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Abstract. The Fermi γ-ray telescope discovered a pair of bubbles at the Galactic center. These
structures are spatially-correlated with the microwave emission detected by the WMAP and
Planck satellites. These bubbles were likely inflated by a jet launched from the vicinity of a
supermassive black hole in the Galactic center. Using MHD simulations, which self-consistently
include interactions between cosmic rays and magnetic fields, we build models of the supersonic
jet propagation, cosmic ray transport, and the magnetic field amplification within the Fermi
bubbles. Our key findings are that: (1) the synthetic Fermi γ-ray and WMAP microwave spectra
based on our simulations are consistent with the observations, suggesting that a single population
of cosmic ray leptons may simultaneously explain the emission across a range of photon energies;
(2) the model fits the observed centrally-peaked microwave emission if a second, more recent,
pair of jets embedded in the Fermi bubbles is included in the model. This is consistent with the
observationally-based suggestion made by Su & Finkbeiner (2012); (3) the radio emission from
the bubbles is expected to be strongly polarized due to the relatively high level of field ordering
caused by elongated turbulent vortices. This effect is caused by the interaction of the shocks
driven by the jets with the preexisting interstellar medium turbulence; (4) a layer of enhanced
rotation measure in the shock-compressed region could exist in the bubble vicinity but the level
of this enhancement depends on the details of the magnetic topology.
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1. Introduction
The Fermi bubbles are large–scale bipolar outflow bubbles in the Galaxy that were

recently detected with the Fermi observatory (Su et al. 2010). They are a unique example
of supermassive black hole feedback in our own “backyard” rather than in a distant
extragalactic source (for alternative interpretation see, e.g., Crocker & Aharonian (2011);
contributions by Lacki and Dogiel in these proceedings). The Fermi bubbles have received
a lot of attention in the literature since their discovery and are one of the most exciting
findings from the NASA’s Fermi mission. The bubbles are characterized by a flat γ-
ray intensity distribution, hard spectrum extending up to ∼100 GeV, and sharp γ-ray
edges separating the bubbles and ambient interstellar medium. The bubbles are also
visible in the WMAP and Planck data. This emission is referred to as the ’WMAP haze’
(Finkbeiner 2004) or Planck haze (Planck Collaboration 2013). This microwave haze
emission is centrally-peaked, i.e., its intensity is strongest near the Galactic center.

2. MHD simulations of the Fermi bubbles
Using 3D MHD simulations that include cosmic ray physics, we predict observational

signatures of the Fermi bubbles in the leptonic AGN jet scenario (Yang et al. 2013, Yang
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Figure 1. Γ-ray (left) and microwave (right) spectra of the Fermi bubbles. Solid lines
represent model predictions. l and b denote Galactic longitude and latitude, respectively.
[A color version is available online.]

et al. 2012). In this model, the γ-ray emission is due to the inverse Compton scattering
of the cosmic microwave background, and the interstellar radiation field, by the cosmic
ray electrons inside the jet-inflated bubbles, while the WMAP haze emission is due to
the synchrotron emission produced by the same population of cosmic rays interacting
with the magnetic fields inside the bubbles.

One important aspect of the model is that the cosmic rays tend to accumulate close
to the bubble surface. That is, the intrinsic spatial distribution of the cosmic rays is
edge-brightened. This naturally leads to a flat distribution of the sky-projected γ-ray
emission of the bubbles, which is in agreement with observations. An appealing feature
of this model is that the inflation of the bubbles is so rapid that the age of the bubbles is
shorter than the cooling time of cosmic ray electrons. This ensures that the cosmic ray
cooling losses do not significantly alter the spectrum, which remains hard up to energies
as high as ∼100 GeV as observed (see Figure 1).

If we assume an observationally motivated distribution of the ambient Galactic mag-
netic fields (Strong et al. 2007), we can combine it with the simulated cosmic ray dis-
tribution to match the observed slope and normalization of the WMAP synchrotron
emission (see Figure 1). We stress that this match between the simulated and observed
γ-ray and microwave spectra can be obtained by invoking a single population of cos-
mic ray leptons. Thus, the model combined with observations allows us to essentially
look inside the Fermi bubbles. Interestingly, in the leptonic model, the cosmic rays con-
tribute relatively little pressure compared to the pressure of thermal gas inside the bub-
bles. Finkbeiner (these proceedings) reported on a cutoff in the γ-ray spectrum be-
yond ∼100 GeV. This observation will help to put additional constraints on the cosmic
ray energy spectra, cooling/heating mechanisms, and the bubble dynamics early in its
evolution.

Magnetic field amplification inside the Fermi bubbles As the bubbles expand, the am-
bient ISM magnetic fields drape around the bubbles. Assuming cosmic ray diffusion is
anisotropic (Yang et al. 2012), this prevents the cosmic rays from readily diffusing out of
the bubbles, and thus accounts for their sharpness in the γ-ray emission. While the drap-
ing mechanism helps to explain this aspect of the observations, it reduces the strength
of magnetic fields inside the bubbles. That is, the bubbles are effectively sealed off from
the ambient magnetized ISM and the magnetic fields inside them are reduced due to
adiabatic expansion. Consequently, the cosmic rays inside the bubbles are in contact
with relatively weak magnetic fields and the predicted microwave emission is too weak
compared to observations.
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Figure 2. Microwave (left) and γ-ray (right) intensity profiles.
[A color version is available online.]

We suggest that one solution to this problem is to allow for partial draping of the
ambient field. In order to study this possibility, we consider tangled ambient magnetic
fields characterized by a range of coherence lengths. Our fiducial model consist of the
global tangled field superimposed on a more tangled field component closer to the disk
plane. We find that decreasing the coherence length of the latter B-field component does
lead to partial magnetic draping of the bubbles while not violating the observational con-
straints on the sharpness of the bubble-ISM interface seen in the γ-ray emission. At the
same time, the reduced coherence length of the ambient field allows for some mixing-in
of the ambient field into the bubbles. We demonstrated that, as this coherence length is
reduced, the field strength inside the bubbles asymptotically tends to a value comparable
to that of the ambient medium. This close relationship between the ambient ISM field and
the internal bubble field is ultimately caused by the interaction of the shock wave associ-
ated with the expanding bubble with the preexisting turbulent and magnetized ambient
ISM. The shock wave propagating ahead of the bubble increases the level of vorticity in
the post-shock ISM (Larsson & Lele 2009), which in turn amplifies the magnetic field in
the shocked gas. The amplification rate increases as the coherence length decreases. This
amplified field then mixes into the bubble though the bubble-ISM contact discontinuity.

As mentioned above, when the cosmic rays in the bubbles are in contact with magnetic
field of this magnitude, then the simulated microwave spectrum may be reconciled with
the WMAP observations.

Intermittent activity of SgrA* − second jet within the Fermi bubbles As the coherence
length of ambient field is reduced, the magnetic fields inside the bubbles increase in
strength. When these fields reach the magnitude required to account for the level of
microwave emission at low galactic latitudes, the plasma β approaches unity, i.e., the
fields become dynamically important in these regions. Consequently, the magnetic pres-
sure forces inside the bubbles act to redistribute the cosmic ray energy density to higher
latitudes. At this point, we are again faced with the problem that sufficiently strong mag-
netic fields and cosmic rays are not in contact with each other. In order to alleviate this
problem, we postulated the existence of a second, more recent AGN activity, and experi-
mented with replenishing cosmic rays by a weaker, second pair of jets. These experiments
were successful in explaining the microwave intensity profiles of the WMAP haze while
remaining fully consistent with the spatial flatness of the γ-ray emission from the Fermi
bubbles (see Figure 2). Based on the observational evidence, Su & Finkbeiner (2012)
showed that a better match to the γ-ray morphology of the bubbles can indeed be ob-
tained if an additional pair of jets, anti-symmetric with respect to the disk plane, is
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Figure 3. Slice through magnetic field strength distribution (left) and rotation measure
(right). [A color version is available online.]

included in the fitting procedure (see also invited talk by Finkbeiner in these proceed-
ings). The Fermi bubbles, including such second pair of internal jets, bear an interesting
morphological similarity to Cen A, though this object hosts a substantially more mas-
sive central black hole than our Galaxy. Interestingly, Li et al. (2013) recently presented
evidence for a sub-parsec X-ray jet in the Galactic center (see Li’s poster contribution
in these proceedings). This cumulative evidence strongly suggests that the black hole in
Sgr A* experienced episodes of past activity.

Radio polarization and rotation measure Our model naturally lends itself to predicting
radio signatures of the Fermi bubbles. The relatively high level of field ordering inside the
bubbles that was mentioned above leads to high intrinsic linear polarization fractions.
The bubble fields tend to be stretched along the jet propagation direction (see radial
enhancements in the magnetic field in Figure 3). This is consistent with the linearly
polarized intensity S-PASS maps (Carretti et al. 2013) that show high level of polar-
ized emission in features approximately aligned with the jet propagation direction. The
polarization fractions predicted by the model are somewhat above those observed, but
this discrepancy could easily be resolved by foreground depolarization. We also make
predictions for the rotation measure distribution (see Figure 3). Our simulations suggest
that the rotation measure could be boosted around the bubbles. This enhancement is
especially likely near the bubble-ISM interface but not necessarily perfectly coincident
with it. While the likely presence of magnetic field fluctuations unaccounted for in our
simulations precludes making any definite predictions as to the level and precise location
of these enhancements, this effect could be searched for in latitude-binned rotation mea-
sure observations.
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