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FINE SPECTRA AND LIMIT LAWS, |1
FIRST-ORDER 0-1 LAWS

STANLEY BURRIS, KEVIN COMPTON,
ANDREW ODLY ZKO, BRUCE RICHMOND

ABsTrRAcT.  Using Feferman-Vaught techniques a condition on the fine spectrum
of an admissible class of structures is found which leads to afirst-order 0-1 law. The
condition presented is best possible in the sense that if it is violated then one can find
an admissible classwith the same fine spectrum which does not have afirst-order 0-1
law.

If the condition is satisfied (and hence we have a first-order 0-1 law) we give a
natural model of the limit law theory; and show that the limit law theory is decidable
if the theory of the directly indecomposables is decidable. Using asymptotic methods
from the partition calculus a useful test is derived to show several admissible classes
have afirst-order 01 law.

1. Front-loaded classes.

We will continue using the notation of Part I, the first paper [1] of this sequel. First
we study, in an abstract setting, the key property of fine spectra which sufficesto prove
0-1 laws exist. In this section a subscripted lower case letter is used for members of a
series, e.g., (an), and the corresponding upper case letter for the partial sum function,
€. AX) = Snex an.

LEmMMA 1.1. For (a,) a sequence of non-negative integers the following are equiv-
alent:
(@) lim_., 53 = 1for all [some] x > 1.

(b) limp_oo %(%l = 1 for all [some] x > 1.

© liMnoo KA%! = 1for all [some] x > 1.
W\e also obtain further equivalent statements by replacing tx by t/x in (a), and nx by
n/xin (b).

PROOF. Regarding the ‘for all X' versions one has (a) = (b), (c). Likewise for the
‘for some X’ versions. Also, in each case the ‘for all X' version implies the ‘for some
X version. Thus for the equivalences (a)—(c) it suffices to show that the ‘for some X'
versions of (b), (c) each imply the ‘for all X' version of (a).
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First supposethe ‘for some’ version of (b) holds. Chooseu > 1 such that

lim AW _

lim @ =%

For n sufficiently large we have un > n + 1, and consequently
< An+1) < A(nu)

- AN — AN
Thus A+ 1)
nanQo An) L
Then
1< A _ A(([t] +Du) _ A(([t] +Du) AL +1)
AN T Al A(lt] +1) At
=0 A(tu)
M am - L
Then for any positive integer s we have
A(tus)
dM 2 Tl

Given any x > 1 choose a positive integer ssuch that 1 < x < us. Then

AX)  AtLS)

1<—=L

AL T AW
implies
A
dm a0 b
Next supposethe ‘for some’ version of (c) holds. Chooseu > 1 such that

AU

am AW -

Then, for u" <t < u™, we have u™! < tu < u™?2, and then

A(un+2) - M

Au) T AD T
> A)
. u
I
Now, asin the previous case, we have, for any x > 1,
A
Im 2 ~ b
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To seethat one can replace nx by n/x in (b) it suffices to note the following:

A2|nx]) S A(nx)

A(%(2[nx))) — An) =1
and for n > x
A([n/x]) < A(n/x) <1
A2x[n/x]) = A(n) —
The same argument shows that one can replace tx by t/xin (a). ]

DEerINITION 1.2. A sequence of non-negative integers (a,) is said to be front-loaded
if A(X) isslowly varying, i.e., for al x > 0,

. A(tX)
lim ——= =1
% AD)
A classK of finite structuresis front-loaded if its fine spectrum is front-loaded.

THEOREM 1.3. The Dirichlet convolution product of finitely many front-loaded se-
guencesis front-loaded.

ProOOF. It suffices to consider two front-loaded sequences, say (a,) and (bn). We
want to show that the sequence () defined by ¢, = ¥y @mbn/m is front-loaded. Now

C) = 3 a- Bx/K).

k<x
We have to prove, for x > 1 and § > 0, that thereis aty(x, ) such that
C(tx) < (1+6) - C(t) for t > to(x,6).
Since the b-sequenceis front-loaded,
B(tx) < (1+6/2)- B(t) for t > t1(x,9),
and we assumet; > X. Then

Ct) = 3" ac- B(tx/K)

k<tx

< ( S - Btx/ k)) +B(tx) - (A — Alt/t))

k<t/ty
<(1+6/2)- (kZ(ak B(t /k)) +B(tx) - (A — At/ty))
<t

= (1+6/2)- C(t) + o(At))

since the a-sequence is front-loaded, which completes the proof. ]

Using thisresult one can slightly simplify the proof of Theorem 5.15in Part |, namely
it sufficesto prove the theorem for the case that the bound U on the multiplicities is 1.
The next item is closely related to Corollary 4.4 of Part .
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LEMMA 1.4. Let K bean admissible class. Then the following are equivalent:
(a) Kisfront-loaded.

(b) Probk(isdivisibleby A) = 1for all A € K.

(c) Probg(isdivisible by A) = 1 for some nontrivial A € K.

Proor. Observethat

Tk(n | isdivisible by A)
k(M)
_ jim O/

n—oo T (N)

Probg (isdivisibleby A) = JLm

whered isthe size of A. Then apply Lemma 1.1. ]
LEMMA 1.5. Anadmissiblefront-loaded class K is loaded.

PROOF. Let Fy,...,F beapartition of F, and let rq,...,rx be asequence of non-
negative integers. Choose any algebra A with at least r; factors from each F;. Then

(| isdivisibleby A) _ 7x(n|isinFy" - Fe™)

TK(n) TK(n)

<1l

Thus, by Lemma1.4, Proby (isin F7™ - F.™%) = 1, so K isloaded. .

2. Logical Aspects.

THEOREM 2.1. Supposethat K is admissible. If K is front-loaded then we have the
following:
(a8) Khasafirst-order 0-1 law.
(b) Let R bea selection of representativesfrom the isomor phismequivalence classes
of F,and let T = (ITR). Then, for ¢ a first-order sentence, Proby(¢) = 1 iff
TE ¢.
(c) If thefirst-order theory of F is decidable then so is the limit law theory of K, i.e,
the set of first-order ¢ with Proby(¢) = 1.
If, on the other hand, K is not front-loaded, then thereis an admissible K’ with the same
fine spectrumas K, and K’ does not have a first-order 0-1 law.

ProOOF. (&) Examining the proof of part (a) of Theorem 3.4 in Part | we seein the
front-loaded casethat pj,,..j, , = Oif any ji < c. Thusat most one nonzero term survives
value 1.

(b) Givenafirst-order sentence ¢ |let Feferman-Vaught sequencesbedetermined asin
the proof of part (a) of Theorem 3.4 in Part |, and also the F;. By regrouping the factors
of T by ‘members of the same F;’, we have

TgToX"'XT[_l,
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whereT; = (II(RNF;))". T will satisfy ¢ iff the structuresfrom K with at least ¢ factors
from each F; satisfy ¢ (by Lemma 3.1 in Part I), and the latter holdsiff ¢ isin the limit
law theory.

(c) Suppose Th(F), the first order theory of F, is decidable. Given afirst-order sen-
tence ¢ we now show how to effectively determine if T = ¢, i.e., how to determine
if ¢ isinthe limit law theory. First we use [3] to effectively find the Feferman-Vaught
sequences (D, ¢1, ..., dk), (Pi, di, ..., dik) (L < i <K)inthe proof of part (a). Now
we define aconstituent of ¢ to be any conjunctiony of the ¢; ;’s and their negations such
that for each (i, j) precisely one of ¢;; and — ¢;; appearsin the conjunction.

Suppose Y is such a constituent. Then either v has no model in F or v defines one of
theclassesFi, i.e, Fi = {D € F : D = 7}. Note that, up to ordering of the conjuncts,
each F; is determined by a unique constituent, say by 7;.

Thus we can determine the ¢ in the proof of part (a) by determining the constituents
which have modelsin F. And we can do this by using the decidability of Th(F), namely
aconstituent ¥ hasamodel in F iff =7 ¢ Th(F).

Now that we have ¢, we want to determine the [¢;] in 2‘. Thisisbecause T [ ¢ iff
20 E O([41], - - ., [4k]l)- Todetermine [¢i] wewill findtheset S of j suchthat T k= ¢;.
[i] isjust the characteristic function of § (intheset ¢ = {0,..., ¢ — 1}). So we look
at the Feferman-Vaught sequencefor ¢;, namely (®;, ¢i1, ..., ¢ik ). AsTj isacountably
infinite product of members of F;, say T; = IIn<., Dn, We have

[IDnE & iff 29 o[l ... [6ix])-

n<w

Asthe Dy, |= 7j, and each ¢, or its negation appears as a conjunct of v;, we know that

[oi,] =1 if ¢i, appearsinv;
[¢i] =0 if —¢i, appearsin ;.

Thus we can effectively find the [¢i,]'s. Having determined ®;([ i 1], - - -, (T¢ik 1),
a sentence in the language of Boolean algebras, we use Skolem's result that Th(2¥) is
decidableto determineif ®i([¢i1],. .., [dix]) € Th(2¥), and thusif T; = ¢i.

Now we have al the information needed to determine the S’'s, and hence
the [¢i]'s, so we can effectively find ®([¢1], . . ., [¢«]). Finaly we determineif 2/ |=
([ o], ..., [#k); this is clearly decidable as 2 is a finite algebra. This finishes the
proof of ().

Now let ussupposethat K isnot front-loaded. L et F bethe classof K-indecomposables.
Let F! bethe expansion of F by the ternary discriminator t, asin Part |. Let F' be an ex-
pansion of F! by two constantsa, b, i.e., for eachmember D of F' we create one structure
D' by interpreting the constant symbols a, b.

CAse 1. Proby/(¢ing) doesnot exist. In this case K’ does not have afirst-order law.

CASE 2. Proby/(¢ing) = ¢ > 0. Inthis case we have an infinite number of indecom-
posables. Choose positive integersny < n, < - - - such that

1
e (M) < 57 Fr(Mke1)-
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me(M) ’ [
i (M) 5

We now assume the interpretation of the constants a, b in each member D of F!is as
follows: if thesizeof Disin (ng_1, k) with k even, put a = b; otherwiseput a £ b. Then

Tk |a=DAdind) _ 2.

T (N2k) 3
and
Ti(Maes |2 =DAding) 1.
T (Nok+1) 3

Thus Proby:(a = b A ¢ing) does not exist, so K’ does not have afirst-order law.

CAast 3. Proby (¢ing) = 0. Without loss of generality regarding the fine spectrum
being considered we can assume that

for every relation symbol r of the language there is a corresponding
(%) function symbol f, such that for each nontrivial A € K’ we have
r(a,...,ay) holdsiff fi(ay, ...,a,) = & holds, wherea € A.

Given a member A of K’ one can use the ternary discriminator to find a first-order
sentence ¢ which, for members of K’, says“A isafactor”.

If for some A € K’ the cumulative probability Proby (¢4) is not defined then K’ does
not have afirst-order law, and we are finished. So we assume that Proby. (¢) exists for
alA eK.

CASE 3A.  Proby:(¢a) = O for every nontrivial A € K’. The number of structures,
up to isomorphism, in F’ must be infinite; for otherwise we could use Theorem 1.3 to
show K is front-loaded.

For k a positive integer let ¢ be a first-order sentence which, for members of K/,
says “there is a non-trivial factor of size less than k”. From our assumptions follows
Proby (¢<x) = 0. Choose positive integersn; < n, < - - - such that

1
Tir (N | dn) < §TK’(nk+1)-

We again assume the interpretation of the constants a, b in each member D of F!isas
follows: if the size of D isin (nc_1, nk] with k even, put a = b; otherwise put a # b. Let
¢ap be asentence expressing ‘ has a nontrivial factor in whicha = b’. Then

7k (Nok | Pap) S 2
T (N2x) 3

and
Tk (N | Gap) 1

T (Nok+1) 3

Thus Proby: (¢ap) does not exist, and again K’ does not have a first-order law.
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CASE 3B. Proby:(#a ) > 0 for some nontrivial A € K. Proby:(¢a ) < 1for every
nontrivial A € K’ by Lemma 1.4 asK’ is not front-loaded. But then K’ does not have a
0-1 law. n

Thus we see that, among the admissible classes K, those for which knowledge of
the fine spectrum alone is sufficient to conclude afirst-order 01 law are precisely those
which arefront-loaded. An exampleof anadmissible K wheremoreinformationisneeded
isthe class of finite sets. We already mentioned that it isloaded, and thus has afirst-order
law; however it iswell-known that it hasafirst-order 0—1 law. ThisK isclearly not front-
loaded, so more information than that given by the fine spectrum is required to deduce
the O-1 law.

PROPOSITION 2.2.  SupposeK; isadmissible and front-loaded, for 1 <i < m. Let F;
be the Kj-indecomposables. Suppose the F; are pairwise digjoint. Let K = Kz - - - K. If
K has unique factorization then K has a first-order 0-1 law.

PrROOF. The hypothesesensure that K is admissible, and that the Dirichlet convolu-
tion product of the fine spectraoy,, ..., ok, isthe fine spectrum oK. Now apply Theo-
rems1.3and 2.1. n

REMARK 2.3.  We can apply the aboveto show

K= U 1IKi

SC{1,...m}i€S
hasa0-1 law if it has unique factorization by observing that

adding/del eting one-element structures that act as multiplicative units
° with respect to direct products from a classK does not affect either the
admissibility of K or the fact that K is front-loaded.

COROLLARY 2.4. SupposeK isadmissible, and that the set F of K-indecomposables
isthedigjoint unionof Fy, ..., Fmn, whereeach F; isclosed under isomorphism. Let K; =
IPsin(Fi). If each K; is front-loaded then K has a first-order 0-1 law.

PrROOF. Each K isadmissible, and K = K* where K* is asin Remark 2.3. Thus by
Proposition 2.2 and Remark 2.3 we arrive at the desired conclusion. ]

3. Asymptotics. LetK beadmissible, and let F bethe class of K-indecomposables.
To estimate 7(n | P) and 7(n) we shall consider Dirichlet generating functions. Chap-
ter XV1I of [4] containsan excellent introduction for our purposesto Dirichlet generating
functions. Perhapsnoting that K and F correspond to theintegers and primes respectively
and that

i ns=J[A-p? paprime,
n=1 p

will motivate what follows. If m runs through the integers which are not divisible by the
prime q then

i m°=T[1-p )" paprime.
m=1 p#dq
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Now supposewe are given afixed positiveinteger M. Let b, = o (n). Let D1, Do, ...
be a listing, up to isomorphism, of the members of F, and let 3, be the size of D,,. Let
a, denote the number of structures of size nin K which have no copies of Dy in their
F-factorization. Thenit is not difficult to see that

2 b= ﬁl(l — BN

and .
Yan = [ @-5)"
m=1
m#£M
Furthermore

. - . arta+---+
Proby (is not divisible by Dy) = nII—>m ﬁ
o0 D1 ) n

provided this limit exists.
THEOREM 3.1. Let (Bm), 0 < 81 < B2 < - - -, bea sequence of real numbersand

> by s = ﬁl(l— 79
Y e = i ﬁl (-5

m£M
where M is a positive integer. If

logBm~cm, c¢>0 aconstant,
then

qtapt---+an

bt byt ¥, O((logn)~2).

PrOOF. We will use Theorem 2.2 of [5] to derive our result. We begin with some
notation and definitionsused in [5]. Let A = (Am), 0 < A1 < A2 < -+, beaninfinite
sequence of real numbers without afinite limit point. Let N(u) be defined by

Nu= > 1

Am<u

and supposethat for each e > 0 there exists aconstant C = C(e) such that
N(u) < C(e) exp(eu).

Then the infinite product

o = TI (1 - exp(-An9) "

m=1
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convergesfor all complex swith Res > 0. Let ¢, run through the monotone increasing
sequence of linear combinations of the A\, with non-negativeintegral coefficients; then

9(s) = > p(tme ",
m
where p(¢rm) is the number of partitions of ¢, into summandsfrom {\n}. Let

Pu) = > p(0).

(<u

REMARK 3.2. If A\, = logGm then

2 bm= 3 p(¢) = P(logn).

m<n ¢<logn

Now let o = a(u) be determined (uniquely for large u as demonstrated in [5]) from

U=> AmEem -1yt —2a71
m

and define B, = B,(u) by

)\2 epz/\m
Bo=Y" 4(6";; T

m

42,

Of course u is defined by a very complicated equation; however Roth and Szekeres [6]

show that if A\, ~ cmthen
7'('

v/6cu
2 3 2\/6_Cu§
T

™
Ba(a) ~ 3 2,

o ~

If Am ~ cmthen A has properties | and |1 of Theorem 2.2 of [5] (see conditions (ii) on
page 375 of [5]). Finaly, for any positive constants C;, C, and 6 (6 < %) thereisa Ay
such that

1 1
Cia 3 < AN < Coa 37?

for al sufficiently small « (or large u) since this is equivalent to there being a Ay such
that

Caus < Ay < Caus*,

and thisistrue since Ay ~ cN. Finaly

wIc

238} = O(at~3) = O(at~) = o(1)

and
oc%_‘SB

N

= O(crs ™) = 0(1)
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Henceall the hypothesesof Theorem 2.2, part 6, of [5] are satisfied (note that o3 B;% =
0(1) should read ocg‘&BZ% = 0(1); seeLemma2.4), and

) P(U) ~ (27B,) 2o L exp{au — i log(1 — e**n)}.
m=1

REMARK 3.3.  We cannot express the asymptotic behaviour of the exptermin (1) in
terms of elementary functions, but asRoth and Szekeres[6] showed, thisis not necessary
for the proof of Theorem 3.1.

Roth and Szekereswereinterested in proving that certain partition functionsare mono-
tonic. They did this by working out the asymptotic behaviour of a partition function anal-
ogousto our P(u+1)—P(u), noting that this corresponded to multiplying their generating
function by 1 — e 5, They showed that this alteration in the generating function alters
a by so little that the asymptotic behaviour of their function can be obtained by adding
theterm log(1l — e %) to the exp term in (1). Their arguments can be seen to apply here.

The generating function for the g is 1 — §,° times the generating function for the b
(herewe denote 8; by ;). Thus, in the notation just above, the coefficient of exp(—{ms)
when Ay isnot used isp({m) —p(¢m—Am)- Thatis, p(¢m— Am) countstherepresentations
of £ aslinear combinationsusing \m. Lemma2.2 of [5] givesthat A«, the changein «,
isO(B;1) = O(a®) when Ay ~ cmaswe have seen. In [5] and [6] it is shown that when
o is changed by A« in a sum involving o the sum changes by its derivative times Aa.
Thus o2 will change by O(ar2Aa) = O(a) and 3, /% will change by O(a~5/2Aa) =
O(a/?). Finally the sumin the definition of « just after Remark 3.2is, by [6], asymptotic
to 2o 2 /60

A log(l — €M) ~ Aar Y A€ m(€m — 1) 72 ~ Aar®a? /6 = O(a).

Thus we can obtain the asymptotic behaviour of 3 g simply by omitting the Ay term or
by multiplying that of 3" b; by 1 — exp(—aAm) = O(«). Remembering Remark 3.2 we

therefore have
mlog Bm _1 _1
a ~ logn)~z b, = O((logn)~2 b,),
so we have Theorem 3.1. n

Note that we do not have to estimate the difference of functions asymptotically equal,
so we haveasimpler problem than Roth and Szekeres did. Next we summarize the cases
for which our methods are known to apply and give a 0-1 law.

DerINITION 3.4. A classF of finite structures has approximately exponential growth
if one can, up to isomorphism, enumerate the structures D,, of F by strictly increasing
size, and there is a constant ¢ such that

log(d,) ~ cn,

where d,, isthe size of D,,.

https://doi.org/10.4153/CJM-1997-030-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-030-6

FINE SPECTRA AND LIMIT LAWS, II. FIRST-ORDER 0-1 LAWS 651

THEOREM 3.5. Suppose K is admissible, and F is the set of K-indecomposables. If
F is the disjoint union of finitely many F;, where each F; is closed under isomorphism
and iseither finite or has approximately exponential growth, then K hasa first-order 01
law.

ProOOF. Let K| bethe closure of F; under finite direct products and isomorphism. (1)
If Fi has, up to isomorphism, only one member then clearly K; is front-loaded. (2) If the
members of F; show approximately exponential growth then one can apply Theorem 3.1
and Lemma 1.4 to show that K; is front-loaded.

Now, in the general case of the theorem we have subclasses K; of K that belong to
these two cases, so Corollary 2.4 gives the conclusion. ]

EXAMPLE 3.6. LetV bethevariety of monadic algebras (B, Vv, A, ¢,’, 0, 1) studiedin
algebraic logic, namely, one has Boolean algebras (B, V, A,’, 0, 1) augmented by a suit-
ableclosure operator c (see, e.9.,[2]). Thisisacongruencedistributive variety, so unique
factorization holds. Let K be the finite members of V. The directly indecomposables of
V are precisely the Boolean algebras which satisfy x > 0 — ¢(X) = 1. Thus the sizes of
the finite directly indecomposablesof V form the sequence (2"). By Theorem 3.5, K has
afirst-order 0-1 law.

From Skolem’swork we know that the theory of finite Boolean algebrasis decidable;
and using this one can give a straightforward proof that the theory of the finite directly
indecomposables of V is decidable. Thus, by Theorem 2.1(c), the limit law theory of K
is decidable.

ExAMPLE 3.7. LetV bethe variety of Heyting algebras generated by the three ele-
ment chain. Again we have a congruence distributive variety, and thus unique factoriza-
tion. Let K be the finite members of V. The directly indecomposablesof V are precisely
Boolean algebras with a new 0 adjoined. Thus the sizes of the finite directly indecom-
posables of V form the sequence (2" + 1). By Theorem 3.5, K has afirst-order 0-1 law.

Again Skolem’s work leads to a straightforward proof that the theory of the finite
directly indecomposables of V is decidable. By Theorem 2.1(c) the limit law theory of
K isdecidable.

ExamMPLE 3.8. Letp,...,p, beaset of prime numbers. Let K be the set of finite
abelian groups whose exponent divides some power of p; - - - p,. Then the directly inde-
composablesfall into ¢ classes with the growth of the i-th class being the exponential
sequence (p"). Consequently K has afirst-order 0-1 law by Theorem 3.5.

By Theorem 2.1(b) one has Prob (¢) = 1iff ¢ istrue of the abelian group

Referring to the work of Szmielew [7] we see that (i) the exponent of G is oo, (ii) all
elementary invariants of G which involve py, ..., p, are oo, and (iii) al elementary in-
variants of G which involve other primesare 0. Thusthe set of basic sentenceswhich are

https://doi.org/10.4153/CJM-1997-030-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-030-6

652 S. BURRIS, K. COMPTON, A. ODLYZKO, B. RICHMOND

true of G isrecursive, and consequently the first-order theory of G is decidable. Conse-
quently the limit law theory of K is decidable.
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