ON FOURIER-STIELTJES TRANSFORMS
A. P. CALDERON axp A. DEVINATZ

Let - be the class of bounded non-decreasing functions defined on the real
line which are normalized by the conditions ¢(— ) =0, ¢ + 0) = ¢ ().
Let Z be the class of Fourier-Stieltjes transforms of elements of #, i.e. the
elements of «# and & are connected by the relation!

2@ = [eag0),

where ¢ € M and ® € Z. Itis well known, and easy to verify that this mapping
from -# to Zis one to one (1, p. 67, Satz 18).

It is the purpose of this paper to give various topologies to & and -# so
that the mapping from & to -# will be continuous or at least continuous at
certain points of # depending on the topologies. The topologies which we shall
have occasion to use are enumerated below.

A. The almost weak topology on % As a neighbourhood basis of an element
®, ¢ Z we shall take the sets in Z which satisfy the relations

' ffk(x)[ct(x) — do(x)] dx| <9, k=1,2,...,n,
and
®(0) < ®0(0) + 6

where {f}" is any finite set of elements in the Lebesgue class L!(— «, «),
and ¢ is any positive number. We shall designate such neighborhoods by

M {f}; 05 ol
B. The mean value topology in Z. As a neighborhood basis of an element
@, € Z we shall take the sets in Z which satisfy the relation

. 1 T
and
®(0) < ®(0) + 5
where § > 0. In case a ® € U satisfies the above two relations we shall write

“‘13 - q’o“m < 4.

Received July 14, 1954.

1Absence of limits of integration will mean that the integral is taken over the interval
(—-CO ’ 03).
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C. The mean almost weak topology in % As a neighborhood basis of a
®, € Z we shall take those sets which for any § satisfy simultaneously the
relations in A and B. We shall designate such neighborhoods by

Ml {fe}; 85 B0l
D. The uniform topology in #and -#. Let us write

[[@ — @f| = sup [®(x) — Bo(x)],

where the sup is taken over all x on the real line. Then as a neighborhood basis
of &, we shall take the sets which satisfy

”(I) — ‘t’o“ < 6.
The same type of topology on -# will be called the uniform topology on -#.
E. The variational topology on -#. We shall write

ll¢ — ¢oll, = total variation [¢(£) — ¢o(8)],
and as a neighborhood basis of ¢, take the sets in -# which satisfy

[l6 — ooll» < 6.

Suppose now that ¢ € «# and t a point where ¢(¢) — ¢(t — 0) > & > 0.
Let I(¢;0;t) be a generic symbol for an open interval which contains the
point ¢ and let {I(¢;d;%)} represent a class of such intervals where the #
run over all points for which the jump of ¢(¢) is greater than or equal to 4.
Each such class of course contains only a finite number of members.

THEOREM 1. Let ® € Fand e > 0 be given. There exists a 6 > 0 such that if
we exclude a small interval about each point of the real axis where the jump of
¢do(8) 1s greater than or equal to 5, we can find an almost weak neighborhood of
&g, M {fx}; 8; ®ol, so that outside the excluded intervals each element of M which
corresponds to an element of M[{fi}; 6; Po] is uniformly within € of ¢o(t).

In more technical language the above theorem can be stated as follows:
Given ®y € Z and ¢ > 0. There exists a 5 > 0 such that for any {I(po; 8;t)}
there exists an M[{fi}; 6; ®o] so that ® € M[{f}; §; o] implies |¢ (1) —po(?)| <e
for all £ ¢ \J I(o; 8;tx).

Proof. Let 6 > 0 be given and choose R sufficiently large so that
fl d $olt) < b

tI>R

Further, choose fo*(¢) to be of class C? (continuous second derivatives) such
that 0 < fo*(f) < 1 and

« 1, {| <R
fo ® =

0, (| >R+ 1.
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Let
1 it ¥
fo(x') = 5‘1; J‘e o 0 (t) dt.

Integrating by parts twice will immediately show that fo(x) € L1{(— «, o).
Further, since fo*(f) itself belongs to L(— », »), is continuous and of
bounded variation over the whole real axis, we have the inversion formula
(1, p. 42).

fo () = f fo(x) e™dx.

[ waow = [ | [ eax|ase.

Since fo(x) € L'(— o, o) and ¢(¢) is bounded we may apply Fubini’s theorem
(4, p. 77) and we get the Parseval relation

Jrr@as0 = [ o6 i,

Therefore, if we choose any & such that

M Jretee - a@nax

we have for the corresponding ¢(#),

Therefore,

<9,

ffo*(t) dle(t) — ¢'o(t)]‘ <.

If & satisfies the further condition
2 ®(0) < 0(0) + 35,

then we have

3) 2o(0) +3>20) > [’ ©do® > [0 dg) — 5> 20(0) ~2.
Therefore,
0< ey~ [ asw< fasr ~ [rrwrasw <,
ltl<R+1
from which we get
) ¢(—R — 1) < 3s.

Now, choose a set {I(¢o; 8; %)} and suppose there exists a £y in the comple-
ment of \U I(¢o; 8; %) which lies to the right of —R — 1. There exists an
k > 0 such that
(5) |@o(te = B) — ¢o(to)] < 8.

Choose f1*(¢) and fo*(f) to be in C? with range in [0, 1] and defined in the
following way:
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* 1, - R—-1<KtKty—h,
fi @)=
0, t<—R—2, t>t,
11 _R_1<t<t07

*
1) =
f2 ) J[O, t< —R—2 >t +h

If f1(x) and f:(x) are the Fourier transforms respectively of fi*(¢) and f»*(¢),
then f; and f; are in L!(— », «).

Let &(x) be any element of # which satisfies (1), (2) and the further condi-
tions

<9, k=12

Jremee - awia

By the Parseval relation we have for £ = 1, 2,

©) 50 dto0) - w0]] <5
Consequently, by (4), (5) and (6) we get

$olts) — 36 < ffl*(t) de(t) < $(t),

$(to) — 35 < ff{"(t) d(t) < dolts) + 2.

From this it follows that
—58 < ¢olte) — ¢(f) < 3d.

The complement of \U I(¢o; 8; £;) (which we may as well suppose is not the
null set) which lies in the interval (—R — 1, =) consists of a finite number of
mutually disjoint intervals. In each such interval it is possible to find a finite
set of numbers 71 < 79 < ... < 7, such that 7, and 7, are the endpoints of the
interval and

Go(Tre1) — do(rr) < 8.

Therefore, there exist functions {f;(x)} each of which belongs to L'(— », «)
such that if ®(x) € M[{fx};; ®o] we have

l¢(7k) - ¢0(Tk)l < 56.

((2) and (3) also give us this relation for 7, = .)
Suppose 74 < ¢ < T541. Then

do(m) < do(t) < po(rr41), @(m) < (1) < P(7241)-
Therefore

™ —60 < ¢(78) — bo(Ta41) < &) — bo(t) < D(7r41) — bo(7z) < 60.

Since we are dealing with only a finite number of intervals in the comple-
ment of \U I(¢o; 8; &) which lies in(—R — 1, ») we can find an almost weak
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neighborhood of ®, such that if ® belongs to this neighborhood, then the
corresponding functions satisfy (7). If we now choose § = e we have our
theorem.

COROLLARY. If ¢o(t) is continuous then the mapping from F, with the almost
weak topology, to M, with the uniform topology, is continuous at ®,.

THEOREM 2. Let ¢o(t) € A be a step function. Then given € > 0, there exists
a & > 0 such that
[|8 — ®oflm < 8
implies
o — doll, < e
Proof. Given ¢(t) and ¢o(t), let ¢, be the set of points where either ¢ (¢) or
¢o(t) has a jump. Let a, and b, be respectively the jump of ¢,(f) and ¢(¢) at
t,. Let us write

o) =S + D@,
where S(£) is a step function and D (¢) is a continuous function. We then have
o() — ¢o(t) = {SE® — ()} + D ().

Since ¢o(2) is a step function, S(¢) — ¢o(¢) is either a step function or iden-
tically zero since S(— ©) = ¢o(— =) = 9. This gives us the decomposition of
o(t) — ¢o(t) into a step function and a continuous function. Therefore
(2, pp. 189-190)

6 = dollo = IS — ol + [IDIl»

Now, let ¢ (¢) = S() — ¢o(¢). Then (2, pp. 188-190),
HS—mu=wm=§ﬁww+m—¢mn+w@—¢m-mn
By normalization of the functions in -# we have

[W(t +0) —¥(t)| =0

Therefore
IS = doll, = 2 [ = .
Consequently
16 = galls = 3 16w = aal + IIDIls

o

N [
<Zlbn_anl+”D”v+ an'l'
n=1 n=N+1

any.
n=N+1

Since

20) = [l8lle = 2 5+ 11Dl
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we have

H¢" ¢0Hv= ngllbn_anl + @(O) Zb + Zan

n=N+1

Let us here make the parenthetical remark that if either ¢(f) or ¢,(f) has a
finite number of jumps, then b, or @, from some point on will be zero.
Now,
N N
2(0) = 22 bu = (0) — %4(0) +n}; an = 2 (b — an).

Therefore
N ©
16 = ool <22 [on — a +2 35 an+ 2(0) = &:(0).
Choose N so that

o)

Z a, < €/5

n=N+1

and then choose § < ¢/5N. It is well known (1, p. 79, Satz 24) that

a, = ;1m é?l:f —”"IdJ (x) dx,
T

lim 1 e "¢ (x) dx.

bn
T 2 T

I

Therefore
= ] < lim g f |6(x) — ()] dx.

From this inequality we get the de31red result.

From the two preceding results we might expect that if #is given the mean
almost weak topology and -# the uniform topology, then the mapping from
Fto M is continuous. This is shown by the next theorem.

THEOREM 3. Given &, € F and e > 0, there exists a mneighborhood
M ({fe}; 6; Do) such that & € M, implies

[l — ¢o|| < e

Proof. As in the proof of Theorem 1, let § > 0 be given and choose R
sufficiently large so that

J-m doo(t) < 6.

Also, choose fo* (£) as in Theorem 1 and let fy(x) be its Fourier transform. Then
if ® € Fis such that

2 ®(0) < (0) + 95

and

‘ Jvfo(x)[‘b(x) — ®o(x)] dx| <8
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as in Theorem 1 we get, fort < —R — 1,

0< o) <¢(—R~—1) <35,
and
B(0) > $0(0) — 26.

Suppose now that {r;} is the finite set of points to the right of —R — 1 for
which ¢¢(7:) — ¢o(rx — 0) > 6. The interval [r, 7441] may be subdivided by
a finite number of points

Te =T < T1p < oo < T = Titl
such that
¢0(Tj+1,k) -_ ¢0(Tj,k) < 6, ] = 0, 1, N (2 1,
and
$o(rrt1 — 0) — do(Tm1,4) < 0.
Therefore, there exists a finite set of points, — R — 1 = < t1 < ... < f,= o,
which includes the set {r;} and such that

$o(trr1) — doltr) < 6, tirr € {1},

and
do(trrr — 0) — do(tr) < 6, L1 € {7},
Fork =1,...,n — 2, choose, as in Theorem 1, f;*(¢) € C? and with range in

[0, 1] in the following manner:
* 1: t() < ! < tk
Je (t) =
0, t>t, t<to— 1L
Further, choose f,—1*(¢) € C? such that 0 < f,—1*(¢) < 1 and
* 1) tO < 4 < tn—l
-1 (£) =
PO =00 st t<n—1

Let fi(x) be the Fourier transform of f;*(#). Then if we choose ® to satisfy (2)
and

®) | [rerew - e
then for ¢ ¢ {7x}, by the same method of proof as in Theorem 1 we have

o (t) — do(t)] < 50.
If 4 € {r:} then we have

aolte = 0) =35 < [0 do() < 9t — 0),

<9, k=01,...,n—1,

from which
do(ty — 0) — (2 — 0) < 34.

https://doi.org/10.4153/CJM-1955-049-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1955-049-9

460 A. P. CALDERON AND A. DEVINATZ

Further, for the same #;
80 = 9(—R=1) < [£50 d60) < ot + 25,

from which
do(tr) — & () > —5é.

In addition to (2) and (8) let us now pick ® € U to also satisfy
T
©) imt | |®G) — ®o()| dx < .
-
Suppose

¢o(ty — 0) — ¢t — 0) < —66 or ¢o(t) — ¢ (t) > 56.
Then, if a; and b, are respectively the jump of ¢,(f) and ¢(¢) at £, we have

ay — bk > é.
But since
1 T
lax — by < lim |®(x) — ®o(x)|dx < 6,
T>c0 2T -7

we get a contradiction. Therefore,

[$o(tx — 0) — ¢(tx — 0)] < 68,
and
[bo(t) — & (t)] < 50.

If we now proceed as in Theorem 1, the proof of our theorem is complete.

From this theorem we get the following corollary, which was originally
proved by Dyson (3).

COROLLARY. Given ®o € Fand e > 0, there exists a 6, > 0 such that
[|®@ — ®o|| < 8, implies ||p — ¢o|| < e
Proof. Let

o1 = max [ 17w a,

where {f;} is the set in Theorem 3. Then choose §; = §/M, where § is that of
Theorem 3.

In closing this paper we wish to remark that if we replace the space -#
by the space Z of all functions of total bounded variation defined on the line
and normalized in the same way as in -#, then our previous theorems can be
given a meaning. We shall write down these corresponding theorems without
proof and only remark that the proofs follow the pattern we have established
before with only some slight modification.
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THEOREM 1'. Let a continuous ¢o € & and e > 0 be given. Then there exists
a & > 0 and functions {f;}* C C? such that

‘ ffkd[¢ — ¢o]| <9,
and
”¢Hv < “¢’0Hv + 6
implies
[l6 — dol| < e

THEOREM 2'. Let ¢o € B be a step function. Then given ¢ > 0, there exists a
6 > 0 such that
max [saltus [¢(t) — ¢o(®)]] < &

and
llglls < llollo +
implies
”¢ - ¢0“v <e
THEOREM 3'. Let ¢o € % and € > 0 be given. Then there exist a 8§ > 0 and
{fi}1"* C C? such that

ffkd[qﬁ — ¢o]| <8, max|saltus[¢(t) — ¢o(t)]]| <3,
and
llello < llollo + &
implies
[l — ¢ol] < e

In the above theorems it is of course understood that ¢ belongs to %.
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