in Table 1.

The approximate leave-one-out (LOO) information criterion (LOOIC) was used to select the most
appropriate model. The LOOIC is similar to the DIC in that smaller values signal better model fit, but,
unlike the DIC, it is invariant to parametrization and corresponds to a model’s predictive performance
(integrating over the posterior distribution of the parameters) (see Vehtari et al.53). Convergence for
each parameter was assessed using the Gelman-Rubin statistic.54,55 Checks for divergent transitions
were also performed (see Betancourt et al.56).

4.2. Results

All models converged and appeared to fit the data reasonably well (see predicted survival curves in
Figures 5 and 6, and MCMC trace plots for the log-logistic models in Figures 7 and 8). However, for all
models to successfully converge, the RStan default settings for the “adapt_delta” and “max_treedepth”
control variables needed to be changed following current recommendations (see details in code
provided in the Supplemental Materials).37 On a laptop computer (Macbook Pro, with M1 chip and
16 GB memory), the two-step models all took less than a minute to fit, whereas the one-step models
took between 1 and 188 minutes (with RE models taking about two and a half times longer to fit than
FE models; see Table 4).

The LOOIC suggests that the log-logistic distribution was most appropriate (Table 4), which is
consistent with findings by Cope et al.22 based on the sum of treatment-arm specific AIC values per
distribution in the first step of their analysis. The parameter estimates and 95% CrIs for the one-step
log-logistic random-effects (and fixed-effect) model are very similar to those obtained using the two-
step NMA method (Table 5). The small discrepancies between the estimates may be explained by the
assumptions required in the two-step NMA regarding within-study estimates in terms of normality
and standard errors and/or by the different priors required for the one-step and two-step models. These
findings were consistent across the alternative distributions for the likelihood evaluated (Table 6), which
are summarized in terms of the predicted survivals in Figures 5 and 6.

Figure 9 plots the estimated survival curves from the FE and RE one-step models fit to a population
with the same baseline risk as the Avril 2004 study population. Within the first 6 months, survival
appears highest for DTIC + non-IFN. However, the DTIC + non-IFN and non-DTIC survival curves
cross shortly after 6 months (illustrating the effect of time-varying treatment effects), and among all
four treatments, long-term survival appears highest for non-DTIC.

The treatment effect estimates can be summarized in many ways, and Cope and Jansen57 consider
how various quantitative summaries compare using the same melanoma network as an illustrative
example.57 Suppose one was specifically interested in OS at 1 year and at 2 years, and was interested in
comparing DTIC + IFN and non-DTIC, a treatment comparison for which there is no direct evidence.
Table 7 lists the relevant estimates obtained from the one-step and two-step log-logistic models fit to
a population with the same baseline risk as the Avril 2004 study population. Briefly, with the one-step
FE log-logistic model, the OS at 1 year with DTIC + IFN is estimated to be 20% (95% CrI: [12%,
30%]), slightly lower than with non-DTIC: 30% (95% CrI: [24%, 37%]). The estimated difference in
OS at 1 year is −10% (95% CrI: [−20%, 1%]), and at 2 years is −6% (95% CrI: [−11%, −1%]). These
findings were consistent for one-step and two-step models. Credible intervals are notably wider with
RE models relative to FE models.
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Figure 5. Fitted survival functions for all distributions from FE one-step model (Weibull, Gompertz,
log-normal, and log-logistic) and Kaplan–Meier curves by treatment arm. Abbreviations: DTIC,
dacarbazine; IFN, interferon (IFN).

Downloaded from https://www.cambridge.org/core. 16 Jul 2025 at 19:21:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


662 Campbell et al.

Figure 6. Fitted study-specific survival functions (using study-specific baseline risk [𝝁1, 𝒋 𝒂𝒏𝒅 𝝁1, 𝒋]
and relative treatment effects [𝜹1, 𝒋 ,𝒌 𝒂𝒏𝒅 𝜹2, 𝒋 ,𝒌]) for all distributions from the RE one-step model
(Weibull, Gompertz, log-normal, and log-logistic) and Kaplan–Meier curves by treatment arm.
Abbreviations: DTIC, dacarbazine; IFN, interferon (IFN).
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Figure 7. MCMC trace plots for relative treatment effect parameters of the one-step FE log-logistic
NMA model.

Figure 8. MCMC trace plots for relative treatment effect parameters of the one-step RE log-logistic
NMA model.
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Table 4. Computational sampling time required for each
model and leave-one-out information criterion (LOOIC).

Computational
sampling time

(minutes) LOOIC SE of LOOIC

RE model

Log-logistic 3 9357.51 77.32
Log-normal 2 9365.48 76.28
Gompertz 188 9560.78 75.69
Weibull 136 9628.08 70.45

FE model

Log-logistic 1 9353.32 77.55
Log-normal 1 9358.66 76.44
Gompertz 67 9549.57 75.69
Weibull 53 9623.45 70.46
Note: The LOOIC can be used to select the most appropriate model. The distribution with
the lowest LOOIC values, the log-logistic in this case (for both random effects [REs] and
fixed effect [FE]), is considered the “best” model. Abbreviation: SE, standard error.

Table 5. Parameter estimates (posterior medians and 95% CrIs) obtained with
random-effects (REs) and fixed-effect (FE) log-logistic NMA models: (1) two-step
multivariate network meta-analysis model (Cope et al.22) versus (2) the proposed
one-step IPD NMA.

Parameter 2-step log-logistic 1-step log-logistic

RE model

DTIC + IFN (𝑑1,2) 0.171 (−0.093, 0.477) 0.158 (−0.113, 0.459)
DTIC + non-IFN (𝑑1,3) 0.251 (−0.048, 0.581) 0.243 (−0.060, 0.567)
Non-DTIC (𝑑1,4) 0.239 (−0.185, 0.639) 0.233 (−0.177, 0.627)
DTIC + IFN (𝑑2,2) 0.159 (−0.062, 0.377) 0.160 (−0.071, 0.385)
DTIC + non-IFN (𝑑2,3) 0.092 (−0.146, 0.342) 0.095 (−0.145, 0.350)
Non-DTIC (𝑑2,4) −0.067 (−0.379, 0.246) −0.066 (−0.373, 0.253)

FE model

DTIC + IFN (𝑑1,2) 0.096 (−0.065, 0.252) 0.089 (−0.075, 0.248)
DTIC + non-IFN (𝑑1,3) 0.197 (0.024, 0.371) 0.192 (0.021, 0.364)
Non-DTIC (𝑑1,4) 0.231 (0.034, 0.424) 0.232 (0.036, 0.432)
DTIC + IFN (𝑑2,2) 0.157 (0.014, 0.299) 0.161 (0.018, 0.307)
DTIC + non-IFN (𝑑2,3) 0.081 (−0.067, 0.230) 0.086 (−0.063, 0.232)
Non-DTIC (𝑑2,4) −0.061 (−0.208, 0.086) −0.062 (−0.214, 0.087)
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Table 6. Parameter estimates (posterior medians and 95% CrIs) obtained with random-effects (REs) and fixed-effect (FE) NMA models: (1) two-step
multivariate network meta-analysis model (Cope et al.22) versus (2) the proposed one-step IPD NMA.

Weibull Weibull Gompertz Gompertz Log-normal Log-normal
Parameter 2-step 1-step 2-step 1-step 2-step 1-step

RE model

DTIC + IFN (𝑑1,2) −0.475 (−1.006, 0.083) −0.472 (−1.018, 0.054) −0.240 (−0.597, 0.102) −0.235 (−0.593, 0.108) 0.139 (−0.114, 0.436) 0.135 (−0.138, 0.440)
DTIC + non-IFN (𝑑1,3) −0.264 (−0.809, 0.240) −0.270 (−0.788, 0.231) −0.198 (−0.575, 0.153) −0.192 (−0.588, 0.165) 0.269 (−0.036, 0.605) 0.264 (−0.039, 0.584)
Non-DTIC (𝑑1,4) −0.185 (−0.716, 0.359) −0.188 (−0.705, 0.345) −0.287 (−0.702, 0.154) −0.282 (−0.732, 0.148) 0.202 (−0.217, 0.617) 0.217 (−0.192, 0.627)
DTIC + IFN (𝑑2,2) 0.123 (−0.078, 0.324) 0.124 (−0.078, 0.327) 0.016 (−0.092, 0.127) 0.017 (−0.098, 0.128) −0.140 (−0.349, 0.065) −0.141 (−0.349, 0.068)
DTIC + non-IFN (𝑑2,3) 0.004 (−0.201, 0.218) 0.009 (−0.199, 0.232) −0.003 (−0.124, 0.119) −0.002 (−0.128, 0.128) −0.064 (−0.296, 0.152) −0.063 (−0.292, 0.166)
Non-DTIC (𝑑2,4) −0.008 (−0.270, 0.258) −0.004 (−0.275, 0.267) 0.017 (−0.164, 0.196) 0.016 (−0.161, 0.201) 0.075 (−0.206, 0.356) 0.070 (−0.215, 0.364)

FE model

DTIC + IFN (𝑑1,2) −0.412 (−0.888, 0.062) −0.469 (−0.933, −0.004) −0.171 (−0.421, 0.084) −0.175 (−0.429, 0.076) 0.073 (−0.091, 0.230) 0.067 (−0.099, 0.235)
DTIC + non-IFN (𝑑1,3) −0.235 (−0.659, 0.177) −0.257 (−0.684, 0.172) −0.172 (−0.409, 0.069) −0.173 (−0.406, 0.063) 0.224 (0.055, 0.401) 0.223 (0.046, 0.398)
Non-DTIC (𝑑1,4) −0.163 (−0.519, 0.198) −0.158 (−0.525, 0.202) −0.240 (−0.499, 0.013) −0.244 (−0.500, 0.004) 0.212 (0.020, 0.403) 0.215 (0.015, 0.411)
DTIC + IFN (𝑑2,2) 0.129 (−0.003, 0.262) 0.146 (0.007, 0.281) 0.015 (−0.004, 0.034) 0.016 (−0.004, 0.035) −0.134 (−0.265, −0.009) −0.137 (−0.265, −0.007)
DTIC + non-IFN (𝑑2,3) 0.002 (−0.130, 0.133) 0.013 (−0.122, 0.144) −0.001 (−0.017, 0.015) −0.000 (−0.016, 0.015) −0.049 (−0.174, 0.078) −0.052 (−0.176, 0.077)
Non-DTIC (𝑑2,4) −0.022 (−0.153, 0.111) −0.021 (−0.156, 0.113) 0.009 (−0.017, 0.035) 0.010 (−0.017, 0.037) 0.071 (−0.060, 0.203) 0.070 (−0.058, 0.201)
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Figure 9. Posterior estimates of overall survival (with shaded 95% CrIs) comparing DTIC,
DTIC + IFN, DTIC + non-IFN, and Non-DTIC in the Avril 2004 population from the one-step
NMA FE (top panel) and RE (bottom panel) models. Abbreviations: DTIC, dacarbazine; IFN,
interferon (IFN).
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Table 7. Estimates obtained from the one-step and two-step log-logistic models regarding overall survival at 1 year and at 2 years comparing DTIC +
IFN and non-DTIC fit for a population with baseline risk of the Avril 2004 study population.

DTIC + IFN (k = 2) Non-DTIC (k = 4) DTIC + IFN versus non-DTIC

Two-step One-step Two-step One-step Two-step One-step

FE log-logistic with Avril 2004 population

Overall
survival
at 1 year
(%)

20.49 [12.38, 30.23] 20.29 [12.16, 30.28] 29.96 [23.37, 36.61] 30.05 [23.82, 36.94] −9.36 [−19.06, 1.45] −9.65 [−19.79, 0.99]

Overall
survival
at 2 years
(%)

5.29 [2.42, 10.05] 5.28 [2.36, 10.04] 11.15 [7.42, 15.54] 11.27 [7.73, 15.79] −5.74 [−10.71, −0.51] −5.90 [−10.87, −0.68]

RE log-logistic with Avril 2004 population

Overall
survival
at 1 year
(%)

23.19 [11.26, 39.65] 22.73 [10.61, 38.99] 30.10 [14.76, 46.91] 30.12 [15.17, 46.38] −6.96 [−26.72, 14.22] −7.16 [−26.56, 14.95]

Overall
survival
at 2 years
(%)

5.93 [1.89, 13.93] 5.86 [1.77, 13.98] 11.02 [3.68, 21.91] 11.04 [3.59, 21.97] −4.88 [−16.39, 5.25] −4.97 [−16.28, 5.27]
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5. Discussion

The proposed multivariate NMA models for TTE outcomes provide a one-step framework that allows
for time-varying treatment effects, which leverage exact (or reconstructed) event and censor times
for the studies in a connected network of evidence. By using the exact likelihood specification, we
avoid the assumptions regarding within-study normality and variance required in the two-step method
(Cope et al.22). This allows the entire model to be fit within a Bayesian framework, facilitating
straightforward model selection and interpretation. Potential concerns regarding computational burden
are mitigated by using Stan software, which provides a more efficient MCMC sampling than previous
software (i.e., WinBUGS or JAGS) through the implementation of the Hamiltonian Monte Carlo
algorithm (see Monnahan et al.58).

While we discussed using the LOOIC for model selection, often, valuable insight regarding the
plausibility of different models may also be obtained from clinical experts59–61 and observational
studies.62 Moreover, when there is no reason to believe that treatment effects vary over time, simpler
models with fewer parameters may be more appropriate. Cope et al.14 previously proposed a stepwise
process exploring standard parametric models with treatment effect on scale alone, followed by
models with multivariate treatment effects (scale and shape) for each trial and network (or other more
flexible models), which builds upon the process outlined by Latimer et al.59 for survival analysis
of a single RCT in context of cost-effectiveness analysis. The proposed one-step models allow this
process to be applied to all the “standard” distributions, now including gamma and generalized gamma.
Further, the generalized gamma distribution may be particularly useful to improve fit over other
standard distributions to a network of RCTs given the flexibility to model U-shaped hazards with this
distribution63 as well as the nature of its nested distributions (i.e., exponential, Weibull, log-normal,
and gamma).

The simulation study in Section 3 found that the proposed one-step method and the previously
proposed two-step method provide broadly similar results. When study sample sizes are especially
small, the one-step method may be preferred, in line with previous recommendations.29 However, due
to finite computational resources, the simulation study was limited in that we were unable to consider
fitting RE models and did not consider a wide range of sample sizes and prior specifications. More
extensive simulation studies may be helpful to better understand the impact of model misspecification,
the differences between fitting FE and RE models, and the differences between using one-step and two-
step methods.64

The illustrative melanoma example highlighted an application to a network of multiple trials,
where we demonstrated the feasibility of accounting for between-study heterogeneity in terms of both
the shape and the scale parameters. However, simpler random-effect models specified for only one
of the two treatment effect parameters may often be sufficient. We advise consulting clinicians to
consider whether between-study heterogeneity is most likely to affect the scale versus the shape of the
distributions. Future research should consider the merits of using different priors and parameterizations
for the variance–covariance matrix,65,66 potentially based on incorporating external evidence on the
between-trial heterogeneity.67

It may be of interest to extend the proposed methods to nonparametric IPD-NMA models. While
potentially flexible, nonparametric models can be considerably more complex and may not be among
the first NMA models to consider when following recommended model selection procedures in the
broader cost-effectiveness framework.59 Nonetheless, there may be utility in extending the current
framework to include additional nonparametric methods.

During the development of this publication, Phillippo et al. proposed the extension the ML-NMR
framework for TTE data, considering networks in which IPD-level covariate data is only available for
a subset of trials within the network (with aggregate-level covariate data available for the remaining
studies).68 This allows for the adjustment of prognostic factors and effect modifiers when information
on these is available. Maciel et al.69 demonstrated the feasibility of applying ML-NMR for TTE
outcomes with a univariate treatment effect. The main advantage of NMA models with a multivariate
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treatment effect as proposed is that they do not rely on a PH assumption across studies and treatment
comparisons. This flexibility may be important when there are differences in the survival distributions
for the treatments compared, and relative treatment effects need to be extrapolated beyond the available
trial data for a cost-effectiveness analysis.
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