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Abstract. For a multiplier Hopf algebra pairing 〈A, B〉, we construct a class of group-
cograded multiplier Hopf algebras D(A, B), generalizing the classical construction of finite
dimensional Hopf algebras introduced by Panaite and Staic Mihai [Isr. J. Math. 158 (2007),
349–365]. Furthermore, if the multiplier Hopf algebra pairing admits a canonical multi-
plier in M(B ⊗ A), we show the existence of quasitriangular structure on D(A, B). As an
application, some special cases and examples are provided.

2010 Mathematics Subject Classification. 16T05, 17B37

1. Introduction. Recall from [7] that the motivating example for quasitriangular
Hopf algebras is H = Uq(g), where g is a finite dimensional semisimple Lie algebra over
the field C of complex numbers. In fact, by [5] H is not quasitriangular in the strict sense
of the definition, because the R-matrix lies in a completion of H ⊗ H rather than in H ⊗ H
itself. The explicit construction of the universal R-matrix is complicated. One approach
with multiplier Hopf algebras gives a way to construct a generalized R-matrix in purely
algebraic terms. The notion of a quasitriangular multiplier Hopf algebra is introduced
in [17].

The concept of a group-cograded multiplier Hopf algebra was introduced by Abd
El-hafez et al. in [1] as a generalization of Hopf group-coalgebras introduced in [9]. In [5],
the authors brought the results of quasitriangular Hopf group-coalgebras (as introduced by
Turaev) to the more general framework of multiplier Hopf algebras, i.e., quasitriangular
group-cograded multiplier Hopf algebras.

In [8], Panaite and Staic Mihai constructed a class of Hopf group-coalgebras by
the so-called diagonal crossed product of a finite dimensional Hopf algebra H and its
duality H∗. Then, one main question arises: Does the construction still hold for some
infinite dimensional Hopf algebras?

For this question, we first consider a more general case: the Panaite and Staic Mihai’s
construction for multiplier Hopf algebras, and then answer the question by applying the
result to infinite dimensional Hopf algebras.
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In addition, we want to show the quasitriangular structures on the group-cograded
multiplier Hopf algebra obtained by diagonal crossed products. That is, the main aim of
this paper is to construct more examples of quasitriangular group-cograded multiplier Hopf
algebras.

The paper is organized in the following way. In Section 2, we recall some notions
which will be used in the following, such as multiplier Hopf algebras, quasitriangular
group-cograded multiplier Hopf algebras and pairing.

In Section 3, let A and B be regular multiplier Hopf algebras with pairing 〈A, B〉.
Then, D(A, B) = ⊕

(α,β)∈G A �	 B(α,β) is a G-cograded multiplier Hopf algebra, where A �	
B(α,β) is the diagonal crossed product and G = AutHop f (B) × AutHop f (B) is a group with
multiplication (α, β) ∗ (γ, δ) = (αγ, δγ −1βγ ) for α, β, γ, δ ∈ AutHop f (B).

In Section 4, we show in Theorem 4.3 that D(A, B) constructed in the Section 3 admits
a quasitriangular structure if there is a canonical multiplier in M(B ⊗ A).

In Section 5, we also conclude by describing its applications and examples in the
setting of some infinite dimensional Hopf algebras.

2. Preliminaries. We begin this section with a short introduction to multiplier Hopf
algebras.

Throughout this paper, all spaces we considered are over a fixed field K (such as the
field C). Algebras may or may not have units, but should be always non-degenerate, i.e.,
the multiplication maps (viewed as bilinear forms) are non-degenerate. For an algebra A,
the multiplier algebra M(A) is defined as the largest algebra with unit in which A is a dense
ideal (see the appendix in [10]).

Now, we recall the definition of a multiplier Hopf algebra (see [10] for details).
A comultiplication on an algebra A is a homomorphism � : A −→ M(A ⊗ A) such that
�(a)(1 ⊗ b) and (a ⊗ 1)�(b) belong to A ⊗ A for all a, b ∈ A. We require � to be
coassociative in the sense that

(a ⊗ 1 ⊗ 1)(� ⊗ ι)(�(b)(1 ⊗ c)) = (ι ⊗ �)((a ⊗ 1)�(b))(1 ⊗ 1 ⊗ c),

for all a, b, c ∈ A, where ι denotes the identity map.
A pair (A, �) of a non-degenerate algebra A with a comultiplication � is called a

multiplier Hopf algebra, if the maps T1, T2 : A ⊗ A −→ A ⊗ A defined by

T1(a ⊗ b) = �(a)(1 ⊗ b), T2(a ⊗ b) = (a ⊗ 1)�(b) (2.1)

are bijective.
A multiplier Hopf algebra (A, �) is called regular if (A, �cop) is also a multiplier

Hopf algebra, where �cop denotes the co-opposite comultiplication defined as �cop = τ ◦ �

with τ the usual flip map from A ⊗ A to itself (and extended to M(A ⊗ A)). In this case,
�(a)(b ⊗ 1) and (1 ⊗ a)�(b) ∈ A ⊗ A for all a, b ∈ A.

By Proposition 2.9 in [11], multiplier Hopf algebra (A, �) is regular if and only if the
antipode S is bijective from A to A. In this situation, the comultiplication is also determined
by the bijective maps T3, T4 : A ⊗ A −→ A ⊗ A defined as follows:

T3(a ⊗ b) = �(a)(b ⊗ 1), T4(a ⊗ b) = (1 ⊗ a)�(b), (2.2)

for all a, b ∈ A.
In this paper, all the multiplier Hopf algebras we considered are regular. We will use

the adapted Sweedler notation for regular multiplier Hopf algebras (see [12]). We will,
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e.g., write
∑

a(1) ⊗ a(2)b for �(a)(1 ⊗ b) and
∑

ab(1) ⊗ b(2) for (a ⊗ 1)�(b), and
sometimes we omit the

∑
.

2.1. Quasitriangular group-cograded multiplier Hopf algebras. The concept of
a group-cograded multiplier Hopf algebra was introduced by Abd El-hafez et al. in [1] as
a generalization of Hopf group-coalgebras introduced in [9].

Let (A, �) be a multiplier Hopf algebra and G a group. Assume that there is a family
of (non-trivial) subalgebras (Ap)p∈G of A so that

(i) A = ⊕
p∈G Ap with ApAq = 0 whenever p, q ∈ G and p �= q,

(ii) �(Apq)(1 ⊗ Aq) = Ap ⊗ Aq and (Ap ⊗ 1)�(Apq) = Ap ⊗ Aq for all p, q ∈ G.

Then, (A, �) is called a G-cograded multiplier Hopf algebra. By a crossing action of the
group G on A, we mean a group homomorphism ξ : G −→ Aut(A) such that ξp respects the
comultiplication on A in the sense that �ξp = (ξp ⊗ ξp)� and ξp(Aq) = Apqp−1 .

The theory of group-cograded multiplier Hopf algebras was further developed. In par-
ticular in [5], the authors study quasitriangular group-cograded multiplier Hopf algebras
in the following sense: a G-cograded multiplier Hopf algebra with a crossing action ξ is
called quasitriangular if there is a multiplier R = ∑

α,β∈G Rα,β with Rα,β ∈ M(Aα ⊗ Aβ) so

that (1) (ξp ⊗ ξp)(R) = R for all p ∈ G, (2) (�̃ ⊗ ι)(R) = R13R23, (3)(ι ⊗ �)(R) = R13R12,

and (4) R�(a) = (�̃)cop(a)R for all p ∈ G and a ∈ A, where �̃(a)(1 ⊗ a′) = (ξq−1 ⊗ ı)
(�(a)(1 ⊗ a′)), for all a ∈ A and a′ ∈ Aq.

2.2. Multiplier Hopf algebra pairing. Start with two regular multiplier Hopf alge-
bras A and B together with a non-degenerate bilinear map 〈·, ·〉 from A × B to K satisfying
certain properties. The main property is the comultiplication in A is dual to the product in
B and vice versa. For more details, see [6].

For a ∈ A and b ∈ B, we can define multipliers a � b, b � a ∈ M(B) and b � a, a � b ∈
M(A) in the following way. For a′ ∈ A and b′ ∈ B, we have (b � a)a′ = ∑〈a(2), b〉a(1)a′,
(a � b)b′= ∑〈a, b(2)〉b(1)b′, (a � b)a′= ∑〈a(1), b〉a(2)a′, and (b � a)b′= ∑〈a, b(1)〉b(2)b′.
The regularity conditions on the dual paring 〈,〉 say that the multipliers b � a and a � b
in M(A) (resp. a � b and b � a in M(B)) actually belong to A (resp. B). For more details,
see [3].

We mention that 〈S(a), b〉 = 〈a, S(b)〉, 〈1M(A), b〉 = ε(b), and 〈a, 1M(B)〉 = ε(b).
Sometimes without confusion we denote the unit 1M(A) of M(A) by 1. We also use bilinear
forms on the tensor products in the following way:

〈a ⊗ a′, b ⊗ b′〉 = 〈a, b〉〈a′, b′〉, 〈b ⊗ a, a′ ⊗ b′〉 = 〈a′, b〉〈a, b′〉,
for all a, a′ ∈ A and b, b′ ∈ B. These bilinear forms are non-degenerate and can be extended
in a natural way to the multiplier algebra at one side.

3. Diagonal crossed product of multiplier Hopf algebras. Let B be a multiplier
Hopf algebra, we denote the group of multiplier Hopf automorphisms by AutHop f (B).
Let α ∈ AutHop f (B), by Lemma 3.3 in [4] we have � ◦ α = (α ⊗ α) ◦ �, ε ◦ α = ε, and
S ◦ α = α ◦ S. Denote G = AutHop f (B) × AutHop f (B), a group with multiplication:

(α, β) ∗ (γ, δ) = (
αγ, δγ −1βγ

)
. (3.1)

The unit is (ι, ι) and (α, β)−1 = (α−1, αβ−1α−1) (see [15]).
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Firstly, we introduce the diagonal crossed product of regular multiplier Hopf alge-
bras. In other words, the construction of the diagonal crossed product in [8] still holds for
multiplier Hopf algebras. Hence, we need to check that the diagonal crossed product for
multiplier Hopf algebras is well-defined and non-degenerate.

DEFINITION 3.1. Let A and B be regular multiplier Hopf algebras with pairing 〈A, B〉.
For (α, β) ∈ G, we set A �	 B(α,β) = A ⊗ B as a vector space with a multiplication defined
by the following formula:

(a �	 b)(a′ �	 b′) = a
(
α
(
b(1)

)
� a′ � S−1β

(
b(3)

)) �	 b(2)b
′, (3.2)

for all a, a′ ∈ A and b, b′ ∈ B. This multiplication is called the diagonal crossed product.

REMARK. The diagonal crossed product (3.2) is well-defined. Indeed, by Proposition
1.2 in [13] for a′ ∈ A there is an element e ∈ B such that e � a′ = a′, therefore
the right side of equation (3.2) becomes a

(
α(b(1)α

−1(e))� a′ � S−1β(b(3))
) �	 b(2)b′.

b(1)α
−1(e) ⊗ b(2)b′ ⊗ b(3) = (ι ⊗ �)

(
�(b)(α−1(e) ⊗ 1)

)
(1 ⊗ b′ ⊗ 1) ∈ B ⊗ B ⊗ B, so (3.2)

is well-defined.

PROPOSITION 3.2. Take the notations as above. Then, A �	 B(α,β) with the diagonal
crossed product defined by (3.2) is an associative and non-degenerate algebra. Moreover,
the algebras A and B are subalgebras of A �	 B(α,β) by the linear embedding A ↪→ A �	
B(α,β) and B ↪→ A �	 B(α,β) defined by a �→ a �	 1M(B) and b �→ 1M(A) �	 b, respectively.

Proof. We define two linear maps t1, t2 : A ⊗ B−→A ⊗ B by the formulas: t1(a ⊗ b) =
α(b(1))� a ⊗ b(2) and t2(a ⊗ b) = a � β(b(2)) ⊗ b(1). Then, t1 and t2 are bijective with
the inverse given by t−1

1 (a ⊗ b) = S−1α(b(1))� a ⊗ b(2) and t−1
2 (a ⊗ b) = a � S−1β(b(2))

⊗ b(1), respectively.
Let T = t1◦ t−1

2 ◦ τ , then we have

T(b ⊗ a′) =
(
α
(
b(1)

)
� a′ � S−1β

(
b(3)

)) �	 b(2)

that is bijective. In this case, the diagonal crossed product becomes the twisted tensor
product in the sense of Delvaux [2], i.e., (a �	 b)(a′ �	 b′) = (mA ⊗ mB)(ι ⊗ T ⊗ ι)(a ⊗ b ⊗
a′ ⊗ b′). Then, by Proposition 1.1 in [2], the diagonal crossed product on A �	 B(α,β) is
non-degenerate.

For the associativity and the rest of this proposition, it is straightforward.

REMARK. (1) The product of A �	 B(α,β) is non-degenerate, so we can get the
multiplier Hopf algebra M(A �	 B(α,β)) and obviously 1M(A) �	 1M(B) is its unit.

(2) By the “cover technique” introduced in [12], the product of A �	 B(α,β) can be
written in adapted Sweedler notation:

(a �	 b)(a′ �	 b′) = 〈
a′

(1), S−1β
(
b(3)

)〉 〈
a′

(3), α
(
b(1)

)〉 (
aa′

(2) �	 b(2)b
′).

In particular, if B is finite dimensional, then B is a Hopf algebra. Let A = B∗, then the
formula (3.2) is just the diagonal crossed product introduced in [8].

(3) As in Section 2.3 in [3] the commutation rule in A �	 B(α,β) can be written as

〈a(1), b(2)〉
(
1 �	 β−1(b(1))

)
(a(2)x �	 y) = 〈

a(2), αβ−1(b(1))
〉 (

a(1) �	 β−1(b(2))
)
(x �	 y), (3.3)

for a ∈ A, b ∈ B and x �	 y ∈ A �	 B(α,β).

In what follows, let D(A, B) = ⊕
(α,β)∈G A �	 B(α,β). Then, we have the main results of

this section: there exists a multiplier Hopf algebra structure on D(A, B), which generalizes
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the classical construction of finite dimensional Hopf algebras by Panaite and Staic Mihai
in [8]. This construction is different from what introduced in [14].

THEOREM 3.3. Let A and B be regular multiplier Hopf algebras with pairing 〈A, B〉.
Then, D(A, B) = ⊕

(α,β)∈G A �	 B(α,β) is a G-cograded multiplier Hopf algebra with the
following structures:

� For any (α, β) ∈ G, the multiplication of A �	 B(α,β) is given by Definition 3.1.
� The comultiplication on D(A, B) is given by

�(α,β),(γ,δ) : A �	 B(α,β)∗(γ,δ) −→ M
(
A �	 B(α,β) ⊗ A �	 B(γ,δ)

)
,

�(α,β),(γ,δ)(a �	 b) = �cop(a)(γ ⊗ γ −1βγ )�(b),

where �cop(a) and �(b) are identified with A ↪→ A �	 B and B ↪→ A �	 B, respectively
as in Proposition 3.2.

� The counit εD(A,B) on A �	 B(ι,ι) is given by εD(A,B)(a �	 b) = εA(a)εB(b).
� For any (α, β) ∈ G, the antipode is given by

S : A �	 B(α,β) −→ A �	 B(α,β)−1 ,

S(α,β)(a �	 b) = T(αβS(b) ⊗ S−1(a)) in A �	 B(α,β)−1 = A �	 B(α−1,αβ−1α−1).

Proof. It is easy to check that εD(A,B) is a counit of D(A, B). Similar to the
Drinfel’d double for group-cograded multiplier Hopf algebras introduced in [4], �(α,β),(γ,δ)

(a �	 b)
(
1D(A,B)⊗(a′�	 b′)

) ∈ A �	 B(α,β) ⊗ A �	 B(γ,δ) and
(
(a′′�	 b′′) ⊗ 1D(A,B)

)
�(α,β),(γ,δ)

(a �	 b) ∈ A �	 B(α,β) ⊗ A �	 B(γ,δ) for any a �	 b ∈ A �	 B(α,β)∗(γ,δ), a′ �	 b′ ∈ A �	 B(γ,δ) and
a′′ �	 b′′ ∈ A �	 B(α,β).

For the coassociativity, it is straightforward. Next, let us check that �(α,β),(γ,δ) is
multiplicative, i.e., �(α,β),(γ,δ)

(
(a �	 b)(a′ �	 b′)

) = �(α,β),(γ,δ)(a �	 b)�(α,β),(γ,δ)(a′ �	 b′).
Indeed, for any a, a′, a′′ ∈ A and b, b′, b′′ ∈ B,((

a′′ �	 1M(B)

) ⊗ 1D(A,B)

)
�(α,β),(γ,δ)

(
(a �	 b)

(
a′ �	 b′))(1D(A,B) ⊗ (

1M(A) �	 b′′))
= 〈

a′
(1), S−1δγ −1βγ (b(3))

〉 〈
a′

(3), αγ (b(1))
〉

((
a′′ �	 1M(B)

) ⊗ 1D(A,B)

)
�(α,β),(γ,δ)

(
aa′

(2) �	 b(2)b
′)(1D(A,B) ⊗ (

1M(A) �	 b′′))
= 〈

a′
(1), S−1δγ −1βγ (b(4))

〉 〈
a′

(4), αγ (b(1))
〉

(
a′′a(2)a

′
(3) �	 γ

(
b(2)b

′
(1)

) ⊗ a(1)a
′
(2) �	 γ −1βγ

(
b(3)b

′
(2)

)
b′′),

and((
a′′ �	 1M(B)

) ⊗ 1D(A,B)

)
�(α,β),(γ,δ)(a �	 b)�(α,β),(γ,δ)

(
a′ �	 b′)(

1D(A,B) ⊗ (
1M(A) �	 b′′))

= (
a′′a(2) �	 γ (b(1))

)(
a′

(2) �	 γ
(
b′

(1)

)) ⊗ (
a(1) �	 γ −1βγ (b(2))

)(
a′

(1) �	 γ −1βγ
(
b′

(2)

)
b′′)

= 〈
a′

(4), S−1βγ (b(3))
〉 〈

a′
(6), αγ (b(1))

〉 (
a′′a(2)a

′
(5) �	 γ (b(2))b

′
(1)

)
⊗ 〈

a′
(1), S−1δγ −1βγ (b(6))

〉 〈
a′

(3), γ γ −1βγ (b(4))
〉(

a(1)a
′
(2) �	 γ −1βγ

(
b(5)

)
b′

(2)b
′′)

= 〈
a′

(1), S−1δγ −1βγ (b(4))
〉 〈

a′
(4), αγ (b(1))

〉 (
a′′a(2)a

′
(3) �	 γ

(
b(2)b

′
(1)

)
⊗ a(1)a

′
(2) �	 γ −1βγ

(
b(3)b

′
(2)

)
b′′).

Here, the underlined pairing is canceled by S(a(1))a(2) = ε(a)1.
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Because the T is bijective, it is easy to get that the antipode S is bijective. Also we
have

S(α,β)(a �	 b) = (
βS(b(3))� S−1(a)� α(b(1))

) �	 αβS(b(2))

= 〈
S−1(a(3)), α(b(1))

〉 〈
S−1(a(1)), βS(b(3))

〉 (
S−1(a(2)) �	 αβS(b(2))

)
.

It is straightforward to check that S defined above is an algebra anti-isomorphism, i.e.,
S(α,β)

(
(a �	 b)(a′ �	 b′)

) = S(α,β)(a′ �	 b′)S(α,β)(a �	 b). In fact,

S(α,β)

(
(a �	 b)

(
a′ �	 b′))

= 〈
a′

(1), S−1β(b(3))
〉 〈

a′
(3), α(b(1))

〉 (
S(α,β)

(
aa′

(2) �	 b(2)b
′))

= 〈
a′

(1), S−1β(b(5))
〉 〈

a′
(5), α(b(1))

〉 〈
S−1

(
a(3)a

′
(4)

)
, α

(
b(2)b

′
(1)

)〉
〈
S−1

(
a(1)a

′
(2)

)
, βS

(
b(4)b

′
(3)

)〉 (
S−1

(
a(2)a

′
(3)

) �	 αβS
(
b(3)b

′
(2)

))
= 〈

a′
(1), S−1β(b(7))

〉 〈
a′

(5), α(b(1))
〉 〈

S−1
(
a′

(4)

)
, α

(
b(2)b

′
(1)

)〉 〈
S−1(a(3)), α

(
b(3)b

′
(2)

)〉
〈
S−1

(
a′

(2)

)
, βS

(
b(6)b

′
(5)

)〉 〈
S−1(a(1)), βS

(
b(5)b

′
(4)

)〉 (
S−1

(
a(2)a

′
(3)

) �	 αβS
(
b(4)b

′
(3)

))
= 〈

a′
(1), β

(
b′

(5)

)〉 〈
a′

(3), αS−1
(
b′

(1)

)〉 〈
S−1(a(3)), α

(
b(1)b

′
(2)

)〉 〈
a(1), β

(
b(3)b

′
(4)

)〉
(
S−1

(
a(2)a

′
(2)

) �	 αβS
(
b(2)b

′
(3)

))
,

where the underlined two pairings are canceled by S−1(a(2))a(1) = ε(a)1. And

S(α,β)

(
a′ �	 b′)S(α,β)(a �	 b)

= 〈
S−1

(
a′

(3)

)
, α

(
b′

(1)

)〉 〈
S−1

(
a′

(1)

)
, βS

(
b′

(3)

)〉 (
S−1

(
a′

(2)

) �	 αβS
(
b′

(2)

))
〈
S−1(a(3)), α(b(1))

〉 〈
S−1(a(1)), βS(b(3))

〉 (
S−1(a(2)) �	 αβS(b(2))

)
= 〈

S−1
(
a′

(3)

)
, α

(
b′

(1)

)〉 〈
S−1

(
a′

(1)

)
, βS

(
b′

(5)

)〉 〈
S−1(a(3)), α(b(1))

〉 〈
S−1(a(1)), βS(b(3))

〉
〈
S−1(a(4)), α

(
b′

(2)

)〉 〈
S−1(a(2)), βS

(
b′

(4)

)〉 (
S−1

(
a(3)a

′
(2)

) �	 αβS
(
b(2)b

′
(3)

))
= 〈

a′
(1), β

(
b′

(5)

)〉 〈
a′

(3), αS−1
(
b′

(1)

)〉 〈
S−1(a(3)), α

(
b(1)b

′
(2)

)〉 〈
a(1), β

(
b(3)b

′
(4)

)〉
(
S−1

(
a(2)a

′
(2)

) �	 αβS
(
b(2)b

′
(3)

))
.

Finally, we want to verify the following axiom: for a �	 b ∈ A �	 B(ι,ι), and a′ �	 b′ ∈
A �	 B(α,β),

m(α,β)

(
S(α,β)−1 ⊗ ι(α,β)

)(
�(α,β)−1,(α,β)(a �	 b)(1 ⊗ a′ �	 b′)

) = εD(A,B)(a �	 b)(a′ �	 b′),
m(α,β)

(
ι(α,β) ⊗ S(α,β)−1

)(
(a′ �	 b′ ⊗ 1)�(α,β),(α,β)−1(a �	 b)

) = εD(A,B)(a �	 b)(a′ �	 b′).

Here we only check the first equation, the second one is similar.

m(α,β)

(
S(α,β)−1 ⊗ ι(α,β)

)(
�(α,β)−1,(α,β)(a �	 b)(1 ⊗ a′ �	 b′)

)
= m(α,β)

(
S(α,β)−1 ⊗ ι(α,β)

)(
�cop(a)(α ⊗ β−1)�(b)(1(α,β)−1 ⊗ a′ �	 b′)

)
= S(α−1,αβ−1α−1)

(
a(2) �	 α(b(1))

)(
a(1)(αβ−1(b(2))� a′ � S−1(b(4))) �	 β−1(b(3))b

′)
= [

αβ−1S(b(3))� S−1(a(2))� b(1) �	 β−1S(b(2))
]

[
a(1)

(
αβ−1(b(4))� a′ � S−1(b(6))

) �	 β−1(b(5))b
′]
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= [
αβ−1S(b(5))� S−1(a(2))� b(1)

]
[
αβ−1S(b(4))�

(
a(1)

(
αβ−1(b(6))� a′ � S−1(b(8))

))
� b(2)

] �	 β−1S(b(3))β
−1(b(7))b

′

= [
αβ−1S(b(7))� S−1(a(2))� b(1)

][
αβ−1S(b(6))� a(1) � b(2)

]
[
αβ−1S(b(5))�

(
αβ−1(b(8))� a′ � S−1(b(10))

)
� b(3)

] �	 β−1S(b(4))β
−1(b(9))b

′

= [
αβ−1S(b(5))� S−1(a(2))a(1) � b(1)

]
[
αβ−1S(b(4))�

(
αβ−1(b(6))� a′ � S−1(b(8))

)
� b(2)

] �	 β−1S(b(3))β
−1(b(7))b

′

= ε(a)
[
αβ−1S(b(5))� 1 � b(1)

]
[
αβ−1S(b(4))�

(
αβ−1(b(6))� a′ � S−1(b(8))

)
� b(2)

] �	 β−1S(b(3))β
−1(b(7))b

′

(1)= ε(a)
[
αβ−1S(b(3))�

(
αβ−1(b(4))� a′ � S−1(b(6))

)
� b(1)

] �	 β−1S(b(2))β
−1(b(5))b

′

= ε(a)
[(

αβ−1(S(b(3))b(4))� a′ � S−1(b(6))
)
� b(1)

] �	 β−1S(b(2))β
−1(b(5))b

′

= ε(a)
[(

a′ � S−1(b(4))
)
� b(1)

] �	 β−1S(b(2))β
−1(b(3))b

′

= ε(a)
[
a′ � S−1(b(2))b(1)

] �	 b′

= ε(a)ε(b)a′ �	 b′

= εD(A,B)(a �	 b)(a′ �	 b′),

where equation (1) holds because of b � 1 = ε(b) = 1 � b.
Therefore, by Theorem 2.5 in [1] D(A, B) = ⊕

(α,β)∈G A �	 B(α,β) is a regular
G-cograded multiplier Hopf algebra.

REMARK. Let π be a subgroup of Aut(B), then we also can construct the group
G′ = π × π by the product (3.1). Then, we can similarly obtain a group-cograded multiplier
Hopf algebra over G′.

EXAMPLE 3.4. Let H be an infinite group. Denote by kH the group algebra over a
field k, and let k(H) be the classical dual multiplier Hopf algebra of kH . The Drinfel’d
double D(H) = k(H) ∝ kH is a multiplier Hopf algebra rather than a usual Hopf algebra.
Set B = D(H), A = ̂D(H) the dual multiplier Hopf algebra of B. Then, for p, h, q, l ∈ H ,
the multiplier Hopf algebra structure on B is given by

(δp ∝ h)(δq ∝ l) = δpδhqh−1 ∝ hl,

�(δp ∝ h) =
∑
s∈H

(δs−1p ∝ h) ⊗ (
δs ∝ h

)
,

ε(δp ∝ h) = δp,e,

S(δp ∝ h) = δh−1ph ∝ h−1,

where δp : G −→ k in k(H) is defined by δp(q) = δp,q (the Kronecker symbol). And the
multiplier Hopf algebra structure on A is given by

(h ∝ δp)(l ∝ δq) = lh ∝ δpδq,

�(h ∝ δp) =
∑
t∈H

(h ∝ δt) ⊗ (t−1ht ∝ δt−1p),

ε(h ∝ δp) = δp,e,

S(h ∝ δp) = p−1h−1p ∝ δp−1 .
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Let α ∈ H , define α(δp ∝ h) = δαpα−1 ∝ αhα−1, then α ∈ AutHop f (D(H)). By Theorem 3.3,

D(D(H)) = ⊕
(α,β)∈G

̂D(H) �	 D(H)(α,β) is a G-cograded multiplier Hopf algebra with the
following structures:

� For any (α, β) ∈ G, the multiplication of ̂D(H) �	 D(H)(α,β) is given by(
(1 �	 (δp ∝ h)

)(
(l ∝ δq) �	 1

) = (
βhβ−1lβh−1β−1 ∝ δβhβ−1qαh−1α−1

)
�	 (δα−1l−1αphβ−1lh−1 ∝ h).

� The comultiplication �(α,β),(γ,δ) : ̂D(H) �	 D(H)(α,β)∗(γ,δ) −→ ̂D(H) �	 D(H)(α,β) ⊗
̂D(H) �	 D(H)(γ,δ) is given by

�(α,β),(γ,δ)

(
(l ∝ δq) �	 (δp ∝ h)

)
=

∑
s,t∈H

(
t−1lt ∝ δt−1q

) �	 (δγ sγ −1 ∝ h)

⊗ (l ∝ δt) �	 (
δγ −1βγ s−1pγ −1β−1γ ∝ γ −1βγ hγ −1β−1γ

)
.

� The counit εD(D(H)) on ̂D(H) �	 D(H)(ι,ι) is given by

εD(A,B)

(
(l ∝ δq) �	 (δp ∝ h)

) = δp,eδq,e.

� For any (α, β) ∈ G, the antipode is given by S : ̂D(H) �	 D(H)(α,β) −→ ̂D(H) �	
D(H)(α,β)−1

S(α,β)

(
(l ∝ δq) �	 (δp ∝ h)

)
= (

αh−1α−1q−1lqαhα−1 ∝ δαh−1α−1q−1βhβ−1

)
�	 (

δαq−1l−1qβh−1pα−1q−1lqαβhβ−1α−1 ∝ αβh−1β−1α−1
)
.

4. Quasitriangular structures. To construct quasitriangular structure on the
G-cograded multiplier Hopf algebra established as before, we first study crossing actions
as follows.

PROPOSITION 4.1. With the notations as before. Then, a crossing action ξ : G −→
Aut(D(A, B)) is given by

ξ
(γ,δ)

(α,β) : A �	 B(γ,δ) −→ A �	 B(α,β)∗(γ,δ)∗(α,β)−1 = A �	 B(αγ α−1,αβ−1δγ −1βγα−1),

ξ
(γ,δ)

(α,β)(a �	 b) = a ◦ βα−1 �	 αγ −1β−1γ (b),

where 〈a ◦ βα−1, b〉 = 〈a, βα−1(b)〉 for any b ∈ B.

Proof. First, ξ
(γ,δ)

(α,β) is an algebra morphism. Indeed,

ξ
(γ,δ)

(α,β)(a �	 b)ξ
(γ,δ)

(α,β)(a
′ �	 b′)

= (
a ◦ βα−1 �	 αγ −1β−1γ (b)

)(
a′ ◦ βα−1 �	 αγ −1β−1γ (b′)

)
= 〈

a′
(1) ◦ βα−1, S−1αβ−1δγ −1βγα−1 · αγ −1β−1γ (b(3))

〉
〈
a′

(3) ◦ βα−1, αγ α−1 · αγ −1β−1γ (b(1))
〉 ((

aa′
(2)

) ◦ βα−1 �	 αγ −1β−1γ
(
b(2)b

′))
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= 〈
a′

(1), S−1δ(b(3))
〉 〈a′

(3), γ (b(1))〉
(
(aa(2)) ◦ βα−1 �	 αγ −1β−1γ

(
b(2)b

′))
= ξ

(γ,δ)

(α,β)

(〈
a′

(1), S−1δ(b(3))
〉 〈

a′
(3), γ (b(1))

〉
aa′

(2) �	 b(2)b
′)

= ξ
(γ,δ)

(α,β)

(
(a �	 b)

(
a′ �	 b′)).

Moreover, α, β, γ, δ ∈ AutHop f (B) are bijective, then ξ
(γ,δ)

(α,β) is an algebra isomorphism.
Then, it is straightforward to check that ξ respects the comultiplication, i.e., for any

(μ, ν) ∈ G,

�(α,β)∗(γ,δ)∗(α,β)−1,(α,β)∗(μ,ν)∗(α,β)−1 ◦ ξ
(γ,δ)∗(μ,ν)

(α,β) =
(
ξ

(γ,δ)

(α,β) ⊗ ξ
(μ,ν)

(α,β)

)
◦ �(γ,δ),(μ,ν).

Indeed, for a �	 b ∈ A �	 B(γ,δ)∗(μ,ν),

�(α,β)∗(γ,δ)∗(α,β)−1,(α,β)∗(μ,ν)∗(α,β)−1 ◦ ξ
(γ,δ)∗(μ,ν)

(α,β) (a �	 b)

= �(αγα−1,αβ−1δγ −1βγα−1),(αμα−1,αβ−1νμ−1βμα−1)ξ
(γμ,νμ−1δμ)

(α,β) (a �	 b)

= �(αγα−1,αβ−1δγ −1βγα−1),(αμα−1,αβ−1νμ−1βμα−1)

(
a ◦ βα−1 �	 αμ−1γ −1β−1γμ(b)

)
= �cop

(
a ◦ βα−1

)(
αμα−1 ⊗ αμ−1α−1 · αβ−1δγ −1βγα−1 · αμα−1

)
�

(
αμ−1γ −1β−1γμ(b)

)
= �cop

(
a ◦ βα−1

)(
αγ −1β−1γμ ⊗ αμ−1β−1δμ

)
�(b)

=
(
ξ

(γ,δ)

(α,β) ⊗ ξ
(μ,ν)

(α,β)

) (
�cop(a)(μ ⊗ μ−1δμ)�(b)

)
=

(
ξ

(γ,δ)

(α,β) ⊗ ξ
(μ,ν)

(α,β)

)
◦ �(γ,δ),(μ,ν)(a �	 b).

It is easy to check that εD(A,B) ◦ ξ
(ι,ι)

(α,β) = εD(A,B) for any (α, β) ∈ G.
Finally, we need to check that ξ(α,β) ◦ ξ(γ,δ) = ξ(α,β)∗(γ,δ). Let a �	 b ∈ A �	 B(μ,ν), we

do the calculations as follows:

ξ
(γ,δ)∗(μ,ν)∗(γ,δ)−1

(α,β)

(
ξ

(μ,ν)

(γ,δ) (a �	 b)
)

= ξ
(γμγ −1,γ δ−1νμ−1δμγ −1)

(α,β)

(
a ◦ δγ −1 �	 γμ−1δμ(b)

)
= a ◦ δγ −1β−1α �	 α · γμ−1γ −1 · β−1 · γμγ −1γμ−1δ−1μ(b)

= a ◦ δγ −1β−1α �	 αγμ−1γ −1β−1γ δ−1μ(b)

= ξ
(μ,ν)

(αγ,δγ −1βγ )
(a �	 b) = ξ(α,β)∗(γ,δ)(a �	 b).

Therefore, ξ : G −→ Aut(D(A, B)) is a crossing action.

From Proposition 3.2 and Theorem 3.3, we get that D(A, B) = ⊕
(α,β)∈G A �	 B(α,β) is

a multiplier Hopf T-coalgebra introduced in [16].
Recall from [3] that a canonical multiplier W for 〈A, B〉 is an invertible element in

M(B ⊗ A) such that 〈W , a ⊗ b〉 = 〈a, b〉 for all a ∈ A and b ∈ B. Observe that we use the
extension of the non-degenerate bilinear form 〈B ⊗ A, A ⊗ B〉 to 〈M(B ⊗ A), A ⊗ B〉. If
there is a canonical multiplier W in M(B ⊗ A), then it is unique. Similar to Proposition 4.4
in [3], we have (�B ⊗ ιA)W = W 13W 23 and (ιB ⊗ �A)W = W 12W 13.
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LEMMA 4.2. Let W be the canonical multiplier in M(B ⊗ A). Then,

(1) in M(A �	 B(α,β) ⊗ A),

(
β−1 ⊗ ι

)
(W)�cop(a) = (

�(a) ◦ (
ι ⊗ αβ−1

))
(β−1 ⊗ ι)(W), (4.1)

(2) in M(B ⊗ A �	 B(γ,δ)),

(
β−1 ⊗ ι

)
(W)

(
γ ⊗ γ −1βγ

)
�(b)

= (
β−1δγ −1βγ ⊗ γ −1βγ

)
�cop(b)

(
β−1 ⊗ ι

)
(W). (4.2)

Proof. We prove (1). The proof of (2) is similar. We claim that in the multiplier algebra
M(A �	 B(α,β))

(
ι ⊗ 〈·, b〉)((β−1 ⊗ ι

)
(W)�cop(a)

)
(x �	 y)

= (
ι ⊗ 〈·, b〉)[(�(a) ◦ (

ι ⊗ αβ−1
))(

β−1 ⊗ ι
)
(W)

]
(x �	 y),

for all b ∈ B and x �	 y ∈ A �	 B(α,β).
The left-hand side of the above claim is given by

(ι ⊗ 〈·, b〉)((β−1 ⊗ ι
)
(W)�cop(a)

)
(x �	 y)

= (ι ⊗ 〈·, b(1)〉)
((

β−1 ⊗ ι
)
W

)〈a(1), b(2)〉(a(2)x �	 y)

= 〈a(1), b(2)〉
(
1 �	 β−1(b(1))

)
(a(2)x �	 y).

Take a′ ∈ A such that b = b � a′. Then, the right-hand side of the above claim is given by

(ι ⊗ 〈·, b〉)[(�(a) ◦ (
ι ⊗ αβ−1

))(
β−1 ⊗ ι

)
(W)

]
(x �	 y)

= (ι ⊗ 〈·, b〉)[(a(1) �	 1M(B) ⊗ a′(a(2) ◦ αβ−1
))(

β−1 ⊗ ι
)
(W)

]
(x �	 y)

= 〈
a′(a(2) ◦ αβ−1

)
, b(1)

〉
(a(1) �	 1M(B))(ι ⊗ 〈·, b(2)〉)

((
β−1 ⊗ ι

)
W

)
(x �	 y)

= 〈
a(2) ◦ αβ−1, b(1)

〉 (
a(1) �	 β−1(b(2))

)
(x �	 y)

= 〈
a(2), αβ−1(b(1))

〉 (
a(1) �	 β−1(b(2))

)
(x �	 y).

Following the commutation rule (3.3), we obtain that the claim is proven. Now we get the
assertion (1) by using the facts that the pairing is a non-degenerate bilinear form and that
the product in A �	 B(α,β) is non-degenerate.

THEOREM 4.3. Let A and B be regular multiplier Hopf algebras, 〈A, B〉 be the
multiplier Hopf algebras pairing with the canonical multiplier W. Then, D(A, B) =⊕

(α,β)∈G A �	 B(α, β) is quasitriangular with a generalized R-matrix given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G

(β−1 ⊗ ι)(W).

Proof. By Proposition 3.2 (β−1 ⊗ ι)(W) can be embedded in M(A �	 B(α,β) ⊗ A �	
B(γ,δ)) by b ⊗ a ↪→ 1M(A) �	 b ⊗ a �	 1M(B). Hence, R(α,β),(γ,δ) is an element in M(A �	
B(α,β) ⊗ A �	 B(γ,δ)). In the following, we need to check four axioms of quasitriangular
structure.
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Firstly, it is easy to check that
(
ξ(μ,ν) ⊗ ξ(μ,ν)

)
R = R for any (μ, ν) ∈ G, since

(
ξ(μ,ν) ⊗ ξ(μ,ν)

)
R(α,β),(γ,δ) = (

ξ(μ,ν) ⊗ ξ(μ,ν)

)(
β−1 ⊗ ι

)
(W)

= (
μα−1ν−1αβ−1 ⊗ (·) ◦ νμ−1

)
(W),

R(μ,ν)∗(α,β)∗(μ,ν)−1,(μ,ν)∗(γ,δ)∗(μ,ν)−1 = R(μαμ−1,μν−1βα−1ναμ−1),(μγμ−1,μν−1δγ −1νγμ−1)

= (
μα−1ν−1αβ−1νμ−1 ⊗ ι

)
(W).

And
(
ι ⊗ (·) ◦ α

)
W = (α ⊗ ι)W , since for any a ∈ A and b ∈ B, 〈(ι ⊗ (·) ◦ α

)
W , a ⊗ b〉 =

〈(W , a ⊗ α(b)〉 = 〈a, α(b)〉 = 〈a ◦ α, b〉 = 〈(α ⊗ ι)W , a ⊗ b〉.
Secondly, we need to check that

(�(α,β),(γ,δ) ⊗ ι)R(α,β)∗(γ,δ),(μ,ν) = ((
ι ⊗ ξ(γ,δ)−1

)
R(α,β),(γ,δ)∗(μ,ν)∗(γ,δ)−1

)
13

(
R(γ,δ),(μ,ν)

)
23

,

(ι ⊗ �(γ,δ),(μ,ν))R(α,β),(γ,δ)∗(μ,ν) = (
R(α,β),(μ,ν)

)
13

(
R(α,β),(γ,δ)

)
12

.

We only check the first equation, the second one is similar.

(�(α,β),(γ,δ) ⊗ ι)R(α,β)∗(γ,δ),(μ,ν) = (�(α,β),(γ,δ) ⊗ ι)
(
β−1 ⊗ ι

)
(W)

= (
β−1γ δ−1 ⊗ δ−1 ⊗ ι

)
(�B ⊗ ι)(W)

= (
β−1γ δ−1 ⊗ δ−1 ⊗ ι

)(
W 13W 23

)

and

((
ι ⊗ ξ(γ,δ)−1

)
R(α,β),(γ,δ)∗(μ,ν)∗(γ,δ)−1

)
13

(
R(γ,δ),(μ,ν)

)
23

= ((
ι ⊗ ξ(γ,δ)−1

)
R(α,β),(γμγ −1,γ δ−1νμ−1δμγ −1)

)
13

(
R(γ,δ),(μ,ν)

)
23

= ((
ι ⊗ ξ(γ −1,γ δ−1γ −1)

)((
β−1 ⊗ ι

)
(W)

))
13

((
δ−1 ⊗ ι

)
(W)

)
23

= ((
β−1 ⊗ (·) ◦ γ δ−1

)
(W)

)
13

((
δ−1 ⊗ ι

)
(W)

)
23

= ((
β−1γ δ−1 ⊗ ι

)
(W)

)
13

((
δ−1 ⊗ ι

)
(W)

)
23

= (
β−1γ δ−1 ⊗ δ−1 ⊗ ι

)(
W 13W 23

)
.

Finally, we will check the last axiom:

R(α,β),(γ,δ)�(α,β),(γ,δ)(a �	 b) = (
�̃(α,β)∗(γ,δ)∗(α,β)−1,(α,β)

)cop
(a �	 b)R(α,β),(γ,δ).

By Lemma 4.2, on the one hand,

R(α,β),(γ,δ)�(α,β),(γ,δ)(a �	 b)

= (
β−1 ⊗ ι

)
(W)�cop(a)

(
γ ⊗ γ −1βγ

)
�(b)

(4.1)= (
�(a) ◦ (

ι ⊗ αβ−1
))(

β−1 ⊗ ι
)
(W)

(
γ ⊗ γ −1βγ

)
�(b)

(4.2)= (
�(a) ◦ (

ι ⊗ αβ−1
))(

β−1δγ −1βγ ⊗ γ −1βγ
)
�cop(b)

(
β−1 ⊗ ι

)
(W),
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on the other hand,(
�̃(α,β)∗(γ,δ)∗(α,β)−1,(α,β)

)cop
(a �	 b)R(α,β),(γ,δ)

= τ
[(

ξ
(α,β)∗(γ,δ)∗(α,β)−1

(α,β)−1 ⊗ ι
)
�(α,β)∗(γ,δ)∗(α,β)−1,(α,β)(a �	 b)

]
R(α,β),(γ,δ)

= τ
[(

ξ
(αγα−1,αβ−1δγ −1βγα−1)

(α,β)−1 ⊗ ι
)
�(αγα−1,αβ−1δγ −1βγα−1),(α,β)(a �	 b)

](
β−1 ⊗ ι

)
(W)

= τ
[(

ξ
(αγα−1,αβ−1δγ −1βγα−1)

(α,β)−1 ⊗ ι
)
�cop(a)(α ⊗ β−1δγ −1βγ )�(b)

](
β−1 ⊗ ι

)
(W)

=
[(

ι ⊗ ξ
(αγα−1,αβ−1δγ −1βγα−1)

(α,β)−1

)
�(a)(β−1δγ −1βγ ⊗ α)�cop(b)

](
β−1 ⊗ ι

)
(W)

= (
�(a) ◦ (

ι ⊗ αβ−1
))(

β−1δγ −1βγ ⊗ γ −1βγ
)
�cop(b)

(
β−1 ⊗ ι

)
(W).

Thus, R is a quasitriangular structure in D(A, B).

REMARK. In the second part of the proof of Theorem 4.3, the equation

(�(α,β),(γ,δ) ⊗ ι)R(α,β)∗(γ,δ),(μ,ν) = (
(ι ⊗ ξ(γ,δ)−1)R(α,β),(γ,δ)∗(μ,ν)∗(γ,δ)−1

)
13

(
R(γ,δ),(μ,ν)

)
23

is equivalent to(
�̃(α,β),(γ,δ) ⊗ ι

)
R(α,β)∗(γ,δ),(μ,ν) = (

R(γ,δ)−1∗(α,β)∗(μ,ν),(γ,δ)

)
13

(
R(γ,δ),(μ,ν)

)
23

,

which is consistent with the condition (2) in Section 2.1.
Indeed, applying ξ(γ,δ)−1 ⊗ ι ⊗ ι to the both sides of the first equation, we get(

�̃(α,β),(γ,δ) ⊗ ι
)
R(α,β)∗(γ,δ),(μ,ν)

= (
(ξ(γ,δ)−1 ⊗ ι)�(α,β),(γ,δ) ⊗ ι

)
R(α,β)∗(γ,δ),(μ,ν)

= (
ξ(γ,δ)−1 ⊗ ι ⊗ ι

)
(�(α,β),(γ,δ) ⊗ ι)R(α,β)∗(γ,δ),(μ,ν)

= (
ξ(γ,δ)−1 ⊗ ι ⊗ ι

)((
(ι ⊗ ξ(γ,δ)−1)R(α,β),(γ,δ)∗(μ,ν)∗(γ,δ)−1

)
13

(
R(γ,δ),(μ,ν)

)
23

)

= (
(ξ(γ,δ)−1 ⊗ ξ(γ,δ)−1)R(α,β),(γ,δ)∗(μ,ν)∗(γ,δ)−1

)
13

(
R(γ,δ),(μ,ν)

)
23

= (
R(γ,δ)−1∗(α,β)∗(μ,ν),(γ,δ)

)
13

(
R(γ,δ),(μ,ν)

)
23

.

EXAMPLE 4.4. With the notations as Example 3.4. Then, by Theorem 4.3 the quasitri-
angular structure is given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ)

=
∑

(α,β),(γ,δ)∈G

∑
g,h∈H

(
1
̂D(H)

�	 (δβ−1gβ ∝ β−1hβ)
) ⊗ (

(g ∝ δh) �	 1D(H)

)
.

5. Applications to Hopf algebras. In this section, we apply our results as above to
the usual Hopf algebras and derive some interesting results. First, let H be a coFrobenius
Hopf algebra with a left integral ϕ, then by [17] Ĥ = ϕ(·H) is a regular multiplier Hopf
algebra with integrals, and 〈Ĥ, H〉 is a multiplier Hopf pairing. Then by Theorem 3.3
we obtain the following result, which gives a positive answer to the question in the
introduction.
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COROLLARY 5.1. Let H be a coFrobenius Hopf algebra with its dual multiplier
Hopf algebra Ĥ. Then, D(Ĥ, H) = ⊕

(α,β)∈G Ĥ �	 H(α,β) is a G-cograded multiplier Hopf
algebra with the following structures:

� For any (α, β) ∈ G, Ĥ �	 H(α,β) has the multiplication given by

( p �	 h)(q �	 l) = p
(
α(h(1))� q � S−1β(h(3))

) �	 h(2)l

for p, q ∈ Ĥ and h, l ∈ H.
� The comultiplication on D(Ĥ, H) is given by

�(α,β),(γ,δ) : Ĥ �	 H(α,β)∗(γ,δ) −→ Ĥ �	 H(α,β) ⊗ Ĥ �	 H(γ,δ),

�(α,β),(γ,δ)( p �	 h) = �cop( p)(γ ⊗ γ −1βγ )�(h).

� The counit εD(Ĥ,H) = εĤ ⊗ εH .
� For any (α, β) ∈ G, the antipode is given by

S : Ĥ �	 H(α,β) −→ Ĥ �	 H(α,β)−1 ,

S(α,β)( p �	 h) = T(αβS(h) ⊗ S−1( p)) in Ĥ �	 H(α,β)−1 .

If furthermore there is a cointegral t ∈ H such that ϕ(t) = 1. Then, by Theorem 4.3
D(Ĥ, H) = ⊕

(α,β)∈G Ĥ �	 H(α,β) admits a quasitriangular structure.

COROLLARY 5.2. Let H be a coFrobenius Hopf algebra with its dual multiplier Hopf
algebra Ĥ. Then, A= ⊕

(α,β)∈G Ĥ �	 H(α,β) is a quasitriangular G-cograded multiplier
Hopf algebra with a generalized R-matrix given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G

ε �	 β−1(t(·ϕ(2))) ⊗ S−1(ϕ(1)) �	 1.

EXAMPLE 5.3. Let H be an infinite group with unit e. We denote by KH the cor-
responding group algebra and by K(H) the classical dual multiplier Hopf algebra. G =
AutHop f (H) × AutHop f (H) is a group with product (3.1). Let α ∈ H , we define α(h) =
αhα−1. Then, α ∈ AutHop f (H), and by Corollary 5.1 we can construct a G-cograded
multiplier Hopf algebra D(K(H), KH) with the multiplication in K(H) �	 KH(α,β), comul-
tiplication, counit in K(H) �	 KH(ι,ι), antipode as follows:

(δp �	 g)(δq ⊗ h) = δpδβgβ−1qαg−1α−1 �	 gh,

�(α,β),(γ,δ)(δp �	 h) =
∑
s∈H

δs−1p �	 γ hγ −1 ⊗ δs �	 γ −1βγ hγ −1β−1γ,

ε(δp �	 g) = δp,e,

S(α,β)(δp �	 h) = δαh−1α−1p−1βhβ−1 ⊗ αβh−1β−1α−1.

The quasitriangular structure is given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G;g∈H

1 �	 β−1gβ ⊗ δg �	 e.

Let B = H be a finite dimensional Hopf algebra and A = H∗ be the dual Hopf algebra.
Then, we can get the following result, which is constructed by Panaite and Staic Mihai
in [8].
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COROLLARY 5.4. Let H be a finite dimensional Hopf algebra. Then, D(H) =⊕
(α,β)∈G H∗ �	 H(α,β) is a G-cograded multiplier Hopf algebra with the following struc-

tures:

� For any (α, β) ∈ G, H∗ �	 H(α,β) has the multiplication given by

( p �	 h)(q �	 l) = p
(
α(h(1))� q � S−1β(h(3))

) �	 h(2)l

for p, q ∈ H∗ and h, l ∈ H.
� The comultiplication on D(H∗, H) is given by

�(α,β),(γ,δ) : H∗ �	 H(α,β)∗(γ,δ) −→ H∗ �	 H(α,β) ⊗ H∗ �	 H(γ,δ),

�(α,β),(γ,δ)( p �	 h) = �cop( p)(γ ⊗ γ −1βγ )�(h).

� The counit εD(H∗,H) = εH∗ ⊗ εH .
� For any (α, β) ∈ G, the antipode is given by

S : H∗ �	 H(α,β) −→ H∗ �	 H(α,β)−1 ,

S(α,β)( p �	 h) = T(αβS(h) ⊗ S−1( p)) in H∗ �	 H(α,β)−1 .

� The generalized R-matrix is given by

R =
∑

(α,β),(γ,δ)∈G

R(α,β),(γ,δ) =
∑

(α,β),(γ,δ)∈G

ε �	 β−1(ei) ⊗ S−1(ei) �	 1,

where ei and ei are dual basis of H and H∗.
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