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In this article, we prove the local-in-time existence of regular solutions to dissipative
Aw–Rascle system with the offset equal to gradient of some increasing and regular
function of density. It is a mixed degenerate parabolic-hyperbolic hydrodynamic
model, and we extend the techniques previously developed for compressible
Navier–Stokes equations to show the well-posedness of the system in the L2 − L2

setting. We also discuss relevant existence results for offset involving singular or
non-local functions of density.
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1. Introduction

We investigate the, so-called, dissipative Aw–Rascle system%t + div (%u) = 0 (1.1a)

(%w)t + div (%w⊗ u) = 0 (1.1b)

on T3 × (0, T ), where T3 is a three-dimensional torus. The unknown of the system
are the density %(t, x) and the desired velocity of motionw(t, x). The actual velocity
of motion u is given by the relation:
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u = w−∇p(%), (1.2)

where ∇p(%) is the velocity offset, with a given offset function p(·) ∈ C5(R+).
System (1.1) is supplemented with the initial data

%(0, x) = %0(x), u(0, x) = u0(x). (1.3)

The purpose of the article is to prove local-in-time existence of regular solutions
to system (1.1) under the following assumptions on the data

(%0,u0) ∈ H4(T3)×H3(T3). (1.4)

We may also assume less regularity of %0 at the price of additional assumption on
well-prepared data, more precisely

%0 ∈ H3(T3), u0 +∇p(%0) ∈ H3(T3). (1.5)

Our goal is to prove local in time existence of regular solutions to (1.1) Note that,
using (1.2), we can rewrite (1.1) as%t + div(%w)− div(%∇p(%)) = 0, (1.6a)

(%w)t + div(%w⊗w) = div(%w⊗∇p(%)), (1.6b)

which is the equivalent formulation as long as the solution remains sufficiently
regular. Moreover, assuming %> 0 we can further transform this system to obtain%t + div (%w) = div (%p′(%)∇%), (1.7a)

wt + u · ∇w = 0, (1.7b)

subject to the initial data

(%,w)|t=0 = (%0,u0 +∇p(%0)). (1.8)

System (1.1) with closure relation (1.2) was recently considered by Acaves et al.
[1] in the context of pedestrian flow. Their offset function was actually singular
with respect to (w.r.t.) density

p(%) = ε

(
1

%
− 1

%max

)−β

. (1.9)

This offset function acts as a barrier to ensure that the density remains below its
maximum %max, which models the formation of congestion within the crowd. For
an up-to-date overview of the literature on the macroscopic models of crowds, we
refer to the recent overview articles [5–7].

The dissipative Aw–Rascle system is a model inspired by the one-dimensional
Aw–Rascle road traffic model. For derivation of this model and its qualitative anal-
ysis, we refer to [3, 4]. The offset function (1.9) was actually originally proposed for
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Regular solutions to the dissipative Aw–Rascle system 3

that model in the work of Berthelin et al. [8], as a remedy to the lack of uniform
bound for the density.

The classical Aw–Rascle model for traffic differs from the dissipative Aw–Rascle
system (1.1), not only in its spatial dimension but also because it uses a scalar
offset, i.e., u = w − p(%). Incorporating the offset in the form of gradient (1.2)
resolves the dimension discrepancy in the closure relation between the velocities u
and w. However, the whole system changes its character from hyperbolic to mixed
hyperbolic-parabolic type due to additional dissipation effect in the continuity equa-
tion (1.7a). While for description of the multi-lane traffic, first order systems seem
to be a more suitable [2, 20, 33], and it was demonstrated in [1] that system (1.1)
and (1.2) correctly capture the fundamental diagram for the pedestrian flow.

The mathematical properties of the dissipative Aw–Rascle system have been
explored for the first time in [10]. The authors demonstrated the existence and
weak-strong uniqueness of Young-measure solutions to the system (1.1) and (1.2)
with p(%) = %γ , γ > 0. Their result states that the measure-valued solution coincides
with the strong solution emanating from the same initial data, as long as the latter
exists. However, the existence of regular solutions was assumed rather than proven,
which motivates the current article. Our aim is to address this gap. Initially, we
will focus on a generalization of the offset function p(%) = %γ considered in [10],
followed by an analysis of the well-posedness for two other forms: the singular offset
function (1.9) and a non-local offset function defined as p(%) = K(x) ∗ %. These
variations are inspired not only by the aforementioned pedestrian flow model [1]
but also by models that address lubrication effects [25] and collective behaviors [22,
31], as discussed in [11–13, 26] and related literature.

Lastly, it is important to mention that the well-posedness of the system (1.1)
and (1.2) has been previously examined in the framework of weak solutions. Using
the method of convex integration, it was shown in [9] that any initial data (%0,u0) ∈
C2(T3) × C3(T3) can connect to any terminal data (%T ,uT ) ∈ C2(T3) × C3(T3)
consistent with mass and momentum conservation, via a weak solution belonging
the class

% ∈ C2([0, T ]× T3), u ∈ L∞((0, T )× T3).

The corresponding ill-posedness result clearly shows that the existence of so-called
wild solutions extends beyond the hyperbolic systems of conservation laws and, in
particular, to those experiencing dissipation that degenerates in vacuum.

In this article, we extend the energy estimates approach developed for the com-
pressible Navier–Stokes equations (see [34], [35], [14], [15], [23], among others) to
systems of mixed hyperbolic-parabolic type, which exhibit dissipation in the conti-
nuity equation but lack it in the momentum equation. We prove the local existence
of regular solutions to system (1.1) by applying the method of successive approxima-
tions. We restrict ourselves to direct energy approach in L2 framework. Alternative
Lp approach, which has been developed for the compressible Navier–Stokes system
in [28]–[29] and, with entirely different techniques based on R-bounded solution
operators in [17], would be another possibility in context of regular solutions to
(1.1), but we leave this direction for future investigation.
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The main difficulty here is to derive Lp estimates for a linear transport equation.
The approach is based on an explicit solution formula obtained by the method of
characteristics. Partial results of this type have been used in the theory of com-
pressible Navier–Stokes equations (see among others [28], [34], [35], [23]), but a
consistent Lp theory for transport equations is still missing. Here we address this
issue proving quite a general result (lemma 2.2), which may be of independent
interest. The dissipativity in (1.6b) gives parabolic estimates, but a delicate part
is to ensure positivity of the solution at each step of the iteration. This issue is
addressed in lemma 2.3.

1.1. Notation

Before stating our main result, we shall introduce the notation used in the article.

• Throughout the article, by E(·) we denote a positive, continuous function
such that E(0) = 0 and φ(·) denotes a continuous, positive function.

• We use standard notation Lp(T3) and W 1
p (T3) for Lebesgue and Sobolev

spaces on the torus, respectively, andHk(T3) :=W k
2 (T3). Next, Lp(0, T ;X),

where X is a Banach space, denotes a Bochner space.
• For T > 0 and k ∈ N let us also denote

Xk(T ) := L2(0, T ;H
k(T3)) ∩ L∞(0, T ;Hk−1(T3)),

Yk(T ) := {f ∈ L∞(0, T ;Hk(T3)) : ft ∈ L∞(0, T ;Hk−1(T3)),

Vk(T ) := {g ∈ L2(0, T ;H
k+1(T3)) ∩ L∞(0, T ;Hk(T3)) :

gt ∈ L2(0, T ;H
k−1(T3))}

(1.10)

with norms defined in a natural way as appropriate sums of norms.

Since all spaces are considered on the torus, we shall sometimes skip indication
of the domain in the definition of space and write Lp instead of Lp(T3), etc. We
are now in a position to state our main result.

Theorem 1.1. Assume the initial data satisfies %0 > 0, and either (1.4) or (1.5).
Assume, moreover, that the pressure is an increasing function of the density of
class C5. Then there exists T> 0 such that system (1.7) admits a unique solution
(%,w) ∈ V3(T )× Y3(T ) with the estimate

‖%‖V3(T ) + ‖w‖Y3(T ) ≤ C(‖%0‖H4(T3), ‖u0‖H3(T3))

in case of (1.4) or

‖%‖V3(T ) + ‖w‖Y3(T ) ≤ C(‖%0‖H3(T3), ‖u0 +∇p(%0)‖H3(T3))

in case of (1.5).

The strategy of the proof involves two main steps:
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• construction of solutions to a suitable approximation of system (1.7),
• proof of convergence.

We aim to approximate solutions (1.7) by solutions to the iterative scheme
defined as 

%n+1
t + div (%n+1wn+1) = div (%np′(%n)∇%n+1),

wn+1
t + un · ∇wn+1 = 0,

(%n+1,wn+1)|t=0 = (%0,u0 +∇p(%0)).
(1.11)

At each step of the iteration, having (%n,wn) we set un = wn −∇p(%n) and solve
the second equation of (1.11) for wn+1. Next we use wn+1 to determine %n+1 from
the first equation. Therefore, each step of iteration is decoupled to solving separate
linear problems

%t + div (%w̄) = div (%̄p′(%̄)∇%) (1.12)

with given (w̄, %̄) and

wt + ū · ∇w = 0 (1.13)

with given ū. Convergence of this iterative scheme is then proved using the Banach
fixed point theorem.

The article is organized as follows. In §2, we first solve the linear problems corre-
sponding to the iterative scheme described above in (1.12) and (1.13). Next, in §3,
we prove the convergence of the iterative scheme using the contraction argument.
Finally, in §4, we discuss the existence results for general singular and non-local
offset functions; we formulate and prove our other main results—theorems 4.1 and
4.3.

2. Linear theory

In this section, we solve linear problems corresponding to (1.12) and (1.13).

2.1. Linear transport equation

Consider the linear transport equation

ηt + v · ∇η = g on T3 × (0, T ), η|t=0 = η0 on T3 (2.1)

with given vector field v and unknown scalar valued η. Our goal is to prove the
existence of a solution to (2.1) in the regularity framework corresponding to theorem
1.1. We will use the explicit form of the solution in Lagrangian coordinates given
by

∂X(t, y)

∂t
= v(t,X(t, y)), X(0, y) = y. (2.2)

The first step is, therefore, to investigate the regularity properties of solutions to
(2.2). For this purpose, we shall repeatedly use a basic fact that if a matrix is close
to identity in the L∞ in space-time norm, then the same holds for its inverse. In

https://doi.org/10.1017/prm.2025.10033 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10033


6 N. Chaudhuri, T. Piasecki and E. Zatorska

particular, using the notation E (T ), we have

‖A− I‖L∞((0,T )×T3) ≤ E(T ) =⇒ ‖A−1 − I‖L∞((0,T )×T3) ≤ E(T ) (2.3)

for any function A : (0, T )×T3 → R3×3. The following result improves [23, Lemma
3.2]:

Lemma 2.1. Assume v ∈ L2(0, T ;H
3(T3)). Then there exists a continuous, positive

function φ(·) denotes such that the solution to (2.2) satisfies

‖∇yX − I‖L∞((0,T )×T3) ≤ E(T ), (2.4)

‖∇yX‖L∞((0,T )×T3) ≤ φ(
√
T‖v‖L2(0,T ;H3(T3))), (2.5)

‖[∇yX]−1 − I‖L∞((0,T )×T3) ≤ E(T ), (2.6)

‖[∇yX]−1‖L∞((0,T )×T3) ≤ φ(
√
T‖v‖L2(0,T ;H3(T3))), (2.7)

‖∇yX‖Lp(0,T ;L∞(T3) ≤ E(T ) for 1 ≤ p <∞ (2.8)

‖∇2
yX‖L∞(0,T ;L6(T3)) ≤ φ(

√
T‖v‖L2(0,T ;H3(T3))) (2.9)

‖∇2
yX‖Lp(0,T ;L6(T3)) ≤ E(T ) ∀ 1 ≤ p <∞ (2.10)

‖∇3
yX‖L∞(0,T ;L2(T3)) ≤ φ(

√
T‖v‖L2(0,T ;H3(T3))) (2.11)

‖∇3
yX‖Lp(0,T ;L2(T3)) ≤ E(T ) ∀ 1 ≤ p <∞. (2.12)

Proof. The first assertion was proved in [23, Lemma 3.2]. The second is derived
and used in the proof of the aforementioned result. Then (2.6) results from (2.3),
while (2.7) follows from the fact that the entries of the inverse an invertible matrix
A are smooth functions of the entries of A

‖∇yX‖Lp(0,T ;L∞(T3)) ≤ T 1/p‖∇yX‖L∞((0,T )×T3) ≤ E(T ).

In order to prove the bounds for higher derivatives observe that differentiating the
solution formula

X(t, y) = y +

∫ t

0

v(s,X(s, y)) ds

with respect to y we obtain

∇yX(t, y) = y +

∫ T

0

∇xv(x,X(s, y))⊗∇yX(s, y) ds,
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which is equivalent to

∂t∇yX(t, y) = ∇xv(x,X(t, y))⊗∇yX(t, y).

Differentiating this identity in y, we obtain

∂t∇2
yX(t, y) ∼ ∇2

xv(t,X(t, y))(∇yX(t, y))2 +∇xv(t,X(t, y))∇2
yX(t, y). (2.13)

Multiplying the component corresponding to ∂2yiyj
X by |∂2yiyj

X|4∂2yiyj
X, summing

over i, j and integrating over T3 we get

∂t‖∇2
yX(t, ·)‖6L6(T3) ≤

∫
T3

|∇2
xv(t,X(t, y))|(∇yX(t, y))2|∇2

yX(t, y)|5dy∫
T3

|∇xv(t,X(t, y))||∇2
yX(t, y)|6dy

≤ ‖∇2
xv(t,X(t, ·))‖L6(T3)‖∇yX(t, y)‖2L∞(T3)‖∇

2
yX(t, ·)‖5L6(T3)

+ ‖∇xv(t,X(t, ·))‖L∞(T3)‖∇2
yX(t, ·)‖6L6(T3).

(2.14)

By (2.4), for small T and any function f of the time variable with values in Lp(T3)
for 1 ≤ p <∞, we have

‖f(t,X(t, ·))‖Lp(T3) =

(∫
T3

|f(t,X(t, y))|p dy

)1/p

=

(∫
T3

|f(t,X(t, y))|p|JyX(t, y)||JyX(t, y)|−1 dy

)1/p

≤

(
sup
y∈T3

|JyX(t, y)|−1

)1/p(∫
T3

|f(t, x)|p dx

)1/p

≤ C‖f(t, ·)‖Lp(T3),

(2.15)

and similarly

‖f(t,X(t, ·))‖L∞(T3) ≤ C‖f(t, ·)‖L∞(T3). (2.16)

By (2.15), (2.16), and Sobolev imbedding, applying (2.4) to the first term of the
RHS of (2.14) we get

∂t‖∇2
yX(t, ·)‖6L6(T3) ≤ ‖∇2

xv(t, ·)‖L6(T3)‖∇yX(t, y)‖2L∞(T3)‖∇
2
yX(t, ·)‖5L6(T3)

+ ‖∇xv(t, ·)‖L∞(T3)‖∇2
yX(t, ·)‖6L6(T3)

≤ C(‖∇2
xv(t,X(t, ·))‖L6(T3)

+ ‖∇xv(t,X(t, ·))‖L∞(T3))‖∇2
yX(t, ·)‖6L6(T3)

≤ C‖v(t,X(t, ·))‖H3(T3)‖∇2
yX(t, ·)‖6L6(T3).

The assumed integrability of v allows to conclude (2.9) by Gronwall inequality:

‖∇2
yX(t, ·)‖6L6(T3) ≤ C exp

(∫ t

0

‖v(s, ·)‖H3(T3) ds

)
≤ exp

(√
t‖v‖L2(0,t;H3(T3))

)
.
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This proves (2.9), which immediately implies (2.10). A remark is due here. In
derivation of (2.9), we assumed for simplicity that

‖∇yX‖L∞(T3) ≤ C‖∇2
yX‖L6(T3) (2.17)

which does not hold since we don’t have Poincaré inequality. To make the proof fully
precise, we would have to replace ‖∇2

yX‖L6(T3) by ‖∇yX‖W 1
6 (T3) which is easy—it is

enough to write estimate for ∂
∂t‖∇yX‖6L6(T3). Therefore to avoid additional obvious

terms, we assume (2.17). Similar simplification is also used later in the proof.
In order to prove (2.11), we differentiate (2.13) in y obtaining

∂t∇3
yX(t, y) ∼ ∇3

xv(t,X)(∇yX)3 +∇xv(t,X)∇yX∇2
yX +∇xv(t,X)∇2

yX.

Multiplying the equation corresponding to ∂3yiyjyk
X by ∂3yiyjyk

X and summing over
all i, j, k we get

∂t‖∇3
yX(t, ·)‖2L2(T3) ≤

∫
T3

∇3
xv(t,X(t, y))|∇yX(t, y)|3|∇3

yX(t, y)| dy

+

∫
T3

|∇2
xv(t,X(t, y))| |∇yX(t, y)||∇2

yX(t, y)||∇3
yX(t, y)| dy

+

∫
T3

∇xv(t,X(t, y))|∇3
yX(t, y)|2 dy,

from which, by Sobolev imbedding, (2.4), (2.15), and (2.16), we obtain

∂t‖∇3
yX(t, ·)‖2L2(T3) ≤ C

(
‖∇3

xv(t, ·)‖L2(T3) + ‖∇2
xv(t, ·)‖L6(T3)

+ ‖∇xv(t, ·)‖L∞(T3)

)
‖∇3

yX(t, ·)‖2L2(T3)

≤ C‖v(t, ·)‖H3(T3)‖∇3
yX(t, ·)‖2L2(T3),

and by Gronwall inequality we conclude (2.11), which implies (2.12). �

Now we are in a position to prove a series of estimates for the transport equation
(2.1). As they may be of independent interest, we prove them in a possibly general
form.

Lemma 2.2. Assume v ∈ X3(T ) defined in (1.10) and η0 ∈ H3(T3). Then the
solution to (2.1) satisfies

‖η‖L∞(0,T ;W 1
r (T3)) ≤ φ(

√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 1

r (T3) + E(T )‖g‖Lq(0,T ;W 1
r (T3))

∀ 1 < q ≤ ∞, 1 ≤ r ≤ ∞ (2.18)

‖∇xη‖Lp(0,T ;Lr(T3)) ≤ E(T )
(
‖∇η0‖L∞(T3) + ‖∇xg‖L1(0,T ;Lr(T3))

)
∀ 1 ≤ p <∞, 1 ≤ r ≤ ∞ (2.19)
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‖∇2
xη‖L∞(0,T ;L6(T3)) ≤ φ(

√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 2

6 (T3)

+ E(T )
(
‖∇xg‖Lq(0,T ;W 1

6 (T3))

)
∀ 1 < q ≤ ∞, (2.20)

‖∇2
xη‖Lp(0,T ;L6(T3)) ≤ E(T )

(
‖η0‖W 2

6 (T3) + ‖∇xg‖Lq(0,T ;W 1
6 (T3))

)
∀ 1 ≤ p ≤ ∞, 1 < q ≤ ∞, (2.21)

‖∇2
xη‖L∞(0,T ;L3(T3)) ≤ φ(

√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 2

6 (T3)

+ E(T )
(
‖∇xg‖Lq(0,T ;H2(T3))

)
∀ 1 < q ≤ ∞, (2.22)

‖∇2
xη‖Lp(0,T ;L3(T3)) ≤ E(T )

(
‖η0‖W 2

6 (T3) + ‖∇xg‖Lq(0,T ;W 1
2 (T3))

)
∀ 1 ≤ p <∞, 1 < q ≤ ∞, (2.23)

‖η‖L∞(0,T ;H3(T3)) ≤ φ(
√
T‖v‖X3(T ))‖η0‖W 2

6 (T3)

+ E(T )
(
‖η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3))

)
∀ 1 < q ≤ ∞, (2.24)

‖η‖Lp(0,T ;H3(T3)) ≤ E(T )
(
‖η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3))

)
,

∀ 1 ≤ p <∞, 1 < q ≤ ∞, (2.25)

‖ηt‖L∞(0,T ;H2(T3)) ≤ φ(
√
T‖v‖X3(T ))(‖η0‖W 2

6 (T3) + ‖∇g‖L∞(0,T ;H1(T3)))

+ E(T )
(
‖η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3))

)
∀ 1 < q ≤ ∞,

(2.26)

‖ηt‖Lp(0,T ;H2(T3)) ≤ E(T )
(
‖∇η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3)) + ‖∇g‖L∞(0,T ;H1(T3))

)
∀ 1 ≤ p <∞, 1 < q ≤ ∞. (2.27)

Proof. We have

η(t,X(t, y)) = η0(y) +

∫ t

0

g(s,X(s, y)) ds.

Differentiating this identity in y, we obtain

∇yX(t, y)∇xη(t,X(t, y)) = ∇yη0 +

∫ t

0

∇xg(s,X(s, y))∇yX(s, y) ds, (2.28)
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which, by lemma 2.1, implies

‖∇xη‖L∞(0,T ;Lr(T3)) ≤ ‖(∇yX)−1‖L∞((0,T )×T3)‖∇yη0‖Lr(T3)

+ ‖(∇yX)−1

∫ t

0
∇xg(s,X(s, y))∇yX(s, y) ds‖L∞(0,T ;Lr(T3))

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖∇η0‖Lr(T3) + E(T )‖∇xg‖Lq(0,T ;Lr(T3))

∀ 1 < q ≤ ∞, 1 ≤ r ≤ ∞
(2.29)

from which we obtain (2.18). Similarly, using (2.8), we obtain (2.19). In order to
estimate ∇2

xη, we differentiate (2.28) in y to obtain

∂2η0(y)

∂yj∂yk
+

∫ t

0

∑
i

[
gxi

(s,X(s, y))
∂2Xi(s, y)

∂yj∂yk

+

(∑
l

gxixl
(s,X(s, y))

∂Xl(s, y)

∂yk

)
∂Xi(s, y)

∂yj

]
=

= ∂yk

(∑
i

∂η

∂xi
(t,X(t, y))

∂Xi(t, y)

∂yj
(t, y)

)
=

=
∑
i,l

∂2η

∂xi∂xl
(t,X(t, y))

∂Xl

∂yk
(t, y)

∂Xi

∂yj
(t, y) +∇xη(t,X(t, y)) · ∂2X

∂yj∂yk
(t, y)

for j, k ∈ {1, 2, 3}. Rewriting the above system as

∑
i,l

∂2η

∂xi∂xl
(t,X(t, y))

∂Xl

∂yk
(t, y)

∂Xi

∂yj
(t, y) =

=
∂2η0(y)

∂yj∂yk
+

∫ t

0

∑
i

[
gxi

(s,X(s, y))
∂2Xi(s, y)

∂yj∂yk

+

(∑
l

gxixl
(s,X(s, y))

∂Xl(s, y)

∂yk

)
∂Xi

∂yj

]

−∇xη(t,X(t, y)) · ∂
2X(t, y)

∂yj∂yk

(2.30)

for k, j ∈ {1, 2, 3}, which is a linear system of nine equations for the unknown

derivatives ∂2η
∂xi∂xl

(t,X). In order to solve it, we observe that the diagonal of this

system corresponds to (i, l) = (j, k), which means that on the diagonal we have

terms ∂Xk

∂yk

∂Xj

∂yj
, while all entries outside the diagonal contains the terms which

are not on the diagonal of ∇yX. Therefore, by (2.4), all terms on the diagonal
of system (2.30) are close to 1 for short times, while all other terms are small.
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Therefore, system (2.30) is uniquely solvable and we obtain

|∇2
xη(t,X(t, y))| ≤ C

(
|∇2

yη0|+ |∇xη(t,X(t, y))||∇2
yX(t, y)|

+

∣∣∣∣∫ t

0

|∇xg(s,X(s, y))||∇2
yX(s, y)|+ |∇2

xg(s,X(s, y))||∇yX(s, y)|2 ds
∣∣∣∣ ). (2.31)

By (2.9) and (2.29), we have

‖|∇xη||∇2
yX|‖L∞(0,T ;L6(T3)) ≤ ‖∇xη‖L∞((0,T )×T3)‖∇

2
yX‖L∞(0,T ;L6(T3))

≤
(
φ(

√
T‖v‖L2(0,T ;H3(T3)))‖∇η0‖L∞(T3) + E(T )‖∇xg‖Lq(0,T ;L∞(T3))

)
φ(

√
T‖v‖L2(0,T ;H3(T3)))

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖∇η0‖L∞(T3) + E(T )‖∇xg‖Lq(0,T ;L∞(T3)) ∀ 1 < q ≤ ∞.

(2.32)

Next, by (2.9)∥∥∥∥∫ t

0

|∇xg||∇2
yX|

∥∥∥∥
L∞(0,T ;L6(T3))

≤
∫ T

0

‖∇xg‖L∞(T3)‖∇2
yX‖L6(T3)

≤ φ(
√
t‖v‖L2(0,T ;H3(T3)))

∫ T

0

‖∇xg‖L∞(T3)dt ≤ E(T )‖∇xg‖Lq(0,T ;L∞(T3))

∀ 1 < q ≤ ∞,

(2.33)

and finally∥∥∥∥∫ t

0

|∇2
xg||∇yX|2dt

∥∥∥∥
L∞(0,T ;Lp(T3))

≤
∫ T

0

‖∇2
xg‖Lp(T3)‖∇yX‖2L∞

≤ ‖∇yX‖2L∞((0,T )×T3)

∫ T

0

‖∇2
xg‖Lp(T3)dt ≤ E(T )‖∇2

xg‖Lq(0,T ;Lp(T3))

∀ 1 < q ≤ ∞, 1 ≤ p ≤ 6.

(2.34)

Combining (2.31), (2.32), (2.33), and (2.34), we obtain (2.20). Next, by (2.10) and
(2.29), we have∥∥|∇xη||∇2

yX|
∥∥
Lp(0,T ;L6(T3))

≤ ‖∇xη‖L∞((0,T )×T3)‖∇2
yX‖Lp(0,T ;L6(T3))

≤ E(T )(RHS of (2.29)) ≤ E(T )
(
‖∇η0‖L∞(T3) + ‖∇xg‖Lq(0,T ;L∞(T3))

)
∀ 1 < q ≤ ∞.

Combining this estimate with (2.31), (2.33), and (2.34), we arrive at (2.21). Next,
similarly to (2.32), we obtain

∥∥∇xη||∇2
yX|

∥∥
L∞(0,T ;L3(T3))

≤ ‖∇2
yX‖L∞(0,T ;L6(T3))‖∇xη‖L1(0,T ;L6(T3))

≤
(
φ(

√
T‖v‖L2(0,T ;H3(T3)))‖∇η0‖L∞(T3) + E(T )‖∇xη‖Lq(0,T ;L6(T3))

)
φ(

√
T‖v‖L2(0,T ;H3(T3)))

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖∇η0‖L∞(T3) + E(T )‖∇xg‖Lq(0,T ;H1(T3)) ∀ 1 < q ≤ ∞

(2.35)
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and, in analogy to (2.33), we have

∥∥∥∥∫ t

0

|∇xg||∇2
yX|

∥∥∥∥
L∞(0,T ;L3(T3))

≤
∫ T

0

‖∇xg‖L6(T3)‖∇2
yX‖L6(T3)

≤ φ(
√
t‖v‖L2(0,T ;H3(T3)))

∫ T

0

‖∇xg‖L6(T3)dt ≤ E(T )‖∇xg‖Lq(0,T ;H1(T3))

∀ 1 < q ≤ ∞.

(2.36)

Combining (2.35), (2.36), and (2.34) with p=2, we obtain (2.22). Next, by (2.10)
and (2.29), we have

∥∥|∇xη||∇2
yX|

∥∥
Lp(0,T ;L3(T3))

≤ ‖∇xη‖L∞(L6(T3))‖∇
2
yX‖Lp(0,T ;L6(T3))

≤ E(T )(RHS of (2.29)) ≤ E(T )
(
‖∇η0‖L∞(T3) + ‖∇xg‖Lq(0,T ;L6(T3))

)
∀ 1 < q ≤ ∞,

which combined with (2.36) and (2.34) for p=2 gives (2.23).
In order to estimate the third order derivatives, we differentiate (2.30) w.r.t. ym,

which yields

∑
i,l,n

∂3η

∂xi∂xl∂xn
(t,X)

∂Xn

∂ym

∂Xl

∂yk

∂Xi

∂yj
=

=
∂3η0

∂yj∂yk∂ym
− ∂ym

(
∇xη(t,X)

∂2X

∂yj∂yk
(t, y)

)
−
∑
i,l

∂2η

∂xi∂xl
(t,X)

(
∂2Xl

∂yk∂ym

∂Xi

∂yl
+

∂2Xi

∂yl∂ym

∂Xl

∂yk

)
(t, y)

+

∫ t

0

∂ym

{∑
i

[
gxi

(s,X)
∂2Xi

∂yj∂yk
+

(∑
l

gxixl
(s,X)

∂Xl

∂yk

)
∂Xi

∂yj

]}
,

(2.37)

where X = X(t, y) or X = X(s, y) according to (2.30). Similarly as in case of
(2.30), it is a system of 27 linear equations for the third order derivatives of η. On
the diagonal, we have terms corresponding to (i, l, n) = (j, k,m), which, again by
(2.4), are close to one, while all other entries are small for small times. Therefore,
(2.37) is uniquely solvable and we obtain

|∇3
xη| ≤C

(
|∇3

yη0|+ |∇2
xη||∇yX||∇2

yX|+ |∇xη||∇3
yX|

+

∫ t

0

|∇xg||∇3
yX|+ |∇2

xg||∇yX||∇2
yX|+ |∇3

xg||∇yX|3dt
)
.

(2.38)
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Let us estimate the RHS of (2.38). For the second term, by (2.9) and (2.20), we
have∥∥|∇2

xη||∇yX||∇2
yX|

∥∥
L∞(0,T ;L2(T3))

≤ C‖∇2
xη‖L∞(0,T ;L3(T3))‖∇2

yX‖L∞(0,T ;L6(T3))

≤ φ(
√
t‖v‖L2(0,T ;H3(T3))) [RHS of (2.20)]

≤ φ(
√
t‖v‖L2(0,T ;H3(T3)))‖η0‖W 2

6 (T3) + E(T )
(
‖∇xg‖Lq(0,T ;L∞(T3))]+

‖∇2
xg‖Lq(0,T ;L6(T3))),

(2.39)
and for the third, by (2.11) and (2.18)∥∥|∇xη||∇3

yX|
∥∥
L∞(0,T ;L2(T3))

≤ ‖∇xη‖L∞((0,T )×T3)‖∇3
yX‖L∞(0,T ;L2(T3))

φ(
√
T‖v‖L2(0,T ;H3(T3))) [RHS of (2.18)]

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 1

∞
+ E(T )‖g‖Lq(0,T ;W 1

∞(T3)).

It remains to estimate the terms with g. By (2.11), we have∥∥∥∥∫ t

0

|∇xg||∇3
yX|

∥∥∥∥
L∞(0,T ;L2(T3))

≤
∫ T

0

‖∇xg(t, ·)‖L∞‖∇3
yX(t, ·)‖L2(T3)dt

≤ E(T )‖∇xg‖Lq(0,T ;L∞(T3)) ∀ q < 1 ≤ ∞.

(2.40)

Next, by (2.9),

∥∥∥∥∫ t

0

|∇2
xg||∇yX||∇2

yX|
∥∥∥∥
L∞(0,T ;L2(T3))

≤ C

∫ T

0

‖∇2
xg(t, ·)‖L3(T3)‖∇

2
yX(t, ·)‖L6(T3)

≤ C‖∇2
yX‖L∞(0,T ;L6(T3))

∫ T

0

‖∇2
xg(t, ·)‖L3(T3)dt ≤ E(T )‖∇2

xg‖Lq(0,T ;L3(T3)) ∀ 1 < q ≤ ∞,

(2.41)

and finally

∥∥|∇3
xg||∇yX|3|

∥∥
L∞(0,T ;L2(T3))

≤ C

∫ T

0

‖∇3
xg(t, ·)‖L2(T3)dt ≤ E(T )‖∇3

xg‖Lq(0,T ;L2(T3))

∀ 1 < q ≤ ∞.

(2.42)

Combining (2.38)–(2.42) and applying Sobolev imbedding to estimate all terms
containing g by a single norm, we obtain

‖∇3
xη‖L∞(0,T ;L2(T3)) ≤ φ(

√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 2

6 (T3)

+ E(T )
(
‖g‖Lq(0,T ;H3(T3))

)
∀ 1 < q ≤ ∞,

which together with estimates on lower order derivatives of η completes the proof
of (2.24).
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In order to prove of (2.25) observe that, for any finite p, by (2.9) and (2.21) we
have

‖∇2
xη∇yX∇2

yX‖Lp(0,T ;L2(T3)) ≤ C‖∇2
yX‖L∞(0,T ;L6(T3))‖∇2

xη(t)‖Lp(0,T ;L3(T3))

≤ E(T )
(
‖η0‖W 2

6 (T3) + ‖∇xg‖Lq(0,T ;L∞) + ‖∇2
xg‖Lq(0,T ;L6(T3))

)
∀ 1 < q ≤ ∞.

(2.43)
Similarly by (2.11) and (2.19), we obtain

‖∇xη∇3
yX‖Lp(0,T ;L2(T3)) ≤ C‖∇3

yX‖L∞(0,T ;L2(T3))‖∇xη‖Lp(0,T ;L∞(T3))

≤ E(T )
(
‖∇η0‖L∞(T3) + ‖∇xg‖L1(0,T ;L∞(T3))

)
.

(2.44)

For the terms with g on the RHS of (2.38), we use the estimates (2.40)–(2.42).
Combining them with (2.43)–(2.44), we obtain

‖∇3
xη‖Lp(0,T ;L2(T3)) ≤ E(T )

(
‖η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3))

)
∀ 1 ≤ p < ∞, 1 < q ≤ ∞,

which completes the proof of (2.25). Now we can use (2.1) to prove the estimates
for ηt. First we immediately get

‖ηt‖L∞((0,T )×T3) ≤ φ(
√
t‖v‖X3(T )), ‖ηt‖Lp(0,T ;L∞(T3)) ≤ E(T ) ∀ 1 ≤ p <∞.

Next we differentiate (2.1) in the space variable to obtain

∇ηt ∼ ∇v∇η + v∇2η +∇g. (2.45)

By (2.18), we have

‖∇v∇η‖L∞(0,T ;L6(T3)) ≤ ‖∇v‖L∞(0,T ;L6(T3))‖∇η‖L∞((0,T )×T3)

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 1

∞(T3) + E(T )‖g‖Lq(0,T ;W 1
∞(T3)) ∀ 1 < q ≤ ∞,

(2.46)
by (2.20)

‖v∇2η‖L∞(0,T ;L6(T3)) ≤ ‖v‖L∞((0,T )×T3)‖∇
2η‖L∞(0,T ;L6(T3))

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W2

6 (T3) + E(T )
(
‖∇xg‖Lq(0,T ;L∞(T3))

+ ‖∇2
xg‖Lq(0,T ;L6(T3))) ∀ 1 < q ≤ ∞,

(2.47)

by (2.19)

‖∇v∇η(t)‖Lp(0,T ;L6(T3)) ≤ ‖∇v‖L∞((0,T )×T3)‖∇η(t)‖Lp(0,T ;L6(T3))

≤ E(T )
(
‖∇η0‖L∞(T3) + ‖∇xg‖L1(0,T ;L∞(T3))

)
∀ 1 ≤ p <∞,

(2.48)

and finally by (2.21)∫ T

0

‖v(t, ·)∇2η(t, ·)‖pL6(T3) dt ≤ ‖v‖pL∞((0,T )×T3)

∫ T

0

‖∇2η(t, ·)‖pL6(T3) dt

≤ E(T )
(
‖η0‖W 2

6 (T3) + ‖∇xg‖Lq(0,T ;W 1
6 (T3))

)
∀ 1 ≤ p <∞, 1 < q ≤ ∞,

(2.49)
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so altogether we obtain

‖∇ηt‖L∞(0,T ;L6(T3)) ≤ φ(‖v‖X3(T ))(‖η0‖W 2
6 (T3) + ‖∇xg‖L∞(0,T ;L6(T3)))

+ E(T )‖∇xg‖Lq(0,T ;W 1
6 (T3)) ∀ 1 < q ≤ ∞,

‖∇ηt‖Lp(0,T ;L6(T3)) ≤ E(T )
(
‖η0‖W 2

6 (T3) + ‖∇g‖Lq(0,T ;W 1
6 (T3))

+ ‖∇g‖L∞(0,T ;L6(T3))) ∀ 1 ≤ p <∞, 1 < q ≤ ∞.

Finally we differentiate (2.45) once more in space:

∇2ηt ∼ ∇2v∇η +∇v∇2η + v∇3η +∇2g.

For the first term we have, by (2.18),

‖∇2v∇η‖L∞(0,T ;L2(T3)) ≤ ‖∇η‖L∞((0,T )×T3)‖∇2v‖L∞(0,T ;L2(T3))

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 1

∞(T3) + E(T )‖g‖Lq(0,T ;W 1
∞(T3)) ∀ 1 < q ≤ ∞,

(2.50)
and, by (2.19),

‖∇2v∇η(t)‖pLp(0,T ;L2(T3)) ≤ ‖∇η‖Lp(0,T ;L∞(T3))

∫ T

0

‖∇2v(t)‖L∞(0,T ;L2(T3))

≤ E(T )
(
‖∇η0‖L∞(T3) + ‖∇xg‖L1(0,T ;L∞(T3))

)
∀ 1 ≤ p <∞.

(2.51)

For the second term, by (2.20),

‖∇v∇2η‖L∞(0,T ;L2(T3)) ≤ ‖∇v‖L∞(0,T ;L6(T3))‖∇
2η‖L∞(0,T ;L3(T3))

≤ φ(
√
T‖v‖L2(0,T ;H3(T3)))‖η0‖W 2

6 (T3) + E(T )
(
‖∇xg‖Lq(0,T ;W 1

6 (T3))

)
∀ 1 < q ≤ ∞

(2.52)

and by (2.21)

‖∇v∇2η(t)‖Lp(0,T ;L2(T3)) ≤ ‖∇v‖L∞(0,T ;L6(T3))‖∇2η(t)‖Lp(0,T ;L6(T3))

≤ E(T )
(
‖η0‖W 2

6 (T3) + ‖∇xg‖Lq(0,T ;W 1
6 (T3))

)
∀ 1 ≤ p <∞, 1 < q ≤ ∞.

(2.53)

Finally, to estimate the last term, we apply (2.24) to get

‖v∇3η‖L∞(0,T ;L2(T3)) ≤ ‖v‖L∞((0,T )×T3)‖∇
3η‖L∞(0,T ;L2(T3))

≤ φ(
√
t‖v‖X3(T ))‖η0‖W2

6 (T3) + E(T )
(
‖η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3))

)
∀ 1 < q ≤ ∞

(2.54)

and (2.25) to obtain

‖v∇3%(t)‖Lp(0,T ;L2(T3)) ≤ ‖v‖pL∞((0,T )×T3)

∫ T

0

‖∇3η(t)‖Lp(0,T ;L2(T3))

≤ E(T )
(
‖η0‖H3(T3) + ‖g‖Lq(0,T ;H3(T3))

)
∀ 1 ≤ p <∞, 1 < q ≤ ∞.

(2.55)
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Combining (2.46), (2.47), (2.50), (2.52), and (2.54), we obtain (2.26). Finally, (2.48),
(2.49), (2.51), (2.53), and (2.55) allow to conclude (2.27), which completes the
proof. �

2.2. Linear continuity equation with dissipation

In this section, we investigate the linear problem

%t + div (%v)− div (a∇%) = b, %|t=0 = %0. (2.56)

Concerning the regularity of the data, we keep in mind that the above system
corresponds to the first equation of (1.7). Therefore, taking into account lemma 2.2,
it is sufficient to assume v ∈ L∞(0, T ;H3(T3)). The parabolic maximal regularity
then leads to the following result.

Lemma 2.3. Assume %0 ∈ H2(T3), v ∈ L∞(0, T ;H2(T3)), a ∈
L∞(0, T ;W 1

∞(T3)) ∩ L2(0, T ;H
2(T3)) with a ≥ c > 0, and b ∈ L2(0, T ;H

1(T3)).
Then (2.56) admits a unique solution satisfying

‖%‖V2(T ) ≤ C
[
‖%0‖H2(T3) + ‖b‖L2(0,T ;H1(T3))

+ ‖%‖L∞(0,T ;H2(T3))

(
T
(
‖v‖L∞(0,T ;H2(T3)) + ‖∇a‖L∞((0,T )×T3)

)
+ ‖∇2a‖L2(0,T ;L2(T3))]

)]
.

(2.57)

If %0 ∈ H3(T3), b ∈ L2(0, T ;H
2(T3)) v ∈ L∞(0, T ;H3(T3)) and a ∈

L∞(W 1
∞(T3)) ∩ L2(0, T ;H

3(T3)) with a ≥ c > 0, then

‖%‖V3(T ) ≤ C
[
‖%0‖H3(T3) + ‖b‖L2(0,T ;H2(T3))

+ ‖%‖L∞(0,T ;H3(T3))

(
T
(
‖v‖L∞(0,T ;H3(T3)) + ‖∇a‖L∞((0,T )×T3)

)
+ ‖∇2a‖L2(0,T ;H1(T3))]

)]
.

(2.58)

Moreover, if we assume

b = div (%b) with ‖divb‖L1(0,T ;L∞(T3)) ≤ C (2.59)

and the initial data is strictly positive, i.e., infx∈T3 %0 > 0 then we have

min
(t,x)∈[0,T ]×T3

%(t, x) > 0. (2.60)

Remark 1. Clearly, the constant C in (2.57) and (2.58) depends on c and it goes
to infinity when c→ 0.

Proof. Rewriting (2.56) as

%t − div (a∇%) = −div (%v) + b (2.61)

we immediately obtain the bound

‖%‖L2(0,T ;H2(T3)) + ‖%‖L∞(0,T ;H1(T3)) + ‖%t‖L2(0,T ;L2(T3))

≤ C
(
‖%0‖H1(T3) + ‖div (%v)‖L2(0,T ;L2(T3)) + ‖b‖L2(0,T ;L2(T3))

)
.

(2.62)
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The above estimate (2.62) is a direct consequence of parabolic regularity theorem
in L2− setup (see Ladyženskaya, Solonikov, and Ural’ceva [24, Chapter 3], even for
more general boundary conditions). Differentiating (2.61) in xi, we obtain

(%xi
)t − div (a∇%xi

) = −(div (%v))xi
+ div (axi

∇%) + bxi
=: F i

1,

therefore

‖%xi
‖L2(0,T ;H2(T3)) + ‖%xi

‖L∞(0,T ;H1(T3)) + ‖∂t%xi
‖L2(0,T ;L2(T3))

≤ C
(
‖%0‖H2(T3) + ‖F i

1‖L2(0,T ;L2(T3))

)
.

(2.63)

Under the assumed regularity of v and a, using (2.62) we can find appropriate
bound on ‖F1‖L2(0,T ;L2(T3)). Namely,

F1 ∼ v∇2%+∇v∇%+ %∇2v+∇2a∇%+∇a∇2%+∇b.

We have

‖v∇2%‖L2(0,T,L2(T3)) ≤ T‖v‖L∞((0,T )×T3)‖∇2%‖L∞(0,T ;L2(T3)),

‖∇v∇%‖L2(0,T ;L2(T3)) ≤ T‖∇v‖L∞((0,T )×T3)‖∇%‖L∞(0,T ;L2(T3)),

‖%∇2v‖L2(0,T ;L2(T3)) ≤ T‖%‖L∞((0,T )×T3)‖∇2v‖L∞(0,T ;L2(T3)),

‖∇%∇2a‖L2(0,T ;L2(T3)) ≤ ‖%‖L∞((0,T )×T3)‖∇2a‖L2(0,T ;L2(T3)),

‖∇2%∇a‖L2(0,T ;L2(T3)) ≤ T‖∇a‖L∞((0,T )×T3)‖∇2%‖L∞(0,T ;L2(T3)),

which gives

‖F1‖L2(0,T ;L2(T3)) ≤ ‖%‖L∞(0,T ;H2(T3))

(
T [‖v‖L∞(0,T ;H2(T3)) + ‖∇a‖L∞((0,T )×T3)]

+ ‖∇2a‖L2(0,T ;L2(T3)) + ‖b‖L2(0,T ;H1(T3))

)
,

which together with (2.63) implies (2.57).
Next, let α be any multi-index with |α| = 2. Applying Dα to (2.61), we obtain

(Dα%)t − div (a∇Dα%) = Fα
2 , Dα%|t=0 = Dα%0, (2.64)

where

Fα
2 ∼ v∇3%+∇v∇2%+∇2v∇%+ %∇3v+

3∑
k=1

∇ka∇4−k%+∇2b.

In order to prove (2.58), we have to estimate the L2(0, T ;L2(T3)) norm of Fα
2 . We

have

‖v∇3%‖L2(0,T ;L2(T3)) ≤ T‖v‖L∞((0,T )×T3)‖∇3%‖L∞(0,T ;L2(T3)),

‖∇v∇2%‖L2(0,T ;L2(T3)) ≤ T‖∇v‖L∞((0,T )×T3)‖∇2%‖L∞(0,T ;L2(T3)),

‖∇2v∇%‖L2(0,T ;L2(T3)) ≤ T‖∇2v‖L∞(0,T ;L6(T3))‖∇%‖L∞(0,T ;H2(T3)),

‖%∇3v‖L2(0,T ;L2(T3)) ≤ T‖%‖L∞((0,T )×T3)‖∇3v‖L∞(0,T ;L2(T3)).
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Combining these estimates with Sobolev imbedding, we obtain

‖v∇3%+∇v∇2%+∇2v∇%+ %∇3v‖L2(0,T ;L2(T3)) ≤ T‖%‖L∞(0,T ;H3(T3))‖v‖L∞(0,T ;H3(T3)).

(2.65)

The terms with a can be treated as follows

‖∇%∇3a‖2L2(0,T ;L2(T3)) ≤ ‖∇%‖2L∞((0,T )×T3)‖∇
3a‖2L2(0,T ;L2(T3)),

‖∇2%∇2a‖2L2(0,T ;L2(T3)) ≤ ‖∇2%‖2L∞(0,T ;L6(T3))‖∇
2a‖2L2(0,T ;L3(T3)),

‖∇3%∇a‖2L2(0,T ;L2(T3)) ≤ T‖∇a‖2L∞((0,T )×T3)‖∇
3%‖L∞(0,T ;L2(T3)),

which together with Sobolev imbedding yields

‖
3∑

k=1

∇ma∇4−m%‖L2(0,T ;L2(T3))

≤ ‖%‖L∞(0,T ;H3(T3))

[
T‖∇a‖L∞((0,T )×T3) + ‖∇2a‖L2(0,T ;H1(T3))

]
.

(2.66)

Combining (2.65) and (2.66) with the maximal regularity estimate for (2.64), we
obtain

‖∂t∇2%‖+ ‖∇2%‖L∞(0,T ;H1(T3)) + ‖∇2%‖L2(0,T ;H2(T3)) ≤ C
[
‖%0‖H3(T3) + ‖b‖L2(0,T ;H2(T3))

+ ‖%‖L∞(0,T ;H3(T3))

(
T
(
‖v‖L∞(0,T ;H3(T3)) + ‖∇a‖L∞((0,T )×T3)

)
+ ‖∇2a‖L2(0,T ;H1(T3))

)]
.

Combining this estimate with (2.62) and (2.63), we obtain (2.58).
It remains to prove (2.60) under additional assumption (2.59). Consider a

function ψ : R → R as

ψ(λ) =

 1
2λ

2, λ ≤ 0

0, λ > 0.

Clearly, ψ ∈ C1(R) with

ψ
′
(λ) =

λ, λ ≤ 0

0, λ > 0.

Let t ∈ [0, T ], define K = %0 := minx∈T3 %0 > 0, M := ‖ div (v− b) (t)‖L∞(T3).
Now, we consider a function hz : [0, T ) → R as

hz(t) =

∫
T3

ψ
(
%(t, x)− K̃

)
dx,

where K̃ = K exp (−Mt). Since, % ∈ V3(T ), a straightforward computation yields

h′z(t) =

∫
T3

ψ′(%(t, x)− K̃)∂t%(t, x) dx+

∫
T3

ψ′(%(t, x)− K̃)MK̃.
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Using Eq. (2.56), assumption (2.59), and integration by parts, we obtain

h′z(t) =

∫
T3

ψ′′(%(t, x)− K̃)% (v− b)∇(%(t, x)− K̃) dx

−
∫
T3

aψ′′(%(t, x)− K̃)|∇x%(t, x)|2 dx

+

∫
T3

ψ′(%(t, x)− K̃)MK̃dx

=

∫
T3

ψ′′(%(t, x)− K̃)
(
%− K̃

)
(v− b)∇(%(t, x)− K̃) dx

−
∫
T3

aψ′′(%(t, x)− K̃)|∇x%(t, x)|2 dx

+

∫
T3

ψ′(%(t, x)− K̃)K̃ (M + div (v− b)) dx.

From the assumption on a, we get∫
T3

aψ′′(%(t, x)− K̃)|∇(%(t, x))|2 dx ≥ 0.

Moreover, the choice of ψ and M gives∫
T3

ψ′(%(t, x)− K̃)K̃ (M + div (v− b)) dx ≤ 0.

Now the identity λψ′′(λ) = ψ′(λ) for λ ∈ R implies

h′z(t) ≤
∫
T3

ψ′(%(t, x)− K̃) (v− b)∇(%(t, x)− K̃) dx

=

∫
T3

∇(ψ(%(t, x)− K̃)) (v− b) dx

= −
∫
T3

ψ(%(t, x)− K̃) div (v− b) dx

≤ ‖ div (v− b) ‖L∞(T3)hz(t).

Here, we apply Grönwall’s inequality along with infx∈T3 %0 = K to deduce

hz(t) = 0 for a.e. t ∈ (0, T ).

Therefore, we have %(t) ≥ K̃ = exp (−Mt) infx∈T3 %0 > 0 in (0, T )× T3. �

Next, we state another lemma, related to the maximum and minimal principles
of (2.56) with b=0.

Lemma 2.4. Assume %0 ∈ H2(T3), v ∈ L∞(0, T ;H2(T3)), and a ∈ L∞(0, T ;W 1
∞)∩

L2(0, T ;H
2(T3)) with a ≥ c > 0. Then the unique solution of (2.56) with b = 0
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admits satisfying

inf
T3

%0 exp

(
−
∫ t

0

‖ divv(s)‖L∞(T3) ds

)
≤ %(t, x) ≤ sup

T3

%0 exp

(∫ t

0

‖divv(s)‖L∞(T3) ds

)
,

(2.68)

for 0 ≤ t ≤ T .

Proof. Sketch of proof. The proof is similar to the proof non-negativity property
in lemma 2.3 and extensively used in literatures like Novotný and Straskraba [30,
Proposition 7.39], Feireisl and Novotny [19, Lemma 3.1], where they have consider
a special case with a is constant. For the sake of completeness, we just highlight
the key steps:

• Define : R = (supT3 %0) exp
(∫ t

0
‖divv(s)‖L∞(T3) ds

)
.

• Then R satisfies R′(t)− ‖ divv(t)‖L∞(T3)R(t) = 0 with R(0) = supT3 %0.
• Now consider W (t, x) = %(t, x)−R(t) and it satisfies

∂tW + div(Wv)− div(a∇%) ≤ 0a.e. in (0, T )× Rd, (2.69)

with W (0, x) = %0 − supT3 %0 ≤ 0.
• Now we test Eq. (2.69) with Ψ′(W ) and integrating over space to obtain

d

dt

∫
T3

Ψ(W ) + 2

∫
T3

aΨ′′(W )|∇W |2 ≤ ‖ divv‖L∞(T3)Ψ(W )

where

Ψ(λ) =

1
2λ

2, λ ≥ 0

0, λ < 0.

• Since, Ψ(0) ≤ 0, from Grönwall’s inequality, we conclude

%(t, x) ≤ sup
T3

%0 exp

(∫ t

0

‖ divv(s)‖L∞(T3) ds

)
.

For the other side of the inequality (2.68), we need to consider

r(t) = inf
T3
%0 exp

(
−
∫ t

0

‖divv(s)‖L∞(T3) ds

)
and proceed analogously by considering

w(t, x) = %(t, x)− r(t).

�

We have collected all the necessary tools to use in order to prove the convergence
of iterative scheme (1.11).
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3. Convergence of the iterative scheme

3.1. Boundedness of the sequence of approximations

The estimates from the previous section allow us to show

Lemma 3.1. Let (wn, %n) be the sequence defined in (1.11) with u1(t, x) = u0(x)
for (t, x) ∈ (0, T ) × T3 and initial data satisfying (1.4) or (1.5). There exists
M = M(‖%0‖H4(T3), ‖u0‖H3(T3)) in case of (1.4) or M = M(‖%0‖H3(T3), ‖u0 +
∇p(%0)‖H3(T3)) in case of (1.5) and T = T (M) > 0 such that

‖wn‖Y3(T ) + ‖%n‖V3(T ) ≤M ∀n ∈ N, (3.1)

where the spaces Yk(T ) and Vk(T ) are defined in (1.10).

Proof. Recall that φ(·) denotes an increasing, positive function, precise form of
which may vary from line to line. For the purpose of this proof, we also introduce
more precise notation φ1, φ2, φ3 to denote given, increasing, positive functions. The
first equation of system (1.11) is exactly (2.56) with b=0, % = %n+1,v = wn+1, and
a = %np′(%n), while the subequation of the second line of (1.11) corresponding to
the ith component of wn+1 is nothing but (2.1) with g =0, η = wn+1

i , and v = un.
By lemma 2.2, recalling that un = wn +∇p(%n) we have

‖wn+1‖Y3(T ) ≤ φ(
√
T‖un‖X3(T )) = φ1

(√
T (‖wn(t)‖Y3(T ) + ‖%n‖V3(T ))

)
. (3.2)

In order to use (2.58) to estimate ‖%n+1‖V3(T ), we need to have a closer look at
a(%) = %p′(%)

∇a(%) =
[
p′(%) + %p(2)(%)

]
∇%,

∇2a(%) =
[
p′(%) + %p(2)(%)

]
∇2%+

[
2p(2)(%) + %p(3)(%)

]
∇%⊗∇%,

∇3a(%) ∼ Q(%, p′(%), p(2)(%), p(3)(%), p(4)(%))[∇3%+∇2%∇%+ |∇%|3],

where Q is some polynomial, a precise form of which is not relevant. We have
% ∈ L∞((0, T )× T3). Therefore, as p ∈ C5,

‖∇2a(%)‖2L2(0,T ;L2(T3)) ≤ φ(‖%‖L∞((0,T )×T3))
[
‖∇2%‖2L2(0,T ;L2(T3)) + ‖|∇%|2‖2L2(0,T ;L2(T3))

]
≤ Tφ(‖%‖L∞((0,T )×T3))

(
‖∇2%‖2L∞(0,T ;H1(T3)) + C‖∇%‖L∞((0,T )×T3)

)
and

‖∇3a(%)‖2
L2(0,T ;L2(T3))

≤ φ(‖%‖L∞((0,T )×T3))
(
‖∇3%‖2

L2(0,T ;L2(T3))
+ ‖∇2%∇%‖2

L2(0,T ;L2(T3))
+ ‖|∇%|3‖2

L2(0,T ;L2(T3))

)
≤ Tφ(‖%‖L∞((0,T )×T3))

×
(
‖∇3%‖2

L∞(0,T ;L2(T3))
+ ‖∇%‖2

L∞((0,T )×T3)
‖∇2%‖2

L∞(0,T ;L2(T3))
+ C‖|∇%|3‖L∞((0,T )×T3)

)
.

These bounds with an obvious estimate on ‖∇a(%)‖L2(0,T ;L2(T3)) imply

‖∇a(%)‖L2(0,T ;H2(T3)) ≤ Tφ(‖%‖L∞((0,T )×T3))‖%‖L∞(0,T ;H3(T3)). (3.3)
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Obviously, we also have

‖∇a(%)‖L∞((0,T )×T3) ≤ φ(‖%‖L∞((0,T )×T3))‖%‖L∞(0,T ;H3(T3)). (3.4)

Applying (2.58) to the first equation of (1.11), we obtain

‖%n+1‖V3(T ) ≤ φ(‖%0‖H3(T3))
[
C(T ) + ‖%n+1‖V3(T )

× [T (‖wn+1‖Y3(T ) + ‖∇a(%n)‖L∞((0,T )×T3)) + ‖∇a(%n)‖L2(0,T ;H2(T3))]
]
,

which together with (3.3), (3.4), and (3.2) gives

‖%n+1‖V3(T )

≤ φ2(‖%0‖H3(T3))
[
C(T ) + T‖%n+1‖V3(T )

(
‖wn+1‖Y3(T ) + φ3(‖%n‖L∞((0,T )×T3))‖%

n‖V3(T )

)]
≤ φ2(‖%0‖H3(T3))

[
C(T ) + T‖%n+1‖V3(T )

[
φ1

(√
T (‖wn(t)‖Y3(T ) + ‖%n‖V3(T ))

)
+ φ3(‖%n‖L∞((0,T )×T3))‖%

n‖V3(T )

]]
.

(3.5)

Let us take

M = 2max{ sup
s∈[0,1]

φ1(s), φ2(‖%0‖H3(T3))C(T )},

where C (T ) is the constant from (3.5). Then, assuming that

‖wn‖Y3(T ) + ‖%n‖V3(T ) ≤M,

for sufficiently small T we can assure that

φ1(
√
T (‖wn‖Y3(T ) + ‖%n‖V3(T )) ≤

M

2

Tφ2(‖%0‖H3)
[
‖wn+1‖Y3(T ) + φ3(‖%n‖L∞((0,T )×T3))‖%n‖V3(T )

]
≤ 1

2
,

which together with (3.2) and (3.5) implies

‖wn+1‖Y3(T ) + ‖%n+1‖V3(T ) ≤M,

thus we have (3.1). �

3.2. Contraction argument. Proof of theorem 1.1.

Lemma 3.2. Let us denote

δwn = wn −wn−1, δ%n = %n − %n−1, δun = un − un−1.

Then, under the assumptions of lemma 3.1, we have

‖δwn+1‖L∞(0,T ;H2(T3)) + ‖δ%n+1‖V2(T ) ≤ E(T )
(
‖δwn‖L∞(0,T ;H2(T3)) + ‖δ%n‖V2(T )

)
,

(3.6)

where notation E( t) is described in §1.1.
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Proof. Subtracting (1.11) for (wn+1, %n+1) and (wn, %n), we obtain
δ%n+1

t + div (δ%n+1wn+1)− div (%np′(%n)∇δ%n+1) = Rn,

δwn+1
t + un · ∇δwn+1 = −δun · ∇wn,

(δ%n+1, δwn+1)|t=0 = (0,0),

(3.7)

where

Rn = div
[(
p′(%n−1)δ%n + %n(p′(%n)− p′(%n−1))

)
∇%n − %nδwn+1

]
. (3.8)

Each equation of the second line of (3.7) corresponds to (2.1) with g ∼ δun∇wn.
Therefore, taking into account (3.2), we can differentiate the right hand side in
space only twice. For this purpose, we show contraction in lower regularity then
the estimate (3.2). This approach is well known in the regularity theory of the
compressible and inhomogeneous Navier–Stokes systems to overcome the limita-
tions coming from the presence of the gradient of the density in the continuity
equation (see among others [21], [27], [32], [14], [15], [16]). Combining (2.18) and
(2.22) for η0 = 0, we obtain

‖η‖L∞(0,T ;H2(T3)) ≤ E(T )‖g‖L2(0,T ;H2(T3)),

which applied to (3.7) implies

‖δwn+1‖L∞(0,T ;H2(T3)) ≤ E(T )‖δun · ∇wn‖Lq(0,T ;H2(T3)) ∀, 1 < q ≤ ∞. (3.9)

The first equation of (3.7) is (2.56) with v = wn+1, a = %np′(%n), b = Rn, and
%0 = 0.

Therefore, (2.57) implies

‖δ%n+1‖V2(T ) ≤ C
[
‖Rn‖L2(0,T ;H1(T3)) + ‖δ%n+1‖L∞(0,T ;H2(T3))

×
(
T
(
‖wn+1‖L∞(0,T ;H2(T3)) + ‖∇

(
%np′(%n)

)
‖L∞((0,T )×T3)

)
+ ‖∇2

(
%np′(%n)

)
‖L2(0,T ;L2(T3))]

)]
.

(3.10)

As p(·) is sufficiently smooth, we have

∇2(%np′(%n)) ∼ |∇%n|2 + |%n| |∇2%n|.

By (3.1), we have

‖|∇%n|2‖2L2(0,T ;L2(T3)) =

∫ T

0

‖∇%n‖4L4(T3) ≤ T‖∇%n‖L∞(0,T ;L4(T3)) ≤M E(T ),

and

‖%n∇2%n‖L2(0,T ;L2(T3)) ≤ ‖%n‖L∞((0,T )×T3)

√
T‖∇2%n‖L∞(0,T ;L2(T3)) ≤M E(T ).
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Therefore choosing T sufficiently small, we can ensure that

2nd line of (3.10) ≤ 1

2
.

Choosing such T and adding (3.10) to (3.9), we obtain

‖δwn+1‖L∞(0,T ;W 2
2 (T3)) + ‖δ%n+1‖V2(T ) ≤ C‖Rn‖L2(0,T ;H1(T3))

+ E(T )‖δun · ∇wn‖Lq(0,T ;W 2
2 (T3)). (3.11)

Recalling (3.8), we have

‖Rn‖L2(0,T ;H1(T3)) ≤‖p′(%n−1)δ%n∇%n‖L2(0,T ;H2(T3))

+ ‖%n(p′(%n)− p′(%n−1))∇%n‖L2(0,T ;H2(T3))

+ ‖%nδwn+1‖L2(0,T ;H2(T3)) =: A1 +A2 +A3. (3.12)

The last term can be estimated directly:

A3 ≤ ‖%n‖L∞((0,T )×T3)‖δwn+1‖L2(0,T ;H2(T3)) ≤ E(T )‖δwn+1‖L∞(0,T ;H2(T3)),
(3.13)

Let us proceed with A1. We estimate the second order derivatives, which are the
most restrictive. We have

∇2
(
p′(%n−1)δ%n∇%n

)
∼∇2%n−1δ%n∇%n +∇%n−1δ%n∇2%n +∇%n−1∇δ%n∇%n

+ %n−1∇2δ%n∇%n + %n−1∇δ%n∇2%n + %n−1δ%n∇3%n.

The first two terms have the same structure and can be bounded as follows applying
(3.1):

‖∇2%n−1δ%n∇%n‖L2(0,T ;L2(T3))

≤ ‖∇%n‖L∞((0,T )×T3)‖∇2%n−1‖L2(0,T ;L2(T3))‖δ%n‖L∞((0,T )×T3)

≤M2E(T )‖δ%n‖V2(T ).

For the third term, we have

‖∇%n−1∇δ%n∇%n‖L2(0,T ;L2(T3))

≤ ‖∇%n−1‖L∞((0,T )×T3)‖∇%n‖L∞((0,T )×T3)‖∇δ%n‖L2(0,T ;L2(T3))

≤M2E(T )‖δ%n‖V2(T ),

and the same estimate holds for the fourth one. Next,

‖%n−1∇δ%n∇2%n‖L2(0,T ;L2(T3))

≤
√
T‖%n−1‖L∞((0,T )×T3)‖∇2%n‖L∞(0,T ;L4(T3))‖∇δ%n‖L∞(0,T ;L4(T3))

≤M2E(T )‖δ%n‖V2(T ),
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and finally, for the last term, we have

‖%n−1δ%n∇3%n‖L2(0,T ;L2(T3)) ≤ C‖%n−1‖L∞((0,T )×T3)T‖∇3%n‖L∞(0,T ;L2(T3))‖δ%
n

‖L∞((0,T )×T3) ≤ M2E(T )‖δ%n‖V2(T ).

Plugging the above estimates into (3.12), we obtain and observing that A1 and A2

have the same structure due to assumed regularity of the pressure we obtain

A1 +A2 ≤M2E(T )‖δ%n‖V2(T ),

which together with (3.13) gives

‖Rn‖L2(0,T ;H1(T3)) ≤ E(T )
(
‖δ%n‖V2(T ) + ‖δwn+1‖L∞(0,T ;H2(T3))

)
. (3.14)

Now in order to close the contraction argument, it is enough to estimate the second
term on the RHS of (3.11). Recalling (1.2), we have

δun = δwn − p′(%n)∇δ%n − [p′(%n)− p′(%n−1)]∇%n−1.

We have

‖∇2(δwn · ∇wn)‖L2(0,T ;L2(T3)) ≤ C
(
‖∇2δwn · ∇wn‖L2(0,T ;L2(T3))

+ ‖∇δwn · ∇2wn‖L2(0,T ;L2(T3))

+ ‖δwn · ∇3wn‖L2(0,T ;L2(T3))

)
=: B1 +B2 +B3.

We again apply (3.1) to obtain

B1 ≤ C
√
T‖∇wn‖L∞((0,T )×T3)‖δwn‖L∞(0,T ;H2(T3)) ≤ME(T )‖δwn‖L∞(0,T ;H2(T3)),

B2 ≤ C
√
T‖wn‖L∞(0,T ;H2(T3))‖δwn‖L∞(0,T ;H2(T3)) ≤ME(T )‖δwn‖L∞(0,T ;H2(T3)),

B3 ≤ C‖δwn‖L∞((0,T )×T3)‖∇3wn‖L2(0,T ;L2(T3)) ≤ME(T )‖δwn‖L∞(0,T ;H2(T3)),

which gives

‖δwn · ∇wn‖L2(0,T ;H2(T3)) ≤ E(T )‖δwn‖L∞(0,T ;H2(T3)). (3.16)

Next,

∇2 (p′(%n)∇δ%n) ∼∇2%n∇δ%n∇wn +∇%n∇2δ%n +∇%n∇δ%n∇2wn

+ %n∇3δ%n∇wn + %n∇2δ%n∇2wn + %n∇3δ%n∇wn. (3.17)

Let us focus on the last term:

‖%n∇3δ%n · ∇wn‖L2(0,T ;L2(T3))

≤ C(T )‖%n‖L∞((0,T )×T3)‖∇wn‖L∞((0,T )×T3)‖∇3δ%n‖L2(0,T ;L2(T3))

≤ CM2‖δ%n‖Lq(0,T ;H3(T3)) ≤ CM2‖δ%n‖V2(T ).

The lack of small constant is not a problem, since the term which we are estimat-
ing is already multiplied by a small constant in (3.11). The other terms in (3.17)
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can be estimated similarly, here we even get additional smallness in time. Summing
up, we obtain

‖p′(%n)∇δ%n · ∇wn‖L2(0,T ;H2(T3)) ≤ C(M,T )‖δ%n‖V2(T ). (3.18)

Similarly, we can show∥∥[p′(%n)− p′(%n−1)]∇%n−1 ·wn
∥∥
L2(0,T ;H2(T3))

≤ E(T )‖δ%n‖V2(T ). (3.19)

Combining (3.16), (3.18), and (3.19), we get

‖δun · ∇wn‖L2(0,T ;H2(T3)) ≤ E(T )‖δwn‖L∞(0,T ;H2) + C‖δ%n‖V2(T ). (3.20)

Plugging (3.14) and (3.20) into (3.11), we finally conclude (3.6). �

Now we complete the proof of theorem 1.1 in a standard way. Inequality (3.6)
implies

(wn, %n) → (w, %) strongly in L∞(0, T ;H2(T3))× V2(T ).

On the other hand, the estimate (3.1) implies existence of a subsequence, which we
can still denote (wn, %n)

(wn, %n) → (w, %) weakly in Y3(T )× V3(T ).

Setting u = w−∇p(%) we easily verify that the limit satisfies (1.7).

4. Existence theory for general velocity offsets

The goal of this section is to extend the previous result to the case of different
velocity offset functions p(%).

• Singular offset: As mentioned in the introduction, Aceves et al. [1] derive
a variant of dissipative Aw–Rascle system from a microscopic model of
pedestrian dynamics. This corresponds to (1.7) with the offset function in
the form (1.9). Drawing motivation from this, we consider a more general
offset function and the system (1.6), namely

p(%) = a
%α

(1− %)β
with a > 0, α > 0 and β > 1. (4.1)

Similar form was considered in [12] where the existence of regular solutions
for certain approximation of this function was proven in one space dimen-
sion. The authors also performed the singular limit passage a→ 0 obtaining
in the limit the hard congestion system. Similar limit has been postulated in
the multi-dimensional case, see [1], but to our knowledge it has not yet been
proved rigorously. Nevertheless, it is expected that in the hard congestion
limit, in the saturated region where %=1, one cannot expect a regular solu-
tion due to appearance of extra forcing term. Therefore here we keep a a
positive constant, which results in restriction to unsaturated flow provided
that the initial density is strictly below 1. This case is discussed in §4.1.
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• Non-local velocity offset: It turns out that considering the non-local
offset function

p(%) = K ∗ %, (4.2)

where K is some non-local kernel, leads to reformulation of the system
that generalizes the pressureless Euler-alignment model, see [13] for further
details. Unfortunately, we are not able to apply our construction along with
the linear theory (described in §2 and 3) directly to the system (1.7) with
(4.2). Instead, we consider a system where the offset function p(%) is a
combination of local and a particular non-local component that corresponds
to the Newtonian potential, i.e.,

−∆K ∗ % ≈ %.

More precisely, the closure relation is now of the form

w = u+∇p(%) +∇Φ%with p ∈ C5(R+) and −∆Φ% = %− < % >,

where < % >= 1
|T3|

∫
T3 % dx, and so (1.7) can be rewritten as follows

∂t%+ div(%w)− div(% (∇p(%) +∇Φ%)) = 0, (4.4a)

∂t(%w) + div(%w⊗w) = div(%w⊗∇p(%)) + div(%w⊗∇Φ%), (4.4b)

−∆Φ% = %− < % > . (4.4c)

This case is discussed in §4.2.

4.1. Construction for the system with singular velocity offset

Here, we consider (1.6a)–(1.6b) with (4.1). Moreover, along with the hypothesis on
initial data (1.4) or (1.5), we need

0 < %0(x) < 1for x ∈ T3. (4.5)

Theorem 4.1. Assume the initial data satisfies (1.4) or (1.5) with (4.5). Then
there exists T> 0 such that system (1.7) admits a unique solution (%,w) ∈ V3(T )×
Y3(T ) with the estimate

‖%‖V3(T ) + ‖w‖Y3(T ) ≤ C(‖%0‖H4(T3), ‖u0‖H3(T3))and 0 < % < 1in [0, T )× T3

in case of (1.4) or

‖%‖V3(T ) + ‖w‖Y3(T ) ≤ C(‖%0‖H3(T3), ‖u0 +∇p(%0)‖H3(T3))and 0 < % < 1in [0, T )× T3

in case of (1.5).

The proof of the theorem 4.1 consists of two parts: the proof of boundedness
of approximate solutions and the compactness argument. The iteration scheme for
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this case is the same as in (1.11), but the proof of analogue of lemma 3.1 requires
some alterations that we explain below. The contraction argument is similar to the
one described in §3.2, more precisely lemma 3.2, and we skip the details here.

The main lemma for the uniform bounds reads:

Lemma 4.2. Let (wn, %n) be the sequence defined in (1.11) with u1(t, x) = u0(x)
for (t, x) ∈ (0, T )×T3. There existsM =M(‖%0‖H4(T3), ‖u0‖H3(T3)) in case of (1.4)
or M =M(‖%0‖H3(T3), ‖u0 +∇p(%0)‖H3(T3)) in case of (1.5) and T (= T (M)) > 0
such that

‖wn‖Y3(T ) + ‖%n‖V3(T ) ≤Mand 0 < %n(t, x) < 1 ∀n ∈ N, ∀(t, x) ∈ (0, T )× T3,
(4.6)

where the spaces Yk(T ) and Vk(T ) are defined in (1.10). More precisely, it holds
that there exists 0 < ϑ < 1 such that

ϑ

2
< %n(t, x) < 1− ϑ

2
∀n ∈ N, ∀(t, x) ∈ (0, T )× T3. (4.7)

Proof. Similarly to lemma (3.1), we prove this lemma with the help of an induction
hypothesis: we interpret the first equation in (1.11) as Eq. (2.56) with b = 0,
% = %n+1,v = wn+1, and a = %np′(%n), while the ith row of the second equation
in (1.11) as (2.1) with g =0, η = wn+1

i and v = un.
Clearly, there exists 0 < ϑ < 1 such that

ϑ ≤ inf
T3
%0 and sup

T3

%0 ≤ 1− ϑ.

Now, we assume that (%n,wn) satisfy (4.6) along with (4.7). This yields,

a = %np′(%n) > c(ϑ) > 0

and a ∈ L∞(0, T ;W 1
∞(T3)) ∩ L2(0, T ;H

2(T3)). Here, we perform the similar
estimates for wn+1 and obtain

‖wn+1‖Y3(T ) ≤ φ(
√
T‖un‖X3(T )) = φ1

(√
T (‖wn(t)‖Y3(T ) + ‖%n‖V3(T ))

)
. (4.8)

Similarly, for %n+1, we have

‖%n+1‖V3(T )

≤ φ2(‖%0‖H3(T3))
[
C(T ) + T‖%n+1‖V3(T )

[
φ1

(√
T (‖wn(t)‖Y3(T ) + ‖%n‖V3(T ))

)
+ φ3(‖%n‖L∞((0,T )×T3))‖%n‖V3(T )

]]
.

(4.9)
Applying lemma 2.4, we obtain

inf
T3
%0 exp

(
−
∫ t

0

‖ divwn+1(s)‖L∞ ds

)
≤ %n+1(t, x) ≤ sup

T3

%0 exp

(∫ t

0

‖ divwn+1(s)‖L∞ ds

)
,
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for t ∈ (0, T ). Because

‖ divwn+1‖L∞((0,T )×T3) ≤ C‖wn+1‖V3(T ),

with C independent of time, we further deduce

ϑ exp
(
−tC‖wn+1‖V3(T )

)
≤ %n+1(t, x) ≤ (1− ϑ) exp

(
tC‖wn+1‖V3(T )

)
. (4.10)

We set

M = 2max{ sup
s∈[0,1]

φ1(s), φ2(‖%0‖H3(T3))C(T )},

where C (T ) is the constant from (4.9). Assuming that

‖wn‖Y3(T ) + ‖%n‖V3(T ) ≤M,

for sufficiently small T, we can show that

φ1(
√
T (‖wn‖Y3(T ) + ‖%n‖V3(T )) ≤

M

2
,

Tφ2(‖%0‖H3(T3))
[
‖wn+1‖Y3(T ) + φ3(‖%n‖L∞((0,T )×T3))‖%n‖V3(T )

]
≤ 1

2
.

This in turn, along with (4.8) and (4.9), implies

‖wn+1‖Y3(T ) + ‖%n+1‖V3(T ) ≤M,

thus we have the first part of (4.6). Finally, we choose a sufficiently small T
depending only on M, such that from (4.10) we obtain that

ϑ

2
< %n+1(t, x) < 1− ϑ

2
on (0, T )× T3.

This finishes the proof. �

4.2. Construction for the system with non-local velocity offset

In this part, we prove the following existence result for system (4.4):

Theorem 4.3. Assume the initial data satisfies (1.4) or (1.5). Then there exists
T> 0 such that system (4.4) admits a unique solution (%,w,Φ%) ∈ V3(T )×Y3(T )×
V5(T ) with the estimate

‖%‖V3(T ) + ‖w‖Y3(T ) + ‖Φ%‖V5(T ) ≤ C(‖%0‖H4(T3), ‖u0‖H3(T3))

in case of (1.4) or

‖%‖V3(T ) + ‖w‖Y3(T ) + ‖Φ%‖V5(T ) ≤ C(‖%0‖H3(T3), ‖u0 +∇p(%0)‖H3(T3))

in case of (1.5).

Again the proof of the above theorem is similar to the proof of theorem 1.1.
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In this case, however, we use the following iteration scheme for construction of
the approximate solution:


%n+1
t + div (%n+1wn+1) = div (%np′(%n)∇%n+1) + div (%n+1∇Φn),

wn+1
t + un · ∇wn+1 = 0,

−∆Φn+1 = %n+1− < %n+1 >,

(%n+1,wn+1)|t=0 = (%0,u0 +∇p(%0) +∇Φ%0
),

(4.11)

where −∆Φ%0
= %0− < %0 >, (%

0,w0,Φ0) = (%0,u0 +∇p(%0) +∇Φ%0
,Φ%0

) and

wn = un +∇p(%n) +∇Φn. (4.12)

The key observation is that the equation for Φn+1 in this scheme is an ellip-
tic equation. Therefore, the regularity class for {Φn} is higher. Additionally,
we have uniform bounds for the approximate sequence (%n,wn,Φn) in spaces
V3(T )× Y3(T )× V5(T ), as stated in the following Lemma.

Lemma 4.4. Let (wn, %n,Φn) be the sequence defined in (4.11) with u1(t, x) =
u0(x) for (t, x) ∈ (0, T )×T3. There exists M =M(‖%0‖H4(T3), ‖u0‖H3(T3)) in case
of (1.4) or M =M(‖%0‖H3 , ‖u0+∇p(%0)‖H3(T3)) in case of (1.5) and T = T (M) >
0 such that

‖wn‖Y3(T ) + ‖%n‖V3(T ) + ‖Φn‖V5(T ) ≤M ∀n ∈ N,

where the spaces Yk(T ) and Vk(T ) are defined in (1.10).

Proof. Sketch of the proof. The key steps of the proof are the following.

• The bounds on ‖wn+1‖Y3(T ) and ‖%n+1‖V3(T ) are obtained by calculations
similar to proof of lemma 3.1, but keeping in mind that the relation between
wn and un has been modified (4.12). Ultimately, we obtain

‖wn+1‖Y3(T ) ≤ φ(
√
T‖un‖X3(T ))

= φ1

(√
T (‖wn(t)‖Y3(T ) + ‖%n‖V3(T ) + ‖Φn‖V5(T ))

)
, (4.13)

and

‖%n+1‖V3(T )

≤ φ2(‖%0‖H3(T3))
[
C(T ) + T‖%n+1‖V3(T )[

φ1

(√
T (‖wn(t)‖Y3(T ) + ‖%n‖V3(T ) + ‖Φn‖V5(T ))

)
+ φ3(‖%n‖L∞((0,T )×T3))

(
‖%n‖V3(T ) + ‖Φn‖V5(T )

) ]]
.

(4.14)
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• The estimate of ‖Φn+1‖V5(T ) follows from the elliptic regularity estimates
for the solutions of the problem

−∆Φn+1 = %n+1− < %n+1 > .

Following Evans [18, Chapter 6], we obtain

‖Φn+1‖V5(T ) ≤ Cell‖%n+1‖V3(T ). (4.15)

• The strict positivity of %n+1 is a direct consequence of lemma 2.3, where we
use the particular form of b = div(%n∇Φn) in the first line of (4.11), i.e.,

%n+1
t + div (%n+1wn+1)− div (%np′(%n)∇%n+1) = b = div (%n+1∇Φn).

• Now we combine estimates (4.13)–(4.15) and choose

M = 2(1 + Cell)max{ sup
s∈[0,1]

φ1(s), φ2(‖%0‖H3(T3))C(T )},

where C (T ) is the constant from (4.14) and C ell is from (4.15). Now,
assuming that

‖wn‖Y3(T ) + ‖%n‖V3(T ) + ‖Φn‖V5(T ) ≤M,

for sufficiently small T, first we can show that

φ1(
√
T (‖wn‖Y3(T ) + ‖%n‖V3(T ) + ‖Φn+1‖V5(T )) ≤

M

2

Tφ2(‖%0‖H3(T3))
[
‖wn+1‖Y3(T ) + φ3(‖%n‖L∞((0,T )×T3))(

‖%n‖V3(T ) + ‖Φn‖V5(T )

)]
≤ 1

2
.

This, along with (4.8) and (4.9), implies

‖wn+1‖Y3(T ) + ‖%n+1‖V3(T ) + ‖Φn+1‖V5(T ) ≤M,

and the proof is complete.

�

The second part of the proof of theorem 4.3 is to provide an analogue of the
contraction argument described in §3.2. We denote

δwn = wn −wn−1, δ%n = %n − %n−1, δun = un − un−1, δΦn = Φn − Φn−1.

The system of difference equation corresponding to (4.11) is thus
δ%n+1

t + div (δ%n+1wn+1)− div (%np′(%n)∇δ%n+1) = div (δ%n+1∇Φn) + R̃n,

δwn+1
t + un · ∇δwn+1 = −δun · ∇wn,

−∆δΦn+1 = δ%n+1,

(δ%n+1, δwn+1)|t=0 = (0,0),
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where

R̃n = div
[(
p′(%n−1)δ%n + %n(p′(%n)− p′(%n−1))

)
∇%n − %nδwn+1

]
+div (%n∇δΦn).

Performing the estimates similar to those from the proof of lemma 3.2, for the term

‖δwn+1‖L∞(0,T ;H2(T3)) + ‖δ%n+1‖V2(T ) + ‖δΦn+1‖V4(T ).

We can show the following lemma:

Lemma 4.5. Under the assumptions of lemma 4.4, we have

‖δwn+1‖L∞(0,T ;H2(T3)) + ‖δ%n+1‖V2(T ) ++‖δΦn+1‖V4(T )

≤ E(T )
(
‖δwn‖L∞(0,T ;H2(T3)) + ‖δ%n‖V2(T ) ++‖δΦn‖V4(T )

)
,

where E( t) is described in §1.1.

This concludes the contraction argument and also the proof of theorem 4.3.
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