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Let ^ b e the class of bounded non-decreasing functions defined on the real 
line which are normalized by the conditions </>(— °°) = 0 , <t>(t + 0) = <l>(t). 
Let ^~be the class of Fourier-Stieltjes transforms of elements of - ^ i.e. the 
elements of *^and ^ a r e connected by the relation1 

$(x) = fet1xd<Ht)f 

where 0 Ç - ^ a n d $ Ç ^T l t is well known, and easy to verify that this mapping 
from - ^ t o ^"is one to one (1, p. 67, Satz 18). 

It is the purpose of this paper to give various topologies to ^"and ~ ^ s o 
that the mapping from ^ t o e^fwill be continuous or at least continuous at 
certain points of ^"depending on the topologies. The topologies which we shall 
have occasion to use are enumerated below. 

A. The almost weak topology on ^T As a neighbourhood basis of an element 
$o G «^we shall take the sets in ^"which satisfy the relations 

j> J/*(*)[$(*) - $o(x)]dx 

and 
$(0) < $0(0) + Ô 

< Ô, k = 1,2,. . . , » , 

where {fk}in is any finite set of elements in the Lebesgue class L1(— oo, oo), 
and ô is any positive number. We shall designate such neighborhoods by 

2»[{/*};«;*o]. 

B. The mean value topology in ^T As a neighborhood basis of an element 
$o 6 ^"we shall take the sets in ^"which satisfy the relation 

1 CT 

l im— I |$(x) — $0(x)\dx < 5, 

and 
$(0) < <ï>0(0) + ô 

where ô > 0. In case a $ G U satisfies the above two relations we shall write 

l i s - *o|L<«. 

Received July 14, 1954. 
absence of limits of integration will mean that the integral is taken over the interval 

( - 0 0 , 0 0 ) . 
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C. The mean almost weak topology in ^ As a neighborhood basis of a 
$0 6 ^"we shall take those sets which for any 8 satisfy simultaneously the 
relations in A and B. We shall designate such neighborhoods by 

2W»[{/*}; Ô; $o]. 

D. The uniform topology in <^"and ^ . Let us write 

| | $ — $0 | | = sup |$(#) — $oO0|, 

where the sup is taken over all x on the real line. Then as a neighborhood basis 
of $o we shall take the sets which satisfy 

| | $ - $o|| < 8. 

The same type of topology on -^wil l be called the uniform topology on *Jt. 

E. The variational topology on ^ . We shall write 

II* — 0o||» = total variation [0(0 — 0o(OL 

and as a neighborhood basis of 0O take the sets in ^ which satisfy 

Suppose now that 0 G ^ and / a point where 0(0 — <j>(t — 0) > ô > 0. 
Let 7(0; 5;/) be a generic symbol for an open interval which contains the 
point / and let {7(0; 8\ 4)} represent a class of such intervals where the tk 

run over all points for which the jump of 0(/) is greater than or equal to 8. 
Each such class of course contains only a finite number of members. 

THEOREM 1. Let 3>0 € ^ and e > 0 be given. There exists a 8 > 0 such that if 
we exclude a small interval about each point of the real axis where the jump of 
0o (0 is greater than or equal to 8, we can find an almost weak neighborhood of 
$o, $ft[{A} ; 8; $oL so that outside the excluded intervals each element of ^which 
corresponds to an element of 3R[{fk} ; 8) <£>0] is uniformly within e of 4>o(t). 

In more technical language the above theorem can be stated as follows: 
Given $0 € ^and e > 0. There exists a 8 > 0 such that for any {7(0O; 8; tk)} 
there exists an 99?[ {fk} ; 8 ; $0] 50 /to/ $ G 3ft[ {/*} ; 8 ; <£0] implies \4>(t)— 0O (*) | < e 
for allt$\J J(0o;5;ftt). 

Proof. Let ô > 0 be given and choose i^ sufficiently large so that 

J; d 00 (0 < 8 
t\>R 

Further, choose /o* (/) to be of class C2 (continuous second derivatives) such 
thatO </o*(0 < 1 and 

* \h\t\<R 
U (0 = 1 , , 

o, / >ie + i. 
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Let 

Mx)=±Je-tatfo*{t)dt. 

Integrating by parts twice will immediately show tha t / 0 (#) £ Ll( — co, oo). 
Further, since f*(t) itself belongs to Ll{— oo, oo), is continuous and of 
bounded variation over the whole real axis, we have the inversion formula 
(1, P. 42). 

/o*(0 = jfo(x)eixtdx. 

Therefore, 

Jfo*(t)d4>(t) = j [jfo(x)eixtdx\dct>(t). 

Since fo(x) £ Ll( — oo, oo) and <£(/) is bounded we may apply Fubini's theorem 
(4, p. 77) and we get the Parseval relation 

ffo*(f)d4>(f) = J7o(x) *(x)dx, 

Therefore, if we choose any $ such that 

(1) I J /o(*)[$(*) - $o (*)]<£* < 5, 

we have for the corresponding 0(/), 

I Jfo*(f)d[4>(t) - *o(*)]| <« • 

If $ satisfies the further condition 

(2) $(0) < $o(0) + 5, 

then we have 

(3) $0(0) + 5 > $(0) > J /o*(0 d*(0 > J /o*(0 d*o(0 - 5 > $ 0 (0) -25 . 

Therefore, 

0 < [d<t>{t) - f d<j>(t) < f d«(0 - f/o*(0 d<t>(t) < 35, 

from which we get 
(4) * ( - 2 ? - 1) < 35. 

Now, choose a set {/(0o; 5; tk)} and suppose there exists a to in the comple­
ment of U i"(0o; 5;/#) which lies to the right of — R — 1. There exists an 
h > 0 such that 
(5) M * o ± A ) - *o(*o)| < 5 . 

Choose /i*(J) and /2*(0 to be in C2 with range in [0, 1] and defined in the 
following way: 
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# [l, -R-l<t<t0-h, 

~ 10, t < - R - 2, t>t0f 

. ( l , -R - 1 < / < to, 

10, * < - iî - 2, / > *0 + h. 

II fi(x) and/ 2(x) are the Fourier transforms respectively of fi*(t) and/2*(/) , 
then fi and / 2 are in L1 ( — oo, oo ). 

Let $(x) be any element of ^wh ich satisfies (1), (2) and the further condi­
tions 

s> | /*(*)[$(*) — $0(x)]dx 

By the Parseval relation we have for k = 1,2, 

< 5, jfe = 1, 2. 

< 5 (6) I fr*(t)d[4>(t) - 0o(O]| 

Consequently, by (4), (5) and (6) we get 

0o(*o) - 35 < J / i * ( 0 d<j>{t) < 0(/o), 

0(*o) - 35 < J / 2 * ( 0 d0(O < cj>0(to) + 25. 

From this it follows that 

- 5 5 < 0O(/O) - 0(/o) < 35. 

The complement of U 7(0o; 5; 4) (which we may as well suppose is not the 
null set) which lies in the interval ( — R — 1, oo) consists of a finite number of 
mutually disjoint intervals. In each such interval it is possible to find a finite 
set of numbers T\ < r2 < . . . < rn such that n and rn are the endpoints of the 
interval and 

<t>o(Tk+l) — <t>o(Tk) < 5. 

Therefore, there exist functions {fk(x)} each of which belongs to Ll{— œ , œ) 
such that if $(x) G 2R[{/*} ; 5; $0] we have 

|0(T*) - 0o (r*) I < 55. 

((2) and (3) also give us this relation for rk = oo .) 
Suppose T*; < / < Tjfc+i- Then 

00 (T*) < 00(0 < 0O(TJH-I), 0(T*) < 0(/) < 0(Tjt+i). 

Therefore 

(7) - 6 5 < 0(T*) - 0o(r,+i) < 0(/) - 0o (0 < 0(r,+ i) - 0O(T») < 65. 

Since we are dealing with only a finite number of intervals in the comple­
ment of \J 7(0oî 5; /*) which lies in( — R — 1, oo) we can find an almost weak 
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neighborhood of <£0 such that if $ belongs to this neighborhood, then the 
corresponding functions satisfy (7). If we now choose 8 = \e we have our 
theorem. 

COROLLARY. If 0o(O is continuous then the mapping from ^with the almost 
weak topology, to ^ with the uniform topology, is continuous at <£0. 

THEOREM 2. Let <t>o(t) £ ^be a step function. Then given e > 0, there exists 
a ô > 0 such that 

II* - *o||« < « 
implies 

| | * - * o | | f < €. 

Proof. Given 0(/) and 0o(O> let 4 be the set of points where either 0(0 or 
0o(O has a jump. Let an and &„ be respectively the jump of 0O(O and 0(0 at 
/n. Let us write 

0(0 =S(t)+D(t), 

where 5(0 is a step function and D(t) is a continuous function. We then have 

0(0 - *o(0 = {5(0 - 0o(0} + #(*)• 

Since 0o(O is a step function, S(t) — 0o(O is either a step function or iden­
tically zero since S(— °°) = <£0(— oo) = 0 . This gives us the decomposition of 
0(0 — 0o (0 into a step function and a continuous function. Therefore 
(2, pp. 189-190) 

II* -*o | | , = | |S -0o | | ,+ ||£||, 

Now, let f(t) = S(t) - 0o(*). Then (2, pp. 188-190), 
oo 

lis - *o||. = 11*11. - E ilHtn + o) - HQ\ + \HQ - Htn - o)|} 
By normalization of the functions in - / w e have 

\f(h + 0) - iKOI = 0 

Therefore 
oo 

\\S - 0o||* = £ l&n - a»l' 
7 1 = 1 

Consequently 

| | 0 - 0o| |»= t,\bn-On\+\\D\\, 
n=l 

<1L\bu- a»I + ||I>||. + Ê &re + É a»-
w=l n=2V+l «=^+1 

Since 

*(0) = ||«||.=" i,bn+\\D\\„ 
w = l 

https://doi.org/10.4153/CJM-1955-049-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-049-9


458 A. P. CALDERÔN AND A. DEVINATZ 

we have 
N N oo 

\\4> - *o||» = 2 l*n — On\ + $(0) - ^2bn+ ^an. 
n=l n=l n=N+l 

Let us here make the parenthetical remark that if either <j>(t) or <j>o(t) has a 
finite number of jumps, then bn or aw from some point on will be zero. 

Now, 
N oo N 

HO) - £ b. = *(0) - *o(0) + £ an - £ (6. - a»)-

Therefore 
iV oo 

II* " *o| | , < 2 £ \bn - a J + 2 S a» + $(0) - *0(0). 

Choose N so that 
oo 

X) a» < e/5 

and then choose ô < e/5N. It is well known (1, p. 79, Satz 24) that 

1 CT -an = l im-~ I e UnXfo(x) dx, 

l CT -• 
bn = l im-~ I e ltnX<t)(x) dx. 

T-)ca £•*• J — T 

Therefore 
1 CT 

\bn - an\ < Hm-~ I \4>{x) - *oO)l dx. 

From this inequality we get the desired result. 
From the two preceding results we might expect that if ^~ïs given the mean 

almost weak topology and - ^ t h e uniform topology, then the mapping from 
J^to - ^ i s continuous. This is shown by the next theorem. 

THEOREM 3. Given <£0 Ç ^ and e > 0, there exists a neighborhood 
Wlmilfk} ; 5; $o) such that $ £ 9ft» implies 

II* - *o|| < e. 

Proof. As in the proof of Theorem 1, let ô > 0 be given and choose R 
sufficiently large so that 

I rf0o(O < 8. 
J \t\>R 

Also, choose fo*(t) as in Theorem 1 and \etf0(x) be its Fourier transform. Then 
if $ G ^~ïs such that 
(2) *(0) < *o(0) + Ô 

and 

l/o(*0[$CxO ~ $o(*0]dte < 5; 
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as in Theorem 1 we get, for t < — R — 1, 

0 <(j>(t) <4>(-R - 1) < 35, 
and 

$(0) > $o(0) - 25. 

Suppose now that {rk} is the finite set of points to the right of — R — 1 for 
which 0o(rk) — <t>o{rk — 0) > 5. The interval [rk, rk+i] may be subdivided by 
a finite number of points 

Tjc — To.fc < Tltk < . . . < Tm,fc = Tk+l 

such that 
0o(rjf 1,*) — 4>o{rjtk) < 5, 7 = 0, 1, . . . , m — 1, 

and 
0()(TA;+1 — 0) — $o(TW-l,Jfc) < 5. 

Therefore, there exists a finite set of points, —R— 1 = Jo < £1 < • • . < 4 = °°> 
which includes the set {rk} and such that 

0o (4+i) — 0o (4) < 5, 4+1 $ {T*;}, 

and 
0o (4+1 — 0) — 0o (4) < 5, 4+i G {rfc}. 

For & = 1, . . . , n — 2, choose, as in Theorem 1,/A*(/) G C2 and with range in 
[0, 1] in the following manner: 

. * / 
1, t0<t<tt k 

h (f) 

0, / > 4+i, / < to — 1. 

Further, choose fn-i*(t) G C2 such that 0 </»_i*(/) < 1 and 

{1, to K t < 4-i 

0, / > 4-1 + 1, t < 4 - 1. 
Let/aOO be the Fourier transform oîfk*(t). Then if we choose $ to satisfy (2) 
and 
(8) J jMx)[$(x) - $o(x)]dx\ < 5, k = 0, 1, . . . , n - 1, 

then for 4 $ {r*}, by the same method of proof as in Theorem 1 we have 

|0(4) - 0o (4) I < 55. 

If 4 G {n} then we have 

<M4 - 0) - 35 < J/*-i*(0 d*(0 < 0(4 - 0), 

from which 
0o(4 - 0) - 0(4 - 0) < 35. 
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Further, for the same tk 

*(**) - 4>(-R - 1 ) < J/**(') <**(0 < *o(/*) + 25, 

from which 
0o(h) - cf>(h) > - 5 5 . 

In addition to (2) and (8) let us now pick $ Ç U t o also satisfy 

(9) l i m ^ I \$(x) - $<,(*) | dx < 5. 

Suppose 

<f>o(h - 0) - <l>(tk - 0) < - 6 5 or <t>o(h) - <t>(h) > 55. 

Then, if ak and bk are respectively the jump of <t>o(t) and <j>(t) at tk we have 

a* — h> 5. 

But since 

1 CT 

W* — &*I < Hm— I |$(x) — $o00l dx < 5, 

we get a contradiction. Therefore, 

\ct>o(tk - 0) - *(** - 0)| < 65, 

and 
\Mh) - *(**)| < 55. 

If we now proceed as in Theorem 1, the proof of our theorem is complete. 

From this theorem we get the following corollary, which was originally 
proved by Dyson (3). 

COROLLARY. Given 3>0 G ^and e > 0, there exists a 5i > 0 such that 

| | $ — $o|| < 5i implies ||0 — 0O|| < *. 

Proof. Let 

M = max I \fjc(x)\ dx, 
k J 

where {fk} is the set in Theorem 3. Then choose 5i = 5/ikf, where 5 is that of 
Theorem 3. 

In closing this paper we wish to remark that if we replace the space 
by the space 2$ of all functions of total bounded variation defined on the line 
and normalized in the same way as in « ^ then our previous theorems can be 
given a meaning. We shall write down these corresponding theorems without 
proof and only remark that the proofs follow the pattern we have established 
before with only some slight modification. 
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THEOREM 1'. Let a continuous *o e ^ and e > 0 be given. Then there exists 
a 8 > 0 and functions {fk} \ C C2 such that 

01 

and 

J /*d[*~ *o]| <«, 

||*||. < ||*o||. + « 
implies 

II* - * o | | < 6. 

THEOREM 2'. Le/ *0 G & be a step function. Then given e > 0, there exists a 
8 > 0 such that 

max |saltus [*(£) — *o(0]| < 5 

11*11. <||*o||f + « 

I I * " *o| | . < e. 

THEOREM 3'. Let *0 G «^ awd e > 0 fo givm. T^e» /Aere exist a 8 > 0 awd 
{A} iw C C2 sw£A that 

ff*d[4>- *o] < 5, max|saltus[*(0 - *o(0]| < 5» 

and 

11*11. <ll*o||. + * 
implies 

II* " * o | | < €. 

In the above theorems it is of course understood that * belongs to &. 
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