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The connection between the drag and vorticity dynamics for viscous flow over a bluff
body is explored using the Josephson–Anderson (J–A) relation for classical fluids. The
instantaneous rate of work on the fluid, associated with the drag force, is related to the
vorticity flux across the streamlines of a background potential flow. The vorticity transport
itself is examined by aid of the Huggins vorticity-flux tensor. The analysis is performed
for three flows: flow over a sphere at Reynolds numbers Re = 200, 3700, and flow over
a prolate spheroid at Re = 3000 and 20◦ incidence. In these flows, the vorticity transport
shifts the flow away from and towards the ideal potential flow, with a net balance towards
the former effect thus making an appreciable contribution to the drag. The J–A relation
is first demonstrated for the flow over a sphere at Re = 200. The drag power injection
is related to the viscous flux of azimuthal vorticity from the wall into the fluid, and the
advection of vorticity by the detached shear layer. In the wake, the azimuthal vorticity
is advected towards the wake centreline and is annihilated by viscous effects, which
contributes a reduction in drag. The analysis of the flow over a sphere at Re = 3700 is
reported for the impulsively started and stationary stages, with emphasis on the effects of
unsteady two-dimensional separation and turbulent transport in the transitional wake. The
turbulent flux in the wake enhances the transport of mean azimuthal vorticity towards the
wake centreline, and is the main driver of the recovery of enthalpy between the rear point of
the sphere and far downstream. The rate of work on the fluid by the drag force for a prolate
spheroid is mostly due to the transport of vorticity along the separated boundary layers.
Primary and secondary separation contribute oppositely to the power injection by the drag
force, while the large-scale vortices only re-distribute vorticity without a net contribution.
A mechanism for secondary separation is proposed based on the theory of vortex-induced
separation.
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1. Introduction
The relationship between drag and the transport of vorticity is established for some
canonical flows; perhaps most known among them are the flows in channels and pipes
(Taylor 1932). In these configurations, the transverse transport of vorticity leads to a drag
force in the streamwise direction. Such interdependence provides a special perspective to
interpret drag in viscous, vorticity-dominated and vortex-dominated flows. For flows over
immersed bodies, this connection is given by the detailed Josephson–Anderson relation
that equates the rate of work done by the drag force and the flux of vorticity against
a background potential flow (Eyink 2021). In this study, we examine this relation for
three-dimensional separated flows over spheres at moderate Reynolds number and over
a spheroid at incidence.

The description of vorticity transport involves the notion of vorticity flux. In the
conservative form of the vorticity equation, the Huggins flux tensor compactly captures
the vorticity evolution by advection, tilting and stretching, and viscous diffusion (Huggins
1970, 1971). However, the vorticity equation dictates the form of the vorticity-flux tensor
only up to a divergence-free contribution. A different form of the vorticity flux was
introduced by Lighthill (1963) and Panton (1984) at the solid wall, and subsequently
extended into the fluid interior (Kolár 2003). The physical interpretations of Huggins
and Lighthill–Panton flux tensors were discussed and compared by Terrington, Hourigan
& Thompson (2021). Both definitions similarly capture the spatial transport of vorticity,
although the two forms contain different viscous contributions. The Huggins flux tensor
measures the viscous transfer of circulation due to tangential acceleration in the fluid,
while the viscous part of Lighthill–Panton flux includes only the terms that lead to the
local change of vorticity. In the present study, the Huggins definition is adopted because it
is uniquely related to the momentum and force balances. The turbulent part of the vorticity
flux, which corresponds to Reynolds stress in the momentum equations, has been used to
characterise the structure of near-wall turbulence (Klewicki 2013). Recently, the Huggins
flux tensor has been extensively applied to examine the vorticity transport in flow over
rotating and translating spheres (Terrington et al. 2021) and free-surface flows (Terrington,
Hourigan & Thompson 2022a,b). Here, we will quantify the vorticity motion for the flows
over a sphere and a spheroid.

The connection between drag and vorticity fluxes has been the subject of influential
works. Taylor (1932) introduced the correspondence between streamwise pressure
gradient and the transverse transport of spanwise vorticity in shear flows. Lighthill (1963)
quantified the generation of vorticity at solid walls, and established the balance between
wall vorticity flux and the pressure gradient in channel and pipe flows. For the particular
flows of interest in this work, namely flows over isolated bluff bodies, the drag force has
been expressed as the integral of physical quantities within the flow interior. For example,
Lighthill (1986) indirectly related the rate of work done by the drag force to the viscous
dissipation of kinetic energy. Through a similar argument, Stone (1993) equated the rate of
work done by the drag force over a steadily translating drop to the energy dissipation in the
surrounding fluid and within the drop itself. The total dissipation is further decomposed
into contributions from enstrophy and an interface vorticity term associated with surface
curvature. Howe (1995) and Magnaudet (2011) expressed the drag force as an integral
formula in terms of velocity and vorticity fields. In particular, Howe (1995) constructed
potential flows using different boundary conditions, and expressed lift and torque using
these potentials. The work by Eyink (2021), although derived through a different approach,
yielded a similar expression that he termed the detailed Josephson–Anderson (J–A)
relation. This expression relates the drag force to vorticity transport, and thus provides
fluid dynamical insight. These ideas were demonstrated recently for the interpretation of
1015 A9-2
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drag in unsteady, separated laminar flow over a hill (Kumar & Eyink 2024). Here, our
focus is on bluff-body flows. Using the J–A relation, we describe the rate of work done
on the fluid by the drag force in terms of the vorticity flux crossing the potential-flow
streamlines. This connection highlights important regions of the flow. In addition, the J–A
relation can be interpreted in terms of an energy transfer between the vortical flow and the
ideal, or potential, flow around the object. These ideas provide new perspectives on the
role of vorticity and its dynamics in bluff-body flows and the generation of drag, which
we explore in the present work for the flows around a sphere and a prolate spheroid.

The flow around a sphere exhibits a wealth of fluid dynamical phenomena, which have
been the subject of experimental and numerical studies. The early works by Achenbach
(1974) and Sakamoto & Haniu (1990) systematically documented the drag force and
the flow states over a wide range of Reynolds numbers 400 � Re � 5 × 106 based on
the sphere diameter. Direct numerical simulations (DNS) and large eddy simulations
(LES) were performed in the subcritical range Re< Rec = 3.7 × 105, where separation
is laminar (Johnson & Patel 1999; Constantinescu & Squires 2004; Yun, Kim & Choi
2006; Rodriguez et al. 2011; Bazilevs et al. 2014). The work by Johnson & Patel (1999)
documented several flow regimes, including steady axisymmetric flow (Re � 200), steady
non-axisymmetric flow (210 � Re � 270), and planar vortex shedding (Re = 300). Based
on DNS at Re = 3700, Rodriguez et al. (2011) and Bazilevs et al. (2014) reported the
flow statistics, morphology of the vortices, and the shedding mechanism. Vortices form
and shed at random azimuthal angles due to the change in wall pressure, which results
in a helical-shape wake. Yun et al. (2006) performed LES at Re = 3700, 104, and found
that the higher Re case exhibits a smaller recirculation region, and earlier transition and
recovery of the wake. These studies establish a qualitative physical picture about the
motion of vortices using visualisation of vortical structures, passive particle tracers, and
frequency analysis of the shedding process. We will complement those efforts by providing
a quantitative analysis, based on the Huggins flux tensor and directly linking the recovery
of the wake to the vorticity transport.

Compared to the subcritical flow over a sphere, additional complexity is introduced
when three-dimensional separation develops over the surface of a bluff body. An important
example is the flow over a spheroid at incidence. In an early study, Wang et al. (1990)
systematically investigated the friction lines and separation patterns on prolate spheroids
with different aspect ratios and incidence angles, at subcritical Reynolds number. They
discovered the phenomenon of open separation, and showed that multiple separations
and reattachments can appear on the leeward side depending on the incidence angle.
Ahn (1992) and Wetzel (1996) identified the critical Reynolds number Rec ∼ 4.2 × 105

based on the length of the minor axis of a 6 : 1 prolate spheroid, where transition occurs in
the boundary layer prior to separation. They documented the flow statistics and friction
patterns at both subcritical and supercritical conditions. Fu et al. (1994) studied the
counter-rotating vortices and the crossflow separations above the leeward surface, and
related the circulation in the large-scale vortices to the lift and lateral forces. Such a
relation underscores the importance of vorticity dynamics in the near-body field. The
DNS of flow over a spheroid have been limited to the subcritical flow regimes (El Khoury
et al. 2010; Jiang et al. 2016), and have focused primarily on the vortical structures in the
turbulent wake rather than of the separated boundary layer. Jiang et al. (2016) reported a
non-symmetric helical wake behind a 6 : 1 prolate spheroid at 45◦ incidence, and identified
the axial separation line as the origin of the vortex generation. Ortiz-Tarin, Nidhan &
Sarkar (2021) performed LES at Re = 105 based on the length of the spheroid minor
axis, and proposed a new decay rate for the velocity deficit based on the non-equilibrium
dissipation scaling in the far wake. More recent LES by Plasseraud, Kumar & Mahesh
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Figure 1. Schematic of the flow over a bluff body. A uniform flow with velocity U passes over a solid body
B (coloured in blue). The vortical structures are defined by the iso-surface of the Q-criteria Q = 0.5, and are
coloured by enstrophy.

(2023) demonstrated that tripping the boundary layer has a limited effect at Re = 7 × 105

and 20◦ incidence. For a theoretical treatment, Wu et al. (2000) and Surana et al. (2006)
introduced criteria for the identification of three-dimensional separation, and discussed the
relationship between vorticity and separation. Also relevant to the present effort are studies
of vortex-induced separation (Peridier, Smith & Walker 1991; Doligalski, Smith & Walker
1994), since the dominant counter-rotating vortices on the leeward side of the spheroid
can interact with the underlying boundary layer. Building on these previous efforts, we
will directly evaluate the motion of axial vorticity using the flux tensor, and provide a
vorticity-based mechanism for separation on the spheroid.

In § 2, we start by introducing the theoretical framework that is adopted for our study,
including the set-up of the flow over a bluff body, the governing equations, and the J–A
relation. The numerical simulations of the flows over a sphere and a prolate spheroid are
presented in § 2.3. The J–A relation and the Huggins flux tensor are evaluated numerically.
We first present the analysis of laminar flow over a sphere at Re = 200 as a preliminary
example in § 3.1. The more complex case of an impulsively started flow and the late-
stage stationary state over the sphere at Re = 3700 are analysed in §§ 3.2 and 3.3, with a
focus on the two-dimensional unsteady separation and the turbulent wake dynamics. We
then proceed to discuss the vorticity transport in the three-dimensional separation on the
prolate spheroid in § 4. A summary and conclusion are provided in § 5.

2. Theoretical formulation and computational approach
In this section, we introduce the computational set-up for simulating the flow over bluff
bodies, including the domain geometries, the governing equations and the boundary
conditions. We discuss the vorticity dynamics, including the Helmholtz equation and the
Huggins flux tensor. We then provide a brief derivation of the J–A relation, which is the
theoretical approach that we adopt to interpret the power injection into the fluid in terms
of vorticity fluxes.

2.1. Flow over a bluff body
We consider the flow over a bluff body, which is depicted schematically in figure 1. A
solid isolated body occupying a spatial volume B is held stationary. The space outside B
is filled with a viscous incompressible fluid with viscosity ν∗, where the superscript star
designates dimensional quantities. The non-dimensional form of the governing Navier–
Stokes equations is

∇ · u = 0, (2.1)
∂u
∂t

= u × ω − ∇h + 1
Re

∇2u, (2.2)
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where u = (u, v, w) is the velocity vector, and the generalised enthalpy h ≡ (p/ρ)+
(1/2)|u|2 is the sum of the pressure (divided by density that is normalised to unity) and
kinetic energy per unit mass. The bulk Reynolds number is Re = ∣∣U∗∣∣ L∗/ν∗, where U∗
is the free-stream velocity. The characteristic length L∗ is defined in terms of the size
of the bluff body, using the diameter of the sphere and the length of the minor axis for
the spheroid. Since the bluff body is stationary, the velocity field at ∂B satisfies the no-
slip boundary conditions. In the far field |x| → ∞, the flow approaches the free-stream
velocity. These boundary conditions are expressed as

u|∂B = 0, u ∼|x|→∞ U, (2.3)

where U = U∗/
∣∣U∗∣∣ is the non-dimensional free-stream velocity. The body exerts a drag

force on the fluid, which is expressed as the surface integral of pressure and wall shear
stress,

F =
∫
∂B

(
pn̂ − 2μSn̂

)
dS, S = 1

2

(
∇u + ∇u�) , (2.4)

where n̂ is the unit normal vector on the surface of the body pointing into the fluid, μ is the
dynamic viscosity, and S is the strain rate tensor. The definition of F is the force exerted
by the body on the fluid, consistent with Eyink (2021). We adopt this convention because
the momentum and energy balances considered in the derivation of the J–A relation are
for the fluid domain. The governing equations (2.1) and initial and boundary conditions
provide a complete description of the velocity field and of the drag force.

Taking the curl of the momentum equation (2.2) yields the Helmholtz equation for the
vorticity ω ≡ ∇ × u:

∂ω

∂t
+ ∇ · Σ = 0, (2.5)

where

Σ = uω − ωu − ν
(
∇ω − ∇ω�) (2.6)

is the Huggins flux tensor. The Helmholtz equation (2.5) is written as a conservation law
by aid of the Huggins flux tensor Σ , which encodes the transport of vorticity by advection,
stretching and tilting, and viscous diffusion. Specifically, the entry Σi j represents the flux
of the j th vorticity component in the i th coordinate direction. The Huggins tensor is anti-
symmetric, and thus admits a dual representation by an axial vector η:

η = u × ω − ν ∇ × ω, ηi = 1
2εi jkΣ jk, Σi j = εi jkηk . (2.7)

Note that the vorticity-flux tensor in (2.5) is not uniquely defined. Any tensor Σ ′ = Σ + Θ
with ∇ · Θ = 0 is a valid option that describes the same vorticity evolution as Σ . However,
the Huggins flux tensor Σ is the unique choice that can be connected with momentum
transport and pressure gradient. This connection is given by the rotational form of the
momentum equation,

∂ui

∂t
= 1

2
εi jkΣ jk − ∂h

∂xi
. (2.8)

Equation (2.8) provides a direct relation between the vorticity flux and the total pressure
gradient, which at stationary walls reduces to

−ν ∇ × ω = ∇ p. (2.9)
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An expression for the wall vorticity flux σ = n · Σ follows by taking the cross-product
between the wall-normal unit vector and (2.9):

σ = n · Σ = n × (ν ∇ × ω)= −n × ∇ p, (2.10)

where n = −n̂ is the unit normal vector on the wall pointing towards the body. The
physical meaning of σ is the rate of vorticity transport from the fluid out through the wall
per unit surface area. Integrating the vorticity equation (2.5) in a finite domain enclosed
by a surface, the time rate of change of vorticity in this domain is balanced by the surface
integral of σ . According to (2.10), the viscous vorticity flux at the wall is closely related
to the tangential pressure gradient, as discussed by Lighthill (1963) and Morton (1984). In
this study, we numerically evaluate the Huggins vorticity flux (2.6), and use it to examine
the transport of vorticity. We also explore the role of vorticity flux in the momentum
balance using (2.8).

We end this subsection with a brief discussion of empirical observations related to
boundary-layer separation and vorticity. The boundary layer develops along the surface
of the body from the attachment line and evolves downstream, and the curvature of the
surface induces favourable and adverse pressure gradients. Since the Reynolds numbers in
the numerical studies considered in this work are subcritical – Rec = 3 × 105 for flow over
a sphere (Achenbach 1974), and 4.2 × 105 for flow over a spheroid (Ahn 1992) – natural
transition to turbulence does not take place prior to separation. Furthermore, depending
on the geometry and inflow conditions, the boundary layer undergoes either two- or
three-dimensional separation, as can be gleaned from the wall shear stress τw = 2μSn̂
(Tobak & Peake 1982). For instance, the steady axisymmetric flow over a sphere at
24 � Re(:= (U∗D∗/ν∗))� 200 undergoes two-dimensional separation at a polar angle
0◦ < θ < 62◦ where τw = 0 (Johnson & Patel 1999). For an example of three-dimensional
separation, consider flow over a prolate spheroid with a non-zero angle of attack (Wang
et al. 1990). Depending on the angle of incidence, multiple separation and reattachment
patterns can develop and result in a complex topology of wall-stress lines on the spheroid
surface. Separation lines are identified as limiting friction lines connecting two singular
points of the wall shear stress (where τw = 0), and have neighbouring wall shear stress
lines converging towards them (Chapman & Yates 1991; Surana, Grunberg & Haller 2006).

In both two- and three-dimensional separation, the motion of vorticity is key to
understanding the boundary-layer dynamics. First, the vorticity is directly related to the
wall shear stress by τw =μω × n̂, thus the characterisation of separation using the wall
shear stress can be equivalently established in terms of the vorticity (Wu et al. 2000).
Second, the wall pressure gradient is related to the vorticity flux through (2.10) (Wu, Ma
& Zhou 2007). Favourable pressure gradient creates vorticity with the same orientation
as that within the boundary layer, which keeps the boundary layer attached to the
wall; adverse pressure gradient creates vorticity with opposite orientation to the existing
vorticity within the boundary layer, and thus promotes flow separation from the wall.

2.2. The detailed J–A relation
We start by stating the J–A relation for flow over a stationary isolated body, then proceed
to summarise its derivation. For the interested reader, a detailed derivation is provided by
Eyink (2021). In the lab frame, the power injected into the fluids by the drag force is given
by −F · U . This quantity, in the body frame, can be expressed as

−F · U = −ρ
∫
Ω

uφ · (u × ω − ν ∇ × ω) dV (2.11)
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= −
∫

dJ
∫
(u × ω − ν ∇ × ω) · dl (2.12)

= −1
2

∫
dJ
∫
εi jkΣi j dlk . (2.13)

This power injection is equal to the integral over the fluid volume Ω of the vorticity
flux against a background potential flow uφ , as shown by (2.11). The volume element
is decomposed into dV = dA |dl|, where dl is a vector line element along uφ , and dA is
an area element normal to uφ . By defining dJ = ρ |uφ| dA as the potential mass current
within a streamtube, the right-hand-side of the J–A relation is cast into (2.12). Using the
identities in (2.7), the J–A relation is then written in terms of the Huggins flux tensor Σ in
(2.13). We consider this right-hand side starting with dlk , which is the line element aligned
with the potential flow, and notice that εi jkΣi j dlk vanishes if either i or j is equal to k.
The implication is that contributions to the integral arise only due to components in the
Huggins tensor that correspond to the flux (i index) and the vorticity ( j index) both being
orthogonal to the potential flow, i.e. when i 
= k and j 
= k. Hence (2.11)–(2.13) represent
the the rate of energy injection associated with the vorticity flux crossing the potential-flow
streamlines, weighted by the potential flow speed. In other words, the rate of drag work
performed by the immersed body on the fluid is equal to the amount of vorticity normal
to the potential flow that crosses the potential mass current outwards. Conversely, inward
vorticity flux across the potential-flow streamlines reduces drag power. Finally, vorticity
flux along the potential-flow streamlines does not contribute to rate of work by drag.

The derivation of the J–A relation starts by defining (uφ, pφ) as the potential-flow
solution over the solid body with the same free-stream configuration, which can be
obtained either analytically or numerically. The true velocity and pressure fields from the
Navier–Stokes solution are then split into potential and vortical parts, with the vortical
solution defined as

uω := u − uφ, pω := p − pφ. (2.14)

The governing equations for the vortical flow (uω, pω) are derived by subtracting the Euler
and Navier–Stokes equations, which yields

∂t uω = u × ω − ν ∇ × ω − ∇hω, (2.15)

where hω = pω + (1/2) |uω|2 + uω · uφ is the total pressure for the vortical flow.
A relation between the total vortical momentum Pω, the total vortical drag Fω, and the
far-field vortical pressure is obtained by integrating (2.15) in space:

dPω
dt

= Fω − ρ lim
R→∞

∫
SR

x̂hω dS, Pω =
∫
Ω

ρuω dV, Fω =
∫
∂B
(pωn̂ − 2μSn̂) dS,

(2.16)

where SR is a sphere with radius R, and x̂ = x/|x| is the radially outward unit vector. The
total vortical momentum Pω represents the amount of momentum contained in the vortical
flow. The total vortical force Fω is the same as the drag in (2.4). The first expression
of (2.16) shows that the rate of change of the total vortical momentum is driven by
the imbalance between the drag force Fω and the far-field vortical pressure. This time
derivative dPω/dt is generally not zero. In addition to the momentum equation (2.16), we
also consider the energy equation. The following expression for the local kinetic energy is
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obtained from the potential–vortical decomposition of velocity:

e = 1
2
ρu · u = 1

2
ρuφ · uφ + ρuφ · uω + 1

2
ρuω · uω. (2.17)

An energy evolution equation can then be written for each of the three ingredients, namely
the potential, interaction and vortical kinetic energies. The volume integral of the potential
kinetic energy is infinite and conserved. We are specifically interested in the evolution
equation of the interaction energy uφ · uω. Performing a dot product of the governing
equation for uω with uφ , we obtain

∂t
(
uφ · uω

)+ ∇ · [hωuφ + hφuω
]= uφ · (u ×ω− ν ∇ × ω), (2.18)

where hφ = pφ + (1/2)
∣∣uφ∣∣2 is the potential total pressure. The divergence term spatially

transports the local interaction energy, and does not cause any net change in the total
interaction energy. The right-hand side is the work done by the vortex force (u × ω −
ν ∇ × ω) along the potential flow uφ . Similar to momentum, (2.18) is integrated over the
fluid domain:

d
dt

∫
Ω

ρuφ · uω dV = ρ

∫
Ω

uφ · (u × ω − ν ∇ × ω) dV − ρU · lim
R→∞

∫
SR

x̂hω dA.

(2.19)

Additionally, a multi-pole expansion of the vortical velocity field uω provides the
following expression for the total interaction energy:∫

Ω

uφ · uω dV =
∫
Ω

uω dV · U . (2.20)

Combining (2.16), (2.19) and (2.20) yields the J–A relation (2.11), which is repeated below:

−F · U = ρ

∫
Ω

uφ · (−u × ω)︸ ︷︷ ︸
Πa

+ uφ · (ν ∇ × ω)︸ ︷︷ ︸
Πν

dV . (2.21)

This relation introduces a new perspective on the transport of vorticity, the transfer of
energy, and the drag power. First, the fieldsΠa = −uφ · (u × ω) andΠν = uφ · (ν ∇ × ω)
are the energy fluxes that correspond to advective and viscous vorticity transport crossing
the potential streamlines of uφ . Positive values represent advection and diffusion effects
transporting negative vorticity outwards across potential streamlines, and the reverse for
negative values. Second, Πa and Πν can be interpreted as spatial contributions to the
power injection into the fluid by the drag force, with positive and negative values being
the drag and anti-drag contributions. Finally, comparing the right-hand side of the J–A
relation (2.11) to the interaction-energy equation (2.18) shows that drag is associated with a
loss in the interaction energy. This loss appears as a source in the vortical energy equation:

∂t

(
1
2 |uω|2

)
+ ∇ ·

[(
pω + 1

2 |uω|2 + uω · uφ
)

uω − νu × ω
]

= −uφ · (u × ω − ν ∇ × ω)− ν |ω|2.
(2.22)

In other words, Πa +Πν = −uφ · (u × ω − ν ∇ × ω) is exactly equal to the energy
transfer from the interaction energy to the vortical energy. Positive values are transfers
from interaction to vortical energy by advection and viscous effects, and the reverse for
negative values. Ultimately, the vortical energy is dissipated into heat by the last term,
−ν |ω|2, in (2.21).

The physical interpretation of the J–A relation in a finite integration domain demands
more careful discussion. A steady or statistically stationary state of the flow near the body
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Figure 2. Computational domains and meshes. (a) The flow set-up, the multi-block grid system, and a rotated
view of the front block for the flow over the sphere. (b) The same visualisations for the flow over the prolate
spheroid.

can be reached at a sufficiently long time after an initial impulsive start. However, the
flow far downstream remains non-stationary, for example in the region where the starting
vortex is first observed. As such, the integral of the unsteady term in (2.18) does not have
a contribution from the stationary flow near the body, and is solely due to the far wake.
In other words, the rate of change of total interaction energy is primarily due to the far
wake where the flow has not reached stationarity. The streamwise extent of this region of
the wake is at least the product of the free-stream velocity and the transient time (from the
initial condition to the stationary state), which is too large to include in DNS. Nevertheless,
the J–A relation can still be approximately satisfied within the domains customarily
adopted for DNS, because the right-hand side of (2.18) decays fast downstream –
an argument that is numerically verified in this study.

2.3. Numerical simulation of flow over a bluff body
In this subsection, we describe the numerical approach for simulating the flows over a
sphere and a spheroid. The governing equations (2.1) are discretised and solved using a
fractional-step approach with a local volume-flux formulation on a staggered curvilinear
grid (Wang, Wang & Zaki 2019; You & Zaki 2019). The advection terms are discretised
using the Adams–Bashforth scheme, and the Crank–Nicolson scheme is adopted for the
diffusion terms. The pressure Poisson equation is solved using a bi-conjugate gradient
stabilised method (BICGSTAB) with an algebraic multi-grid preconditioner provided by
Hypre (Falgout & Yang 2002). These algorithms are first implemented and validated on
a single-block domain. For the simulation of flow over a bluff body, the fluid domain is
decomposed into six blocks, as shown in figure 2. Within each block, the advection and
diffusion terms are discretised using the single-block description noted above, and on the
block boundaries the diffusion terms are discretised using the Adams–Bashforth scheme.
The pressure fields in all blocks are solved globally due to the ellipticity of the pressure
Poisson equation.
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Case Geometry Reynolds number Grid points Grid resolution
Bluff-body shape Re Nx Ny Nz Nw �yb Δw

SL Sphere 200 129 129 129 193 0.006 0.088
ST Sphere 3700 257 161 161 769 0.001 0.013
PT Spheroid 3000 241 241 241 385 0.0017 0.028

Table 1. Geometries, Reynolds numbers, number of grid points, and resolutions for DNS. The resolution �yb
represents the wall-normal grid spacing at the solid wall, while Δw = (�xw �yw �zw)1/3 denotes the grid
size at a point in the wake three units of length downstream of the trailing edge of the sphere and spheroid.

(a) (b) (c)

1.0
0.5

0

u

Figure 3. Vortical structures visualised using iso-surface of the Q-criteria and coloured by the streamwise
velocity, from simulations of the flows over the spheres and the spheroid. (a) Flow over a sphere at Re = 200,
Q = 0.5. (b) Flow over a sphere at Re = 3700, Q = 0.1. (c) Flow over a spheroid at Re = 3000, Q = 0.5.

The computational domains and grids for the flows over the sphere and spheroid are
shown in figure 2. The fluid domain in the former case is formed by two concentric
sphere surfaces with R1 = 0.5 and R2 = 15, and divided into six blocks for the structured
multi-block flow solver. No-slip and free-stream boundary conditions are imposed for the
velocity field at the inner and outer sphere surfaces, respectively. Each block is discretised
into a structured curvilinear mesh. The number of grid points on the interface between two
blocks is the same on the two sides, which constrains the number of grid points within
different blocks. On account of these constraints, there are four independent numbers
of grid points Nx , Ny, Nz, Nw that can be specified on this multi-block grid, which are
shown in figure 1. The flow domain, mesh and boundary conditions for the flow over
the prolate spheroid are configured similarly. The fluid domain is formed between two
concentric spheroids with their axes aligned, decomposed into six blocks, and discretised
on a structured curvilinear mesh similar to the sphere cases. The aspect ratio of the inner
spheroid is a/b = 6 : 1, as shown in figure 1(b). The outer spheroid has aspect ratio close
to unity, and radii equal to 16.44 and 16.17, with its major axes aligned with the inner
spheroid. The geometry, mesh parameters and Reynolds numbers are reported in table 1.
The case designations ‘SL’, ‘ST’, ‘PT’ refer to laminar flow over the sphere, turbulent flow
over the sphere, and turbulent flow over the prolate spheroid.

Visualisations of the vortical structures in the three flows are shown in figure 3. The
distinct characteristics of the vortical structures emphasise the different purposes of these
three examples. The simplicity of case SL, reflected by figure 3(a), enables a concise
demonstration of the theoretical elements discussed in §§ 2.1 and 2.2. Vortex shedding
and a turbulent wake are introduced by considering case ST (figure 3b), where a statistical
description of the vorticity dynamics is required. The pair of vortices above the spheroid in
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(a) (b)
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x

y

z

(η, θ, ϕ)

η
ϕ

θ

Figure 4. Schematics of the (a) cylindrical and (b) spherical coordinate systems that are adopted in the analysis
of vorticity fluxes. (a) The x-axis is aligned with the polar coordinate, the azimuthal angle is denoted by ϕ, and
the radial coordinate is r . (b) The polar angle θ is formed by the polar axis (x-axis) and the radial vector. The
length of the radial vector is denoted by η. The azimuthal angle ϕ is formed with respect to the y-direction.

case PT (figure 3c) is closely related to the three-dimensional separation on the wall. The
implication for vorticity transport by these vortices and the underlying separation patterns
are the focus of case PT.

The J–A relation (2.11) and the Huggins flux tensor (2.6) are evaluated numerically for
the three simulated flows described earlier. The vorticity is computed using a finite-volume
scheme on a generalised curvilinear coordinate system (Rosenfeld, Kwak & Vinokur
1991). This vorticity is then used to evaluate the advection term in the J–A relation and the
advective vorticity flux. The vorticity diffusion vector is computed based on the identity
∇2u = −∇ × ω, where the Laplacian of the velocity field is obtained from the right-hand
side of the momentum equation in the Navier–Stokes solver. This procedure ensures that
the numerical evaluation of vorticity diffusion is consistent with the momentum balance
enforced in the solver.

Both cylindrical and spherical coordinates will be utilised to present the numerical
results, and they are shown schematically in figure 4. The origins of both coordinates
are placed at the centre of the sphere for cases SL and ST, and the free-stream velocity lies
along the x-axis. For the flow over the spheroid, the centre of the spheroid is located at
(x, y, z)= (a/2, 0, 0), and the major axis lies with the x-axis. The free-stream velocity is
U = (cos(α), sin(α), 0), where α is the incidence angle.

3. Vorticity dynamics in flow over a sphere
In this section, the vorticity dynamics and its connection to the rate of work exerted on
the fluid by the drag force for flow over a sphere are studied quantitatively using the J–A
relation. Although the geometry is simple, the flow exhibits rich physical phenomena at
different Reynolds numbers. We choose Re = 200 (case SL) as the first example because
the flow at this Reynolds number is sufficient to build a physical picture of vorticity
transport. We then proceed to study the vorticity transport in the unsteady, impulsively
started, turbulent wake (case ST) Re = 3700.
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Figure 5. Time history of drag coefficient for case SL from integration of the wall pressure and shear stress
J–A relation. : total drag work evaluated by surface integration of pressure and friction. : pressure
work. : friction work. : total drag work evaluated from the J–A relation. : total advective
contribution

∫
Ω

uφ · (−u × ω) dV . : total viscous contribution
∫
Ω

uφ · (ν ∇ × ω) dV .

3.1. Laminar flow over a sphere
The flow over a sphere at Reynolds number Re = 200 is steady and axisymmetric. The
forebody of the sphere is wrapped with an attached laminar boundary layer that separates
at approximately θ = 62◦ due to the adverse pressure gradient and curvature. A steady
cylindrical shear layer that wraps the recirculation region forms behind the sphere. Farther
downstream, the flow recovers from the defect profile towards the uniform free-stream
velocity.

We compare two approaches to evaluating the power injection into the fluid −F · U .
First, the drag force is evaluated by integrating the pressure and shear stress over the sphere
surface using (2.4). In the second approach, we evaluate the J–A relation (2.11). In the
latter case, the potential flow is given by the analytical expression

φ = U

(
η+ R3

1
2η2

)
cos θ, ψ = 1

2
Uη2 sin2 θ

(
1 − R3

1
η3

)
, (3.1)

where η is the radial distance in the spherical coordinate system. The comparison in
figure 5 demonstrates that the two approaches to evaluating −F · U agree, both yielding
equal time histories. The ingredients in terms of the wall pressure and wall shear stress,
as well as from the vorticity fluxes by advection and diffusion, are also visualised in
the same figure. The magnitudes of pressure and friction drag are similar and remain
constant through time in this case. Instead of dividing the drag force into form and
friction drag, the J–A relation expresses the rate of drag work in advective

∫
Ω
Πa dV and

diffusive
∫
Ω
Πν dV terms. The advective part is most closely related to form drag since the

advection of vorticity is accompanied with a pressure gradient in the transverse direction.
The diffusive part, on the other hand, is most closely related to the friction drag. These
four components of drag have similar magnitudes in figure 5 due to the low Reynolds
number considered here. Therefore, it can be anticipated that the comparison between the
two approaches to compute drag, and the differences between two contributions within
each approach, will be more evident in the turbulent case ST.

For axisymmetric flows, the J–A relation (2.12) can be further rewritten using the flux
of the azimuthal vorticity. We denote the unit vector in the azimuthal direction as eϕ , and
that along the potential-flow streamlines as es . Therefore, the unit vector en normal to an
iso-surface of the potential-flow streamfunction is given by en = eϕ × es , as visualised in
figure 6(a). The J–A relation is then rewritten as

1015 A9-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
29

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10291


Journal of Fluid Mechanics

en

es

eϕ

(b)(a)

Figure 6. Schematics of potential flow and vorticity transport direction. (a) The translucent surfaces represent
the iso-surfaces of ψ = −0.1,−0.2,−0.4. The vectors eφ , es , en form a set of local orthogonal coordinates.
(b) The solid black lines with arrows represent the azimuthal vortex rings. The red and blue arrows represent
the outward and inward transport of vorticity crossing the iso-surface of ψ .

−F · U = −
∫

dJ
∫
(u × ω − ν ∇ × ω) dl

= −
∫

dJ
∫
(u × ω − ν ∇ × ω) · es dl

= −
∫

dJ
∫
(u × ω − ν ∇ × ω) · (en × eϕ

)
dl

= −
∫

dJ
∫

eϕ · ((u × ω − ν ∇ × ω)× en) dl

= −
∫

dJ
∫

eϕ · Σ · en dl

= −
∫

dJ
∫

en · Σ · (−eϕ
)

dl, (3.2)

where dl = es dl is the vector line element pointing along potential velocity, and dl is the
length of this line element. Figure 6(b) is a schematic of vortex loops being generated
from the sphere surface and transported into the wake. The red and blue arrows represent
vortex loops crossing the potential streamline outwards and inwards, and correspond to the
positive and negative rates of work by drag, respectively. The expression en · Σ · (−eϕ)
represents the flux of negative azimuthal vorticity in the en-direction. In this form of the
J–A relation, the rate of work done by the drag force is represented as a weighted integral of
azimuthal vorticity flux crossing the iso-surface of the streamfunction. The vorticity-flux
tensor Σ = Σa + Σν can be simplified into the following forms:

Σa =
⎛
⎝ 0 0 uxωϕ

0 0 urωϕ
−uxωϕ −urωϕ 0

⎞
⎠ , Σν =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −ν ∂ωϕ
∂x

0 0 −ν ∂ωϕ
∂r

ν
∂ωϕ

∂x
ν
∂ωϕ

∂r
0

⎞
⎟⎟⎟⎟⎟⎠ . (3.3)

The flux of azimuthal vorticity can be obtained by dotting the above expressions with the
azimuthal unit vector eϕ :

Σa · eϕ =
⎛
⎝uxωϕ

urωϕ
0

⎞
⎠ , Σν · eϕ =

⎛
⎜⎜⎜⎝

−ν ∂ωϕ
∂x

−ν ∂ωϕ
∂r

0

⎞
⎟⎟⎟⎠ . (3.4)
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Figure 7. Two-dimensional contour of instantaneous value of vorticity fluxes for case SL overlapped with
streamlines. Coloured contours show (a) Πa and (b) Πν . Panels (a.i i) and (b.i i) are zoomed-in views of
boxed region A, and panels (a.i i i) and (b.i i i) are zoomed-in views of boxed region B.

The explicit forms of Σa · eϕ and Σν · eϕ obtained above can be clearly interpreted as the
advection of ωϕ by the velocity field and the down-gradient diffusion of ωϕ by viscosity,
respectively. The portion of these fluxes that contributes to the action of drag is the
projection onto en , i.e. the flux normal to the potential flow, as shown in the last expression
of (3.2).

The advective contribution Πa(x)= −uφ · (u × ω)= |uφ| en · Σa · (−eϕ) and viscous
contribution Πν(x)= |uφ| en · Σν · (−eϕ)= uφ · (ν ∇ × ω) are visualised in figure 7,
overlapped with flow streamlines. In the near-wall region A, the viscous contribution
dominates inside the boundary layer, while the advective contribution is close to zero near
the wall due to the no-slip condition. The positive viscous flux contributes to drag power
injection in a region along the wall in the attached boundary layer, which is associated
with the outward transport of the negative azimuthal vorticity that is introduced into
the fluid domain by the favourable pressure gradient. The vortex force in the near-wall
region A drives the flow from potential to vortical, and results in a transfer from the
interaction energy to vortical energy (interpretation from (2.18)). A weak negative viscous
contribution appears near θ = 90◦ at the wall prior to separation, and extends downstream
as shown in region B in figure 7. This negative flux, which reduces the rate of drag work,
is due to the change in pressure gradient from favourable to adverse and the associated
wall vorticity flux σ . After the negative azimuthal vorticity diffuses into the domain, it is
advected along the detached boundary layer crossing the potential streamlines outwards.
This flux drives the flow away from the ideal potential flow, and thus produces a positive
contribution to drag power. In the laminar wake, the streamwise velocity recovers from a
deficit profile to the free-stream potential flow. The negative contribution to drag power
near the wake centreline indicates that the vortex force drives the flow from vortical to
potential, and that the kinetic energy is transferred from vortical to interaction energy.

The link between the vorticity flux and the rate of drag work underscores the importance
of a quantitative description of vorticity transport, which is given by the Huggins flux
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Figure 8. Visualisation of the vorticity-flux vector field. The lines are tangent to the vector fields (a) Σa · eϕ
and (b) Σν · eϕ . The colour contours represent the streamfunction ψ of the background potential flow.

tensor. The evolution equation for a general vorticity component ωξ = ω · eξ can be
derived by dotting a constant unit vector eξ with the vorticity equation (2.5):

∂ωξ

∂t
+ ∇ · (Σ · eξ

)= 0. (3.5)

The above relation is a planar conservation law for the transport of ωξ within a plane Seξ
that is normal to the unit vector eξ . Due to the anti-symmetry of the flux tensor Σ , the
vorticity flux of ωξ in the direction eξ vanishes, since eξ · Σ · eξ = 0. In other words, in
the absence of boundaries, the vorticity component ωξ is conserved within the plane Seξ ,
as can be seen by integrating (3.5) on the plane Seξ . The vector field Σ · eξ is the flux of
ωξ , and serves as an informative visualisation of its transport.

In the present case of laminar separation (SL), the vorticity field is comprised of
an azimuthal component only. We therefore consider the azimuthal unit vector eϕ , and
visualise the vector field Σ · eϕ . The streamtraces parallel to the vector fields Σa · eϕ and
Σν · eϕ are visualised in figure 8. The advective flux Σa · eϕ does not start or end at the
wall, which implies that this flux only redistributes vorticity within the volume, and thus
changes the vorticity magnitude locally without altering the volume integral of vorticity.
In contrast, the viscous flux is mainly responsible for the outward diffusion of vorticity
from the wall into the fluid and its annihilation at the wake centreline. This interpretation
is consistent with the classical Eulerian picture of vorticity transport:

Negative azimuthal vorticity is generated at the wall by pressure gradient, and vorticity
diffuses into the boundary layer. Within the cylindrical shear layer, vorticity is mostly
advected. The azimuthal vorticities from different azimuthal angles cancel each other at
the wake centreline. The inward transport of vorticity observed in figure 8 corresponds to
the anti-drag region appearing in figure 7 near the wake centreline. The rate of vorticity
annihilation, defined by the vorticity flux (Σν)rϕ , can be related to streamwise total
pressure gradient by simplifying (2.8) at the wake centreline (Terrington et al. 2021):

(Σν)rϕ = −ν ∂ωϕ
∂r

= ∂h

∂x
. (3.6)

The recovery of total pressure is accompanied by inward transport of azimuthal vorticity
towards the wake centreline. This inward flux only contains a viscous contribution at
the centreline, meaning that viscous effect is solely responsible for the annihilation of
azimuthal vorticity.

3.2. Impulsively started flow over a sphere: multiple two-dimensional separations
The flow over a sphere at Re = 3700 is simulated and is designated ST (see table 1). The
simulation starts from an initial condition with uniform free-stream velocity in the fluid
domain everywhere. The time history of the terms in the J–A relation, as well as the rates
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Figure 9. (a) Time history of drag coefficient for case ST from integration of wall pressure and wall shear
stress, and from the J–A relation. (b) A zoomed-in view of (a) during 0 � t � 2. : total drag work evaluated
by surface integration of pressure and friction. : pressure work. : friction work. : total drag work
evaluated from the J–A relation. : total advective contribution

∫
Ω
Πa dV . : total viscous contribution∫

Ω
Πν dV . (c) A further zoomed-in view of (b) in 0.08 � t � 0.5 in log scale, and including ( ) the Basset–

Boussinesq force FB .

of form and friction drag work, are visualised in figure 9. The total drag force drops from
an unbounded value at t = 0 to a finite value at later times due to the t−1/2 singularity
of the drag force at the initial time (Mei & Lawrence 1996), from laminar boundary-layer
scaling. This t−1/2 scaling can be related to the Basset–Boussinesq force (Basset 1888;
Boussinesq 1903), which accounts for the history effect in unsteady Stokes flow around
a sphere. The relative acceleration between the body and the free stream influences the
development of the boundary layer, which subsequently affects the drag force. This history
effect is captured in the Basset–Boussinesq force,

FB(t)= 6a2√πν
∫ t

−∞
Ẍ(t ′)√
t − t ′

dt ′, (3.7)

where Ẍ(t ′) is the acceleration of the body at t ′. In the present case of an impulsively
started flow over a sphere, the acceleration is a delta function at t = 0. Therefore, for t > 0,
the Basset–Boussinesq force is

FB(t)= 6a2U

√
πν

t
. (3.8)

This force decays proportionally to t−1/2, which directly corresponds to the initial decay
observed in the total drag. Figure 9(c) shows the initial decay of the drag force for the
impulsively started flow over a sphere, and the corresponding Basset–Boussinesq force
FB . The t−1/2 decay of the drag force agrees well with the decay of FB . Note that although
at t → 0+ the thickness of the boundary layer over the sphere approaches zero, and most
of the flow field is identical to potential flow, the total pressure drag does not approach
zero. The divergence of the Lamb vector ∇ · (u × ω) is the source term in the Poisson
equation of the enthalpy function h = (p/ρ)+ (1/2)|u|2. The thin singular vortex sheet
on the sphere wall exerts a non-local effect on the pressure field that induces a non-zero
form drag even at the initial time. The asymmetry of the pressure profile with respect to
the polar angle at the initial time was verified by Dennis & Walker (1972) and by Wang
(1969), and was similarly attributed by Kang & Leal (1988) to the viscous generation of a
vortex sheet on the surface for flow over a spherical bubble. The total drag from the J–A
relation agrees well with the combination of form and friction drags. A distinction arises
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Figure 10. Contours of instantaneous vorticity fluxes for case ST at (i–iii) t = 0.3, 0.9, 1.5. The region
enclosed in the black box is visualised in figure 11.

between the conventional division of drag into friction/form parts, and the J–A division
into advection/diffusion parts at t → 0+. The pressure and friction drags are both non-
zero at the initial time; meanwhile, the J–A relation attributes all of the initial drag power
injection to the viscous flux through the wall. The advection contribution is zero at t → 0,
since the Lamb vector u × ω is orthogonal to the potential-flow direction in the vortex
sheet on the wall. At this initial time, the J–A interpretation of the drag force in terms of
advective and diffusive fluxes of vorticity is more instructive compared to the conventional
decomposition into shear stress and pressure. Specifically, diffusion of vorticity is the sole
relevant actor at the initial time, while the shear stress and pressure are by-products of the
action of the instantaneous diffusive flux. The viscous contribution drops rapidly during
the initial development stage since the viscous flux reduces as the boundary layer grows.
The advective contribution increases gradually from zero because of the detachment of
the boundary layer and vortex formation on the back of the sphere. At later times, t > 1,
the viscous contribution in the J–A relation reduces, while the advection part increases
and dominates the total rate of work by drag due to the detachment of vorticity from the
near-wall region.

The spatial contributions to drag power injection Πa and Πν are visualised in figure 10
at three different times, t = 0.3, 0.9, 1.5. At the first instant, all of the vorticity in this flow
is confined to the thin boundary layer on the sphere surface. Most of the drag originates
from the viscous effect within the surface layer, where the vorticity transport pushes the
flow away from ideal to vortical and produces drag force. A thin reverse-flow layer is
already forming at ϕ > 90◦ due to the adverse pressure gradient. The locations S1 and R1
represent the primary separation and reattachment, which are lines of zero friction along
the azimuthal direction. At t = 0.9, the total advection and viscous contributions become
comparable. The advection partΠa becomes stronger due to the detachment of the primary
boundary layer from the geometry and the formation of an axisymmetric primary vortex,
as also shown in figure 11. The separation location S1 moves upstream due to the adverse
tangential pressure gradient. At t = 1.5, the primary vortex starts to detach from the solid
wall, with a low-pressure region forming at the vortex core. The secondary boundary layer
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Figure 11. Two-dimensional contours of instantaneous value of drag contribution and pressure coefficients for
case ST. The top and bottom rows correspond to t = 0.9, 1.5, respectively.

beneath the vortex starts to separate due to a pressure gradient that is adverse for the
secondary layer but favourable for the primary flow. A secondary vortex forms beneath the
primary one between S2 and R2, which appear in a pair due to the topological constraints
on singular points on the surface (Tobak & Peake 1982).

3.3. Turbulent flow over a sphere
After the starting stage discussed in § 3.2, the wake continues to extend downstream. The
detached cylindrical shear layer breaks down to turbulence, and a statistically stationary
state is established within the simulation domain after a sufficiently long time. The
transient time from the initial condition to the stationary stage was approximately 150
advective time units. Flow statistics were evaluated by averaging over 100 time units
and in the azimuthal direction. At this Reynolds number, although the boundary layer on
the sphere is still laminar, the detached shear layer develops instability at approximately
x = 2 (Yun et al. 2006; Rodriguez et al. 2011) where localised azimuthal vortex roll-
up starts to appear. At the end of the separation bubble, corrugated structures along the
azimuthal direction develop, and ultimately, the wake breaks down to turbulence, which
is observed in the instantaneous visualisation of streamwise velocity in figure 12(a).
The mean streamwise velocity field, as well as its comparison with previous DNS and
experimental data, is shown in figures 12(b,c). We focus on the physical interpretation of
the J–A relation and the vorticity dynamics in the presence of the turbulent wake.

The contributions to the drag coefficient are presented in figure 13. The form drag
is significantly higher than friction drag due to the higher Reynolds number considered
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ū ū
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Figure 12. The streamwise velocity for case ST. (a) A snapshot of instantaneous u velocity around the sphere
during the statistically stationary stage. (b) Mean streamwise velocity u. (c) Comparison of the mean-velocity
profiles from ( ) the present simulations, with ( ) previous DNS by Rodriguez et al. (2011), and ( )
experimental data by Kim & Durbin (1988). The u profiles are plotted along the radial direction in a cylindrical
coordinate at streamwise locations x = 0.2, 1.6, 3.0.
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Figure 13. (a) Time history of the drag coefficient for case ST from integration of the wall pressure and
shear stress and from the J–A relation: ( ) Total drag work evaluated by surface integration of pressure and
friction. ( ) time-averaged drag work evaluated by the J–A relation. ( ) pressure work. ( ) friction
work. ( ) total advective vorticity flux

∫
Ω

uφ · (−u × ω) dV . ( ) total viscous vorticity flux
∫
Ω

uφ ·
(ν∇ × ω) dV . ( ) oscillation of J–A drag. (b) Symbols represent the time averaged J–A drag evaluated over
a domain of radius r . ( ) time-averaged drag force from the summation of form and friction drag.

relative to case SL. In addition, small temporal variations in the form and total drag
can be discerned, which are due to the unsteadiness of the flow field. The similarity
of values of form drag and advective flux contribution, as well as friction drag and
viscous flux contribution, are observed in figure 13 as expected (the mathematical relations
are provided in Appendix A). The advective term from the J–A relation exhibits high-
frequency oscillations. The finite size of the simulation domain can accommodate only a
portion of the full streamwise extent of the wake, here 15 diameters. Vortices that leave
the domain cause oscillations in the total advective vorticity flux and the rate of drag work
from the J–A relation. The grey dotted line in figure 13(a) represents the spatial integration
of the J–A relation outside the domain, which is computed by subtracting the J–A drag
from the surface integral drag. The exchange of circulation between the computational
domain and the outside flow causes the oscillation of J–A drag inside the computational
domain. To examine the influence of the domain size on the accuracy of the J–A relation,
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Figure 14. Two-dimensional view of the instantaneous vorticity fluxes for case ST. Colour contours represent
(a) Πa +Πν , (b.i ,c.i) Πa , and (b.i i ,c.i i) Πν . Lines correspond to the potential-flow streamlines with
ψ = 0,−0.1,−0.2,−0.3.

we calculated the J–A integrals on domains Ωr with different radii:

Fr · U = ρ

∫
Ωr

uφ · (u × ω − ν ∇ × ω) dV . (3.9)

The mean value

Fr · U = 1
T2 − T1

∫ T2

T1

Fr · U dt (3.10)

is visualised in figure 13(b), and converges rapidly with the increase of domain radius r .
The results indicate that the domain size is appropriate.

The instantaneous fields ofΠa ,Πν and their sum are visualised along with the potential-
flow streamlines in figure 14. The advective term Πa dominates the total flux in most
of the flow, while the viscous term Πν is important only near the wall. The advective
flux Πa in this case exhibits behaviour similar to that observed in case SL in figure 7,
where the circular detached shear layer near the sphere carries vorticity outwards crossing
the potential streamlines, and produces drag. Farther downstream, the shear layer breaks
down, carrying vorticity inwards towards the centreline. Crossing the potential streamline
in this direction amounts to a force aligned with the potential flow, and thus reduces the
rate of drag work. In this example, a direct analysis of the instantaneous vorticity transport
is difficult due to the turbulence in the wake. We therefore proceed to analyse the mean
vorticity transport, and exploit its symmetry.
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Figure 15. The mean vorticity fluxes cross the potential streamline for case ST. The solid black lines in the
background represent potential function iso-surfaces ψ = −0.1,−0.2,−0.3,−0.4.

The contributions to the mean flux tensor are simplified to the following form due to the
axisymmetry of the flow statistics:

Σa =
⎛
⎜⎝ 0 0 ux ωϕ

0 0 ur ωϕ

−ux ωϕ −ur ωϕ 0

⎞
⎟⎠ , Σν =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −ν ∂ωϕ
∂x

0 0 −ν ∂ωϕ
∂r

ν
∂ωϕ

∂x
ν
∂ωϕ

∂r
0

⎞
⎟⎟⎟⎟⎟⎠ , (3.11)

Σa′ =

⎛
⎜⎜⎝

0 u′
xω

′
r − u′

rω
′
x u′

xω
′
ϕ − u′

ϕω
′
x

u′
rω

′
x − u′

xω
′
r 0 u′

rω
′
ϕ − u′

ϕω
′
r

u′
ϕω

′
x − u′

xω
′
ϕ u′

ϕω
′
r − u′

rω
′
ϕ 0

⎞
⎟⎟⎠ , (3.12)

where the overbars indicate mean quantities, and primes denote fluctuations. The flux of
azimuthal vorticity is obtained by dotting the above flux tensors with the azimuthal unit
vector eϕ :

Σa · eϕ =
⎛
⎜⎝uxωϕ

urωϕ

0

⎞
⎟⎠ , Σν · eϕ =

⎛
⎜⎜⎜⎝

−ν ∂ωϕ
∂x

−ν ∂ωϕ
∂r

0

⎞
⎟⎟⎟⎠ , Σa′ · eϕ =

⎛
⎜⎝u′

xω
′
ϕ − u′

ϕω
′
x

u′
xω

′
ϕ − u′

ϕω
′
r

0

⎞
⎟⎠ .

(3.13)

The physical interpretation of the mean advection and diffusion fluxes of azimuthal
vorticity is similar to the laminar case (§ 3.1). The turbulent flux Σa′ · eϕ is a combination
of instantaneous advection and tilting effects. For example, the flux of azimuthal vorticity
in the radial direction u′

rω
′
ϕ − u′

ϕω
′
r is comprised of (i) the transport of vorticity fluctuation

ω′
ϕ by the fluctuating radial velocity u′

r , and (ii) the tilting of fluctuating radial vorticity
ω′

r into the azimuthal direction by the azimuthal fluctuation velocity u′
ϕ .
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Figure 16. Balance between pressure gradient and vorticity fluxes. (a.i,a.ii) The flux lines tangent to (Σa +
Σν) · eϕ (black lines with arrow) and iso-contours of the streamfunction ψ (line and coloured contours) for
cases SL and ST. (b.i,b.ii) The corresponding total pressure recovery, with lines representing total pressure
difference: ( ) h(x)− h(R1); ( ) Tν ; ( ) Ta′ ; ( ) ±(h∞ − h R1 ).

With the detailed expressions for the vorticity fluxes, the mean J–A relation can be
derived by ensemble averaging (2.12), which yields

−F · U = −ρ
∫
Ω

uφ ·
(

u × ω + u′ × ω′ − ν ∇ × ω
)

dV (3.14)

= −ρ
∫

dJ
∫

en · (Σa + Σa′ + Σν

) · eϕ dl. (3.15)

In this equation, the rate of work done by the mean drag is related to the spatial integration
of mean advection Πa = uφ · (u × ω)= |uφ| en · Σa · eϕ , turbulent advection Πa′ = uφ ·
(u′ × ω′)= |uφ| en · Σa′ · eϕ , and diffusion Πν = uφ · (−ν ∇ × ω)= |uφ| en · Σν · eϕ .
The spatial distributions of these terms are shown in figure 15. The terms Πa , Πa′ and
Πν can also be interpreted as fluxes of mean azimuthal vorticity crossing iso-surfaces of
the potential-flow streamfunction, weighted by the potential flow speed. The mean term
Πa dominates the advective flux Πa =Πa +Πa′ . Effectively, at x < 1.5, the mean flow
carries the mean azimuthal vorticity in the detached shear layer outwards, crossing the
potential flow, which pushes the flow away from the ideal flow, and generates drag. Further
downstream, the mean flow advects the mean azimuthal vorticity inwards towards the wake
centreline, which shifts the flow back towards the potential flow, and corresponds to anti-
drag. The turbulent flux Πa′ dominates near the wake centreline, at x > 2. In this region,
the turbulent flux accelerates the advection towards the wake centreline where the vorticity
is annihilated. Note that the turbulent flux includes not only advection by the fluctuating
velocity field, but also tilting of the fluctuating vorticity by the turbulent velocity.

The mean momentum equation relates the annihilation rate of mean azimuthal vorticity
to the total pressure gradient, according to

(
Σa′

)
rϕ + (

Σν

)
rϕ = u′

rω
′
ϕ − u′

ϕω
′
r − ν

∂ωϕ

∂r
= ∂h

∂x
. (3.16)

Integrating (3.16) along the wake centreline from point x ′ = R1 to a downstream location
x ′ = x yields a relation between the total pressure recovery and the vorticity flux along this
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line segment:

T a′ + T ν =
∫ x

R1

(
Σa′

)
rϕ dx ′ +

∫ x

R1

(
Σν

)
rϕ dx ′ = h(x)− h(R1). (3.17)

The flux lines of azimuthal vorticity and the recovery of total pressure along the wake
centreline are both visualised in figure 16, for both SL and ST cases. Overall, the direction
of the flux lines is similar in the laminar and turbulent cases. The azimuthal vorticity
is generated at the wall, and annihilated along the wake centreline. However, the major
mechanism of vorticity annihilation is different for the two cases. For case SL, the recovery
of total pressure is due mainly to the viscous flux (Σν)rϕ , which is active at all x > R1 and
contributes a gradual recovery towards the free-stream condition. For case ST, the mean
viscous flux is no longer important. Instead, the turbulent flux balances the mean total
pressure gradient. Within the recirculation bubble, R1 < x < 2, the turbulence is nearly
absent, thus the total pressure remains nearly constant. Beyond this region, the detached
shear layer starts to break down. The turbulence advection and tilting contribute to the
flux of azimuthal vorticity towards the wake centreline. This physical interpretation of the
vorticity transport reinforces our understanding of the mechanism of drag, by aid of the
J–A relation and analysis of the Huggins flux tensor.

4. Three-dimensional boundary-layer separation over a spheroid
The vorticity transport and the interpretation of drag power injection over a bluff body
become more complex in three-dimensional separation. In this section, we consider flow
over a prolate spheroid at incidence angle α = 20◦. A visualisation of the near-wall flow
is shown in figure 17. The free-stream flow encounters the spheroid body at the stagnation
point near the nose on the windward side. A thin boundary layer forms on the forebody
and extends downstream. On the windward side, the attached boundary layer grows along
the axial direction. On the two sides of the body, the boundary layers separate due to
the combined effects of pressure gradient and curvature. The detached shear layers curve
inwards towards the recirculation region, and form a pair of counter-rotating vortices.
These dominant vortices extend to form the turbulent far wake. The large-scale vortices
induce a complex pattern of wall shear stress, visualised by the friction lines on the
body surface in figure 17(a). A primary separation line (S1) appears where the boundary
layer detaches from the body. The reverse flow induced by the dominant vortices near
ϕ = 180◦ separates again at the secondary separation line S2. A reattachment line R2
appears between S1 and S2. These separation and reattachment lines are well identified
by the strong convergence and divergence of the wall-friction lines. We first investigate
the balance given by the J–A relation, and analyse the regions that contribute most to drag
work, then proceed to analyse the vorticity transport and its relation to separation.

The time histories of the contributions to drag power injection were evaluated from
the surface forces and from the J–A relation, and are reported in figure 17. Although the
Reynolds number is similar to turbulent flow over a sphere (case ST), the form drag here
is of magnitude similar to that of the friction drag due to the slender shape of the body.
Turning to the terms in the J–A relation, the advective contribution oscillates due to the
unsteadiness of the velocity and vorticity fields, caused by the breakdown of the primary
vortices.

The instantaneous spatial contributions to the rate of drag work,Πa(x)= −uφ · (u × ω)
and Πν(x)= uφ · (ν ∇ × ω), and their sum are visualised in figure 18 in vertical planes
at the three locations marked in figure 17(a), x/a = 0.16, 0.5, 0.84. The contours are
overlapped with the potential-flow streamlines. On each vertical plane, the boundary
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Figure 17. (a) Visualisation of friction lines on the surface of the spheroid and the velocity field on selected
vertical planes, x/a = 0.16, 0.5, 0.84. (b) Time history of the drag coefficient from the surface integral and the
J–A relation. ( ) Total drag work evaluated by surface integration of pressure and friction. ( ) pressure
work. ( ) friction work. ( ) total advective vorticity flux

∫
Ω
Πa dV . ( ) total viscous vorticity flux∫

Ω
Πν dV . ( ) oscillation of J–A drag.

layer starts from the stagnation point at ϕ = 0 on the windward side, and separates at
different azimuthal angles. The separated layer, marked B1 in the figure, crosses potential
streamlines carrying vorticity into the free stream. This advection of vorticity shifts the
flow away from being ideal and thus contributes to drag power injection through Πa .
The secondary boundary layer, marked B2 in the figure, is induced on the leeward side
by the large-scale vortices, and has a favourable influence of reducing drag due to the
reversed sign of ωx . Further away from the body, the pair of primary vortices advects
vorticity across the potential-flow streamlines, transporting vorticity inwards at the top and
outwards at the bottom, thus simultaneously contributing to and detracting from drag in
these two regions, respectively. The viscous flux Πν(x) is mostly concentrated inside the
attached primary and secondary boundary layers, where azimuthal vorticity is generated
by streamwise pressure gradient and diffuses outwards.

For a detailed description of the transport of vorticity, we examine the Huggins flux
tensor, specifically as it appears in the planar vorticity conservation equation (3.5). We
stress that this description is Eulerian, thus it is focused on how the vorticity is transported
locally. We consider ωx = ω · ex since the streamwise vorticity is most relevant to the
three-dimensional separation in the present flow. The vector Σ · ex represents the two-
dimensional transport of x vorticity inside the vertical plane. The advection Σa · ex and
viscous Σν · ex components are visualised in figure 19 at the same three axial locations
examined in figures 17 and 18. Near the wall, the advection flux is parallel to the surface,
and the viscous flux lines start from the wall. The streamwise vorticity is generated at
the wall at low azimuthal angles by the azimuthal pressure gradient, and diffuses into the
fluid. Within the detached primary boundary layer, vorticity is primarily advected. The
dominant vortices are regions of accumulation of streamwise vorticity in the recirculation
region, as shown in the planes x/a = 0.5, 0.84 in figure 19. A zoomed-in view in figure 20
shows one of the two counter-rotating vortices, which induces a secondary boundary
layer (and similarly for the other vortex across the vertical symmetry plane). The induced
boundary layer contains ωx of the opposite sign to the vorticity in the large-scale vortex.
The secondary boundary layer detaches again from the leeward side, which is known as
the secondary separation (Wang et al. 1990; Wetzel 1996). The streamwise vorticity ωx
is advected along this separated layer, and diffuses towards the large-scale vortex and the
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Figure 18. Contours of the instantaneous values of (a) Πa +Πν , (b) Πa and (c) Πν for the flow over the
spheroid. Overlaid on the contours are potential-flow streamlines. The vertical sections in the three rows are
taken at x/a = 0.16, 0.5, 0.84. The labels B1 and B2 identify the primary and secondary boundary layers,
S1 and S2 mark the primary and secondary separations, and R2 is the secondary reattachment. The primary
reattachment is on the leeward plane of symmetry, and is not marked on the figure.

surface. Note that a secondary vortex appears near the end of this secondary layer, shown
by the streamlines in figure 20(c).

The wall-friction lines and vorticity-flux contours are plotted in figure 21. The
locations of the separation and reattachment lines can be identified easily by the
converging/diverging shear stress lines. The viscous flux is positive at lower azimuthal
locations, and becomes negative upstream of the primary separation. Flows migrating from
the upstream region carry excess vorticity that needs to be absorbed into the wall before
separation, thus the wall vorticity flux changes sign prior to the primary separation line.

In the rest of this section, we discuss the mechanism of vortex-induced secondary
separation. The interpretation is motivated by the local flow structures, and invokes ideas
from two-dimensional separation. We stress, however, that the secondary separation on
the spheroid is three-dimensional, and that the present discussion is intended to build
intuition regarding the local flow near the secondary separation. Following Doligalski et al.
(1994), consider an inviscid vortex with negative circulation above a solid wall, as shown
schematically in figure 22(a). Since the wall is stationary, a vortex sheet is introduced at
the surface, with strength γw = n × w(z), where w(z) is the fluid velocity. The velocity
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Figure 19. Contours of the streamwise vorticity, overlaid by the vorticity-flux vectors. The lines are tangent
to the vector fields due to the (a) advective flux Σa · ex and (b) viscous flux Σν · ex . (i–iii) The three panels
correspond to the vertical sections at x/a = 0.16, 0.5, 0.84.

y
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Figure 20. Visualisation of streamwise vorticity and velocity contours, overlaid by the vorticity-flux lines and
the velocity vectors. The shown region is the boxed area in figure 19. The lines are tangent to (a) Σa · ex ,
(b) Σν · ex and (c) u.

and pressure satisfy the inviscid balance

−dp

dz
=w

dw
dz
. (4.1)

Since the singular vortex sheet is proportional to the velocity magnitude, this equation can
be regarded as a balance between the destruction of the vortex sheet by pressure gradient
and the advection of the sheet. If a small amount of viscosity is introduced into the flow, the
singular vortex sheet becomes finite in thickness, as shown in figure 22(b). The vorticity
magnitude reduces, thus the advection of vorticity becomes smaller than its destruction by
the pressure gradient. A thin layer of negative vorticity thus appears near the wall. This
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Figure 21. Visualisation of wall vorticity flux and friction lines. Colour indicates viscous flux Πν . Lines are
friction lines that are tangent to wall shear stress τw .

y

z
w

(a) (b) (c) (d )

Figure 22. Schematic of vortex-induced separation, following the lecture notes on turbulence theory by G.
Eyink. Positive and negative symbols represent the signs of the local streamwise vorticity, and colour indicates
the magnitude. Positive values point into the page.

region of reverse flow ejects the boundary layer into the free stream, and the detached
boundary layer could break up and form a secondary vortex, as shown in figures 22(c,d).

We return to the flow field and the vorticity flux above the spheroid at x/a = 0.83, as
visualised in figure 20. The dominant vortex with negative streamwise vorticity induces
the secondary boundary layer on the leeward surface with positive vorticity (figure 20(b)).
This boundary layer separates due to an adverse pressure gradient imposed by the
dominant vortex. Streamwise vorticity is advected along the secondary boundary layer
and ejected to form a secondary vortex. Viscous diffusion of positive ωx points from the
secondary boundary layer towards the wall, where the outflux is related to the azimuthal
pressure gradient. These observations are consistent with the vortex-induced separation
mechanism described in figure 22.

5. Conclusions
In this work, we performed a numerical investigation of the vorticity dynamics and its
relation to the drag force for the flow over a bluff body. We first invoked the Josephson–
Anderson (J–A) relation that expresses the rate of work done by the drag force as the spatial
integration of advective and viscous vorticity fluxed across the potential-flow streamlines.
To understand the contribution to drag power injection by different flow regions, we
investigated the Huggins vorticity-flux tensor. Three numerical simulations of flow over a
bluff body were performed: flows over a sphere at Re = 200, 3700, and flow over a prolate
spheroid at Re = 3000 and 20◦ incidence angle. For each of these flows, the balance of
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the J–A relation, the contributions to drag from the spatially distributed vorticity fluxes,
and the flux vectors were computed and visualised. Our analysis addressed the most
relevant features of each flow, including steady and unsteady two-dimensional separations,
turbulent wake and three-dimensional separation.

For the flow over a sphere at Re = 200, the power injection of drag force calculated
from the J–A relation and the integration of the surface stresses agree well. At the sphere
surface, the azimuthal vorticity is diffused into the fluid interior by viscosity, which
contributes to drag through the viscous term in the J–A relation. The vorticity in the
boundary layer is first advected outwards crossing the potential-flow streamlines, thus
contributing to drag, and is then advected inwards towards the wake centreline, thus
contributing anti-drag. At the higher Reynolds number Re = 3700, we first find that the
drag from the J–A relation agrees well with the integration of the surface stresses during
the impulsively starting stage. The J–A relation attributes all of the drag at t = 0+ to the
viscous vorticity flux across the wall, while the friction and pressure drag are both non-
zero at that time. The development of multiple unsteady separations on the sphere wall is
accompanied by the ejection of the primary and secondary vortices into the fluid interior,
which contributes to the advection part of drag power injection. During the statistically
stationary stage, the turbulent transport of vorticity in the near wake becomes important.
The annihilation of vorticity along the wake centreline is balanced by the gradient of the
total pressure, and is dominated by the turbulent vorticity flux. For the flow over a prolate
spheroid at Re = 3000, the large-scale axial vortices induce multiple three-dimensional
separation and reattachment lines over the leeward surface. The axial vorticity is generated
in the windward boundary layer and advected into the vortices in the near wake. The
primary and secondary separated boundary layers contribute opposite effects, namely an
increase and a reduction, to the drag force. In addition, the separation of the secondary
boundary layer was interpreted in terms of the theory of vortex-induced separation.

There are several possible avenues of future research that involve the J–A relation
and vorticity dynamics, in the context of the flow over a bluff body. First, transitional
boundary-layer flows can be studied (Zaki et al. 2010; Wang, Eyink & Zaki 2022). Across
laminar-to-turbulence transition, the wall vorticity magnitude increases significantly, and
an up-gradient turbulent flux of spanwise vorticity appears inside the boundary layer
(Lighthill 1986). Both phenomena introduce more complex mechanisms of vorticity
transport in the near-wall region that are of both theoretical and practical interest. Second,
the J–A relation provides a new framework to examine drag-reduction strategies, from a
vorticity dynamics point of view, including riblets (García-Mayoral & Jiménez 2011; Choi,
Moin & Kim 1993) and superhydrophobic surfaces (Daniello, Waterhouse & Rothstein
2009; Jelly, Jung & Zaki 2014). In addition, instead of attempting to minimise the full
drag term, drag-reduction strategies can be sought that target the reduction of the outward
flux of vorticity. Third, other physical effects can be incorporated into the J–A relation,
such as a spatiotemporal body force. For example, in viscoelastic flows (Terrapon et al.
2004; Li & Graham 2007; Hameduddin et al. 2018), the influence of the polymer stress
can be included in the momentum equation as a distributed body force. These effects can
be taken into consideration in the J–A relation by accounting for the body forces in the
derivation. Finally, while the present study adopted an Eulerian perspective to examine
the vorticity transport, future efforts should consider the Lagrangian evolution of vorticity
(Xiang, Eyink & Zaki 2025) in these bluff-body flows.
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Appendix A. Alternative forms of Πa and Πν

In this appendix, we relate the advective flux term Πa to the wall pressure field, and we
relate the diffusive flux term Πν to the wall shear stress. These derivations explain the
observed similarities in figures 9 and 13.

Starting from the expression for Πa , and recalling the Poisson equation ∇2h =
−∇ · (u × ω) for the total pressure h = (p/ρ)+ (1/2) |u|2, we can write

(A1)

=
∫
Ω

−φ ∇ · ∇h dV =
∫
Ω

∇ · (−φ ∇h) dV +
∫
Ω

uφ · ∇h dV (A2)

=
∫
∂B

(
φn̂ · ∇h

)
dS − lim

R→∞

∫
SR

(
φ x̂ · ∇h

)
dS +

∫
Ω

∇ · (uφh
)

dS

=
∫
∂B

(
φn̂ · ∇h

)
dS − lim

R→∞

∫
SR

x̂ · (φ ∇h − h ∇φ) dS (A3)

=
∫
∂B
φn̂ · ∇

(
p

ρ
+ 1

2
|u|2

)
dS. (A4)

The above expression establishes the connection between the advective term and the wall
pressure.

Similarly, an expression can be derived that relates the viscous termΠν to the wall shear
stress,

Πν =
∫
Ω

uφ · (ν ∇ × ω) dV :=
∫
Ω

ν ∂iφεi jk ∂ jωkdV (A5)

ν∂j
ΩΩ

ν (∂i∂jφ) εijkωk(∂iφεijkωk)= (A6)

=:
∫
Ω

ν ∇ · (−∇φ × ω) dV = −
∫
∂Ω

νuφ · (n̂ × ω
)

dV (A7)

=
∫
∂Ω

1
ρ

uφ · τ dV . (A8)

The last expression can be interpreted as the wall shear stress exerting work along the
potential flow.
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