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Abstract

We develop a fully non-parametric, easy-to-use, and powerful test for the missing 

completely at random (MCAR) assumption on the missingness mechanism of a dataset. The test 

compares distributions of different missing patterns on random projections in the variable space 

of the data. The distributional differences are measured with the Kullback-Leibler Divergence, 

using probability Random Forests (Malley et al., 2011). We thus refer to it as “Projected 

Kullback-Leibler MCAR” (PKLM) test. The use of random projections makes it applicable even 

if very few or no fully observed observations are available or if the number of dimensions is 

large. An efficient permutation approach guarantees the level for any finite sample size, 

resolving a major shortcoming of most other available tests. Moreover, the test can be used on 

both discrete and continuous data. We show empirically on a range of simulated data 

distributions and real datasets that our test has consistently high power and is able to avoid 

inflated type-I errors. Finally, we provide an R-package PKLMtest with an implementation of 

our test.

Key words: Random Projections, Tree Ensembles, Random Forest, KL-Divergence, 

Permutation

https://doi.org/10.1017/psy.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.14


Psychometrika Submission September 27, 2024 3

1. Introduction

Dealing with missing values is an integral part of modern statistical analysis. In particular,

the assumed mechanism leading to the missing values is of great importance. Based on the work

of Rubin (1976), there are three groups of missingness mechanisms usually considered: The values

may be missing completely at random (MCAR), meaning the probability of a value being missing

does not depend on the observed or unobserved data. In contrast, the probability of being missing

could depend on observed values (missing at random, MAR) or on unobserved values (missing not

at random, MNAR).

As stated in Yuan et al. (2018), “a formal confirmation of the MCAR missing data

mechanism is of great interest, simply because essentially all methods can still yield consistent

estimates under MCAR even if the underlying population distribution is unknown”. While there

is, at least for imputation, a number of approaches that can deal with a MAR missing data

mechanism such as Multivariate Imputation by Chained Equations (mice) (Buuren and

Groothuis-Oudshoorn, 2011; Deng et al., 2016), many commonly used methods explicitly rely on

the validity of the MCAR assumption. Examples are the easy-to-use listwise-deletion and

mean-imputation methods (Little and Rubin, 1986). Consequently, the original paper on MCAR

testing (Little, 1988) has been cited close to 10′000 times according to google scholar. Recent

papers (involving psychometric analysis) that test the MCAR assumption in order to justify

listwise-deletion include Brown et al. (2020), Charles et al. (2021), Hawes et al. (2021), Sun and

Chen (2022), de Vos et al. (2022), Rajeb et al. (2023), Zarate et al. (2023), and Langer et al.

(2024). As such, it is important to reliably test the MCAR assumption.

The testing framework is of an ANOVA-type: when observing a dataset with missing values,

there are n observations and G missingness patterns, g = 1, . . . , G. The observations belonging to

the missingness pattern g can be seen as a group, such that we observe G groups of observations.

The MCAR hypothesis now implies that the distribution of the observed data in all groups is the

same, while under the alternative at least two differ. This is technically testing the observed at

random (OAR) assumption defined in Rhoads (2012), see also the end of Section 3 for a

discussion. This distinction can be avoided by assuming the missingness mechanism is MAR,
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which is what is usually implicitly done (Li and Yu, 2015).

The idea of testing the MCAR assumption traces back to Little (1988). While some more

refined versions of this testing idea were developed since then (Chen and Little, 1999; Kim and

Bentler, 2002; Jamshidian and Jalal, 2010), there has not been a lot of progress on

distribution-free MCAR tests, able to detect general distributional differences between the

missingness patterns. Li and Yu (2015) recently made a step in that direction. Their test is

completely nonparametric and shown to be consistent. Empirically it is shown to keep the level

and to have a high power over a wide range of distributions. An application area where their

proposed test struggles is for higher-dimensional data with little or no complete observations.

Their testing paradigm is based on “a reasonable amount” of complete cases and all pairwise

comparisons between the observed parts of two missingness pattern groups. This is problematic,

since, as the dimension p increases, the number of distinct patterns G tends to grow quickly as

well. The most extreme case occurs when G = n, that is, every observation forms a missingness

pattern group on its own. Consequently, their test appears computationally prohibitively

expensive for p > 10. Additionally, as the dimension increases, both the number of complete cases

and the number of observations per pattern tends to decrease, both contributing to a reduction in

power for the test in Li and Yu (2015).

In this paper, we try to circumvent these problems in a data-efficient way, by employing a

one v.s. all-others approach and using random projections in the variable space. Considering

observations that are projected into a lower-dimensional space allows us to recover more complete

cases. As realized by Li and Yu (2015), the problem of MCAR testing, as described above, is a

problem of testing whether distributions across missingness patterns are different. The method

presented here relies on some of the core ideas of Näf et al. (2023) and Cai et al. (2020), who do

distributional testing using classifiers. We extend the ideas of Cai et al. (2020) to be usable for

multiclass classification and use the projection idea of Näf et al. (2023) to build a test that is

usable and powerful even for high dimensions. Moreover, using a permutation approach, we are

able to provably keep the nominal level α for all n. As outlined later, this is in contrast to other

tests, for which the level might be kept only asymptotically, or is even unclear. The approach of

random projections together with a permutation test also allows to extract more information than
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just a global hypothesis test. We make use of this to calculate individual p-values for each

variable. Such a partial test for a variable addresses the null hypothesis that, once that variable is

removed, the data is MCAR. Together with the test of overall MCAR, this might point towards

the potential source of deviation from the null, that is, the variables causing an MCAR violation.

The paper is structured in the following way. Section 2 introduces notation. Section 3 details

the testing framework including the null and alternative hypotheses we consider. Section 4 then

showcases how to perform this test in practice and details the algorithm. Section 5 shows some

numerical comparisons for type-I error control and power. Section 6 explains the extension of

partial p-values, while Section 7 concludes. Appendix A contains the proofs of all results, while

Appendix B adds some additional details and shows computation times of the different tests.

1.1. Contributions

Our contributions can be summarized as follows: We develop the PKLM-test, an easy-to-use

and powerful non-parametric test for MCAR, that is applicable even in high dimensions. We

thereby extend the testing approach of Cai et al. (2020) to multiclass testing, which in connection

with random projections in the variable space and the Random Forest classifier leads to a

powerful test for both discrete and continuous types of data. To the best of your knowledge, no

other test is as widely applicable and powerful. Moreover, we are able to formally prove the

validity of our p-values for any sample size and number of groups G. As we demonstrate in our

simulations, this is remarkable for the MCAR testing literature. It appears no other MCAR test

has such a guarantee and many have inflated type-I errors, even in realistic cases, see e.g. the

discussion in Jamshidian and Jalal (2010).

As an extension, we can compute partial p-values corresponding to each variable, addressing

the question of the source of violation of MCAR among the variables. We demonstrate the

validity and power of our test on a wide range of simulated and real datasets in conjunction with

different MAR mechanisms. Finally, we make our test available through the R-package PKLMtest,

available on https://github.com/missValTeam/PKLMtest and on CRAN.
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1.2. Related Work

Previous advances for tests of MCAR were mostly addressed by Little (1988) (referred to as

“Little-test”) and extensions (Chen and Little, 1999; Kim and Bentler, 2002) under the

assumption of joint Gaussianity. To the best of our knowledge, the only distribution-free tests are

developed in Jamshidian and Jalal (2010), Li and Yu (2015) and Zhang et al. (2019). The first

paper develops a test (referred to as “JJ-test”), which is distribution-free but is only able to spot

differences in the covariance matrices between the different patterns. As such, the simulation

study in Li and Yu (2015) shows that their test (referred to as “Q-test”), which can detect any

potential difference, has much more power than the JJ-test. Moreover, the JJ-test requires prior

imputation of missing values, which appears undesirable. Zhang et al. (2019) develop a test that

can be used to subsequently also consistently estimate certain estimators under MCAR. Their

test requires a set of fully observed “auxiliary” variables that can be used to first test and then

estimate properties of some variable of interest. As such their approach and goals are quite

different from ours.

Consequently, the test closest to ours is the fully non-parametric method in Li and Yu

(2015). However, it is computationally costly or even infeasible to use their test with dimensions

typically found in modern datasets (p ≫ 10), as all pairwise comparisons between missingness

patterns are calculated. While this could in principle be avoided by only checking a subset of

pairs, we empirically show that, even if all pairwise comparisons are performed, our test has

comparable or even higher power than theirs in their own simulation setting. This gap only

increases with the number of dimensions or with a decrease in the fraction of fully observed cases.

We also address a major issue in the MCAR testing literature: none of the proposed methods

has a finite sample guarantee of producing valid p-values and for some it can even be empirically

checked that the produced p-value is not valid in certain settings. If Z is a p-value generated from

a statistical test, then it is valid if P(Z ≤ α) ≤ α under H0 for all α ∈ [0, 1], see e.g., Lehmann

and Romano (2005). Figure 2 in Section 5 shows some example of previous tests violating this

validity of p-values. This issue might be surprising since the requirement of a valid p-value might

be the most basic demand a statistical test needs to meet. For the Little-test, this is generally
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true under normality or asymptotically, that is if the number of observations is going to infinity,

under some moment conditions and conditions on the group size. Despite this, Section 5 shows

that type error rates can strongly exceed the desired level even in samples of 500 observations.

The same holds for the JJ-test of Jamshidian and Jalal (2010) for which we sometimes observed a

strong inflation of the level. As with the JJ-test, Li and Yu (2015) also do not provide a formal

guarantee that the level is kept. Though in our own simulation study, which is similar to theirs,

we did not find any notable violation of the level for their test.

To conduct our test, we adapt and partially extend the approaches of Cai et al. (2020) and

Näf et al. (2023). The former develops a two-sample test using classification, an approach that

has gained a lot of attention in recent years (see e.g., Kim et al. (2021) or Hediger et al. (2022) for

a literature overview). We extend this approach to multiclass testing, to obtain a test statistic

akin to Cai et al. (2020), but using the out of bag (OOB) probability estimate of the Random

Forest (RF) instead of the in-sample probability. This was already hinted in Hediger et al. (2022)

to increase the power of the two-sample testing approach designed by Cai et al. (2020). Näf et al.

(2023), on the other hand, use random projections to increase the sample efficiency in the

presence of missing values. This simple idea makes our test applicable and powerful, even in high

dimensions, and even if the number of patterns G is the same as the number of observations. It

can also provide additional information together with the rejection decision, as we demonstrate in

Section 6. Finally, through an efficient permutation testing approach, we are able to formally

guarantee that our test produces valid p-values for any n and any number of groups G. It appears

that the PKLM-test is the first MCAR test with such a guarantee. Table 1 summarizes some of

the properties of different tests. In particular, “mixed data types” refers to a possible

combination of continuous data (such as income) and discrete data (such as gender), while “power

beyond differences in first and second moments” means the test is able to detect differences

between distributions, even if their means or variances are identical. Though this is difficult to

show formally, it appears quite clear that the nonparametric nature of our approach allows for the

detection of differences in distributions between patterns, even if the missingness groups all share

the same mean or covariance matrix. As outlined in Yuan et al. (2018) this is crucial for the

detection of general MCAR deviations and is not the case, for instance, for the widely used
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Little-test. Appendix C studies a simulated MAR example taken from Yuan et al. (2018), whereby

observed means and variances are approximately the same across different groups. Tests such as

the Little-test have no power in this example, yet with our approach, we reach a power of 1.

PKLM Q Little JJ

Computational Complexity O(pn log(n)) O(n2p) O(np2) O(n(p2 + log(n)))

Can be used without Yes No No Yes

complete observations

Mixed data types possible Yes No No No

Does not require initial imputation Yes Yes Yes No

Power beyond differences Yes Yes No No

in first and second moments

Table 1: Illustration of some of the properties of various tests. For details on the calculation of the

computational complexities we refer to Appendix B.

2. Notation

We assume an underlying probability space (Ω,F ,P) on which all random elements are

defined. Along the lines of Muzellec et al. (2020) we introduce the following notation: let

X∗ ∈ Rn×p be a matrix of n complete samples from a distribution P ∗ on Rp. We denote by X the

corresponding incomplete dataset that is actually observed. Alongside X we observe the

missingness matrix M ∈ {0, 1}n×p, of which an entry mij ∈ {0, 1} is 1, if entry x∗ij is missing, and

0, if it is observed. Each unique combination in {0, 1}p in M is referred to as a missingness

pattern and we assume that there are G ≤ n unique patterns in M. As an example, for p = 2, we

might have the pattern (1, 0) (first value missing, second observed), (0, 1) (first value observed,

second missing) or (0, 0) (both values are observed). We do not consider the completely missing

pattern, in this case (1, 1).

We assume that each row xi (x
∗
i ) of X (X∗) is a realization of an i.i.d. copy of the random

vector X (X∗) with distribution P (P ∗). Similarly, M is the random vector in {0, 1}p encoding

the missingness pattern of X. Furthermore we assume that P (P ∗) has a density f (f∗) with
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respect to some dominating measure. For a random vector X or an observation x in Rp and

subset A ⊆ {1, . . . , p}, we denote as XA (xA) the projection onto that subset of indices. For

instance if p = 3 and A = {1, 2}, then XA = (X1, X2) (xA = (x1, x2)). For any set C ⊆ {1, . . . , p},

we denote by X•C the matrix of n observations projected onto dimensions in C, so that X•C is of

dimension n× |C|. Similarly, for R ⊆ {1, . . . , n}, XR• denotes the matrix of observations in set R,

over all dimensions, so that the dimension of XR• is given by |R| × p. We denote by Fg

(respectively fg) the complete distribution (density) of the data in the gth missingness pattern

group. A quick overview of the notation including the use of indices for the number of missingness

patterns, dimensions, observations, projections and permutations is given in Table 2.

notation partial full

distribution P P ∗

dataset X X∗

observation in Rp xi x∗i

random vector X X∗

density f f∗

number of missingness patterns G

number of dimensions p

number of observations n

number of projections N

number of permutations L

Table 2: Notation: Summary of the notation used throughout the paper, with (“partial”) and without

(“full”) considering the missing values.

3. Testing Framework

In this section, we formulate the specific null and alternative hypotheses for testing MCAR

considered by the PKLM-test. Recalling the notation of Section 2, a missingness pattern is
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defined by a vector of length p, consisting of ones and zeros, indicating which of the p variables

are missing in the given pattern. We divide the n observations into g ∈ {1, . . . , G} unique groups,

such that the observations of each group share the same missingness pattern. Each group

g ∈ {1, . . . , G} contains ng observations such that n1 + . . .+ nG = n. Let Fg denote the joint

distribution of the p variables in the missingness pattern group g, such that the ng observations of

the group g are i.i.d. draws from Fg. As stated in Li and Yu (2015), testing MCAR can be

formulated by the hypothesis testing problem

H0 : F
∗
1 = F ∗

2 = . . . = F ∗
G

v.s. (1)

HA : ∃ i ̸= j ∈ {1, . . . , G} s.t. F ∗
i ̸= F ∗

j .

We want to emphasize the use of F ∗ in the testing problem (1), indicating that these

hypotheses involve distributions we cannot access. Thus, (1) needs to be weakened. Borrowing

the notation of Li and Yu (2015), for missingness pattern group g we denote with og and mg the

subsets of {1, . . . , p} indicating which variables are observed and which are missing, respectively.

We denote the induced distributions by Fg,og and Fg,mg . For two groups i and j, we denote by

oij := oi ∩ oj the shared observed variables of both groups. As mentioned in Li and Yu (2015), it

is not possible to test (1) reliably, since the distribution Fi,mi of the unobserved variables is

inaccessible. Thus, Li and Yu (2015) consider the following hypothesis testing problem

H0 : Fi,oij = Fj,oij ∀i ̸= j ∈ {1, . . . , G}

v.s. (2)

HA : ∃ i ̸= j ∈ {1, . . . , G} with oij ̸= ∅ s.t. Fi,oij ̸= Fj,oij .

The null hypothesis H0 of (2) is implied by H0 of (1), but not vice-versa. In other words, if

we can reject the null hypothesis of (2), we can also reject the null hypothesis of (1). But if the

null hypothesis of (2) cannot be rejected, there could still be a distributional change for different

groups in the unobserved parts, so that the null hypothesis of (1) is not true. In this case, the

missingness mechanism would be MNAR. Thus, using the terminology of Rhoads (2012), (2) tests
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the “observed at random” (OAR) hypothesis instead of the MCAR hypothesis. The

differentiation can be circumvented by assuming that the missingness mechanism is MAR, which

is the approach usually taken, see Li and Yu (2015).

The comparison of all pairs of missingness groups in the hypothesis testing problem (2) is

problematic however, as laid out in the introduction. In the following, we circumvent this problem

in a data-efficient way, considering a one v.s. all-others approach and employing random

projections in the variable space. Considering observations that are projected into a

lower-dimensional space allows us to recover more complete cases. Let A be the set of all possible

subsets of {1, . . . , p} with at most p− 1 elements. For A ∈ A we define by NA the indices in

1, . . . , n of observations that are observed with respect to projection A, i.e., observations of which

the projection onto A is fully observed. These observations may belong to different missingness

pattern groups g ∈ {1, . . . , G}. As an example, x = (NA, 1, NA, 2, 4) and y = (NA, NA, NA, 1, 3) are

not complete and not in the same group, however if we project them to the dimensions

A = {4, 5}, xA and yA are complete in this lower-dimensional space.

Additionally, to circumvent the problem of many groups with only a few members, we assign

new grouping or class labels to all observations in NA. To do so, we consider the set of projections

B(Ac), which is defined as the power set of {1, . . . , p} \A. The set B(Ac) is never empty since

|A| ≤ p− 1. For a given projection B ∈ B(Ac), we project all observations with indx in NA to B

and form new collapsed missingness pattern groups G(A,B), where G(A,B) is the set of labels

corresponding to distinct missingness patterns among observations with index in NA projected to

B. This is solely done to determine the grouping or class labels of observations with index in NA.

If two observations with index in NA are in the same overall missingness pattern group

g ∈ {1, . . . , G}, they also end up in the same collapsed group. The other direction is not true,

that is the number of collapsed groups |G(A,B)| is at most as large as the initial number of

distinct groups G among the observations with index in NA. Considering again

x = (NA, 1, NA, 2, 4) and y = (NA, NA, NA, 1, 3), if B = {1, 2}, then observations x and y are not in

the same missingness pattern group. However, if B = {1, 3}, we assign the same class label to x

and y. Thus, given the projection A, we obtain a set of fully observed observations

XNA,A = X∗
NA,A, and given the projection B we assign to them the |G(A,B)| different class
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labels. Figure 1 provides a schematic illustration of projections A and B on a more complicated

example with four observations, each corresponding to a different pattern (i.e., n = G = 4).

According to B = {2}, the first observation in XNA,A obtains one collapsed class label whereas

the second and third observation obtain another, common label, resulting in |G(A,B)| = 2.

We are now equipped to formulate our one v.s. all-others approach with the hypothesis

testing problem

H0 : Fg,A =
∑

j∈G(A,B)\g

ωg
jFj,A

∀g ∈ G(A,B), ∀B ∈ B(Ac), ∀A ∈ A

v.s. (3)

HA : Fg,A ̸=
∑

j∈G(A,B)\g

ωg
jFj,A.

for one g ∈ G(A,B), B ∈ B(Ac), A ∈ A,

where Fg,A is the joint distribution of the observations of class g with index in NA and the groups

j ∈ G(A,B) are jointly determined by A and B. Thus, we compare the distribution of the

observed part with respect to A of one group g with the mixture of the observed parts of the rest

of the groups. The weights ωg
j are non-negative, sum to 1, and are proportional to the respective

fraction of observations in class j.

Example 1. To give some intuition about the hypothesis testing problem (3), we relate it to

the hypothesis testing problem (2) with the help of the example of Figure 1. In this example, each

observation i = 1, . . . , 4 has a different pattern and can thus be seen as a draw from a distribution

F ∗
i . We first assume that the null hypothesis of (3) holds and show, as an example, that this

implies F1,o13 = F3,o13. Since the null hypothesis of (3) refers to all A ∈ A, it also includes

A = o13 = {3, 4, 5}, which is what we consider in Figure 1. While we are only interested in F1,A

and F3,A, taking B = {1, 2} the observations in XNA,A come from the three distributions
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Figure 1: Illustration of the projections A and B in an example with n = 4 and p = 5. In a first step, a

projection A = {3, 4, 5} ⊂ {1, . . . , 5} is drawn. The fully observed points on A form XNA,A, as indicated in

green. In a second step, a projection B = {2} ⊂ {1, . . . , 5} \ A is drawn, as indicated in blue. The patterns

in projection B then determine the labels assigned to the observations in XNA,A. In this case we obtain two

different class labels: the first observation has one label, and the second and third observations share another

common label.

F1,A, F2,A, F3,A. Due to (3) it holds that

F1,A = ω1
2F2,A + ω1

3F3,A,

F2,A = ω2
1F1,A + ω2

3F3,A,

F3,A = ω3
1F1,A + ω3

2F2,A.

(4)

Some algebra shows that equation system (4) is equivalent to F1,A = F2,A = F3,A, which in

particular means F1,A = F3,A, that we wanted to show. While we took i = 1 and j = 3 as an

example matching Figure 1, we cycle through all A ∈ A in (3) and thus A = oij for all patterns

i, j eventually. We now assume that the null hypothesis of (2) is true and consider again

A = {3, 4, 5} as an example. Since we only look at the fully observed observations in NA in (3),

i.e., leave out the fourth point, we again deal with the three distributions F1,A, F2,A, F3,A.

Moreover, by construction, A ⊂ o12 and A ⊂ o13 (even A = o13 in this case). Thus,

F1,o12 = F2,o12 and F1,o13 = F3,o13, implied by the null hypothesis of (2), means that

F1,A = F2,A = F3,A, which implies (4). Again this might seem constructed, but since by definition,
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(3) only considers the distributions Fi,A and Fj,A of fully observed points on A, it will always hold

that A ⊂ oij.

We make note of an abuse of notation in (3), as the group g in Fg,A only corresponds to the

same index of Fg in (2), if B = Ac, as can be seen in the example of Figure 1: If B = Ac, the

three observations in XNA,A are drawn from F1,A, F2,A and F3,A respectively. However, if

B = {2}, then observations two and three are now assumed to be drawn from a single

distribution, which corresponds to a mixture of F2,A and F3,A.

In short, the null hypothesis of (3) implies the null hypothesis of (2) because for A = oij ,

observations coming from Fi,A and Fj,A are contained in XNA,A. Vice-versa, the null hypothesis

of (2) implies the null hypothesis of (3) because A is nested in oij for all Fi and Fj considered on

A. This actually sketches the proof of the following result:

Proposition 1. Hypothesis testing problem (3) is equivalent to (2).

Tackling hypothesis testing problem (3) would be rather inefficient since we might test many

times the same hypothesis when cycling through all A ∈ A and B ∈ B(Ac). However, the idea is

that A and B will only be random draws from A and B(Ac). This is discussed in the next section.

4. MCAR test Through Classification

In this section we introduce the classification-based statistic of our test and detail the

implementation of our permutation approach, permuting the rows of the missingness matrix M,

to obtain a valid test.

4.1. Test Statistic U

Let us fix a projection A ∈ A and corresponding projection B ∈ B(Ac). We denote the

induced collapsed class labels based on projections A and B by Y (A,B), by XA the projection of

the random vector X on A and correspondingly by xA the projection on A of observation x in
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XNA,A. Furthermore, we define for each g ∈ G(A,B) and x in XNA,A the following quantities:

p(A,B)
g (x) := P (Y (A,B) = g | XA = xA),

f (A,B)
g (x) := P (xA | Y (A,B) = g),

π(A,B)
g := P (Y (A,B) = g).

Let us fix g ∈ G(A,B) as well. We reformulate the hypothesis testing problem (3):

H
(A,B)
0,g :f (A,B)

g =
1

1− π
(A,B)
g

∑
j∈{1,...,G(A,B)}\g

π
(A,B)
j f

(A,B)
j

v.s. (5)

H
(A,B)
1,g :f (A,B)

g ̸= 1

1− π
(A,B)
g

∑
j∈{1,...,G(A,B)}\g

π
(A,B)
j f

(A,B)
j .

Let S
f
(A,B)
g

⊂ NA denote the indices of observations in XNA,A that belong to class g. For

each missingness pattern g, we now define the following statistic in analogy to Cai et al. (2020),

U (A,B)
g :=

1

|S
f
(A,B)
g

|
∑

i∈S
f
(A,B)
g

(
log

p
(A,B)
g (xi)

1− p
(A,B)
g (xi)

− log
π
(A,B)
g

1− π
(A,B)
g

)
. (6)

This statistic is motivated by the following claim:

Lemma 1. The logarithm of the density ratio for testing (5) is given by U
(A,B)
g .

The main motivation for the form of this test-statistic is that one can use the same

arguments as in Cai et al. (2020, Proposition 1) to show that a test based on U
(A,B)
g will have the

highest power among all tests for (5), according to the Neyman-Pearson Lemma. In addition, the

test statistic converges to the Kullback-Leibler Divergence between f
(A,B)
g and the mixture of the

other densities, motivating the name of our MCAR test. A high value of KL-Divergence indicates

that the distributions of two samples deviate strongly from each other.

Lemma 2. U
(A,B)
g converges in probability to the Kullback-Leibler Divergence between f

(A,B)
g

and the mixture of the other densities:

U (A,B)
g → Efg

log f
(A,B)
g (X)(1− π

(A,B)
g )∑

j∈G(A,B)\g π
(A,B)
j f

(A,B)
j (X)

 ,
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as ng and
∑

j∈{1,...,G}\g nj → ∞ and ng/n → π
(A,B)
g ∈ (0, 1).

Since the statistic U
(A,B)
g is evaluated only on cases x ∈ S

f
(A,B)
g

, it holds that

f
(A,B)
g (x) = f

∗(A,B)
g (x) and p

(A,B)
g (x) = p

∗(A,B)
g (x). This means that the projected complete and

incomplete distributions coincide on the projected complete samples. Thus we are indeed

asymptotically measuring the Kullback-Leibler Divergence between f
∗(A,B)
g and the mixture of the

other densities.

Since there might be only very few observations for a single class g, we symmetrize the

KL-Divergence. That is, we use the samples of all classes to evaluate the KL-Divergence and not

only the samples of class g. Let Sf
gc(A,B)

⊂ NA denote the indices of observations in XNA,A that

belong to all other classes G(A,B) \ g. For each missingness pattern g, we will use, in the

following, the difference between two of the above statistics, namely

U (A,B)
g − U

(A,B)
gc =

1

|S
f
(A,B)
g

|
∑

i∈S
f
(A,B)
g

log
p
(A,B)
g (xi)

1− p
(A,B)
g (xi)

− 1

|Sf
gc(A,B)

|
∑

i∈Sf
gc(A,B)

log
p
(A,B)
g (xi)

1− p
(A,B)
g (xi)

,

(7)

where the terms including the class probabilities π
(A,B)
g cancel out. This difference converges to

the symmetrized KL-Divergence between the mixture of f
(A,B)
g and the remaining classes and is

more sample efficient than only using U
(A,B)
g . The test statistic for fixed (A,B) is then given by

U (A,B) :=

G(A,B)∑
g=1

(U (A,B)
g − U

(A,B)
gc ),

and the final test statistic is defined as

U := EA∼κ,B∼κ(Ac)[U
(A,B)]. (8)

4.2. Practical Estimation of U

We estimate p
(A,B)
g with a multiclass-classifier, yielding p̂

(A,B)
g . Plugging-in this quantity into

(7) yields Û
(A,B)
g − Û

(A,B)
gc . We then estimate U (A,B) by

Û (A,B) :=

G(A,B)∑
g=1

(Û (A,B)
g − Û

(A,B)
gc ).
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Finally, we estimate U by

Û :=
1

N

N∑
i=1

Û (Ai,Bi), (9)

where N is the number of draws of pairs of projections (Ai, Bi), i = 1, . . . , N , with A ∈ A

according to a distribution κ and B ∈ B(Ac) according to a distribution κ(Ac).

Our chosen multiclass classifier is Random Forest (Breiman et al., 1984; Breiman, 2001),

more specifically, the probability forest of Malley et al. (2011). That is, for each of the N

projections, we fit a Random Forest with a specified number of trees, a parameter called

num.trees.per.proj. Thus, for each tree (or group of trees) a random subset of variables and

labels is chosen based on which the test statistic is computed. In each tree, we set mtry to the full

dimension of the projection to not have an additional subsampling effect. This approach aligns

naturally with the construction of Random Forest, as the overall approach might be seen as one

aggregated Random Forest, which restricts the variables in each tree or group of trees to a

random subset of variables. We finally use the OOB-samples for predicting p̂
(A,B)
g .

The question remains how to sample the sets (A1, B1), . . . (AN , BN ) at random. Our chosen

approach is quite simple: we first randomly sample a number of dimensions r1 by drawing

uniformly from {1, . . . , p− 1}. We then draw r1 values without replacement from {1, . . . , p} to

obtain A. Similarly, we randomly draw a value r2 from {1, . . . , p− r1} and then draw r2 values

without replacement from {1, . . . , p} \A to obtain B. We then consider MNA,B, i.e., all patterns

for the fully observed observations in A projected to B, and build the labels Y (A,B) based on the

patterns in this matrix. This simple approach is used as a default, but one could also employ a

more data-adaptive subsampling. In our algorithm, we might restrict the number of collapsed

classes by selecting B corresponding to A accordingly. The parameter indicating the maximal

number of collapsed classes allowed is given by size.resp.set. If set to 2, we reduce the

multi-class problem to a two-class problem. In Algorithm 1 we provide the pseudo-code for the

estimation of Û (A,B).

To ensure that the level is kept by a test based on the statistic Û for any choice of κ and

κ(Ac), we use a permutation approach, as detailed next.
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Algorithm 1 Uhat(X,M, A,B)

Require: incomplete dataset X, missingness indicator M, projections A and B, number of

trees per projection num.trees.per.proj, standard parameters of the Probability Forests,

size.resp.set;

Recover the complete cases NA with respect to A;

Generate the |G(A,B)| collapsed class labels Y (A,B) from MNA,B;

Fit a multi-class probability forest with num.trees.per.proj trees and mtry full;

for g ∈ G(A,B) do

Estimate p̂
(A,B)
g with the fitted forest above using out-of-bag probabilities;

Return the log-likelihood contribution Û
(A,B)
g − Û

(A,B)
gc for class g;

end for

Average the log-likelihood ratio contributions Û
(A,B)
g − Û

(A,B)
gc from the G(A,B) collapsed classes

g to get the statistic Û (A,B);

return Û (A,B)

4.3. Permutation Test

To ensure the correct level, we follow a permutation approach. Informally speaking, the

permutation approach works in this context if the testing procedure can be replicated in exactly

the same way on the randomly permuted class labels. This is not completely trivial in this case,

as the labels are defined in each projection via the missingness matrix M. It can be shown

numerically that permuting the labels at the level of the projection does not conserve the level, as

this is blind to the correspondence between the projections across the permutations.

The key to the correct permutation approach is to permute the rows of M. That is, for L

permutations σℓ, ℓ = 1, . . . , L, we obtain L matrices Mσ1 , . . . ,MσL with only the rows permuted.

Then we proceed as above: We sample A ∼ κ, B ∼ κ(Ac) and for each permutation of rows σℓ,

ℓ = 1, . . . , L, we calculate U
(A,B)
g,σℓ − U

(A,B)
gc,σℓ

as in (7). Using p̂
(A,B)
g instead of p

(A,B)
g this results in
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Û
(A,B)
g,σℓ and in the statistic

Û (A,B)
σℓ

:=

G(A,B)∑
g=1

Û (A,B)
g,σℓ

− Û
(A,B)
gc,σℓ

.

We note that we do not need to refit the forest for this permutation approach to work. Instead,

we can directly use p̂
(A,B)
g from the original Random Forest that we fitted on the original M.

Finally, we calculate the empirical distribution of the test-statistic under the null, by

calculating for ℓ = 1, . . . , L,

Ûσℓ
:=

1

N

N∑
j=1

Û
(Aj ,Bj)
σℓ . (10)

The p-value of the test is then obtained as usual by

Z :=

∑L
ℓ=1 1{Ûσℓ

≥ Û}+ 1

L+ 1
. (11)

Then it follows from standard theory on permutation tests that Z is a valid p-value:

Proposition 2. Under H0 in (1), and Z as defined in (11), it holds for all z ∈ [0, 1] that

P(Z ≤ z) ≤ z. (12)

Algorithm 2 summarizes the testing procedure.

https://doi.org/10.1017/psy.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.14


Psychometrika Submission September 27, 2024 20

Algorithm 2 PKLMtest(X)

Require: incomplete dataset X, number of pairs of projections N , number of permutations L,

number of trees per projection num.trees.per.proj, standard parameters of the Probability

Forests, maximal number of collapsed classes size.resp.set;

Randomly permute the rows of M L times to obtain Mσ1 , . . . ,MσL ;

for j = 1, . . . , N do

Sample a pair of projections (Aj , Bj) hierarchically according to Aj ∼ κ and Bj ∼ κ(Aj);

Calculate Û (Aj ,Bj) = Uhat(X,M, Aj , Bj);

for ℓ = 1, . . . , L do

Calculate Û
(Aj ,Bj)
σℓ = Uhat(X,Mσℓ

, Aj , Bj);

end for

end for

Average the statistics Û (Aj ,Bj), Û
(Aj ,Bj)
σℓ over the couples of projections (Aj , Bj) to get the final

statistic Û , Ûσℓ
, ℓ = 1, . . . , L;

Obtain the p-value with (11);

return p-value

5. Empirical Validation

In this section, we empirically showcase the power of our test in comparison to recent

competitors on both simulated and real data. The simulation setting is set up along the lines of

Jamshidian and Jalal (2010) and Li and Yu (2015) with a common MAR mechanism. For the real

datasets we also add a random MAR generation through the function ampute of the R-package

mice, see e.g., Schouten et al. (2018). As we did throughout the paper, we refer to our test as

“PKLM”, the test of Li and Yu (2015) as “Q”, the test of Little (1988) as “Little” and finally the

one of Jamshidian and Jalal (2010) as “JJ”. The Little-test is computed with the R-package

naniar (Tierney and Cook, 2023), while the JJ-test uses the code of the R-package MissMech

(Jamshidian et al., 2014). Finally, the code for the Q-test was kindly provided to us by the

authors.
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5.1. Simulated Data

We vary the sample size n, the number of dimensions p, and the number of complete

observations, which we denote by r. Cases 1− 8 describe the following different data

distributions, similarly as in Li and Yu (2015) and in Jamshidian and Jalal (2010): Throughout,

Ip is a covariance matrix with diagonal elements 1 and off-diagonal elements 0 while Σ is a

covariance matrix with diagonal elements 1 and off-diagonal elements 0.7:

1. A standard multivariate normal distribution with mean 0 and covariance Ip,

2. a correlated multivariate normal distribution with mean 0 and covariance Σ,

3. a multivariate t-distribution with mean 0, covariance Ip and degree of freedom 4,

4. a correlated multivariate t-distribution with mean 0, covariance Σ and degree of freedom 4,

5. a multivariate uniform distribution which has independent uniform(0, 1) marginal distributions,

6. a correlated multivariate uniform distribution obtained by multiplying Σ1/2 to the multivariate

uniform distribution in 5,

7. a multivariate distribution obtained by generating W = Z + 0.1Z3, where Z is from the

standard multivariate normal distribution,

8. a multivariate Weibull distribution which has independent Weibull marginal distribution, and

each Weibull marginal distribution has scale parameter 1 and shape parameter 2.

The above implements the fully observed X∗. To compute the type-I error, we then simulate

the MCAR mechanism where each value in the p columns of the missingness matrix M has a

probability of 1− r1/p being one and is otherwise zero. To compute the power, we simulate the

MAR mechanism following the description in Li and Yu (2015): We generate M such that the

first column consists only of zeros so that the first variable is fully observed. Further, each value

in the remaining p− 1 columns has a probability of 1− r1/(p−1) being one, while the rest is zero.

This results, on average, in r rows in M with only zeros, and thus in r fully observed rows in X.

Next, we sort the rows of M into two groups, those that will be fully observed (complete group)

and those that will have at least one missing value (missing group). So far, the generation is still

MCAR. However now, for each row i = 1, . . . , n we compare X∗
i,1 with the mean of X∗

•,1, denoted
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by X̄1. If X
∗
i,1 < X̄1, the corresponding row i is placed into the complete group with probability

1/6, and with probability 5/6 into the missing group. That is, with probability 1/6, the row i is

paired with a row in M from the complete group, and with probability 5/6, it is paired with a

row from the missing group. Thus, in this case it is 5 times more likely that the row is placed in

the missing group. On the other hand, if X∗
i,1 ≥ X̄1 the situation reverses, and row i is 5 times

more likely to be associated with a row in M from the complete group. Assigning the rows of X∗

successively to the rows of M like this results in X with MAR missingness.

Each experiment was rerun nsim = 300 times to compute type-I error and power. We used

the following default hyperparameter setting for the computation of our PKLM-test: number of

permutations nrep = 30, number of projections num.proj = 100, minimal node size in a tree

min.node.size = 10, number of fitted trees per projection num.trees.per.proj = 200 and

maximal number of collapsed classes allowed in a projection size.resp.set = 2. We note that

the choice of these hyperparameters is intriguingly simple: besides size.resp.set, it holds that

“higher values are better”. Thus, as with RF in general, it is mostly a question of computational

resources determining how large the values can be chosen. This is especially true for the number

of trees for each forest, which should be relatively high in order to minimize additional

randomness. We found num.trees.per.proj = 200 to be a good compromise between speed and

accuracy. As the level is guaranteed for any number of permutations, and we desired a choice of

hyperparameters that would work for p = 4 as well as p = 40, we chose the number of

permutations low (nrep = 30), but the number of projections relatively high (num.proj = 100).

The only “difficult” parameter to set is size.resp.set, as there appears to be some loss in

accuracy when the number of classes is larger than two. We thus found that size.resp.set = 2,

generating two classes, works well in a wide range of examples.

As mentioned throughout the paper, the Q-test could not be calculated for a large range of

settings.1 In particular, computation times were infeasible for the setting p = 10 and r = 0.1, and

for any configuration with p = 20 or p = 40. For the setting n = 500, p = 10 and r = 0.1 for

instance, one test for case 2 took around 20 minutes to finish, implying an approximate overall

1The largest number p reported in the paper of Li and Yu (2015) is 10, while r is at least 0.35.
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computation time of 500 · 8 · 2 · 20 = 16000 minutes or approximately 110 24-hour days. This

despite the fact that the R-code of the Q-test we received was well implemented. In the upcoming

Tables 3 and 4 of results we always used the nominal level of α = 0.05. We boldfaced the results

for each row in the tables in the following manner: Whenever the type I error of a test is below or

equal to 0.05 and the test has the best power, it will be boldfaced. If this is true for more than

one test, they are all boldfaced. Additionally, we boldfaced all the type-I errors that are below or

equal to the nominal level α = 0.05 to indicate which tests holds the level on average in the given

settings.

In the simulation set-up of n = 200 and p = 4, the Q-test is very powerful, while keeping the

nominal level. The PKLM-test is rarely the most powerful here, however the power of the

PKLM-test is often relatively close to the best power. As an example, in case 2 for r = 0.65, the

Q-test has a power of 1 while the PKLM-test has a power 0.93, with both keeping the nominal

level α = 0.05.

In the set-up of n = 500 and p = 10, the overall picture changes. The PKLM-test is in all but

two of the 24 cases the most powerful test, sometimes leaving the second-best test quite far

behind. As an example, in case 3 for r = 0.65, the PKLM-test has a power of 0.85 while the Q-

and the Little-test exhibit a power of 0.26 and 0.61, respectively. While the Little- and the JJ-test

often show inflated levels, this is never a problem for the valid PKLM-test.

In the simulation set-up of n = 500 and p = 20, it appears as if the Little-test is a strong

competitor. But this is only until one considers its type-I error. Though to a much lesser degree

than the JJ-test, the type-I error is often heavily larger than the nominal level. Considering for

instance case 4, the power of the Little-test is even slightly less than its actual type-I error for

r = 0.1. In case 4 with r = 0.35, our test displays a power of 0.89 and keeps the level, while the

Little-test only has a power of 0.33 despite having a grossly inflated type-I error. All of these

problems are worsened for the JJ-test, which often displays an inflated type-I error in almost all

cases and simulation set-ups. A similar story plays out in the case r = 0.65.

Finally, in the simulation set-up of n = 1000 and p = 40, the power of our test is again much

better than that of all other tests. Interestingly, the PKLM-test tends to have higher power when

the components of the distribution are not independent, such as in the cases 2, 4, 6, and 8. For
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example, in case 1 for r = 0.65, PKLM has a power of 0.2, while for case 2 it has a power of 0.95.

The main difference between these two cases is the strong positive correlation induced in case 2.

This pattern repeats: in all correlated examples and for both r = 0.65 and r = 0.35, the PKLM

has a power nearing 1, whereas in the independent versions, the power is closer to the type-I

error. Thus, our test is able to use the dependencies in the data to its advantage, at least for

r = 0.65 and r = 0.35, and can reach a very high power even for comparatively large p.

In summary, our test is very competitive even in small dimensions, where the Q-test is very

powerful. It leaves behind all other tests by a wide margin as soon as one increases p. The Q-test

remains strong in these situations as well, but becomes quickly infeasible as either p increases or

the fraction of complete cases r decreases. Crucially, only the PKLM-test and the Q-test are able

to consistently keep the nominal level over all experiments, with the Little- and JJ-test showing

blatant inflation of the type-I error in many situations. This is the case despite the fact that

simply checking the type-I error for a single level α (0.05 in this case) is far from sufficient to

analyse the validity of a p-value.

As an illustration, we randomly chose one of the above experiments in which the Little-test

kept the nominal level, e.g., in the simulation set up n = 500, p = 10, r = 0.65 in case 5. In

Figure 2 we plot the empirical cumulative distribution functions (ecdf) of 500 p-values under the

null (MCAR) of the four different tests. The red line is the x = y line. In blue we plotted 100

ecdfs of a uniform(0, 1)-distribution. As described in Equation (12), a valid p-value has the

property that the corresponding black ecdf values do not lie above the region defined by the blue

lines. As Proposition 2 predicts, this is clearly the case for the PKLM-test. That the p-values

appear rather discrete stems from the fact that we chose a low number of permutations

(nrep = 30). The Q-test is sometimes overshooting the red line, though this appears to mostly

stem from estimation error. In general, it is remarkable how closely the ecdfs of p-values from

both the Q- and PKLM-test resemble the ecdf of a uniform sample. The JJ-test appears to

consistently have P (Z ≤ z) ≥ z. The Little-test finally appears to produce a valid p-value as long

as only values z < 0.5 are considered. For z ≥ 0.5, the the ecdf clearly violates the requirement of

a valid p-value. If there is no theoretical guarantee, it is thus important to not just check the

type-I error at α = 0.05, but to instead consider other levels, e.g., α = 0.1.
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Figure 2: Example plot of cumulative distribution function values of the p-values under the null (MCAR)

of the four different tests. The simulation set up is n = 500, p = 10, r = 0.65 in case 5, with 500 repetitions.

The red line is the x = y line, while the blue lines show 100 ecdfs of 500 simulated uniform random variables.

5.2. Real Data

We used 13 real datasets with varying number of observations n and dimensions p for further

empirical assessment of the PKLM-test and comparison to the other three tests. The datasets are

available in the UCI machine learning repository2. We preprocessed the data by cancelling factor

variables, in order to be able to run all other three tests. However, we kept numerical variables

with only few unique values.

2https://archive.ics.uci.edu/ml/index.php
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Power Type-I Error

n p r case PKLM Q Little JJ PKLM Q Little JJ

200 4 0.65 1 0.73 0.98 0.98 0.12 0.03 0.03 0.06 0.04

2 0.93 1.00 0.96 0.04 0.03 0.06 0.06 0.05

3 0.81 0.94 0.92 0.05 0.03 0.02 0.04 0.08

4 0.89 0.97 0.91 0.05 0.01 0.03 0.05 0.05

5 0.79 1.00 1.00 0.19 0.03 0.04 0.04 0.06

6 0.90 1.00 0.99 0.20 0.03 0.04 0.03 0.13

7 0.80 0.93 0.95 0.04 0.04 0.06 0.09 0.08

8 0.72 0.92 0.90 0.26 0.03 0.05 0.04 0.08

200 4 0.35 1 0.79 0.98 0.97 0.04 0.03 0.04 0.04 0.13

2 0.87 0.98 0.97 0.08 0.03 0.03 0.03 0.08

3 0.82 0.97 0.90 0.16 0.03 0.03 0.06 0.12

4 0.87 0.99 0.92 0.10 0.03 0.02 0.08 0.11

5 0.79 0.99 0.99 0.10 0.04 0.05 0.05 0.08

6 0.80 1.00 0.97 0.12 0.03 0.04 0.06 0.11

7 0.79 0.98 0.92 0.09 0.03 0.05 0.07 0.06

8 0.83 0.99 0.99 0.10 0.05 0.05 0.06 0.05

200 4 0.10 1 0.30 0.40 0.26 0.20 0.06 0.03 0.05 0.22

2 0.35 0.50 0.27 0.12 0.03 0.10 0.05 0.18

3 0.25 0.29 0.18 0.21 0.04 0.01 0.04 0.24

4 0.37 0.42 0.17 0.19 0.03 0.03 0.03 0.17

5 0.27 0.51 0.33 0.26 0.05 0.02 0.05 0.20

6 0.31 0.40 0.27 0.24 0.03 0.03 0.04 0.17

7 0.26 0.42 0.22 0.20 0.04 0.04 0.09 0.31

8 0.31 0.39 0.32 0.23 0.03 0.03 0.04 0.18

500 10 0.65 1 0.93 0.89 0.88 0.09 0.05 0.06 0.06 0.05

2 0.99 1.00 0.84 0.08 0.02 0.06 0.05 0.05

3 0.85 0.26 0.61 0.12 0.02 0.05 0.18 0.10

4 0.99 0.96 0.60 0.10 0.04 0.06 0.19 0.12

5 0.89 0.98 0.96 0.16 0.04 0.05 0.03 0.10

6 0.99 1.00 0.91 0.15 0.04 0.07 0.02 0.13

7 0.90 0.61 0.68 0.09 0.02 0.07 0.12 0.07

8 0.79 0.76 0.76 0.18 0.03 0.04 0.05 0.09

500 10 0.35 1 0.89 0.74 0.66 0.07 0.02 0.02 0.02 0.08

2 0.99 0.99 0.69 0.09 0.03 0.06 0.03 0.11

3 0.88 0.33 0.51 0.14 0.04 0.05 0.18 0.11

4 0.98 0.91 0.48 0.12 0.04 0.08 0.20 0.10

5 0.91 0.92 0.83 0.12 0.04 0.06 0.04 0.12

6 0.98 1.00 0.75 0.09 0.03 0.08 0.04 0.11

7 0.89 0.46 0.52 0.05 0.03 0.03 0.08 0.11

8 0.92 0.78 0.74 0.10 0.05 0.06 0.06 0.07

500 10 0.10 1 0.31 − 0.06 0.12 0.02 − 0.03 0.10

2 0.45 − 0.07 0.12 0.03 − 0.03 0.07

3 0.34 − 0.18 0.16 0.03 − 0.19 0.14

4 0.45 − 0.20 0.16 0.02 − 0.22 0.11

5 0.33 − 0.04 0.12 0.06 − 0.02 0.14

6 0.45 − 0.03 0.08 0.05 − 0.01 0.12

7 0.34 − 0.12 0.09 0.05 − 0.09 0.15

8 0.34 − 0.04 0.16 0.03 − 0.05 0.13

Table 3: Simulated power and type-I error of PKLM, Q, Little and JJ for n = 200, p = 4 and n = 500,

p = 10. We use r = 0.65, 0.35 and 0.1. Cases 1 − 8 describe different data distributions. The experiments

were repeated 300 times and the parameter setting for PKLM described above was used.

https://doi.org/10.1017/psy.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.14


Psychometrika Submission September 27, 2024 27

Power Type-I Error

n p r case PKLM Q Little JJ PKLM Q Little JJ

500 20 0.65 1 0.39 − 0.36 0.06 0.02 − 0.05 0.09

2 0.91 − 0.48 0.08 0.03 − 0.05 0.10

3 0.33 − 0.49 0.20 0.03 − 0.24 0.11

4 0.90 − 0.40 0.14 0.04 − 0.22 0.11

5 0.32 − 0.64 0.14 0.04 − 0.04 0.08

6 0.93 − 0.39 0.25 0.04 − 0.01 0.09

7 0.33 − 0.37 0.07 0.03 − 0.09 0.10

8 0.23 − 0.25 0.14 0.04 − 0.06 0.03

500 20 0.35 1 0.45 − 0.22 0.08 0.03 − 0.04 0.09

2 0.90 − 0.22 0.09 0.03 − 0.04 0.08

3 0.43 − 0.35 0.18 0.02 − 0.34 0.12

4 0.89 − 0.33 0.20 0.03 − 0.31 0.15

5 0.46 − 0.24 0.09 0.02 − 0.02 0.12

6 0.91 − 0.14 0.14 0.02 − 0.03 0.10

7 0.41 − 0.22 0.11 0.02 − 0.11 0.10

8 0.52 − 0.18 0.08 0.03 − 0.04 0.07

500 20 0.10 1 0.13 − 0.00 0.14 0.03 − 0.00 0.10

2 0.24 − 0.01 0.14 0.04 − 0.01 0.12

3 0.08 − 0.21 0.16 0.06 − 0.22 0.10

4 0.26 − 0.27 0.08 0.04 − 0.31 0.13

5 0.12 − 0.00 0.10 0.03 − 0.00 0.19

6 0.19 − 0.00 0.11 0.05 − 0.00 0.18

7 0.07 − 0.08 0.12 0.04 − 0.07 0.12

8 0.07 − 0.02 0.11 0.04 − 0.00 0.16

1000 40 0.65 1 0.20 − 0.00 0.09 0.05 − 0.00 0.15

2 0.95 − 0.00 0.12 0.03 − 0.00 0.14

3 0.23 − 0.00 0.29 0.02 − 0.00 0.17

4 0.94 − 0.00 0.26 0.05 − 0.00 0.17

5 0.16 − 0.00 0.30 0.02 − 0.00 0.19

6 0.97 − 0.00 0.26 0.02 − 0.00 0.19

7 0.23 − 0.00 0.11 0.02 − 0.00 0.10

8 0.13 − 0.00 0.17 0.03 − 0.00 0.12

1000 40 0.35 1 0.35 − 0.00 0.12 0.02 − 0.00 0.11

2 0.97 − 0.00 0.13 0.05 − 0.00 0.10

3 0.37 − 0.00 0.30 0.03 − 0.00 0.30

4 0.96 − 0.00 0.33 0.04 − 0.00 0.27

5 0.32 − 0.00 0.14 0.04 − 0.00 0.11

6 0.98 − 0.00 0.16 0.03 − 0.00 0.10

7 0.36 − 0.00 0.11 0.02 − 0.00 0.08

8 0.30 − 0.00 0.16 0.02 − 0.00 0.10

1000 40 0.10 1 0.08 − 0.00 0.15 0.02 − 0.00 0.12

2 0.32 − 0.00 0.12 0.02 − 0.00 0.10

3 0.06 − 0.00 0.13 0.05 − 0.00 0.20

4 0.25 − 0.00 0.25 0.03 − 0.00 0.28

5 0.08 − 0.00 0.11 0.03 − 0.00 0.09

6 0.27 − 0.00 0.09 0.04 − 0.00 0.11

7 0.07 − 0.00 0.16 0.03 − 0.00 0.13

8 0.07 − 0.00 0.15 0.04 − 0.00 0.08

Table 4: Simulated power and type-I error of PKLM, Q, Little and JJ for n = 500, p = 20 and n = 1000,

p = 40. We use r = 0.65, 0.35 and 0.1. Cases 1 − 8 describe different data distributions. The experiments

were repeated 300 times and the parameter setting for PKLM described above was used.
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Power Type-I Error

dataset n p PKLM Q Little JJ PKLM Q Little JJ

iris 150 4 0.41 0.91 0.84 0.27 0.03 0.04 0.03 0.16

blood.transfusion 748 4 0.48 0.97 1.00 NA 0.01 0.06 0.04 NA

airfoil 1503 6 0.92 0.13 0.17 0.09 0.02 0.03 0.06 0.42

seeds 210 7 0.64 0.74 0.57 0.24 0.05 0.02 0.02 0.10

yacht 308 7 0.60 0.56 0.76 0.24 0.03 0.07 0.05 0.24

yeast 1484 8 0.82 0.52 0.15 0.14 0.05 0.06 0.23 0.85

glass 214 9 0.10 0.02 0.20 0.20 0.01 0.00 0.03 0.33

concrete.compression 1030 9 0.64 0.48 0.81 0.47 0.04 0.04 0.05 0.41

wine.quality.red 1599 11 0.81 − 0.72 0.80 0.04 − 0.15 0.52

wine.quality.white 4898 11 0.98 − 0.96 0.87 0.04 − 0.10 0.79

planning.relax 182 12 0.29 − 0.20 0.14 0.00 − 0.00 NA

climate.model.crashes 540 19 0.18 − 0.22 0.47 0.00 − 0.00 NA

ionosphere 351 32 0.45 − 0.97 0.18 0.00 − 0.06 NA

Table 5: Simulated power and level of PKLM, Q, Little and JJ for 13 real datasets. We use pmiss = 0.3.

The experiments were repeated 300 times and the parameter setting for PKLM described above was used.

The NAs for some values of the JJ-test indicate that the test was not computable in any of the 300 repetitions

due to not enough observations in enough usable missingness groups.

For the generation of the NAs, we use an overall probability of missingness of pmiss = 0.3 (not

to be confused with r from the last subsection, denoting the number of complete cases). We used

a random MAR generation through the function ampute of the R-package mice. This function can

randomly generate realistic MAR mechanisms, see e.g., Schouten et al. (2018). Each experiment

was run nsim = 300 times to compute the type-I error and power. We used the following

hyperparameter setting for the computation of our PKLM-test: number of permutations

nrep = 30, number of projections num.proj = 300, minimal node size in a tree

min.node.size = 10, number of fitted trees per projection num.trees.per.proj = 200 and

maximal number of collapsed classes allowed in a projection size.resp.set = 2. The results are

shown in Table 5. Our test is again very competitive with the best power in 7 out of 13 datasets,

conditional on valid type-I errors. The Little-test shows also often good performance, though

given the problematic level displayed in the previous section, this has to be considered with some
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care. The Q-test also has relatively high power in the situations where it can be calculated.

However, due to computational time we only run the Q-test for p ≤ 10. All in all, we see that the

Q-test quickly gets infeasible for large p and n and the advantage of the PKLM-test strengthens

with increasing p.

6. Extension

In addition to the “global test” of MCAR, we can study the effect of single variables: For any

given variable k = 1, . . . , p, we can calculate

Û−k =
1

|P−k|
∑

i∈P−k

Û (Ai,Bi),

where P−k are all pairs of projections (Ai, Bi) from the N randomly chosen ones, with Bi not

containing variable k. We can use the analogous calculation based on the permuted missingness

matrix M

Û−k
σℓ

=
1

|P−k|
∑

j∈P−k

Û
(Aj ,Bj)
σℓ ,

to obtain the p-value as in (11). This “partial” p-value is valid and corresponds to the effect of

removing the patterns induced by variable k. Indeed, assume the difference in the distribution of

two patterns stems from a variable j alone. If j ∈ B, a perfect classifier will be able to reliably

differentiate the two, leading to a high value for Û−k relative to the permutation values. If j is

not forming the labels, we will not test these two classes against each other and thus not be able

spot this difference. As such, we might expect to see a high p-value for Û−j , when variable j is

removed, but a tendency to low p-values for Û−k, k ̸= j.
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Figure 3: X1 and X2 of the fully observed data in the simulated example of Section 6. In red: Points with

missing values in X1, in blue: points with missing values in X2. The blue points are randomly scattered,

independently of the value of X1, while in the red points, there is a visible trend towards having more missing

values in X1 for higher values of variable X2.

We illustrate the usefulness of partial p-values with an example. Let C−k = {1, . . . , p} \ {k}.

We assume X•,C−k
has a MCAR missingness structure, in particular, we simulate below the

MCAR mechanism described in Section 5.1 with r = 0.65. Let k = 1 and assume that this first

column of observations X•,1 has missingness depending on the observed values of X•,2. For

instance, each value is missing if the mean of the corresponding row Xj,2 is larger than 0.5. In

this simple example X is MAR, but X•,C−1 is MCAR. We simulate this example, with p = 4 and

n = 500, Xi,• being independent standard Gaussian and the MAR/MCAR mechanism as

described above. The first two fully observed components, X1 and X2, are shown in Figure 3. As

before, we set num.trees.per.proj=200 and use 100 projections. In this example, we are only

able to spot any difference when j = 1 is used to build the labels.

Our test reliably delivers small p-values (≤ 0.05) for the three partial tests based on

projections potentially including variable 1, i.e., sets of projections P−2, P−3, and P−4 and a high
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p-value for the partial test based on P−1. Thus in this sense, the test detects that the main

culprit of the MAR mechanism lies in the first variable.

7. Concluding Remarks

In this paper we presented the powerful, flexible and easy-to-use PKLM-test for the MCAR

assumption on the missingness mechanism of a dataset. We proved the validity of the p-value of

the test and showed its power over a wide range of distributions. We also provided an extension

allowing to do partial tests, that may shed light on the source of the violation of the MCAR

assumption. Naturally, with some slight adaptations the test can be used as a general test of

homogeneity of G different groups in the sense that it tests whether G different groups have the

same distribution.
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Appendix

A. Proofs

Proposition 1. Hypothesis testing problem (3) is equivalent to (2).

Proof. We first show H0 of (2) implies H0 of (3). Let A,B be arbitrary. If they are such that

there is only one label, there is nothing to test, so we may assume to have |G(A,B)| ≥ 2 patterns

in XNA,A. This means that A ⊂ oij for all patterns i, j ∈ G(A,B). This simply follows because,

by construction, each of the |G(A,B)| patterns in XNA,A has the elements in A fully observed.

But since by assumption for all i, j ∈ {1, . . . , G}, Fi,oij = Fj,oij and A ⊂ oij , this immediately

implies that Fi,A = Fj,A for all i, j ∈ {1, . . . , G} and thus Fg,A =
∑

j∈G(A,B)\g ω
g
jFj,A. Since A,B

were arbitrary, one direction follows.

We now show that H0 of (3) implies H0 of (2). The proof is based on the following claim:

Consider G arbitrary distribution functions F1, . . . , FG and weights (ωg
j )

G−1
j=1 , j = 1, . . . , G such

that
∑G−1

j=1 ωg
j = 1 for all j. Then

Fg =
∑

j∈{1,...,G}\g

ωg
jFj , ∀g ∈ {1, . . . , G} =⇒ Fi = Fj , ∀i ̸= j ∈ {1, . . . , G}. (13)

We prove the implication by induction: Consider first G = 3. Assuming the LHS of (13) and

plugging the equation for F2 into the equation for F1, we obtain:

F1 = w1
2w

2
1F1 + w1

2w
2
3F3 + w1

3F3

= w1
2w

2
1F1 + (w1

2w
2
3 + w1

3)F3,

which implies (1− w2
1w

1
2)F1 = (w1

2w
2
3 + w1

3)F3. Since

1 = w1
2 + w1

3 = w1
2(w

2
3 + w2

1) + w1
3 = w1

2w
2
3 + w1

2w
2
1 + w1

3,

we have the equality (1− w2
1w

1
2) = (w1

2w
2
3 + w1

3) and thus F1 = F3. Plugging this back into the

equivalent equation for F2, we obtain F1 = F2 = F3. Now assume (13) is true for G distributions

F1, . . . , FG and we now would like to prove it for G+ 1. Assume wlog that the weight of F2 in the

equation of F1 is nonzero (there will always be at least one such distribution F2, . . . , FG). Using
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the same trick as above, we may plug say the equation for F2 into F1, thereby reducing the

number of equations/distributions to G. By the induction assumption this implies that

F1 = F3 = . . . = FG. But immediately this also implies that F2 = F1 and implies (13). With this

result we can now proof the that H0 of (3) implies H0 of (2).

Take two arbitrary groups i, j and A = oij and take B = Ac. To ease notation we just wlog

take i = 1 and j = 2. Then A = o12 contains the dimensions for which patterns 1 and 2 have fully

observed values. Thus, observations in XNA,A contain draws from F1,o12 and F2,o12 . Since by

assumption

H0 : Fg,A =
∑

j∈G(A,B)\g

ωg
jFj,A ,∀g ∈ G(A,B), (14)

it follows by (13), that Fi,A = Fj,A for all i, j ∈ G(A,B) and thus in particular, F1,A = F2,A. Since

we will have A = oij for all groups i ̸= j, H0 of (2) holds.

Lemma 1. The logarithm of the density ratio for testing (5) is given by U
(A,B)
g .

Proof. Based on the definitions of p
(A,B)
g (x), f

(A,B)
g (x) and π

(A,B)
g we obtain by Bayes Rule,

p(A,B)
g (x) =

f
(A,B)
g (x)π

(A,B)
g∑

j∈G(A,B) π
(A,B)
j f

(A,B)
j (x)

, (15)

assuming the existence of densities fg of distributions Fg for each g ∈ G(A,B). Following the

same steps as in Cai et al. (2020), we get that the logarithm of the (joint) density ratio for testing

H0 vs H1 of (5), given by

log
f
(A,B)
g (x)(1− π

(A,B)
g )∑

j∈G(A,B)\g π
(A,B)
j f

(A,B)
j (x)

. (16)

We reformulate the fraction in (16) in terms of p
(A,B)
g , starting from (15):

p(A,B)
g (x)

∑
j∈G(A,B)\g

π
(A,B)
j f

(A,B)
j (x) = (π(A,B)

g − p(A,B)
g (x)π(A,B)

g )f (A,B)
g (x)

= π(A,B)
g (1− p(A,B)

g (x))f (A,B)
g (x).
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Thus, the inside of the logarithm of (16) is given by the following function of p
(A,B)
g :

f
(A,B)
g (x)(1− π

(A,B)
g )∑

j∈G(A,B)\g π
(A,B)
j f

(A,B)
j (x)

=
1− π

(A,B)
g

π
(A,B)
g

p
(A,B)
g (x)

1− p
(A,B)
g (x)

.

Lemma 2. U
(A,B)
g converges in probability to the Kullback-Leibler Divergence between f

(A,B)
g

and the mixture of the other densities:

U (A,B)
g → Efg

log f
(A,B)
g (X)(1− π

(A,B)
g )∑

j∈G(A,B)\g π
(A,B)
j f

(A,B)
j (X)

 ,

as ng and
∑

j∈{1,...,G}\g nj → ∞ and ng/n → π
(A,B)
g ∈ (0, 1).

Proof. From the proof of Lemma 1, we know that U
(A,B)
g can be rewritten as

U (A,B)
g :=

1

|S
f
(A,B)
g

|
∑

i∈S
f
(A,B)
g

(
log

p
(A,B)
g (xi)

1− p
(A,B)
g (xi)

− log
π
(A,B)
g

1− π
(A,B)
g

)

=
1

ng

∑
i∈S

f
(A,B)
g

log
f
(A,B)
g (xi)(1− π

(A,B)
g )∑

j∈G(A,B)\g π
(A,B)
j f

(A,B)
j (xi)

. (17)

Since ng/n → π
(A,B)
g ∈ (0, 1) and the xi are i.i.d., the result follows from the law of large numbers.

Proposition 2. Under H0 in (1), and Z as defined in (11), it holds for all z ∈ [0, 1] that

P(Z ≤ z) ≤ z. (12)

Proof. Let A = (A1, . . . , AN ) and B = (B1, . . . , BN ) be two sets of N projections. Let

G1, . . . GL∗ be all possible permutations of the rows of the missingness matrix M, such that

Gℓ(X
∗,M,A,B) = (X∗,Mσℓ

,A,B),

for ℓ = 1, . . . , L∗. Note that, since we are only considering fully observed observations for all

projections in A, Û , a function of (X,M,A,B), is indeed a function of (X∗,M,A,B), while Ûσℓ

is a function of Gℓ(X
∗,M,A,B). It also holds that under the null, that is under MCAR, that

(X∗,M,A,B)
D
= (X∗,Mσℓ

,A,B) = Gℓ(X
∗,M,A,B) ∀ℓ = 1, . . . L∗. (18)
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This is true because, under MCAR, M and X∗ are independent. Since by the i.i.d. assumption

also Mσℓ

D
= M for all ℓ = 1, . . . , L∗ and since A, B are also independent of M, (18) follows. As

outlined for example in Hemerik and Goeman (2018), this implies that under H0,

P(Z ≤ z | A,B) ≤ z.

Integrating over (A,B), results in (12).

B. Additional Details and Computation Times

Here we provide more implementation details, discuss the complexity calculations in Table 1

and show computation times of the different tests in the experiments.

Numerical truncation. In order to avoid numerical issues when calculating the density ratio

with Expression (6) or the log thereof, if we get predicted probabilities p̂A close to 0 or 1, we

apply the following truncation function to p̂A:

p(x) = min(max(x, 10−9), 1− 10−9).

Hyperparameter Selection. Generally speaking, it holds that “the more the better”, certainly

for the parameters N , L and num.trees.per.proj. As such, the choice of those three parameters

depends mostly on the computational power available to the user. For size.resp.set, this is not

quite as clear, though we found a value of two to work well in most situations.

PLKM Test. We first consider the complexity of one Random Forest, which is in this case

num.tree · pn log(n).

Note that this includes the calculation of p̂ on the test sample through the OOB-error. In total

we do this num.proj times. However, we consider num.tree and num.proj independent of n and

p and thus treating it as constant. In this case we end up with pn log(n). Finally we need to

calculate the statistics U and repeat this number of calculations a fixed number of times. This

would add a factor Bn, where again we assume that B does not grow with n and p. As this is

neglible compared to pn log(n), the complexity is given as O(pn log(n)).

https://doi.org/10.1017/psy.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.14


Psychometrika Submission September 27, 2024 36

Q-test. The Q-test compares all groups leading to a complexity of G2 to compare each group

with any other. Additionally, the statistic used is an MMD type, so the complexity is (n1 + n2)
2,

where n1, n2 are the respective group sizes. The group size can be at worst n/G, which together

results in O(n2). The bootstrap on the other hand can also be ignored, as it simply results in a

constant factor multiplied to n2.

JJ and Little-test. Both JJ- and Little-test rely on covariance estimation which scales as np2.

This gives the O(np2) complexity for the Little-test. For the JJ-test one also needs an ordering

operation to obtain the test statistics, with complexity n log(n), which results in overall

complexity O(n(p2 + log(n))).

As mentioned above, Table 1 just shows how the complexity scales in n and p and, in case of

our test, treats the number of projections as constants. One might argue that the number of

projections should be a function of p as well. Similarly, for “small” p and small number of groups

G, the Q-test can be faster than ours. Still the complexities provide a good illustration of how

quickly the Q-test can become infeasible, when the number of groups (often a function of p)

and/or the number of observation increases.

C. Example of Yuan et al. (2018)

Yuan et al. (2018) study settings where group means and variances are approximately equal

across missingness patterns, such that MCAR tests based on differences in means and variances,

such as the Little-test, have no power. We study one such example here: Let p = 2 and (Z1, Z2)

be jointly multivariate normal with correlation zero and let X1 = Z1 and

X2 = 0.5Z1 + (1− 0.25)1/2Z2.

We set X2 to NA if

X1 ∈ (−∞,−1.932] ∪ (−0.314, 0.314] ∪ (1.932,∞).

This corresponds to around 30% missing values. Figure 4 displays a histogram, plotting all

observations of X1 with X2 missing for a simulation of n = 10′000. This corresponds to the MAR

example used in Yuan et al. (2018, Section 3) and we refer to their paper for more details.
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Figure 4: Histogram with relative frequencies of X1 if the corresponding X2 is NA.

We simulate the above distribution for n = 1000 and run our PKLM-test with the same

parameters as described in Section 5.1. Though the deviation from MCAR cannot be detected

through the first two moments in this example, our test reliably reaches a power of 1.
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