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The Representation Ring and the Centre
of a Hopf Algebra

Sarah J. Witherspoon

Abstract. When H is a finite dimensional, semisimple, almost cocommutative Hopf algebra, we examine a
table of characters which extends the notion of the character table for a finite group. We obtain a formula
for the structure constants of the representation ring in terms of values in the character table, and give the
example of the quantum double of a finite group. We give a basis of the centre of H which generalizes the
conjugacy class sums of a finite group, and express the class equation of H in terms of this basis. We show that
the representation ring and the centre of H are dual character algebras (or signed hypergroups).

1 Introduction

Let H be a finite dimensional Hopf algebra over an algebraically closed field k. Its rep-
resentation ring R(H) is the C-algebra generated by finite dimensional H-modules with
direct sum for addition, tensor product for multiplication, and the trivial module for the
identity. If H is semisimple (that is, as an associative algebra), its representation ring (or
character ring) is as well, allowing generalization of some of the theory of characters for
finite groups to Hopf algebras. This has been done for example by Larson [8], Nichols and
Richmond [18], and Zhu [26], and Lorenz [10] treats the nonsemisimple case in particu-
lar. Such character theory for Hopf algebras has been useful in studying the structure of
the Hopf algebras themselves in work by Lorenz [11], Nichols and Richmond [17], Som-
merhäuser [22], and Zhu [26].

Here we require that H be almost cocommutative as well as semisimple, and obtain
some further results. Many examples of interest satisfy this hypothesis, including the qu-
asitriangular Hopf algebras. In this case the representation ring R(H) is semisimple and
commutative, and so isomorphic to a direct sum of copies of C. Each copy corresponds to
a character of R(H), that is an algebra homomorphism from R(H) to C. These characters
happen to be trace functions of certain central elements defined in Section 4. We consider a
character table, whose rows are indexed by isomorphism classes of irreducible H-modules,
and whose columns are indexed by the characters of R(H). This extends the notion of the
character table for a finite group. We present orthogonality relations for these characters in
Section 3. This leads to a formula (Theorem 3.2) for structure constants of the representa-
tion ring R(H) in terms of the character values, generalizing a well known formula in the
case H is a group algebra [23]. We discuss the example of the quantum double of a finite
group, for which character values may be given in terms of characters of the group and its
centralizer subgroups [25].
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We use these results about characters to obtain a basis for the centre Z(H) in case k = C
in Section 4; in the case of a group algebra this basis is given by the conjugacy class sums.
The class equation for a finite group may be described as applying the augmentation ε to the
sum of these basis elements. We generalize this observation in Proposition 4.3, providing
a new way to view the class equation for Hopf algebras (due to Kac [7] and Zhu [26])
in the special case where H is almost cocommutative. We use Lorenz’ proof of the class
equation [11] for this result. We show that in case H has prime power dimension, the
nontrivial central grouplike elements of Masuoka [15] are among our basis elements for
Z(H).

We use the basis of Z(H) constructed in Section 4 to show in Theorem 5.2 that when
k = C, the representation ring R(H) and the centre Z(H) are dual character algebras (or
C-algebras) [1], as well as signed hypergroups [24], providing more such examples. Such
algebras generalize the duality between the character ring and the centre of a group algebra.
For a history of character algebras, hypergroups, and further references, see [1], [3], [24].
The ideas in Section 5 grew out of questions raised by Terwilliger.

We refer the reader to [16] for standard facts about Hopf algebras, and to [5] for stan-
dard facts about characters of finite groups and symmetric algebras. All our modules will
be finite dimensional right modules, k always denotes an algebraically closed field, and
⊗ = ⊗k.

2 The Representation Ring

In this section, we first review the standard notation and terminology, then collect some
needed results from the literature about the representation ring.

Let H be a finite dimensional Hopf algebra over the algebraically closed field k with
coproduct∆, counit (or augmentation) ε, and antipode S [16]. We use sigma notation for
∆ [16], that is, if h ∈ H, we write∆(h) =

∑
(h) h1 ⊗ h2.

Let V and W be finite dimensional right H-modules. Then V ⊗W is a right H-module
via the pullback of the natural action of H ⊗ H on V ⊗W from the coproduct ∆ : H →
H ⊗ H. This is a right H-module since ∆ is an algebra homomorphism. The field k is a
right H-module via the pullback of the action of k on itself, by right multiplication, to H
from the counit ε : H → k. Up to isomorphism, this trivial module k is a multiplicative
identity with respect to tensor product of modules; this follows from the counit property
of a Hopf algebra.

If V is a finite dimensional right H-module, we write V ∗ for the dual module
Homk(V, k) with right H-action given by

f · h(v) = f
(
v · S(h)

)

for all f ∈ V ∗, h ∈ H, and v ∈ V . This is a right action since S reverses multiplication. If
V and W are two finite dimensional H-modules, then the natural isomorphism of vector
spaces (V ⊗W )∗ ∼=W ∗ ⊗V ∗ is an isomorphism of H-modules; this follows from the fact
that S reverses comultiplication.

Next we define an action of H on Homk(V,W ) for any two finite dimensional right H-
modules V , W , so that Homk(V,W ) will be isomorphic to V ∗ ⊗W as right H-modules: If
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f ∈ Homk(V,W ) and h ∈ H, define f · h ∈ Homk(V,W ) by

f · h(v) =
∑
(h)

f
(
v · S(h1)

)
h2(2.1)

for all v ∈ V .
We define certain representation rings: Let r(H) be the group generated by isomor-

phism classes of finite dimensional H-modules with direct sum for addition. This is the
Grothendieck group of the category of finite dimensional H-modules, in which the distin-
guished exact sequences are taken to be the split ones. The additive group r(H) becomes
a ring with tensor product for multiplication, and identity given by the isomorphism class
of the trivial module. Associativity of r(H) follows from coassociativity of the coproduct
for H. We refer to both r(H) and R(H) = r(H) ⊗Z C as representation rings. We work
primarily with R(H), as our main interest is in characters. If H is semisimple, then R(H)
is isomorphic to the character ring of H (over C) via the map sending an H-module V to
its trace function Tr(·,V ) (see [10], [26]). By abuse of language and notation, we shall
consider H-modules to be elements of the representation rings, when we really mean their
isomorphism classes.

We will need the following two propositions, due to Zhu [26, Lemmas 1 and 2]; here we
translate from left to right modules. Let δV,W = 1 if V ∼= W and 0 otherwise, and let V H

be the submodule of V on which H acts trivially:

V H := {v ∈ V | v · h = ε(h)v for all h ∈ H}.

Proposition 2.2 below technically required the characteristic of the underlying field k to be
0, however Zhu’s proof holds more generally. It uses the fact that S2 is an inner automor-
phism, so that in particular (V ∗)∗ ∼= V for all H-modules V . This is always the case when
H is semisimple [20, Theorem 5].

Proposition 2.1 (Zhu) Suppose H is a finite dimensional semisimple Hopf algebra, and V
and W are finite dimensional H-modules. Then HomH(V,W ) ∼= (V ∗⊗W )H as vector spaces.
In particular, if V and W are irreducible, then the multiplicity of the trivial module k as a direct
summand of V ∗ ⊗W is δV,W .

Proposition 2.2 (Zhu) Suppose H is a finite dimensional semisimple Hopf algebra. Then
the representation ring R(H) is semisimple.

We assume from now on that H is semisimple. As in [10] and [18], we define a bilinear
form on r(H) by

(V,W ) := dimk HomH(V,W )

for all H-modules V,W . We extend it to an inner product on R(H) = r(H) ⊗Z C as
follows. Let V1, . . . ,Vn be the irreducible H-modules up to isomorphism, with V1 = k,
and x =

∑n
i=1 aiVi , y =

∑n
i=1 biVi elements of R(H). Define

(x, y) :=
n∑

i, j=1

aib j(Vi ,V j) =
n∑

i=1

aibi,

https://doi.org/10.4153/CJM-1999-038-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-038-5


884 Sarah J. Witherspoon

where b j is the complex conjugate of b j . The norm of x is

‖x‖ :=
√

(x, x).

Extend the dual map on modules to a conjugate linear map on R(H) by defining

x∗ :=
n∑

i=1

aiV
∗
i .

Then we see as in [10] or [18] that the inner product satisfies the following properties for
all x, y, z ∈ R(H):

(x∗, y∗) = (x, y) = (y, x), and(2.2)

(xy, z) = (y, x∗z).(2.3)

Equation (2.2) follows from the definitions, and (2.3) follows from the isomorphisms
HomH(U ⊗V,W ) ∼= (V ∗ ⊗U∗ ⊗W )H ∼= HomH(V,U ∗ ⊗W ) given by Proposition 2.1.

The remaining observations in this section were made by Zhu [26] and Nichols and
Richmond [18]. Let x ∈ R(H), and write x =

∑n
i=1 aiVi . Then

xx∗ =
n∑

i, j=1

aia jViV
∗
j .

By Proposition 2.1, the coefficient of the trivial module k in xx∗ is then

n∑
i=1

aiai =‖ x ‖2 .

Thus x = 0 if and only if xx∗ = 0. Letting E1, . . . , Er be the primitive central idempotents
of the semisimple representation ring R(H), we see that EiE∗i 6= 0. But E∗i is also a primitive
central idempotent, as ∗ is an algebra anti-isomorphism. Therefore

Ei = E∗i .(2.4)

3 Orthogonality and Structure Constants

We continue under the assumption that H is a finite dimensional semisimple Hopf algebra
over the algebraically closed field k, so that its representation ring R(H) is semisimple by
Proposition 2.2. In addition we assume that H is almost cocommutative, that is there exists
an invertible element R ∈ H ⊗H such that for all h ∈ H,

τ
(
∆(h)

)
= R∆(h)R−1,
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where τ is the twist map given by τ (a⊗b) = b⊗a. In this case, V ⊗W ∼=W ⊗V for all H-
modules V,W , the isomorphism given by the twist map followed by the natural action of
R. Therefore the representation ring R(H) is a finite dimensional, semisimple, commutative
C-algebra, and so is isomorphic to a direct sum of copies of C. Each copy corresponds to a
character of R(H), that is an algebra homomorphism from R(H) to C. Note that the set of
characters of R(H) is linearly independent.

We consider a character table associated to H, whose rows are indexed by isomorphism
classes of irreducible H-modules, and whose columns are indexed by the characters of
R(H). The entries are the characters evaluated on the modules (considered as elements
of R(H)). In the case of a group algebra CG of a finite group G, this is precisely the usual
character table of G: The characters of R(CG) are the trace functions Tr(g, ·) of represen-
tatives g ∈ G of conjugacy classes (or equivalently trace functions of normalized sums of
conjugacy classes). This is because group elements g ∈ G are grouplike elements in the
Hopf algebra CG (that is,∆(g) = g⊗ g). In Section 4 we will define more generally central
elements zi of H whose trace functions are precisely the characters of R(H). Here we give
orthogonality relations for the characters and a formula for the structure constants of the
representation ring R(H) in terms of the character values.

We will need the following proposition due to Nichols and Richmond [18]. However as
their approach involves comodules, we include a proof here for convenience.

Proposition 3.1 (Nichols-Richmond) Let µ be a character of the representation ring
R(H), and x ∈ R(H). Then µ(x∗) = µ(x), the complex conjugate of µ(x).

Proof Let Ei be a primitive central idempotent of R(H), and µi the corresponding charac-
ter. We claim that µi(y) = (y, Ei)/ ‖ Ei ‖2 for all y ∈ R(H): Write y =

∑n
j=1 c jE j so that

µi(y) = ci . On the other hand, by (2.3) and (2.4),

(y, Ei)

‖ Ei ‖2
=

1

‖ Ei ‖2

n∑
j=1

(c jE j , Ei)

=
1

‖ Ei ‖2

n∑
j=1

c j(1, E∗j Ei)

=
1

‖ Ei ‖2
ci(Ei, Ei)

= ci.

It follows that, by (2.2) and (2.4),

µi(x∗) =
1

‖ Ei ‖2
(x∗, Ei)

=
1

‖ Ei ‖2
(x, Ei)

= µi(x).
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We consider a different form on R(H) that is symmetric: Define

〈V,W 〉 := dimk HomH(V ∗,W )

for all H-modules V,W . This generates a nondegenerate, bilinear, symmetric, associative
form by Proposition 2.1 (see also [10, Section 3.1] and [11, Section 2.2]). Therefore R(H)
is a symmetric algebra with dual bases {V1, . . . ,Vn} and {V ∗1 , . . . ,V

∗
n }, where V1, . . . ,Vn

are the irreducible H-modules, as noted in [11]. We now give a formula for the primitive
central idempotents of R(H) and orthogonality relations for characters, as provided by [5,
Section 9B] for symmetric algebras via dual bases. We point out that our characters are the
irreducible characters of [5].

Let

M :=
n⊕

i=1

(V ∗i ⊗Vi).(3.1)

As H is semisimple, H ∼=
⊕n

i=1 Endk(Vi) as an algebra. Using (2.1), it may be checked that
M is isomorphic to the H-module H where h ∈ H acts on h ′ ∈ H by the adjoint action

h ′ · h =
∑
(h)

S(h1)h ′h2.(3.2)

Let µ be a character of R(H), and note that

µ(M) =
n∑

i=1

µ(Vi)µ(Vi) =
n∑

i=1

‖ µ(Vi) ‖
2> 0,(3.3)

by Proposition 3.1. This also follows from [5, Proposition 9.17 (ii)]. We have the corre-
sponding primitive central idempotent of R(H) [5, Proposition 9.17 (ii)],

Eµ =
1

µ(M)

n∑
i=1

µ(Vi)V
∗
i .(3.4)

Orthogonality relations are given as follows. For any character µ of R(H), we write µ∗

for the character defined by
µ∗(V ) := µ(V ∗),

for all H-modules V . We caution that Eµ∗ 6= (Eµ)∗. Let µ1, . . . , µn be the characters of
R(H). Then we have the column orthogonality relations by [5, Proposition 9.19] (see also
[18, Corollary 22]),

n∑
`=1

µi(V`)µ
∗
j (V`) = δi jµi(M).(3.5)
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In other words, the product of the transpose
(
µi(V j)

)
of the character table matrix with

the matrix
(
µ∗j (Vi)

)
is a diagonal matrix with diagonal entries µi(M). Multiplying by the

appropriate diagonal matrices, we obtain two inverse matrices. Multiplying them in the
reverse order yields the row orthogonality relations,

n∑
`=1

µ∗` (Vi)µ`(V j)

µ`(M)
= δi j .(3.6)

As we see next, the row orthogonality relations may be used to obtain a formula for the
structure constants in R(H). This is well known in the case H is a group algebra [23].

Theorem 3.2 Let H be a finite dimensional, semisimple, almost cocommutative Hopf alge-
bra. Let V1, . . . ,Vn be the irreducible H-modules up to isomorphism, µ1, . . . , µn the charac-

ters of R(H), and suppose that Vi ⊗V j
∼=
⊕n

h=1 V
⊕Nh

i j

h for 1 ≤ i, j ≤ n. Then

Nh
i j =

n∑
`=1

µ∗` (Vh)µ`(Vi)µ`(V j)

µ`(M)
,

where M is the module defined in (3.1).

Proof For each pair i, j, consider the n equations

µ`(Vi)µ`(V j) =
n∑

h=1

Nh
i jµ`(Vh).

Solving these systems of equations for the Nh
i j by using the row orthogonality relations (3.6),

we obtain the desired result.

Example: The Quantum Double of a Finite Group Let G be a finite group. The quantum
double (or Drinfel’d double) D(G) is a smash product of the group algebra kG with its Hopf
algebra dual (kG)∗. Specifically, the space (kG)∗⊗kG is given the structure of a Hopf algebra
as follows. If {φg}g∈G is the basis of (kG)∗ dual to {g}g∈G, then D(G) has as a basis all ele-
ments φg⊗h, which we write more simply as φgh, for g, h ∈ G. On this basis, the product is
defined by φghφg ′h ′ = φgφhg ′h−1 hh ′ = δg,hg ′h−1φghh ′. The identity is 1D(G) =

∑
g∈G φg1,

where 1 is the identity for G. The coproduct is given by ∆(φgh) =
∑

x∈G φxh ⊗ φx−1gh,
the counit by ε(φgh) = δ1,g , and the coinverse by S(φgh) = φh−1g−1hh−1. The Hopf algebra
D(G) is almost cocommutative with R =

∑
g∈G φg ⊗ g (in fact, it is quasitriangular [16,

10.1.5]). Maschke’s Theorem for Hopf algebras [16, Theorem 2.2.1] implies that D(G) is
semisimple if and only if the characteristic of k does not divide the order of G [25, Propo-
sition 1.2]. Thus we will restrict ourselves to that case.

It is well known that the irreducible D(G)-modules are indexed by pairs (g,V ), where
g is a representative of a conjugacy class of G, and V is an irreducible kC(g)-module (here
C(g) = {h ∈ G | gh = hg} is the centralizer of g in G). The resulting D(G)-modules
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are induced from these kC(g)-modules. Different approaches to this result appear in [13],
[25]; see also [6] for the special case k = C.

The characters of R(D(G)) are given explicitly in [25, Theorem 3.4], and for the case
k = C, also in [12], in terms of characters of G and its centralizer subgroups. The characters
in the case k = C are indexed by pairs (g, ρ), where g is a representative of a conjugacy
class of G, and ρ is an irreducible character of C(g). The corresponding character µg,ρ of
R
(
D(G)

)
sends a D(G)-module V to [25, p. 316]

µg,ρ(V ) =
1

deg ρ

∑
h∈C(g)

ρ(h) Tr(φhg,V ).

Let V1, . . . ,Vn be the irreducible D(G)-modules over C up to isomorphism, and suppose

Vi ⊗V j
∼=
⊕n

h=1 V
⊕Nh

i j

h . Then by Theorem 3.2,

Nh
i j =
∑
(g,ρ)

µ∗g,ρ(Vh)µg,ρ(Vi)µg,ρ(V j)

µg,ρ(M)
,(3.7)

the sum ranging over the pairs (g, ρ). The D(G)-module M is the space D(G) with right
action

φx y · φgh = δg,x−1 y−1xyφh−1xhh−1 yh.

We note that the values of the µg,ρ are sums of products of values from the character
tables of G and its centralizer subgroups, and thus the structure constants may be calculated
from the values in such character tables. Indeed, Tr(φhg,V ) = Tr(g,Vh) where Vh = Vφh

may be considered to be a CC(h)-module, as is discussed in [25, Section 2]. A different
approach to characters for this example is given in [2], and an apparently simpler formula
than (3.7) for the structure constants is given in [2], [6].

4 The Centre and the Class Equation

In this section, we construct two bases for the centre Z(H) of H, and give a new presen-
tation of the class equation of Kac [7] and Zhu [26] using work of Lorenz [11]. We keep
our assumptions that H is finite dimensional, semisimple, and almost cocommutative. In
addition, we take the field k to be C here.

As before, let V1, . . . ,Vn be the irreducible H-modules up to isomorphism (with V1 = C
the trivial module), µ1, . . . , µn the characters of the representation ring R(H) (with µ1 the
dimension homomorphism, µ1(V ) = dim(V ) for all H-modules V ), and E1, . . . , En the
corresponding primitive central idempotents of R(H) as given by (3.4). As H is semisimple,
we have H ∼=

⊕n
i=1 EndC(Vi) as an algebra. Let ei be the primitive central idempotent of

H corresponding to Vi , that is ei arises from the identity transformation of EndC(Vi) in the
above isomorphism. Define the elements zi of Z(H) by

zi :=
n∑

j=1

µi(V j)

dim(V j)
e j .(4.1)
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As
(
µi(V j)

)
is nonsingular by the orthogonality relations (3.5) and (3.6), the elements zi

are linearly independent, and thus form a basis of Z(H). Notice that µi = Tr(zi , ·), so in
fact we may label the columns of the character table in Section 3 with the elements zi rather
than µi . In the case H is a group algebra, we may use the formula [5, Proposition 9.21 (ii)]
for the primitive central idempotents ei to see that each of these elements zi is a normalized
sum of elements in a conjugacy class.

Example When H = D(G) is the quantum double of the finite group G (Section 3), the
basis elements zi are indexed by pairs (g, ρ), where g is a representative of a conjugacy class
of G, and ρ an irreducible character of C(g). They are given by

zg,ρ =
1

|G| deg(ρ)

∑
h∈C(g),x∈G

ρ(h)φxhx−1 xgx−1.

This follows from the observations that these elements zg,ρ are central, and in general the
central element zi is determined uniquely by the fact that µi = Tr(zi , ·).

We will need the following two lemmas. The first generalizes the formula [5, Proposi-
tion 9.21 (ii)] for the primitive central idempotents ei in the case H is a group algebra.

Lemma 4.1 ei =
∑n

j=1

µ∗j (Vi ) dim(Vi )

µ j (M) z j .

Proof By the definition (4.1) of zi , we may express the zi in terms of the e j by means of the
matrix equation (

µi(V j)

dim(V j)

)
(e j) = (zi).

By the column orthogonality relations (3.5), the inverse of the coefficient matrix is

(
µ∗j (Vi) dim(Vi)

µ j(M)

)
.

Lemma 4.2 If ziz j =
∑n

h=1 mh
i jzh, then m1

i j = δi j∗
µi (M)

dim(H) .

Proof Using the definition (4.1) of zi and Lemma 4.1, we have

ziz j =

n∑
`=1

µi(V`)µ j(V`)

dim(V`)2
e`

=

n∑
h,`=1

µi(V`)µ j(V`)µ∗h (V`)

dim(V`)µh(M)
zh.

Therefore by the column orthogonality relations (3.5), as µ∗1 (V`) = µ1(V`) = dim(V`) and
µ1(M) = dim(H),

m1
i j =

1

dim(H)

n∑
`=1

µi(V`)µ j(V`)

= δi j∗
µi(M)

dim(H)
.
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We modify the basis {zi} of Z(H) slightly. Let

ζi :=
dim(H)

µi(M)
zi ,(4.2)

where M =
⊕n

i=1(V ∗i ⊗Vi) as before. In the case H is a group algebra, it may be checked,
using (3.2), that each of these elements ζi is the sum of the elements in a conjugacy class.
In this case, note too that the class equation may be described as applying the augmentation
ε to the equation |G|e1 =

∑n
i=1 ζi , as ε(ζi) is the number of elements in the corresponding

conjugacy class, and ε(e1) = 1. We generalize this observation in the next proposition,
providing a new way to view the class equation for Hopf algebras (due to Kac [7] and
Zhu [26]) in the special case where H is almost cocommutative.

Let H∗ denote the Hopf algebra dual to H [16, Example 1.5.5]. Identify the represen-
tation ring R(H) with a subalgebra of H∗ by identifying an H-module V with the trace
function Tr(·,V ) (this is the character ring as a subalgebra of H∗). In this way the primitive
central idempotents E1, . . . , En of R(H) may be considered to be elements of H∗.

Proposition 4.3 (Class Equation) If H is a finite dimensional, semi-simple, almost cocom-
mutative Hopf algebra over C, then

dim(H) =
n∑

i=1

ε(ζi).

Further, for all 1 ≤ i ≤ n, ε(ζi) = dim(H)/µi(M) = dim(EiH∗) is an integer dividing
dim(H).

Proof By Lemma 4.1, the definitions of ζi (4.2) and zi (4.1), and as µ∗i (V1) = 1 for all i,

dim(H)e1 =
n∑

i=1

ζi.

Note that ε(ei) = δ1,i , as elements of H act on the trivial module V1 = k via ε. Therefore,
by applying ε to the above equation, we obtain

dim(H) =
n∑

i=1

ε(ζi).

Again by the definitions of ζi and zi , we have ε(zi) = µi(k)/ dim(k) = 1, and ε(ζi) =
dim(H)/µi(M).

By Lorenz’ proof of the class equation [11, Section 3], under the hypothesis that H is
almost cocommutative (and so R(H) is commutative), we have

dim(H)

dim(EiH∗)
= µi(M),
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and is an integer. Therefore dim(H)/µi(M) = dim(EiH∗) is an integer dividing dim(H)
for 1 ≤ i ≤ n.

For each index i ∈ {1, . . . , n} of the characters µ1, . . . , µn, let i∗ ∈ {1, . . . , n} be the
index satisfying µi∗ = µ

∗
i , where µ∗i (V ) := µi(V ∗) for all H-modules V . In particular

then, µi∗ = Tr(zi∗ , ·).
Suppose dim(H) = pn, with p a prime. For example, the quantum double (or Drinfel’d

double) of any of Masuoka’s semisimple Hopf algebras of dimension p3 [14] is a semisim-
ple [19] and almost cocommutative (in fact, quasitriangular by [4, Proposition 4.2.12])
Hopf algebra of dimension p6. We obtain central grouplike elements of H via the class
equation in the following way. By Proposition 4.3, as ζ1 = 1, there is some i 6= 1 such
that 1 = ε(ζi) = dim(H)/µi(M) = dim(EiH∗). From the assumption dim(EiH∗) = 1,
Masuoka proved that H has a nontrivial central grouplike element [15]. In our case, we
use Schneider’s formulation of Masuoka’s result [21] to show that ζi∗ is the corresponding
(central) grouplike element: First note that as M∗ ∼= M and ε(ζi∗) = dim(H)/µ∗i (M), we
have ε(ζi∗) = ε(ζi) = 1. Now let λ ∈ H∗ be a nonzero integral (that is, λ is invariant
under left and right multiplication in H∗) such that λ(1) = 1. By (4.1), (4.2), the proof
and statement of [21, Proposition 4.5], and (3.4), ζi∗ is the unique element h ∈ Z(H) such
that h ⇀ λ = Ei . (Here h ⇀ λ :=

∑
(λ) λ2(h)λ1.) By [21, Lemma 4.14 (2)], there ex-

ists a nontrivial central grouplike element g such that Ei is a scalar multiple of g ⇀ λ. By
uniqueness, and as ε(ζi∗) = 1, ζi∗ is forced to be grouplike.

5 Dual Character Algebras

Let H be a finite dimensional, semisimple, almost cocommutative Hopf algebra over C. We
use the results of the previous sections to show that the representation ring R(H) and the
centre Z(H) are dual character algebras.

First we recall the definition from [1]. A character algebra (or C-algebra) is a finite di-
mensional commutative algebra A over C together with a distinguished basis X1, . . . ,Xn

such that X1 = 1 is the multiplicative identity of A and:

(1) There is an involution i 7→ i∗ of {1, . . . , n} such that the linear map from A to A
sending Xi to Xi∗ is a C-algebra isomorphism.

(2) If XiX j =
∑n

h=1 ph
i jXh, then ph

i j ∈ R (1 ≤ h, i, j ≤ n).

(3) There are positive real numbers k1, . . . , kn such that p1
i j = δi j∗ki (1 ≤ i, j ≤ n).

(4) The linear map from A to C sending Xi to ki is a C-algebra homomorphism.

We point out that if we take instead the normalized basis {Xi/ki} of A, we have a signed
hypergroup [24], as in this case the sum over h of the structure constants ph

i j (for fixed i and
j) is 1 by property (4).

Let V1, . . . ,Vn be the irreducible H-modules up to isomorphism (with V1 = C the
trivial module), and

Xi := dim(Vi)Vi (1 ≤ i ≤ n)(5.1)

as elements of R(H). Let µ1, . . . , µn be the characters of R(H), with µ1 the dimension ho-
momorphismµ1(V ) = dim(V ) for all H-modules V . Let ζ1, . . . , ζn be the central elements
of H defined in (4.2), so that ζ1 = 1 is the multiplicative identity.
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Theorem 5.1 Let H be a finite dimensional, semisimple, almost cocommutative Hopf alge-
bra over C. Then:

(i) The representation ring R(H) is a character algebra with basis X1, . . . ,Xn.
(ii) The centre Z(H) is a character algebra with basis ζ1, . . . , ζn.

Proof (i) Let i∗ be the element such that Xi∗ = X∗i = dim(V ∗i )V ∗i . Then the linear map
sending Xi to Xi∗ is simply the map taking any element to its “dual”, and is a C-algebra
isomorphism. As ViV j =

∑n
h=1 Nh

i jVh in R(H) with Nh
i j positive integers, we have

XiX j =
n∑

h=1

ph
i jXh

with ph
i j = dim(Vi) dim(V j)Nh

i j/ dim(Vh) rational numbers. We also then have p1
i j =

dim(Vi) dim(V j)N1
i j . By Proposition 2.1, N1

i j = δi j∗ , so p1
i j = δi j∗ki , with ki =

(
dim(Vi)

)2

a positive integer. Finally, the linear map from R(H) to C sending Xi to ki is just the dimen-
sion homomorphism µ1. Therefore R(H) is a character algebra.

(ii) First note that S is an involution on the basis ζ1, . . . , ζn: Recall that ei is the identity
map on Vi . Therefore S(ei) is the identity map on V ∗i = Vi∗ , that is S(ei) = ei∗ , as S2 is an
inner automorphism [20, Theorem 5] and ei is central in H. By (4.1) and (4.2) then,

S(ζi) =
n∑

j=1

dim(H)µi(V j)

µi(M) dim(V j)
e j∗

=

n∑
j=1

dim(H)µi(V ∗j )

µi(M) dim(V ∗j )
e j

=

n∑
j=1

dim(H)µ∗i (V j)

µ∗i (M) dim(V j)
e j ,

as µi(M) = µ∗i (M) by the definition (3.1) of M. Thus S(ζi) is another element of the basis
ζ1, . . . , ζn, that corresponding to µ∗i = µi∗ . Therefore S(ζi) = ζi∗ , and ∗ is an involution
on the indices {1, . . . , n}. As the coinverse S is an algebra antihomomorphism on H, it
is an algebra homomorphism on Z(H). This shows that property (1) in the definition of
character algebra holds for Z(H).

Next note that the function f` : Z(H)→ C defined by

f`(z) :=
(
1/ dim(V`)

)
Tr(z,V`)

is an algebra homomorphism: If z, z ′ ∈ Z(H), write z =
∑n

i=1 ciei and z ′ =
∑n

i=1 c ′i ei .
Then f`(z) = c`, f`(z ′) = c ′` , and

f`(zz ′) =
1

dim(V`)
Tr
( n∑

i=1

cic
′
i ei ,V`

)
= c`c

′
` = f`(z) f`(z ′).
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We will first work with the basis z1, . . . , zn of Z(H). Suppose that

ziz j =
n∑

h=1

mh
i jzh.

Applying f` to this equation we obtain

f`(zi) f`(z j ) =
n∑

h=1

mh
i j f`(zh).(5.2)

Similarly, applying f`∗ we obtain

f`∗(zi) f`∗(z j) =
n∑

h=1

mh
i j f`∗(zh).

As f`∗(zi) =
(
1/ dim(V`)

)
Tr(zi ,V ∗` ), and Tr(zi , ·) = µi is a character of R(H), Proposi-

tion 3.1 implies that the latter equation may be rewritten as

f`(zi) · f`(z j ) =
n∑

h=1

mh
i j · f`(zh).(5.3)

On the other hand, taking the complex conjugate of (5.2), we have

f`(zi) · f`(z j ) =
n∑

h=1

mh
i j · f`(zh).

We obtain
∑n

h=1 mh
i jTr(zh,V`) =

∑n
h=1 mh

i j · Tr(zh,V`) by comparing to (5.3). As the V`
form a basis for R(H), we have

n∑
h=1

mh
i j · Tr(zh, ·) =

n∑
h=1

mh
i j · Tr(zh, ·).

But the functions Tr(zh, ·) = µh are linearly independent, so mh
i j = mh

i j . Therefore mh
i j is a

real number for all h, i, j.
Now let ζiζ j =

∑n
h=1 ph

i jζh. As ζi =
(
dim(H)/µi(M)

)
zi , we have

ph
i j =

µh(M) dim(H)

µi(M)µ j(M)
mh

i j .

By (3.3), µi(M) is a real number. As a result, ph
i j is a real number, and Z(H) satisfies

property (2) of the definition of a character algebra.
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By Lemma 4.2, the above paragraph, and as µ1 is the dimension homomorphism, we
have

p1
i j = δi j∗

µ1(M) dim(H)µi(M)

µi(M)µ j(M) dim(H)
= δi j∗

dim(H)

µ j(M)
.

By Proposition 4.3, ki := dim(H)/µi(M) is a positive integer. Therefore Z(H) satisfies
property (3) of the definition of a character algebra.

Finally, consider the linear map from Z(H) to C sending ζi to ki = dim(H)/µi(M). By
Proposition 4.3, this is just the counit ε. It follows that Z(H) satisfies property (4) of the
definition of character algebra.

Next we recall the definition of dual character algebras and show that R(H) and Z(H)
are dual. If A is a character algebra with basis X1, . . . ,Xn, then A is semisimple [1, Propo-
sition 2.5.4]. Let E1, . . . , En be a basis of primitive central idempotents of A. Let P = (Pi j )
be the n× n matrix such that

Xi =

n∑
j=1

P jiE j (1 ≤ i ≤ n),

called the matrix of eigenvalues of A.
Let A and A∗ be character algebras with bases X1, . . . ,Xn and X∗1 , . . . ,X

∗
n , respectively.

Let E1, . . . , En and E∗1 , . . . , E
∗
n be bases of primitive central idempotents, and P and P∗

the matrices of eigenvalues of A and A∗, respectively. Then A and A∗ are dual if PP∗ is a
multiple of the identity matrix.

Theorem 5.2 Let H be a finite dimensional, semisimple, almost cocommutative Hopf al-
gebra over C. Then the representation ring R(H) and the centre Z(H) are dual character
algebras.

Proof Consider the basis elements X1, . . . ,Xn of R(H) as defined in (5.1), and primitive
idempotents E1∗ , . . . , En∗ (in that order) corresponding to the characters µ∗i = µi∗ . Letting

Xi =

n∑
j=1

P jiE j∗

and applying µ∗` , we have µ∗` (Xi) = P`i as µ∗` (E j∗) = δ` j . On the other hand, µ∗` (Xi) =
dim(Vi)µ∗` (Vi). So Pi j = dim(V j)µ∗i (V j).

Consider the basis elements ζ1, . . . , ζn of Z(H) as defined in (4.2), and primitive central
idempotents e1, . . . , en corresponding to the irreducible H-modules V1, . . . ,Vn as before.
By the definitions (4.1) and (4.2), we have

ζi =
n∑

j=1

dim(H)µi(V j)

µi(M) dim(V j)
e j .
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Thus if P∗ is the matrix of eigenvalues of Z(H), we have

P∗i j =
dim(H)µ j (Vi)

µ j(M) dim(Vi)
.

By the column orthogonality relations (3.5), we have

(PP∗)i j =
n∑
`=1

µ∗i (V`) dim(H)µ j (V`)

µ j(M)

=
dim(H)

µ j(M)

n∑
`=1

µ∗i (V`)µ j(V`)

= δi j dim(H),

so PP∗ is a multiple of the identity matrix. Therefore R(H) and Z(H) are dual character
algebras.
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