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Two general series identities involving
modified Bessel functions and a class of
arithmetical functions
Bruce C. Berndt, Atul Dixit, Rajat Gupta, and Alexandru Zaharescu
Abstract. We consider two sequences a(n) and b(n), 1 ≤ n < ∞, generated by Dirichlet series

∞
∑
n=1

a(n)
λs

n
and

∞
∑
n=1

b(n)
μs

n
,

satisfying a familiar functional equation involving the gamma function Γ(s). Two general identities
are established. The first involves the modified Bessel function Kμ(z), and can be thought of as a
‘modular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions,
appear. Appearing in the second identity are Kμ(z), the Bessel functions of imaginary argument
Iμ(z), and ordinary hypergeometric functions 2F1(a, b; c; z). Although certain special cases appear
in the literature, the general identities are new. The arithmetical functions appearing in the identities
include Ramanujan’s arithmetical function τ(n), the number of representations of n as a sum of k
squares rk(n), and primitive Dirichlet characters χ(n).

1 Introduction

Our goal is to establish two general identities involving arithmetical functions whose
generating functions are Dirichlet series satisfying Hecke’s functional equation. For
example, two of these arithmetical functions are rk(n), the number of representations
of n as a sum of k squares, and Ramanujan’s arithmetical function τ(n). Our general
theorems involve the Bessel function of imaginary argument Iν(z) and the modified
Bessel function Kν(z), defined, respectively, in (2.1) and (2.2).

One of the identities is a modular or theta relation in which, roughly, the exponen-
tial functions are replaced by modified Bessel functions. The other is a transformation
formula in which ordinary hypergeometric functions appear on one side. Certain
special cases, which we cite in the sequel, of each of the two primary identities have
appeared in the literature. However, the general theorems and the majority of the
examples are new.
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Arithmetical identities 1801

We consider the class of arithmetical functions studied by Chandrasekharan and
Narasimhan [9]. Let a(n) and b(n), 1 ≤ n < ∞, be two sequences of complex num-
bers, not identically 0. Set

φ(s) ∶=
∞
∑
n=1

a(n)
λs

n
, σ > σa ; ψ(s) ∶=

∞
∑
n=1

b(n)
μs

n
, σ > σ∗a ,(1.1)

where, throughout our paper, σ = Re(s), {λn} and {μn} are two sequences of positive
numbers, each tending to ∞, and σa and σ∗a are the (finite) abscissae of absolute
convergence for φ(s) and ψ(s), respectively. Assume that φ(s) and ψ(s) have analytic
continuations into the entire complex plane C and are analytic on C except for a finite
set S of poles. Suppose that for some δ > 0, φ(s) and ψ(s) satisfy a functional equation
of the form

χ(s) ∶= (2π)−s Γ(s)φ(s) = (2π)s−δ Γ(δ − s)ψ(δ − s).(1.2)

Chandrasekharan and Narasimhan proved that the functional equation (1.2) is equiv-
alent to Theorems 1.1 and 1.2 [9, p. 6, Lemmas 4 and 5], the first of which is due to
Bochner [8]. Hence, the validity of any one of (1.2) and Theorems 1.1 and 1.2 implies
the truth of the other two identities.

Theorem 1.1 The functional equation (1.2) is equivalent to the ‘modular’ relation
∞
∑
n=1

a(n)e−λn x = (2π
x
)

δ ∞
∑
n=1

b(n)e−4π2 μn/x + P(x), Re(x) > 0,(1.3)

where

P(x) ∶= 1
2πi ∫C

(2π)z χ(z)x−zdz,

where C is a curve or curves encircling all of S.

Recall that the ordinary Bessel function Jν(z) is defined by [26, p. 40]

Jν(z) ∶=
∞
∑
n=0

(−1)n ( 1
2 z)ν+2n

n!Γ(ν + n + 1) , z ∈ C.

Theorem 1.2 Let x > 0 and ρ > 2σ∗a − δ − 1
2 . Then the functional equation (1.1) is

equivalent to the Riesz sum identity
1

Γ(ρ + 1) ∑λn≤x

′a(n)(x − λn)ρ

= ( 1
2π
)

ρ ∞
∑
n=1

b(n)( x
μn
)
(δ+ρ)/2

Jδ+ρ(4π√μn x) + Qρ(x),(1.4)

where the prime ′ on the summation sign on the left side indicates that if ρ = 0 and
x ∈ {λn}, then only 1

2 a(x) is counted. Furthermore, Qρ(x) is defined by

Qρ(x) ∶= 1
2πi ∫C

χ(z)(2π)z xz+ρ

Γ(ρ + 1 + z) dz,(1.5)

where C is a curve or curves encircling S.
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1802 B. C. Berndt, A. Dixit, R. Gupta, and A. Zaharescu

Chandrasekharan and Narasimhan [9, p. 14, Theorem III] show that the restriction
ρ > 2σ∗a − δ − 1

2 can be replaced by ρ > 2σ∗a − δ − 3
2 under certain conditions. Because

we later use analytic continuation, this extension is not important here.
Theorem 1.1 is not explicitly used in the sequel. However, Theorem 1.2 is the key to

our primary theorems, Theorems 3.1 and 10.1.
Our examples include the following arithmetical functions: rk(n), the number of

representations of n as a sum of k squares; σk(n), the sum of the kth powers of the
divisors of n; Ramanujan’s arithmetical function τ(n); both odd and even primitive
characters χ(n); and F(n), the number of integral ideals of norm n in an imaginary
quadratic number field.

2 Facts about Bessel functions

The Bessel function of imaginary argument Iν(z) is defined by [26, p. 77]

Iν(z) ∶=
∞
∑
n=0

( 1
2 z)ν+2n

n!Γ(ν + n + 1) , z ∈ C,(2.1)

whereas the modified Bessel function Kν(z) is defined by [26, p. 78]

Kν(z) ∶= π
2

I−ν(z) − Iν(z)
sin νπ

, z ∈ C, ν ∉ Z,(2.2)

Kn(z) ∶= lim
ν→n

Kν(z), n ∈ Z.

As special cases [26, p. 80],

I1/2 (z) =
√

2
πz

sinh z,(2.3)

K1/2 (z) =
√ π

2z
e−z .(2.4)

For ν ∈ C [26, p. 79],

Kν(z) = K−ν(z).(2.5)

For Re(ν) > 0 [6, p. 329],

lim
z→0

zν Kν(z) = 2ν−1Γ(ν).(2.6)

The three foregoing Bessel functions satisfy the differentiation formulas [26, pp. 66
and 79]

d
dz

(zν Jν(z)) =zν Jν−1(z),(2.7)

d
dz

(zν Iν(z)) =zν Iν−1(z),(2.8)

d
dz

(zν Kν(z)) = − zν Kν−1(z).(2.9)
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Arithmetical identities 1803

We shall need their asymptotic formulas as z →∞, namely [26, pp. 199, 202, and 203],

Jν(z) =
√

2
πz

(cos(z − 1
2 νπ − 1

4 π) + O ( 1
z
)) ,(2.10)

Iν(z) =
√

1
2πz

ez (1 + O ( 1
z
)) ,(2.11)

Kν(z) =
√ π

2z
e−z (1 + O ( 1

z
)) .(2.12)

Lemma 2.1 [26, p. 417] Let a > 0, Re(μ) > −1, and ν ∈ C. Then,

∫
∞

0

Kν(a
√

t2 + z2)
(t2 + z2)ν/2 t2μ+1dt = 2μ Γ(μ + 1)

aμ+1zν−μ−1 Kν−μ−1(az).

Lemma 2.2 [26, p. 416] For a, b > 0, Re(z) > 0, Re(μ) > −1, and ν ∈ C

∫
∞

0
Jμ(bx)Kν(a

√
z2 + x2)

(z2 + x2)ν/2 x μ+1dx = bμ

aν (
√

a2 + b2

z
)

ν−μ−1

Kν−μ−1(z
√

a2 + b2).

3 The first primary theorem

Theorem 3.1 Let Re(ν) > −1, Re(c), Re(r) > 0, and ρ > −1. Then,

1
Γ(ρ + 1)

∞
∑
n=1

a(n)∫
∞

λn

(x − λn)ρ(c2 + x)−ν/2Kν (4πr
√

c2 + x) dx

= 1
(2π)ρ+1rν cν−δ−ρ−1

∞
∑
n=1

b(n)
(r2 + μn)(δ+ρ−ν+1)/2 Kδ+ρ+1−ν (4πc

√
r2 + μn)

+∫
∞

0
Qρ(x)(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx ,(3.1)

where it is assumed that the integral Qρ(x), defined by (1.5), converges absolutely.

Proof Assume that ρ > 2σ∗a − δ − 1
2 . Multiply both sides of (1.4) by

(c2 + x)−ν/2Kν (4πr
√

c2 + x) , c, r > 0,

and integrate over 0 ≤ x < ∞. Let F1(δ, ρ, ν) denote the left-hand side, and let
F2(δ, ρ, ν) and F3(δ, ρ, ν) denote, in order, the two terms on the right-hand side that
we so obtain.

First,

F1(δ, ρ, ν) = 1
Γ(ρ + 1) ∫

∞

0
∑

λn≤x

′a(n)(x − λn)ρ(c2 + x)−ν/2Kν (4πr
√

c2 + x) dx

= 1
Γ(ρ + 1)

∞
∑
n=1

a(n)∫
∞

λn

(x − λn)ρ(c2 + x)−ν/2Kν (4πr
√

c2 + x) dx .

(3.2)
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Second, after we invert the order of summation and integration by absolute
convergence on the right-hand side, we are led to the integral

I(δ, ρ, ν) ∶=∫
∞

0
x(δ+ρ)/2(c2 + x)−ν/2 Jδ+ρ(4π√μn x)Kν (4πr

√
c2 + x) dx

=2∫
∞

0
uδ+ρ+1 Jδ+ρ(4πu√μn)

Kν(4πr
√

c2 + u2)
(c2 + u2)ν/2 du.(3.3)

Apply Lemma 2.2 with
μ = δ + ρ, a = 4πr, and b = 4π√μn .

Hence, from (3.3), for δ + ρ > −1,

I(δ, ρ, ν) =2
(4π√μn)δ+ρ

(4πr)ν
⎛
⎝

√
(4πr)2 + (4π√μn)2

c
⎞
⎠

ν−δ−ρ−1

× Kν−δ−ρ−1 (c
√
(4πr)2 + (4π√μn)2)

= μ(δ+ρ)/2
n

2πrν cν−δ−ρ−1 (r2 + μn)(ν−δ−ρ−1)/2Kν−δ−ρ−1 (4πc
√

r2 + μn) .(3.4)

In summary, with the use of (2.5) and (3.4), we have

F2(δ, ρ, ν) = 1
(2π)ρ+1rν cν−δ−ρ−1

∞
∑
n=1

b(n)
(r2 + μn)(δ+ρ−ν+1)/2 Kν−δ−ρ−1 (4πc

√
r2 + μn)

= 1
(2π)ρ+1rν cν−δ−ρ−1

∞
∑
n=1

b(n)
(r2 + μn)(δ+ρ−ν+1)/2 Kδ+ρ+1−ν (4πc

√
r2 + μn) .

(3.5)

Third,

F3(δ, ρ, ν) =∫
∞

0
Qρ(x)(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx .(3.6)

We now gather together (3.2), (3.5), and (3.6) to conclude (3.1), which we have
proved for ν, r, c > 0. However, in view of (2.12), we see that by analytic continuation,
(3.1) holds for Re(ν) > −1, and Re(c), Re(r) > 0. The conditions ρ > 2σ∗a − δ − 1

2 and
δ + ρ > −1 can be discarded by analytic continuation in ρ. ∎

4 The special case ρ = 0

We consider Theorem 3.1 in the special case ρ = 0.

Theorem 4.1 Let Re(ν) > −1 and Re(c), Re(r) > 0. Assume that the integral below
converges absolutely. Then,

1
2πr

∞
∑
n=1

a(n)
(c2 + λn)(ν−1)/2 Kν−1 (4πr

√
c2 + λn)

= 1
2πrν cν−δ−1

∞
∑
n=1

b(n)
(r2 + μn)(δ−ν+1)/2 Kδ+1−ν (4πc

√
r2 + μn)

+∫
∞

0
Q0(x)(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx .
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Arithmetical identities 1805

Proof First, set

u = 4πr
√

c2 + x ⇒ dx = u
8π2r2 du.

Hence, in turn, using (2.5) and (2.9), we find that

∫
∞

λn

(c2 + x)−ν/2Kν (4πr
√

c2 + x) dx = ∫
∞

4πr
√

c2+λn

( u
4πr

)
−ν
( u

8π2r2 )Kν(u)du

= 2
(4πr)2−ν ∫

∞

4πr
√

c2+λn

u−ν+1Kν(u)du

=2(4πr)ν−2 ∫
∞

4πr
√

c2+λn

u−ν+1K−ν(u)du

= − 2(4πr)ν−2 ∫
∞

4πr
√

c2+λn

d
du

(u−ν+1K−ν+1(u)) du

=2(4πr)ν−2(4πr
√

c2 + λn)−ν+1K−ν+1(4πr
√

c2 + λn)

= 1
2πr

(c2 + λn)−(ν−1)/2Kν−1(4πr
√

c2 + λn).

Thus, the sum on the left-hand side of (3.1) reduces to

1
2πr

∞
∑
n=1

a(n)
(c2 + λn)(ν−1)/2 Kν−1(4πr

√
c2 + λn).

The remaining part of the proof is immediate after setting ρ = 0 in Theorem 3.1. ∎

Before giving examples in illustration of Theorem 4.1, we offer remarks on previous
work. Theorem 3.1 is new. The first author’s paper [3, p. 342] contains the first statement
and proof of Theorem 4.1 [3, pp. 342–344]. Our proof here is completely different from
that in [3]. Theorem 4.1 was also established via the Voronoï summation formula in [4,
p. 154]. The special case, δ = 1, of Theorem 4.1 was first established by Oberhettinger
and Soni [22, p. 24] in 1972.

To illuminate the equivalence of the functional equation (1.2), the modular relation
(1.3), and the Riesz sum identity (1.4), Chandrasekharan and Narasimhan [9] examine
the three identities with particular arithmetical functions. For more details about the
functional equations associated with these arithmetical functions, and for calculations
of Q0(x), see their paper [9].

In the examples below, we refer to calculations made by Chandrasekharan and
Narasimhan [9] to illustrate Theorem 1.2. In particular, we use a few of their deter-
minations of Qρ(x).

5 Example: rk(n)

Let rk(n) denote the number of representations of the positive integer n as a sum of k
squares, where k ≥ 2. Then,

ζk(s) ∶=
∞
∑
n=1

rk(n)
ns , σ > k/2,
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satisfies the functional equation

π−s Γ(s)ζk(s) = πs−k/2Γ(k/2 − s)ζk(k/2 − s).(5.1)

Thus, in the notation of (1.2),

φ(s) = ψ(s) = 2s ζk(s), a(n) = b(n) = rk(n), δ = k
2

, and λn = μn =
n
2

.

From the functional equation (5.1), ζk(0) = −1, and furthermore ζk(s) has a simple
pole at s = k/2 with residue πk/2/Γ(k/2). It readily follows from (1.5) that

Qρ(x) = − xρ

Γ(ρ + 1) +
(2πx)k/2xρ

Γ(ρ + 1 + k/2) .(5.2)

Applying Theorem 3.1, we find that for Re(ν) > −1, Re(c), Re(r) > 0, and ρ > −1,

1
Γ(ρ + 1)

∞
∑
n=1

rk(n)∫
∞

n/2
(x − n/2)ρ(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx

= 1
(2π)ρ+1rν cν−k/2−ρ−1

∞
∑
n=1

rk(n)
(r2 + n/2)(k/2+ρ−ν+1)/2 Kk/2+ρ+1−ν(4πc

√
r2 + n/2)

+∫
∞

0
(− xρ

Γ(ρ + 1) +
(2πx)k/2xρ

Γ(ρ + 1 + k/2)) (c2 + x)−ν/2Kν (4πr
√

c2 + x) dx .(5.3)

First, making the trivial change of variable x = t2, and applying Lemma 2.1 with
a = 4πr, z = c, and μ = ρ, we find that

−∫
∞

0

xρ

Γ(ρ + 1)(c2 + x)−ν/2Kν (4πr
√

c2 + x) dx = − 2ρ+1

(4πr)ρ+1cν−ρ−1 Kν−ρ−1(4πrc).

(5.4)

Second, again making the trivial change of variable x = t2, and applying Lemma 2.1
with a = 4πr, z = c, and μ = ρ + 1

2 k, we find that

∫
∞

0

xρ+k/2

Γ(ρ + 1 + k/2)(c2 + x)−ν/2Kν (4πr
√

c2 + x) dx

= 2ρ+k/2+1

(4πr)ρ+k/2+1cν−ρ−k/2−1 Kν−ρ−k/2−1(4πrc).(5.5)

Now, put (5.4) and (5.5) into (5.3) to deduce that

1
Γ(ρ + 1)

∞
∑
n=1

rk(n)∫
∞

n/2
(x − n/2)ρ(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx

= 1
(2π)ρ+1rν cν−k/2−ρ−1

∞
∑
n=1

rk(n)
(r2 + n/2)(k/2+ρ−ν+1)/2 Kk/2+ρ+1−ν(4πc

√
r2 + n/2)

− 2ρ+1

(4πr)ρ+1cν−ρ−1 Kν−ρ−1(4πrc) + (2π)k/22ρ+k/2+1

(4πr)ρ+k/2+1cν−ρ−k/2−1 Kν−ρ−k/2−1(4πrc).
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Next, appealing to Theorem 4.1 and (5.2) in the case ρ = 0, we deduce that

1
2πr

∞
∑
n=1

rk(n)
(c2 + n/2)(ν−1)/2 Kν−1(4πr

√
c2 + n/2)

= 1
2πrν cν−k/2−1

∞
∑
n=1

rk(n)
(r2 + n/2)(k/2−ν+1)/2 Kk/2+1−ν(4πc

√
r2 + n/2)

+ ∫
∞

0
(−1 + (2πx)k/2

Γ(1 + k/2)) (c2 + x)−ν/2Kν (4πr
√

c2 + x) dx .(5.6)

Now, use (5.4) and (5.5) in the case ρ = 0. If we define rk(0) = 1 and use (2.6), we see
that (5.4) in the case ρ = 0 can be written as the term for n = 0 in the series on the
left-hand side of (5.6), whereas (5.5) in the case ρ = 0 can be considered as the term
for n = 0 in the series on the right-hand side. Multiplying both sides of the resulting
identity by 2πr, and replacing ν by ν + 1, we conclude that

∞
∑
n=0

rk(n)
(c2 + n/2)ν/2 Kν(4πr

√
c2 + n/2)

= 1
rν cν−k/2

∞
∑
n=0

rk(n)
(r2 + n/2)(k/2−ν)/2 Kk/2−ν(4πc

√
r2 + n/2).(5.7)

The identity (5.7) was also established by the first author, Lee, and Sohn [7, p. 39,
equation (5.5)]. For k = 2, (5.7) was first proved by Dixon and Ferrar [12, p. 53, equation
(4.13)] in 1934. A different proof for k = 2 was given by Oberhettinger and Soni [22,
p. 24].

6 Example: σk(n)

Let σk(n) denote the sum of the kth powers of the divisors of n, where it is assumed
that k is an odd positive integer. The generating function for σk(n) is given by

ζk(s) ∶= ζ(s)ζ(s − k) =
∞
∑
n=1

σk(n)
ns , σ > k + 1,

and it satisfies the functional equation

(2π)−s Γ(s)ζk(s) = (−1)(k+1)/2(2π)−(k+1−s)Γ(k + 1 − s)ζk(k + 1 − s).(6.1)

In the notation of the Dirichlet series and functional equation in (1.1) and (1.2),
respectively,

a(n) = σk(n), b(n) = (−1)(k+1)/2σk(n), λn = μn = n, δ = k + 1.

Now, Q0(s) is the sum of the residues of

R(z) ∶= Γ(z)ζ(z)ζ(z − k)xz

Γ(z + 1) .
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(In Chandrasekharan and Narasimhan’s paper [9], they utilize a different convention
for Bernoulli numbers, and so our representation for Q0 takes a different form from
theirs.) Observe that R(z) has simple poles at z = 0,−1, k + 1. Using Euler’s formula,

ζ(2n) = (−1)n−1 (2π)2n B2n

2(2n)!
, n ≥ 1,

where n is a positive integer and Bn denotes the nth Bernoulli number, we readily find
that

Q0(x) = Bk+1

2(k + 1) −
δ1,k x

2
+ (2π)k+1(−1)(k−1)/2Bk+1xk+1

2(k + 1)Γ(k + 2) ,(6.2)

where

δ1,k =
⎧⎪⎪⎨⎪⎪⎩

1, if k = 1,
0, otherwise.

Applying Theorem 4.1 and employing (6.2), we find that

1
2πr

∞
∑
n=1

σk(n)
(c2 + n)(ν−1)/2 Kν−1 (4πr

√
c2 + n)

= 1
2πrν cν−k−2

∞
∑
n=1

(−1)(k+1)/2σk(n)
(r2 + n)(k+2−ν)/2 Kk+2−ν (4πc

√
r2 + n)

+ ∫
∞

0
( Bk+1

2(k + 1) −
δ1,k x

2
+ (2π)k+1(−1)(k−1)/2Bk+1xk+1

2(k + 1)Γ(k + 2) )

× (c2 + x)−ν/2Kν (4πr
√

c2 + x) dx .(6.3)

Let I1 , I2, and I3 denote, respectively, the three integrals on the right side of (6.3).
In each instance below, we initially make the change of variable x = t2. First, by
Lemma 2.1,

I1 =
Bk+1

2(k + 1) ∫
∞

0
(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx = Bk+1

k + 1
1

4πrcν−1 Kν−1(4πrc).

(6.4)

Second, apply Lemma 2.1 with a = 4πr, z = c, and μ = 1. Hence,

I2 = −
δ1,k

2 ∫
∞

0
(c2 + x)−ν/2Kν (4πr

√
c2 + x) x dx = −δ1,k

2
(4πr)2cν−2 Kν−2(4πrc).

(6.5)

Third, we apply Lemma 2.1 with a = 2πr, z = c, and μ = k + 1. Therefore,

I3 =
(2π)k+1(−1)(k−1)/2Bk+1

2(k + 1)Γ(k + 2) ∫
∞

0
(c2 + x)−ν/2Kν (4πr

√
c2 + x) xk+1 dx

= (−1)(k−1)/2Bk+1

4π(k + 1)rk+2cν−k−2 Kν−k−2(4πrc).(6.6)
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In summary, putting (6.4)–(6.6) into (6.3), we deduce that

1
2πr

∞
∑
n=1

σk(n)
(c2 + n)(ν−1)/2 Kν−1 (4πr

√
c2 + n)

= 1
2πrν cν−k−2

∞
∑
n=1

(−1)(k+1)/2σk(n)
(r2 + n)(k+2−ν)/2 Kk+2−ν (4πc

√
r2 + n)

+ Bk+1

k + 1
1

4πrcν−1 Kν−1(4πrc)

− δ1,k
2

(4πr)2cν−2 Kν−2(4πrc) + (−1)(k−1)/2Bk+1

4π(k + 1)rk+2cν−k−2 Kν−k−2(4πrc).(6.7)

We now put (6.7) in a more palatable form. From (6.1),

ζk(0) = ζ(0)ζ(−k) = − 1
2
⋅ −Bk+1

k + 1
= Bk+1

2(k + 1) ,

by [13]. Define

σk(0) = −ζk(0) = − Bk+1

2(k + 1) .(6.8)

Thus, by (6.8), the first expression after the series on the right-hand side of (6.7) can
be expressed as the term for n = 0 in the series on the left-hand side. Similarly, the last
expression on the right-hand side of (6.7) can be represented as the term for n = 0 in
the series on the right-hand side of (6.7). Thus, we can write (6.7) in the simplified
form

1
2πr

∞
∑
n=0

σk(n)
(c2 + n)(ν−1)/2 Kν−1 (4πr

√
c2 + n)

= 1
2πrν cν−k−2

∞
∑
n=0

(−1)(k+1)/2σk(n)
(r2 + n)(k+2−ν)/2 Kk+2−ν (4πc

√
r2 + n)

− δ1,k
2

(4πr)2cν−2 Kν−2(4πrc).(6.9)

Multiplying both sides of (6.9) by 2πr, and replacing ν by ν + 1, we deduce that
∞
∑
n=0

σk(n)
(c2 + n)ν/2 Kν (4πr

√
c2 + n)

= − δ1,k

4πrcν−1 Kν−1(4πrc) + 1
rν cν−k−1

∞
∑
n=0

(−1)(k+1)/2σk(n)
(r2 + n)(k+1−ν)/2 Kk+1−ν (4πc

√
r2 + n) .

(6.10)

This identity appears to be new. If we let c → 0 in this identity, employ the limit
evaluation [6, p. 329]

lim
c→0

c−ν/2Kν(2π
√

cβ) = 1
2

Γ(−ν)πν βν/2 ,

and replace ν by −ν − 1, then we obtain the first equation on page 4794 of [5] for −1 <
Re(ν) < 1. The restriction Re(ν) < 1 can then be removed by analytic continuation.
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1810 B. C. Berndt, A. Dixit, R. Gupta, and A. Zaharescu

In a three-page fragment published with his lost notebook [24, p. 253], [2, p. 95],
Ramanujan offered a kindred formula to (6.10). If α and β are positive numbers such
that αβ = π2, and if s is any complex number, then

√
α
∞
∑
n=1

σ−s(n)ns/2Ks/2(2nα) −
√

β
∞
∑
n=1

σ−s(n)ns/2Ks/2(2nβ)

= 1
4

Γ ( s
2
) ζ(s){β(1−s)/2 − α(1−s)/2} + 1

4
Γ (− s

2
) ζ(−s){β(1+s)/2 − α(1+s)/2}.

(6.11)

Note that (6.11) is not a special case of (6.10), and also note that (6.11) is valid for
all complex s, whereas k in (6.10) is a positive odd integer. The beautiful symmetry
involving the modified Bessel functions is apparent in both (6.10) and (6.11). However,
in (6.10), there is symmetry in the binomial powers, whereas in (6.11), the symmetry
is in the powers of the summation index.

Unaware that (6.11) was first established by Ramanujan [24, p. 253], Guinand [17]
gave the first proof in print in 1955. The identity (6.11) is now known as Guinand’s
formula or the Ramanujan–Guinand formula. See also [7, pp. 25–27] for a proof.
Letting s = 0 in (6.11), we obtain a well-known formula of Koshliakov [7].

The identities (6.11) and (6.10) are remindful of the Fourier expansions of real
analytic Eisenstein series, which are defined on the modular group SL2(Z). For
Re(s) > 1 and z = x + iy ∈ H, define

E(s, z) = 1
2 ∑
−∞<c ,d<∞
(c ,d)=1

ys

∣cz + d∣2s .

The Eisenstein series E(s, z) has a Fourier expansion that is given in terms of series
involving modified Bessel function Kν(z), namely [21],

E(s, z) = ys + ψ(2s − 1)
ψ(2s) y1−s +

4√y
ψ(2s)

∞
∑
m=1

ms− 1
2 σ1−2s(m)Ks− 1

2
(2πmy) cos(2πmx),

where

ψ(s) = π−s/2Γ ( s
2
) ζ(s).

7 Example: τ(n)

Recall that the Dirichlet series for Ramanujan’s arithmetical function τ(n)

f (s) ∶=
∞
∑
n=1

τ(n)
ns , σ > 13

2
,(7.1)

satisfies the functional equation

χ(s) ∶= (2π)−s Γ(s) f (s) = (2π)−(12−s)Γ(12 − s) f (12 − s).(7.2)
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In the notation of (1.1) and (1.2), the function χ(s) is an entire function, and so
Q0(x) ≡ 0. Clearly,

λn = μn = n, δ = 12.(7.3)

First, apply Theorem 3.1. For Re(ν) > −1, Re(c), Re(r) > 0, and ρ > −1, we have

1
Γ(ρ + 1)

∞
∑
n=1

τ(n)∫
∞

n
(x − n)ρ(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx

= 1
(2π)ρ+1rν cν−13−ρ

∞
∑
n=1

τ(n)
(r2 + n)(13+ρ−ν)/2 K13+ρ−ν (4πc

√
r2 + n) .

Second, applying Theorem 4.1 and replacing ν by ν + 1, we deduce that, for
Re(ν), Re(c), Re(r) > 0,

∞
∑
n=1

τ(n)
(c2 + n)ν/2 Kν (4πr

√
c2 + n) = 1

rν cν−12

∞
∑
n=1

τ(n)
(r2 + n)(12−ν)/2 K12−ν (4πc

√
r2 + n) .

(7.4)

The identity (7.4) was first established by the first author, Lee, and Sohn [7, p. 40,
equation (5.7)].

8 Example: primitive characters χ(n)

Let χ denote a primitive character modulo q. Because the functional equations for the
Dirichlet L-series

L(s, χ) =
∞
∑
n=1

χ(n)
ns , σ > 0,

are different for χ even and χ odd, we separate the two cases.
Suppose first that χ is odd. Then, the functional equation for L(s, χ) is given by

[11, p. 71]

χ(s) ∶= (π
q
)
−s

Γ(s)L(2s − 1, χ) = − iτ(χ)
√q

(π
q
)
−( 3

2−s)

Γ ( 3
2 − s) L(2 − 2s, χ),

(8.1)

where χ(n) denotes the complex conjugate of χ(n), and τ(χ) denotes the Gauss sum

τ(χ) ∶=
q

∑
n=1

χ(n)e2πin/q .(8.2)

Hence, in the notation of (1.1) and (1.2),

a(n) = nχ(n), b(n) = − iτ(χ)
√q

nχ(n), λn = μn =
n2

2q
, δ = 3

2
.(8.3)
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Furthermore, χ(s) is an entire function, and consequently Q0(x) ≡ 0. Applying
Theorem 4.1, multiplying both sides of the resulting identity by 2πr, and replacing ν
by ν + 1, we conclude that

∞
∑
n=0

nχ(n)
(c2 + n2/(2q))ν/2 Kν(4πr

√
c2 + n2/(2q))

= − iτ(χ)
rν cν−3/2√q

∞
∑
n=0

n χ(n)
(r2 + n2/(2q))(3/2−ν)/2 K3/2−ν(4πc

√
r2 + n2/(2q)),

which we believe to be new.
Second, let χ be even. Then, the functional equation of L(s, χ) is given by [11, p. 69]

χ(s) ∶= (π
q
)
−s

Γ(s)L(2s, χ) = τ(χ)
√q

(π
q
)
−( 1

2−s)

Γ ( 1
2 − s) L(1 − 2s, χ).(8.4)

Hence, by (1.1) and (1.2),

a(n) = χ(n), b(n) = τ(χ)
√q

χ(n), λn = μn =
n2

2q
, δ = 1

2
.(8.5)

Furthermore, χ(s) is an entire function, and consequently Q0(x) ≡ 0. Appealing to
Theorem 4.1, multiplying both sides of the identity so obtained by 2πr, and replacing
ν by ν + 1, we conclude that

∞
∑
n=0

χ(n)
(c2 + n2/(2q))ν/2 Kν(4πr

√
c2 + n2/(2q))

= τ(χ)
rν cν−1/2√q

∞
∑
n=0

χ(n)
(r2 + n2/(2q))(1/2−ν)/2 K1/2−ν(4πc

√
r2 + n2/(2q)),

which we also believe to be a new identity.

9 Example: ideal functions F(n) of imaginary quadratic number
fields

Let F(n) denote the number of integral ideals of norm n in an imaginary quadratic
number field K = Q (

√
−D), where D is the discriminant of K. Then, the Dedekind

zeta function

ζK(s) ∶=
∞
∑
n=1

F(n)
ns , σ > 1,

satisfies the functional equation [10, p. 211]

( 2π√
D
)
−s

Γ(s)ζK(s) = ( 2π√
D
)

s−1

Γ(1 − s)ζK(1 − s).(9.1)

We note from (1.1) and (1.2) that

a(n) = b(n) = F(n), λn = μn = n/
√

D, δ = 1.
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The function ζK(s) has an analytic continuation into the entire complex plane where
it is analytic except for a simple pole at s = 1. From [10, p. 212],

lim
s→1

(s − 1)ζK(s) = 2πh(K)R(K)
w(K)

√
D

,(9.2)

where h(K), R(K), and w(K) denote, respectively, the class number of K, the regula-
tor of K, and the number of roots of unity in K. Furthermore, from (9.1) and (9.2),

ζK(0) = lim
s→0

√
D

2π
⋅ 1

sΓ(s) ⋅ sζK(1 − s) =
√

D
2π

⋅ −2πh(K)R(K)
w(K)

√
D

= −h(K)R(K)
w(K) .

(9.3)

For simplicity, set d =
√

D, h = h(K), R = R(K), and w = w(K). From (9.3) and (9.2),

Q0(x) = 1
2πi ∫C

Γ(z)
Γ(z + 1)dz ζK(z)xzdz = −hR

w
+ 2πhRx

w
.(9.4)

By Theorem 4.1 and (9.4),

1
2πr

∞
∑
n=1

F(n)
(c2 + n/d)(ν−1)/2 Kν−1 (4πr

√
c2 + n/d)

= 1
2πrν cν−2

∞
∑
n=1

F(n)
(r2 + n/d)(2−ν)/2 K2−ν (4πc

√
r2 + n/d)

+ ∫
∞

0
(−hR

w
+ 2πhRx

w
)(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx .(9.5)

Separate the integral on the right-hand side of (9.5) into two integrals, denoted by I1
and I2, respectively. First, by Lemma 2.1, as we did in our calculation in (6.4),

I1 = −
hR
w ∫

∞

0
(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx = −hR

w
1

2πrcν−1 Kν−1(4πrc).

(9.6)

Second, by Lemma 2.1 with the same calculation as in (6.5),

I2 =
2πhR

w ∫
∞

0
x(c2 + x)−ν/2Kν (4πr

√
c2 + x) dx = hR

2w πr2cν−2 Kν−2(4πrc).

(9.7)

Suppose that we define (perhaps for the first time in the literature)

F(0) = hR
w

.(9.8)
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Then, substituting (9.6) and (9.7) into (9.5) and employing the definition (9.8) to
identify (9.6) and (9.7) as the terms for n = 0 on the left- and right-hand sides below,
we find that

1
2πr

∞
∑
n=0

F(n)
(c2 + n/d)(ν−1)/2 Kν−1 (4πr

√
c2 + n/d)

= 1
2πrν cν−2

∞
∑
n=0

F(n)
(r2 + n/d)(2−ν)/2 K2−ν (4πc

√
r2 + n/d) .(9.9)

Lastly, multiplying both sides of (9.9) by 2πr and replacing ν by ν + 1, we conclude
with the identity

∞
∑
n=0

F(n)
(c2 + n/d)ν/2 Kν (4πr

√
c2 + n/d)

= 1
rν cν−1

∞
∑
n=0

F(n)
(r2 + n/d)(1−ν)/2 K1−ν (4πc

√
r2 + n/d) .(9.10)

The identity (9.10) was first proved in 1934 by Koshliakov [19, p. 555, equation (15)],
who used the Abel–Plana summation formula.

10 The second primary theorem

Theorem 10.1 For Re(ν) > −1, ρ > −1, δ + ρ + Re(ν) + 1 > δ∗a > 0, and Re(
√

α) >
Re(

√
β) > 0,

1
Γ(ρ + 1)

∞
∑
n=1

a(n)∫
∞

λn

(t − λn)ρ d
dt

H(α, β; t)dt

= − 2
(2π)δ+2ρ

Γ(ν + δ + ρ + 1)
Γ(ν + 2)

∞
∑
n=1

b(n)
√

4μn + α
√

4μn + β

×
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

ν+1
⎛
⎝

1√
4μn + α

+ 1√
4μn + β

⎞
⎠

2δ+2ρ−2

× 2F1
⎛
⎜
⎝

ν − δ − ρ + 2, 1 − δ − ρ; ν + 2;
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

2⎞
⎟
⎠

−
Qρ(0)

2(ν + 1)
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

− ∫
∞

0
Q′ρ(t)H(α, β; t)dt,(10.1)

where

H(α, β; t) ∶= Iν+1 (π
√

t (
√

α −
√

β))Kν+1 (π
√

t (
√

α +
√

β)) ,(10.2)

where it is assumed that Qρ(0) exists, and where 2F1(a, b; c; z) denotes the ordinary
hypergeometric function.
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Proof Replace x by t in (1.4), multiply both sides of (1.4) by

d
dt

H(α, β; t),

where H(α, β; t) is defined by (10.2), and finally integrate with respect to t over (0,∞).
We see that the left-hand side becomes

1
Γ(ρ + 1)

∞
∑
n=1

a(n)∫
∞

λn

(t − λn)ρ d
dt

H(α, β; t)dt = 1
(2π)ρ F1(α, β, ρ) + F2(α, β, ρ),

(10.3)

where

F1(α, β, ρ) ∶=
∞
∑
n=1

b(n)∫
∞

0
( t

μn
)
(δ+ρ)/2

Jδ+ρ (4π
√

μn t) H(α, β; t)dt

and

F2(α, β, ρ) ∶= ∫
∞

0
Qρ(t)H(α, β; t)dt.(10.4)

First, examine F1(α, β, ρ). Integrating by parts while using (2.7) in the form

d
dt
(t(δ+ρ)/2 Jδ+ρ (a

√
t)) = a

2
t(δ+ρ−1)/2 Jδ+ρ−1 (a

√
t) ,

we find that

F1(α, β, ρ) =
∞
∑
n=1

b(n)
μ(δ+ρ)/2

n
∫
∞

0
t(δ+ρ)/2 Jδ+ρ (4π

√
μn t) d

dt
H(α, β; t)

= −
∞
∑
n=1

b(n)
μ(δ+ρ)/2

n
∫
∞

0

d
dt
(t(δ+ρ)/2 Jδ+ρ (4π

√
μn t))H(α, β; t)dt

= − 2π
∞
∑
n=1

b(n)
μ(δ+ρ−1)/2

n
∫
∞

0
t(δ+ρ−1)/2 Jδ+ρ−1 (4π

√
μn t)H(α, β; t)dt,

(10.5)

where we have used the asymptotic formulas (2.10)–(2.12), the hypothesis δ + ρ > 0,
and the existence of

lim
t→0

Iν+1 (π
√

t (
√

α −
√

β))Kν+1 (π
√

t (
√

α +
√

β)) ,

which is explicitly calculated in (10.8).
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We next employ an integral evaluation from [6, p. 315]. For Re(μ) > −1,
Re(μ + ν) > −1, and Re(π(z +w)) > ∣Re(π(z −w))∣ + ∣Im(ξ)∣,

∫
∞

0
x μ+1 Jμ(ξx)Iν(π(z −w)x)Kν(π(z +w)x)dx

=Γ(μ + ν + 1)
Γ(ν + 1)

(ξ/2)μ
√

ξ2 + 4π2z2
√

ξ2 + 4π2w2

⎛
⎝

√
ξ2 + 4π2z2 −

√
ξ2 + 4π2w2

√
ξ2 + 4π2z2 +

√
ξ2 + 4π2w2

⎞
⎠

ν

×
⎛
⎝

1√
ξ2 + 4π2z2

+ 1√
ξ2 + 4π2w2

⎞
⎠

2μ

× 2F1
⎛
⎜
⎝

ν − μ,−μ; ν + 1;
⎛
⎝

√
ξ2 + 4π2z2 −

√
ξ2 + 4π2w2

√
ξ2 + 4π2z2 +

√
ξ2 + 4π2w2

⎞
⎠

2⎞
⎟
⎠

.(10.6)

The Hankel inversion of the formula given above with the same kernel, that is, Jμ , was
given by Koshliakov [20, equation (1)] and is a generalization of an integral evaluation
by Fock and Bursian [15, pp. 361–363], arising in their study on electromagnetism (see
also [14, equations (31) and (33)]).

In the integral on the extreme right-hand side of (10.5), make the change of variable
t = x2 and then apply (10.6) with ξ = 4π√μn , μ = δ + ρ − 1, z =

√
α, w =

√
β, and ν

replaced by ν + 1. Thus, for Re(ν + δ + ρ) > −1 and δ + ρ > 0, we find that

F1(α, β, ρ) = −2π
∞
∑
n=1

b(n)
μ(δ+ρ−1)/2

n
⎧⎪⎪⎨⎪⎪⎩

2Γ(ν + δ + ρ + 1)
Γ(ν + 2)

(2π√μn)δ+ρ−1
√

16π2 μn + 4π2α
√

16π2 μn + 4π2β

×
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

ν+1
⎛
⎝

1√
16π2 μn + 4π2α

+ 1√
16π2 μn + 4π2β

⎞
⎠

2δ+2ρ−2

× 2F1
⎛
⎜
⎝

ν − δ − ρ + 2,−δ − ρ + 1, ν + 2,
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

2⎞
⎟
⎠

⎫⎪⎪⎬⎪⎪⎭

= − 2
(2π)δ+ρ

Γ(ν + δ + ρ + 1)
Γ(ν + 2)

∞
∑
n=1

b(n)
√

4μn + α
√

4μn + β

×
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

ν+1
⎛
⎝

1√
4μn + α

+ 1√
4μn + β

⎞
⎠

2δ+2ρ−2

× 2F1
⎛
⎜
⎝

ν − δ − ρ + 2,−δ − ρ + 1; ν + 2;
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

2⎞
⎟
⎠

.(10.7)

Second, by the definitions of Iν and Kν in (2.1) and (2.2), respectively, and by the
use of the functional equation and reflection formula for Γ(z), we find that
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lim
t→0

Iν+1 (π
√

t (
√

α −
√

β))Kν+1 (π
√

t (
√

α +
√

β))

= lim
t→0

π
2 sin(π(ν + 1))

( 1
2 π
√

t(
√

α −
√

β))ν+1

Γ(ν + 2)
( 1

2 π
√

t(
√

α +
√

β))−ν−1

Γ(−ν)

= π
2 sin(π(ν + 1))(ν + 1)Γ(ν + 1)Γ(−ν)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

= 1
2(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

.(10.8)

Utilizing (2.11), (2.12), and (10.8) in performing an integration by parts in (10.4), we
deduce that, for Re(ν) > −1,

F2(α, β, ρ) = − 1
2(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

Qρ(0)

− ∫
∞

0
Q′ρ(t)Iν+1 (π

√
t (
√

α −
√

β))Kν+1 (π
√

t (
√

α +
√

β)) dt,

(10.9)

where, for Re(
√

α) > Re(
√

β), the boundary term at ∞ vanishes, since by (2.11) and
(2.12), respectively, as t →∞,

Iν(π(
√

tα −
√

tβ) ∼ eπ(
√

tα−
√

tβ)

π
√

2(
√

tα −
√

tβ)
(10.10)

and

Kν(π(
√

tα +
√

tβ)) ∼ e−π(
√

tα+
√

tβ)
√

2(
√

tα +
√

tβ)
.(10.11)

Finally, from (10.3), (10.7), and (10.9), we deduce that

1
Γ(ρ + 1)

∞
∑
n=1

a(n)∫
∞

λn

(t − λn)ρ d
dt

H(α, β; t)dt

= − 1
2(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

Qρ(0)

− 2
(2π)δ+2ρ

Γ(ν + δ + ρ + 1)
Γ(ν + 2)

∞
∑
n=1

b(n)
√

4μn + α
√

4μn + β
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

ν+1

×
⎛
⎝

1√
4μn + α

+ 1√
4μn + β

⎞
⎠

2δ+2ρ−2
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× 2F1
⎛
⎜
⎝

ν − δ − ρ + 2, 1 − δ − ρ; ν + 2;
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

2⎞
⎟
⎠

− ∫
∞

0
Q′ρ(t)H(α, β; t)dt.

The proof of Theorem 10.1 is now complete. ∎

11 The special case: ρ = 0

When ρ = 0 in Theorem 10.1, by (10.10) and (10.11), the left-hand side of (10.1) reduces
to

∞
∑
n=1

a(n)∫
∞

λn

d
dt

H(α, β; t)dt = −
∞
∑
n=1

a(n)H(α, β; λn).

Hence, we have our second main theorem.

Theorem 11.1 Assume that Re(ν) > −1 and Re(
√

α) > Re(
√

β) > 0. Also assume that
δ + Re(ν) + 1 > σ∗a > 0. Suppose that the integral on the right side below converges
absolutely and that Q0(0) exists. Then,

∞
∑
n=1

a(n)H(α, β; λn) =
2(2π)−δ Γ(ν + δ + 1)

Γ(ν + 2)

×
∞
∑
n=1

b(n)
√

4μn + α
√

4μn + β
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

ν+1

×
⎛
⎝

1√
4μn + α

+ 1√
4μn + β

⎞
⎠

2δ−2

× 2F1
⎛
⎜
⎝

ν − δ + 2, 1 − δ; ν + 2;
⎛
⎝

√
4μn + α −

√
4μn + β

√
4μn + α +

√
4μn + β

⎞
⎠

2⎞
⎟
⎠

+ Q0(0)
2(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

+ ∫
∞

0
Q′0(x)H(α, β; x)dx ,(11.1)

where H(α, β; t) is defined by (10.2).

Next, we show that Theorem 4.1 from [5] can be obtained as a special case of
Theorem 11.1. To that end, divide both sides of (11.1) by (

√
α −

√
β)ν+1, and let α → β.

In the course of doing so, we need the limit

lim
α→β

Iν+1 (π
√

λn (
√

α −
√

β))Kν+1 (π
√

λn (
√

α +
√

β))
(
√

α −
√

β)ν+1

= (π
2
)

ν+1
λ(ν+1)/2

n
Kν+1(2π

√
λn β)

Γ(ν + 2) ,(11.2)
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where the definitions of Iν and Kν in (2.1) and (2.2), respectively, were used. On the
left side of (11.1), by (2.8) and (2.9), the series converges absolutely and uniformly with
respect to α for 0 ≤

√
α < ε, for each fixed ε > 0. Thus, we can interchange summation

and the limit as α → β on the left-hand side of (11.1) to find that

lim
α→β

∞
∑
n=1

a(n)Iν+1 (π
√

λn (
√

α −
√

β))Kν+1 (π
√

λn (
√

α +
√

β))

=
( π

2 )
ν+1

Γ(ν + 2)
∞
∑
n=1

a(n)λ(ν+1)/2
n Kν+1(2π

√
λn β).(11.3)

We also take the limit as α → β inside the integral on the far right side of (11.1) by using
a similar argument with λn replaced by x in (11.2). Hence,

lim
α→β∫

∞

0
Q′0(x)Iν+1 (π

√
x (
√

α −
√

β))Kν+1 (π
√

x (
√

α +
√

β)) dx

=
( π

2 )
ν+1

Γ(ν + 2) ∫
∞

0
Q′0(x)x(ν+1)/2Kν+1(2π

√
βx)dx .(11.4)

Next, recall that 2F1(a, b; c; 0) = 1. Thus, it remains to evaluate the limit

lim
α→β

(√4μn + α +
√

4μn + β)−ν−1

√
4μn + α

√
4μn + β

×
⎛
⎝

√
4μn + α −

√
4μn + β

√
α −

√
β

⎞
⎠

ν+1
⎛
⎝

1√
4μn + α

+ 1√
4μn + β

⎞
⎠

2δ−2

= lim
α→β

(√4μn + α +
√

4μn + β)−2ν−2

√
4μn + α

√
4μn + β

× (
√

α +
√

β)ν+1 ⎛
⎝

1√
4μn + α

+ 1√
4μn + β

⎞
⎠

2δ−2

= 22δ−2

(4μn + β)δ
⎛
⎝

√
β

2(4μn + β)
⎞
⎠

ν+1

.(11.5)

Bringing together (11.3)–(11.5), we conclude that

( π
2 )

ν+1

Γ(ν + 2)
∞
∑
n=1

a(n)λ(ν+1)/2
n Kν+1(2π

√
λn β)

= 2δ−ν−2π−δ β(ν+1)/2Γ(ν + δ + 1)
Γ(ν + 2)

∞
∑
n=1

b(n)
(4μn + β)δ+ν+1

+
( π

2 )
ν+1

Γ(ν + 2) ∫
∞

0
Q′0(x)x(ν+1)/2Kν+1(2π

√
βx)dx .(11.6)
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Let s = 2π
√

β. Multiplying both sides of (11.6) by 2/s and by ( π
2 )
−ν−1 Γ(ν + 2) and then

integrating by parts with the aid of (2.9) and (2.12), we conclude that

2
s

∞
∑
n=1

a(n)λ(ν+1)/2
n Kν+1(s

√
λn) =23δ+ν+1πδ sν Γ(ν + δ + 1)

∞
∑
n=1

b(n)
(16π2 μn + s2)δ+ν+1

+ 2
s ∫

∞

0
Q′0(x)x(ν+1)/2Kν+1(s

√
x)dx

=23δ+ν+1πδ sν Γ(ν + δ + 1)
∞
∑
n=1

b(n)
(16π2 μn + s2)δ+ν+1

+ ∫
∞

0
Q0(x)xν/2Kν(s

√
x)dx .

We hence obtain Theorem 4.1 from [5] as a corollary of Theorem 11.1.

Corollary 11.2 For Re(ν) > −1, δ + Re(ν) + 1 > σ∗a , and Re(s) > 0,

2
s

∞
∑
n=1

a(n)λ(ν+1)/2
n Kν+1(s

√
λn) =23δ+ν+1πδ sν Γ(ν + δ + 1)

∞
∑
n=1

b(n)
(16π2 μn + s2)δ+ν+1

+ ∫
∞

0
Q0(x)xν/2Kν(s

√
x)dx ,

where it is assumed that the integral converges absolutely.

Corollary 11.2 was also established in [5, Theorem 4.1].

12 Example: rk(n)

Recall (5.1) and (5.2). Applying Theorem 11.1 with α and β replaced by 2α and 2β,
respectively, and ν replaced by ν − 1, for Re(ν) > 0, we find that

∞
∑
n=1

rk(n)Iν (π
√

n (
√

α −
√

β))Kν (π
√

n (
√

α +
√

β)) =

= Γ(k/2 + ν)
πk/22k−1Γ(ν + 1)

∞
∑
n=1

b(n)
√

n + α
√

n + β
⎛
⎝

√
n + α −

√
n + β

√
n + α +

√
n + β

⎞
⎠

ν

×
⎛
⎝

1√
n + α

+ 1√
n + β

⎞
⎠

k−2

× 2F1
⎛
⎜
⎝

ν − k/2 + 1, 1 − k/2; ν + 1;
⎛
⎝

√
n + α −

√
n + β

√
n + α +

√
n + β

⎞
⎠

2⎞
⎟
⎠

− 1
2ν
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν

+ ∫
∞

0
Q′0(x)Iν (π

√
2x (

√
α −

√
β))

× Kν (π
√

2x (
√

α +
√

β)) dx .(12.1)
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To evaluate the integral in (12.1), we use an integral in [16, p. 717, equation 6.576, no. 5],
namely, for a > b, Re(2ν) > λ − 1, and Re(λ) < 1,

∫
∞

0
x−λKν(ax)Iν(bx)dx =

bν Γ ( 1−λ+2ν
2 ) Γ ( 1−λ

2 )
2λ+1Γ(ν + 1)a1−λ+ν 2F1 (

1 − λ + 2ν
2

, 1 − λ
2

; ν + 1; b2

a2 ) .

(12.2)

Using (5.2) and (12.2), wherein we make the change of variable t =
√

2x and note that
λ = 1 − k, a = π(

√
α +

√
b), and b = π(

√
α −

√
b), we deduce that

∫
∞

0
Q′0(x)Iν (π

√
2x (

√
α −

√
β))Kν (π

√
2x (

√
α +

√
β)) dx

= k(2π)k/2

2Γ(1 + k/2) ∫
∞

0
xk/2−1Iν (π

√
2x (

√
α −

√
β))Kν (π

√
2x (

√
α +

√
β)) dx

= k2k/2−1πk/2

2k/2−1Γ(1 + k/2) ∫
∞

0
tk−1Iν (πt (

√
α −

√
β))Kν (πt (

√
α +

√
β)) dt

= kπk/2

Γ(1 + k/2)
(π (

√
α −

√
β))ν

Γ ( k
2 + ν) Γ ( k

2 )

22−k Γ(ν + 1) (π (
√

α +
√

β))ν+k ⋅ 2F1
⎛
⎜
⎝

k
2
+ ν, k

2
; ν + 1;

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

=
2k−1Γ ( k

2 + ν)
πk/2Γ(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν
⎛
⎝

1
√

α +
√

β
⎞
⎠

k

2F1
⎛
⎜
⎝

k
2
+ ν, k

2
; ν + 1;

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

.

(12.3)

Invoking Euler’s formula [1, p. 68, Theorem 2.2.5]

2F1 (a, b; c; x) = (1 − x)c−a−b
2F1 (c − a, c − b; c; x)

in (12.3), we find that

∫
∞

0
Q′0(x)Iν (π

√
2x (

√
α −

√
β))Kν (π

√
2x (

√
α +

√
β)) dx

=
2k−1Γ ( k

2 + ν)
πk/2Γ(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν
⎛
⎝

1
√

α +
√

β
⎞
⎠

k

2F1
⎛
⎜
⎝

k
2
+ ν, k

2
; ν + 1;

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

=
21−k Γ ( k

2 + ν) (
√

αβ)1−k

πk/2Γ(ν + 1)
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν
⎛
⎝

1
√

α +
√

β
⎞
⎠

2−k

× 2F1
⎛
⎜
⎝

1 − k
2
+ ν, 1 − k

2
; ν + 1;

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

=
Γ ( k

2 + ν)
πk/22k−1Γ(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν
⎛
⎝

1√
α
+ 1√

β
⎞
⎠

k−2
1√
αβ

× 2F1
⎛
⎜
⎝

1 − k
2
+ ν, 1 − k

2
; ν + 1;

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

.(12.4)

https://doi.org/10.4153/S0008414X22000530 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000530


1822 B. C. Berndt, A. Dixit, R. Gupta, and A. Zaharescu

Now put (12.4) in (12.1). To obtain the final equality below, we define rk(0) = 1. To that
end,

∞
∑
n=1

rk(n)Iν (π
√

n (
√

α −
√

β))Kν (π
√

n (
√

α +
√

β))

= Γ(k/2 + ν)
πk/22k−1Γ(ν + 1)

∞
∑
n=1

rk(n)
√

n + α
√

n + β
⎛
⎝

√
n + α −

√
n + β

√
n + α +

√
n + β

⎞
⎠

ν

×
⎛
⎝

1√
n + α

+ 1√
n + β

⎞
⎠

k−2

× 2F1
⎛
⎜
⎝

ν − k/2 + 1, 1 − k/2; ν + 1;
⎛
⎝

√
n + α −

√
n + β

√
n + α +

√
n + β

⎞
⎠

2⎞
⎟
⎠

− 1
2ν
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν

+
Γ ( k

2 + ν)
πk/22k−1Γ(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν
⎛
⎝

1√
α
+ 1√

β
⎞
⎠

k−2
1√
αβ

× 2F1
⎛
⎜
⎝

1 − k
2
+ ν, 1 − k

2
; ν + 1;

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

.

Thus, with simplification,

∞
∑
n=1

rk(n)Iν (π
√

n (
√

α −
√

β))Kν (π
√

n (
√

α +
√

β))

= − 1
2ν
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν

+ Γ(k/2 + ν)
πk/22k−1Γ(ν + 1)

×
∞
∑
n=0

rk(n)
√

n + α
√

n + β
⎛
⎝

√
n + α −

√
n + β

√
n + α +

√
n + β

⎞
⎠

ν

×
⎛
⎝

1√
n + α

+ 1√
n + β

⎞
⎠

k−2

2F1
⎛
⎜
⎝

1 − k
2
+ ν, 1 − k

2
; ν + 1;

⎛
⎝

√
n + α −

√
n + β

√
n + α +

√
n + β

⎞
⎠

2⎞
⎟
⎠

.

(12.5)

By a different method, the identity (12.5) was also established in [6, Theorem 1.6].
Letting ν = 1/2 in (12.5) yields [6, Corollary 4.4]

∞
∑
n=1

rk(n)√
n

e−π
√

n(
√

α+
√

β) sinh(π
√

n(
√

α −
√

β))

= −π (
√

α −
√

β) − 1
2π(k−1)/2 Γ ( k − 1

2
)
∞
∑
n=0

rk(n) ((n + α)(1−k)/2 − (n + β)(1−k)/2) ,
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whereas dividing both sides of (12.5) by (α − β)ν and then letting α → β gives

∞
∑
n=0

rk(n)n
ν
2 Kν(2π

√
nβ) =

β ν
2 Γ (ν + k

2 )
2πν+ k

2

∞
∑
n=0

rk(n)
(n + β)ν+ k

2
.(12.6)

The special case k = 2 and ν = 1/2 of (12.6) was employed by Hardy [18, equation (2.12)]
to prove his famous result while investigating the Gauss circle problem, namely, as
x →∞,

∑
n≤x

r2(n) − πx = Ω(x 1/4).

13 Example: Ramanujan’s tau-function τ(n)

Let τ(n) denote Ramanujan’s famous arithmetical tau-function. Recall the associated
facts and parameters given in (7.1)–(7.3). Then, from Theorem 11.1, for Re(ν) > −13/2,
∞
∑
n=1

τ(n)Iν+1 (π
√

n (
√

α −
√

β))Kν+1 (π
√

n (
√

α +
√

β))

= 2(2π)−12Γ(13 + ν)
Γ(ν + 2)

∞
∑
n=1

τ(n)√
4n + α

√
4n + β

⎛
⎝

√
4n + α −

√
4n + β

√
4n + α +

√
4n + β

⎞
⎠

ν+1

×
⎛
⎝

1√
4n + α

+ 1√
4n + β

⎞
⎠

22

2F1
⎛
⎜
⎝

ν − 10,−11; ν + 2;
⎛
⎝

√
4n + α −

√
4n + β

√
4n + α +

√
4n + β

⎞
⎠

2⎞
⎟
⎠

.

(13.1)

Letting ν = − 1
2 in (13.1) and using (2.3) and (2.4), we are led to

1
π
√

α − β

∞
∑
n=1

τ(n)√
n

e−π
√

n(
√

α+
√

β) sinh(π
√

n(
√

α −
√

β))

=2(2π)−12Γ(25/2)
Γ(3/2)

∞
∑
n=1

τ(n)√
4n + α

√
4n + β

⎛
⎝

√
4n + α −

√
4n + β

√
4n + α +

√
4n + β

⎞
⎠

1/2

×
⎛
⎝

1√
4n + α

+ 1√
4n + β

⎞
⎠

22

2F1
⎛
⎜
⎝
−21/2,−11; 3/2;

⎛
⎝

√
4n + α −

√
4n + β

√
4n + α +

√
4n + β

⎞
⎠

2⎞
⎟
⎠

.

(13.2)

Employing [23, p. 461, no. 107]

2F1 (a, a + 1/2; 3/2; z) = 1
2(2a − 1)

√
z
{(1 −

√
z)1−2a − (1 +

√
z)1−2a} ,

with a = −11, we find that

2F1 (−21/2,−11; 3/2; z) = − 1
46
√

z
{(1 −

√
z)23 − (1 +

√
z)23} .(13.3)
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With (13.3) in (13.2) and with considerable simplification, we deduce that
∞
∑
n=1

τ(n)√
n

e−π
√

n(
√

α+
√

β) sinh(π
√

n(
√

α −
√

β))

= 2 3 ⋅ 5⋅⋅⋅21
π11

∞
∑
n=1

τ(n)( 1
(4n + β)23/2 −

1
(4n + α)23/2 ) .(13.4)

If we differentiate both sides of (13.4) with respect to α and simplify, we find that

∞
∑
n=1

τ(n)e−2π
√

nα = 2 3 ⋅ 5⋅⋅⋅21 ⋅ 23
π12

∞
∑
n=1

√
α τ(n)

(4n + α)25/2 ,

which, with α = s2/(4π2), gives [5, equation (7.4)]
∞
∑
n=1

τ(n)e−s
√

n = 236π23/2Γ (25
2
)
∞
∑
n=1

sτ(n)
(s2 + 16π2n)25/2 .

14 Example: primitive Dirichlet characters

Let χ denote a primitive character modulo q. Depending on the parity of χ, we separate
two cases. First, consider odd χ. Recall that the functional equation for the associated
Dirichlet L-series is given in (8.1), the Gauss sum τ(χ) is defined in (8.2), and the
relevant parameters are given in (8.3). Consequently, by Theorem 11.1 and the fact that
Q0(x) ≡ 0, for Re(ν) > −5/2,

∞
∑
n=1

nχ(n)Iν+1 (
πn√

2q
(
√

α −
√

β))Kν+1 (
πn√

2q
(
√

α +
√

β))

=−iπ−3/2Γ(ν + 5/2)√
2qΓ(ν + 2) τ(χ)

∞
∑
n=1

nχ̄(n)√
( 2n2

q + α)
√
( 2n2

q + β)

⎛
⎜
⎝

√
2n2

q + α −
√

2n2

q + β
√

2n2

q + α +
√

2n2

q + β

⎞
⎟
⎠

ν+1

×
⎛
⎜⎜⎜
⎝

1√
( 2n2

q + α)
+ 1√

( 2n2

q + β)

⎞
⎟⎟⎟
⎠

× 2F1

⎛
⎜⎜
⎝

ν + 1/2,−1/2; ν + 2;
⎛
⎜
⎝

√
2n2

q + α −
√

2n2

q + β
√

2n2

q + α +
√

2n2

q + β

⎞
⎟
⎠

2⎞
⎟⎟
⎠

=−iπ−3/2Γ(ν + 5/2)√
2qΓ(ν + 2) τ(χ)

∞
∑
n=1

nχ̄(n)
( 2n2

q + α)( 2n2

q + β)

(
√

2n2

q + α −
√

2n2

q + β)
ν+1

(
√

2n2

q + α +
√

2n2

q + β)
ν

× 2F1

⎛
⎜⎜
⎝

ν + 1/2,−1/2; ν + 2;
⎛
⎜
⎝

√
2n2

q + α −
√

2n2

q + β
√

2n2

q + α +
√

2n2

q + β

⎞
⎟
⎠

2⎞
⎟⎟
⎠

.(14.1)
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Letting ν = −1/2 in (14.1), using (2.3) and (2.4), appealing to the trivial fact that

2F1 (0,−1/2; 3/2; x) = 1,

and multiplying both sides by π
√

α − β/√2q, we deduce that
∞
∑
n=1

χ(n)e−
πn√

2q
(
√

α+
√

β) sinh( πn√
2q

(
√

α −
√

β))

=
−iπ−1/2Γ(2)

√
α − β

2qΓ(3/2) τ(χ)
∞
∑
n=1

nχ̄(n)
( 2n2

q + α)( 2n2

q + β)

×
(
√

2n2

q + α −
√

2n2

q + β)
1/2

(
√

2n2

q + α +
√

2n2

q + β)
−1/2

= −iqτ(χ) (α − β)
π

∞
∑
n=1

nχ̄(n)
(2n2 + αq) (2n2 + βq) .(14.2)

Next, let χ be even. Recall that the functional equation and relevant parameters are
given in (8.4) and (8.5), respectively. Therefore, by Theorem 11.1, for Re(ν) > −3/2,

∞
∑
n=1

χ(n)Iν+1 (
πn√

2q
(
√

α −
√

β))Kν+1 (
πn√

2q
(
√

α +
√

β)) =

=
√

2Γ(ν + 3/2)
√πqΓ(ν + 2) τ(χ)

∞
∑
n=1

χ̄(n)
(
√

2n2

q + α −
√

2n2

q + β)
ν+1

(
√

2n2

q + α +
√

2n2

q + β)
ν+2

× 2F1

⎛
⎜⎜
⎝

ν + 3/2, 1/2; ν + 2;
⎛
⎜
⎝

√
2n2

q + α −
√

2n2

q + β
√

2n2

q + α +
√

2n2

q + β

⎞
⎟
⎠

2⎞
⎟⎟
⎠

.(14.3)

Letting ν = −1/2 in (14.3) and using the evaluation [16, p. 1067, Formula 9.121, no. 7]

2F1 (1, 1/2; 3/2; x) = 1
2
√

x
log( 1 +

√
x

1 −
√

x
) ,(14.4)

we obtain, after considerable simplification,

∞
∑
n=1

χ(n)
n

e−
πn√

2q
(
√

α+
√

β) sinh( πn√
2q

(
√

α −
√

β)) = τ(χ)
2q

∞
∑
n=1

χ̄(n) log(2n2 + αq
2n2 + βq

) .

(14.5)

Equations (14.1)–(14.3) and (14.5) are new. If we differentiate both sides of (14.5)
with respect to α and simplify, we obtain

∞
∑
n=1

χ(n)e−
πn
√

2α√q =
√

2αq
π

τ(χ)
∞
∑
n=1

χ(n)
2n2 + αq

,

which can also be derived by letting ν = −1/2 and r = π
√

2α/q in [5, equation (9.6)].
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Similarly, differentiating both sides of (14.2) with respect to α and simplifying, we
arrive at

∞
∑
n=1

nχ(n)e−
πn
√

2α√q = − i(2q) 3
2
√

ατ(χ)
π2

∞
∑
n=1

nχ(n)
(2n2 + αq)2 ,

which also follows upon letting ν = −1/2 and r = π
√

2α/q in [5, equation (9.3)].

15 A generalization of a theorem of Watson

The functional equation of the Riemann zeta function is given by [13, p. 14]

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s).

Hence, replacing s by 2s, we see that it can be transformed into the form (1.2) with
δ = 1/2, a(n) = b(n) = 1, and λn = μn = n2/2. Note that in (1.5),

Q0(x) = − 1
2
+
√

2x .

Employing (12.2) with x replaced by
√

x, and then with ν replaced by ν + 1, and letting
λ = 0, a = π (

√
α +

√
β), and b = π (

√
α −

√
β), we find that Theorem 11.1 yields, for

Re(ν) > −1/2,

1
4(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

+
∞
∑
n=1

Iν+1 (
πn√

2
(
√

α −
√

β))Kν+1 (
πn√

2
(
√

α +
√

β))

= Γ(ν + 3/2)√
2πΓ(ν + 2)

(√α −
√

β)ν+1

(√α +
√

β)ν+2 ⋅ 2F1
⎛
⎜
⎝

ν + 3/2, 1/2; ν + 2;
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠

+
√

2Γ(ν + 3/2)√
πΓ(ν + 2)

∞
∑
n=1

(
√

2n2 + α −
√

2n2 + β)
ν+1

(
√

2n2 + α +
√

2n2 + β)
ν+2

× 2F1
⎛
⎜
⎝

ν + 3/2, 1/2; ν + 2;
⎛
⎝

√
2n2 + α −

√
2n2 + β

√
2n2 + α +

√
2n2 + β

⎞
⎠

2⎞
⎟
⎠

.

Replacing α by 2α and β by 2β, we find that

1
4(ν + 1)

⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

ν+1

+
∞
∑
n=1

Iν+1 (πn (
√

α −
√

β))Kν+1 (πn (
√

α +
√

β))

= Γ(ν + 3/2)
2
√

2πΓ(ν + 2)
(√α −

√
β)ν+1

(√α +
√

β)ν+2 ⋅ 2F1
⎛
⎜
⎝

ν + 3/2, 1/2; ν + 2;
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠
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+ Γ(ν + 3/2)√
πΓ(ν + 2)

∞
∑
n=1

(
√

n2 + α −
√

n2 + β)
ν+1

(
√

n2 + α +
√

n2 + β)
ν+2

× 2F1
⎛
⎜
⎝

ν + 3/2, 1/2; ν + 2;
⎛
⎝

√
n2 + α −

√
n2 + β

√
n2 + α +

√
n2 + β

⎞
⎠

2⎞
⎟
⎠

.(15.1)

Dividing both sides by (
√

α −
√

b)ν+1, letting α → β, multiplying both sides of
the resulting identity by 2(ν + 1)Γ(ν + 1)(2

√
β)ν+1, replacing ν by ν − 1 and β by

z2/(4π2), and rearranging, for Re(z) > 0, we recover an important result of Watson
[25, equation (4)]:

1
2

Γ(ν) + 2
∞
∑
n=1

( 1
2

nz)
ν

Kν(nz) = Γ ( 1
2
) Γ (ν + 1

2
)

× z2ν { 1
z2ν+1 + 2

∞
∑
n=1

1
(z2 + 4n2π2)ν+ 1

2
} .

We now provide a generalization of yet another identity of Watson [25,
equation (6)].

Corollary 15.1 Let K(k) denote the complete elliptic integral of the first kind defined
by

K(k) ∶= ∫
π/2

0

dθ√
1 − k2 sin2(θ)

, 0 ≤ ∣k∣ < 1.(15.2)

For Re(
√

α) > Re(
√

β) > 0,

∞
∑
n=1

I0 (πn (
√

α −
√

β))K0 (πn (
√

α +
√

β))

= 1
π (
√

α +
√

β)
K
⎛
⎜
⎝
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

2⎞
⎟
⎠
+

γ + log (
√

α +
√

β) − log 4
2

+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
π (
√

n2 + α +
√

n2 + β)
K
⎛
⎜
⎝
⎛
⎝

√
n2 + α −

√
n2 + β

√
n2 + α +

√
n2 + β

⎞
⎠

2⎞
⎟
⎠
− 1

2n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.(15.3)

Proof Corollary 15.1 follows by analytically continuing (15.1) to the region Re(ν) >
−3/2 and then letting ν → −1. Since the argument is similar to that given in Section 5
of [6], we discuss it only briefly here.

Let g(n) denote the nth summand in the series on the right-hand side of (15.1). It
is not difficult to show that, as n →∞,

g(n) ∼ (α − β)ν+1

(2n)2ν+3 .

https://doi.org/10.4153/S0008414X22000530 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000530


1828 B. C. Berndt, A. Dixit, R. Gupta, and A. Zaharescu

Therefore, for Re(ν) > −1,

∞
∑
n=1

g(n) =
∞
∑
n=1

(g(n) − (α − β)ν+1

(2n)2ν+3 ) + (α − β)ν+1

22ν+3 ζ(2ν + 3).

Substituting this in (15.1) and rearranging, we find that, for Re(ν) > −1,

∞

∑
n=1

Iν+1 (πn (
√

α −
√

β))Kν+1 (πn (
√

α +
√

β))

= Γ(ν + 3/2)
2
√

2πΓ(ν + 2)
(
√

α −
√

β)
ν+1

(
√

α +
√

β)
ν+2 2F1

⎛
⎜
⎝

ν + 3/2, 1/2; ν + 2;
⎛
⎝

√
α −
√

β
√

α +
√

β
⎞
⎠

2⎞
⎟
⎠

+
√

2Γ(ν + 3/2)√
πΓ(ν + 2)

∞

∑
n=1
(g(n) − (α − β)ν+1

(2n)2ν+3 )

+ (
√

α −
√

β)ν+1
⎛
⎜⎜
⎝

Γ(ν + 3/2)√
πΓ(ν + 2)

(
√

α +
√

β)ν+1

22ν+3 ζ(2ν + 3) − 1

4(ν + 1) (
√

α +
√

β)
ν+1

⎞
⎟⎟
⎠

.

(15.4)

Observe that both sides of (15.4) are analytic in Re(ν) > −2 with a removable
singularity at ν = −1, because

lim
ν→−1

⎛
⎜
⎝

Γ(ν + 3/2)√
πΓ(ν + 2)

(
√

α +
√

β)ν+1

22ν+3 ζ(2ν + 3) − 1

4(ν + 1) (
√

α +
√

β)ν+1

⎞
⎟
⎠

= γ
2
+ 1

2
log(

√
α +

√
β) − log 2,(15.5)

which can be seen from expanding each side of (15.5) in Taylor series about ν = −1.
Thus, letting ν → −1 on both sides of (15.4) and using (15.5), we arrive at (15.3), where
we used the identity [16, p. 908, Formula 8.113, no. 2]

2F1 (
1
2

, 1
2

; 1; x2) = 2
π

K(x),

where K(x) is defined in (15.2). ∎

As previously indicated, the identity (15.3) is a generalization of the following
identity of Watson [25].

Corollary 15.2 For Re(β) > 0,

2
∞
∑
n=1

K0(nβ) = π
⎧⎪⎪⎨⎪⎪⎩

1
β
+ 2

∞
∑
n=1

⎛
⎝

1√
β2 + 4π2n2

− 1
2nπ

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
+ γ + log(β

2
) − log 2π.

(15.6)
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Proof If we let α → β in (15.3) and use the trivial facts

lim
α→β+

I0(π(
√

nα −
√

nβ))K0(π(
√

nα +
√

nβ)) = K0(2π
√

nβ)

and K(0) = 1
2 π, we obtain (15.6). ∎

Each of the identities (13.1), (14.1), and (14.3) can be analytically continued in the
same manner as that for (15.1) for Corollary 15.1.

Letting ν = −1/2 in (15.1), and using (2.3), (2.4), and (14.4), we obtain

1
2
⎛
⎝

√
α −

√
β

√
α +

√
β
⎞
⎠

1/2

+
√

2
π
√

α − β

∞
∑
n=1

e−
πn√

2
(
√

α+
√

β)

n
sinh( πn√

2
(
√

α −
√

β))

= 1
2
√

2π
√

α − β
log(α

β
) + 1√

2π
√

α − β

∞
∑
n=1

log(2n2 + α
2n2 + β

) .(15.7)

A rearrangement of (15.7) leads to

π
2
(
√

α −
√

β) +
√

2
∞
∑
n=1

e−
πn√

2
(
√

α+
√

β)

n
sinh( πn√

2
(
√

α −
√

β))

= 1
2
√

2
log(α

β
) + 1√

2

∞
∑
n=1

log(2n2 + α
2n2 + β

) .(15.8)

Using the elementary Maclaurin series

− log(1 − x) =
∞
∑
k=1

xk

k
, ∣x∣ < 1,

in (15.8), we conclude that

π
2
(
√

α −
√

β) + 1√
2

log
⎛
⎝

1 − e−π
√

2α

1 − e−π
√

2β

⎞
⎠
= 1

2
√

2
log(α

β
) + 1√

2

∞
∑
n=1

log(2n2 + α
2n2 + β

) .
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