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Abstract
Consider the problem of determining the Bayesian credibility mean E(X,,,|X;, - - - ,X,,), whenever the ran-
dom claims X, - - - , X, given parameter vector ¥, are sampled from the K-component mixture family of

distributions, whose members are the union of different families of distributions. This article begins by
deriving a recursive formula for such a Bayesian credibility mean. Moreover, under the assumption that
using additional information Z;,, - - - , Z,,,, one may probabilistically determine a random claim X; belongs
to a given population (or a distribution), the above recursive formula simplifies to an exact Bayesian cred-
ibility mean whenever all components of the mixture distribution belong to the exponential families of
distributions. For a situation where a 2-component mixture family of distributions is an appropriate choice
for data modelling, using the logistic regression model, it shows that: how one may employ such additional
information to derive the Bayesian credibility model, say Logistic Regression Credibility model, for a finite
mixture of distributions. A comparison between the Logistic Regression Credibility (LRC) model and its
competitor, the Regression Tree Credibility (RTC) model, has been given. More precisely, it shows that
under the squared error loss function, it shows the LRC’s risk function dominates the RTC’s risk func-
tion at least in an interval which about 0.5. Several examples have been given to illustrate the practical
application of our findings.
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1. Introduction

Credibility theory is an experience rating method that combines information from the collective
and individual risks to obtain an accurate estimation of the premium of an insurance contract.
In a situation where exact credibility can be obtained, the credibility theory is determined how
much weight should be assigned to the claim history of an individual. However, in the Bayesian
credibility theory, we restate our belief on risk parameters in terms of the prior distribution. Then,
given the past risk experience, our belief has been updated and restated in terms of the posterior
distribution. Finally, using such a posterior distribution, we derive a predictive distribution to
make inferences about the future claim. In cases where the measurable space X', or alternatively
say population, is heterogeneous and can be partitioned into some finite homogenous popula-
tions, the posterior distribution and consequently the predictive distribution cannot represent in
a closed form. Therefore, any inferential statistics, including the Bayesian credibility mean, about
future claims cannot derive explicitly.
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The history of the credibility theory began with Mowbray (1914)’s and Whitney (1918)’s
papers. They suggested a convex combination P = ¢X + (1 — ¢), of collective premium, u, and
individual premium, X, with credibility factor ¢, as an appropriate premium of an insurance
contract. In 1950, Bailey restated this premium (well-known as an exact credibility premium) in
the language of parametric Bayesian statistics. Bithlmann (1967) and Biithlmann & Straub (1970)
extended the idea of the exact credibility premium to the model-based approach. After the semi-
nal works of Bithlmann (1967) and Bithlmann & Straub (1970), the credibility theory has become
very popular in most actuarial aspects. For a comprehensive discussion on various developments
and methodologies in credibility theory, see Bithlmann & Gisler (2005) and Payandeh (2010). The
classical credibility theory provides a relatively simple, but inflexible to mean of that predictive
distribution. Hong & Martin (2017, 2018) introduced a Dirichlet process mixture model as an
alternative approach to the classical credibility theory. They studied several theoretical properties
and the advantages of their approach. Moreover, they compared it with the classical credibility
theory. The precise choice of prior distribution in the Bayesian credibility theory has been studied
by Hong & Martin (2020, 2022).

The Bayesian credibility mean under mixture distributions has been studied by several authors
such as Lau et al. (2006), Cai et al. (2015), Hong & Martin (2017, 2018), Zhang et al. (2018),
Payandeh & Sakizadeh (2019, 2023), Li et al. (2021), among others. All of their approaches are
derived based on an approximation. For instance, (1) Payandeh & Sakizadeh (2019) approxi-
mated the complicated posterior distribution by a mixture distribution, and then, they derived an
approximation for the Bayesian credibility means. Unfortunately, their approximation error rises
as the number of past experiences increases; (2) Lau et al. (2006) following Lo (1984) restated the
predictive distribution of X, given the past claim experience X, - - , X, as a finite sum over
all possible partitions of the past claim experience. Then, using the credibility premium, which
is a convex combination of the collective premium (the prior mean) and the sample average of
the past claim experience, to derive the Bayesian credibility mean. Certainly, under the class of
the exponential family of distributions such a credibility premium coincides with the Bayesian
credibility mean, see Payandeh (2010) for more details.

This article considers a random sample observation Xj, - - - , X, from a K-component mixture
distribution whit the cdf Fx(-) = Z{il w;Gi(-), where Zf:l w; = 1. Moreover, it assumes that for
arandom variable X;, i =1, - - - , n, there is additional information Z; 1, - - - , Zj s, such that given
such additional information, one may probabilistically determine the random variable X; belongs
to which component of the K-component mixture distribution, i.e., P(X; ~ G;(:)|Zi.1, - - - , Zim) =
w;. Under these assumptions, this article provides (1) the Bayesian credibility premium for such a
finite mixture distribution, (2) the exact credibility premium for such finite mixture distributions,
whenever populations’ claim distribution belongs to the exponential family of distributions and
their corresponding prior distribution conjugates with such a claim distribution, (3) a Logistic
Regression Credibility model for a situation that a 2-component mixture family of distributions is
an appropriate choice for data modelling, and (4) a comparison between the Logistic Regression
Credibility and well-known Regression Tree Credibility model.

The rest of this article develops as the following. Section 2 collects some useful preliminaries
and provides technical notations and symbols that we will use hereafter now. The main results are
represented in section 3. The exact credibility mean under the class of single-parameter exponen-
tial family of distributions along with several examples has been given in section 4. For a situation
that a 2-component mixture family of distributions is an appropriate choice for data modelling,
section 5 suggests a probabilistic model to formulate such additional information and derive the
Bayesian credibility mean for a finite mixture of distributions. Moreover, a comparison between
the LRC model and its competitor, the Regression Tree Credibility (RTC) model, has been given
in section 5.1. Conclusion and suggestions are given in section 6.
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2. Preliminaries
A single-parameter exponential family is a family of probability distributions whose probability
density/mass function can be restated as

f(x10) = a(x)e? @ /() v x € S, (1)

where a(-), ¢(-), and #(-) are given functions, and the normalising factor ¢(-) is defined based on
the fact that fsxf(x|9)dx =1.

By setting n = —¢(0), Jewell (1974) showed that, based upon random sample X, - - - , X,;, and
under the conjugate prior distribution

ﬂconj(n) _ [C(n)]—aoe{—ﬂoﬁ}/d((xo, Bo),

the Bayesian credibility can be expressed based on the sufficient statistic #(-) as
E(tXnt )| X1, -, X)) = é‘nzn + (1 = &u)Bo/ o, (2)
where the credibility factor ¢, =n/(n+ag) and t, = Y ! t(x;)/n.
For example, for the normal distribution with given mean j9 and unknown variance 2. To
imply Jewell (1974)’s findings, one may define the precision 6 as6 =1/ o2 and t(x) = (x — pg)?/2.
Now by considering the Gamma conjugate prior (with parameters «p and ) for 6 then get

E( (Xnt1 — [0)? Y G — ro)?/2 Bo
2 n

|X13"' )Xn) :§n +(1_§H)_ (3)
o
Therefore, the Bayesian credible prediction for the variance of X,,; is the linear combination of
sample variance and mean of the conjugate prior.
A random variable X, given parameter vector ¥, has a K-component finite mixture distribution
if it’s corresponding cdf can be reformulated as

K
Fx(x|¥) =) o,G(x|¥), (4)
I=1

where Gj(x|W¥)-s are some given the cdfs, w; € [0, 1], forI=1,--- ,K, Z{il w;=1.

The finite mixture distributions have proved remarkably useful in modelling an enormous
variety of phenomena in a wide range of branches in climatology, demographics, economics, actu-
arial science, statistics, healthcare, and a mixture of expert models and engineering. Indeed, the
shape of a finite mixture distribution is flexible, being able to capture, many aspects of the col-
lected data, such as multimodality, heavy-tailed, truncated, skewness, and kurtosis, see Miljkovic
& Griin (2016), Blostein & Miljkovic (2019) and de Alencar et al. (2021), among others, for more
details. Moreover, one of the most advantages of finite mixture distributions is that they illustrate
most aspects of complex systems which cannot be done by a single distribution, see McLachlan &
Peel (2004), among others, for more details on mixture models. A finite mixture distribution is a
simple and elementary model, but unfortunately, such simplicity does not extend to the deriva-
tion of either the maximum likelihood estimator or Bayes estimators (Lee et al., 2009). In fact,
based upon a random sample observation Xj, - - - , Xj,, the likelihood function of a K-component
mixture distribution is a product of a summation, which can be turned into a sum of K” terms.
Therefore, it will be computationally too expensive to be used for more than a few observations.
To overcome this problem, several attractive approaches have been introduced by the authors. For
instance, Keatinge (1999) used the Karush-Kuhn-Tucker theorem to provide a maximum likeli-
hood estimator algorithm to estimate the weights of a finite mixture of exponential distributions.
Other authors employed a demarginalisation argument (or missing data approach) to assign a
random variable X; to a subgroup, using a random latent variable. Then using an EM algorithm
(Dempster et al., 1977) or the data augmentation algorithm (Carvajal et al., 2018) to derive an
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estimation. Some authors came up with an approximation technique; for instance, Payandeh &
Sakizadeh (2019) approximated the Bayesian likelihood function for a mixture distribution by a
practical and appropriate distribution. Unfortunately, the accuracy of their approximation tech-
nique dramatically reduces as the number of observations increases. All of these methods are
time-consuming (Frithwirth-Schnatter, 2019) or suffer from low accuracy.

A class of K-component finite mixture distributions is said to be identifiable whenever the
equality of any two members F(-) and F*(-) of this class implies: (1) equality of their components,
(2) theirs weights, and (3) their cdfs. Identifiability problems for finite and countable mixtures
have been widely investigated. Teicher (1960, 1963) established a necessary and sufficient con-
dition for the identifiability of the class of finite mixture distributions. Moreover, he proved the
identifiability of a class of mixture Normal (or Gamma) distributions. Atienza ef al. (2006) showed
that a class of all finite mixtures distributions generated by a union of Lognormal, Gamma, and
Weibull distributions is identifiable. Unfortunately, most mixture distributions are not identi-
fiable because they are invariant under permutations of the indices of their components. This
problem is well-known as the “ label-switching problem.” The posterior distribution may also
inherit such the “ label-switching problem” from its prior distribution (Rufo et al., 2006 and
2007). Under the “ label-switching problem,” there is a positive probability that at least one of
the components in a finite mixture distribution does not contribute to any of the observations.
Therefore, the random sample x;, - - - , x, does not carry any information on this component.
Consequently, unknown parameter(s) of such a component cannot be estimated under either clas-
sical or Bayesian frameworks. A naive solution to the “ label-switching problem” is to impose some
constraint on the parameter space for the classical approach (Maroufy & Marriott, 2017), and for
the Bayesian approach, some constraints have been added to the prior distribution that leads to
a posterior distribution that does not suffer from the “ label-switching problem” (Marin et al.,
2005). Unfortunately, insufficient care in the choice of suitable identifiability constraints can lead
to other problems (Rufo et al., 2006 and 2007).

It is worthwhile to mention that if random variable X, given W, has the cdf function (4),
one may not conclude that P(X € PoPy|¥) = wy, where X € PoPy stands for “X|W ~ F;.” To
observe this fact, consider a 2-component mixture distribution F(x) = w; G1(x) + w2G2(x). Now
for an arbitrary density function Gs3(:), set G} (x) = G3(x) and Gj(x) = (01G1(x) + w2 G2 (x) —
w1G3(x))/w,. Now observe that F*(x) = w; G} (x) + w2 G} (x) = F(x).

Note 1. We should note that in this article, alternatively, we use X € PoPy instead of X ~ G.

Suppose parameter vector W can be restated as W = (61,605, - - - , 0k), based upon random sample
X =(X1,Xa, -+, Xy), the likelihood function and the posterior distribution, respectively, can be
restated as

n K
L(¥IX=%)= 1_[ <Z ngl(xi|91)) (5)

i=1 \]=1
n K

7 (¥|X =%)ox (H > mgz(xiwz)) (W), (6)
i=1 |=1

where 7 (W) stands for prior distribution on ¥ and gi(-) is density function of the Kt component.
To derive a maximum likelihood estimation (resp. a Bayesian estimator) using Equation (5)
(resp. Equation (6)), the missing data approach is the most popular method.
The following explain such an approach.

Note 2. Suppose random variables X1,X,---,X, corresponding to the observed sample
X1, X2, - » Xy are accompanied with latent binary random vector H= (Hy Hyy, - - - >Hn,l)/ , for
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1=1,2,---,K, which indicating each observation arrives from which component/population, i.e.,
P(X; € PoPy|H;i = 1) = 1 and P(X; ¢ PoPy|H; ) = 0) = 1. The likelihood function (5) and posterior
distribution (6), respectively, can be restated as

K
L(¥, H|) = HH wigi(xi16)) "
i=1 |=1
_ n K o
(W, HIZ) oc [ T [ [(wigi(xilon) ™ = ().
i=1 =1

Now in sth iteration of the E-step, one takes expectation with respect to conditional posterior dis-
tribution of the binary latent variable Hy;, given observed data and update parameters at (s — 1)th
iteration.

Diebolt & Robert (1994) and Zhang et al. (2004) showed that such a missing data approach is
very expensive from computational viewpoint.

Directly using the Likelihood function (5) or the posterior distribution (6), well-known
as a combinatorial approach, see Marin et al. (2005) for a brief review. The combinatorial
approach restates such product-summations equations as K" summation terms. To avoid a long
presentation, we use some notations or symbols which defined in Table 1.

Before we go further, we provide a simple example.

Consider a 2-component mixture distribution function with density function w;f;(x|6;) +
w2f2(x]62). Moreover, suppose that we have sample observation Xj, X3, X3. Using Table 1’s
symbols, we have

S ={1,2,3) S = (9% S} = {1}, {2}, (3} &3 = {{1,2), {1, 3}, {2,3)}s 83 = {{1,2,3});
By = {{1}}; Biz = {{2}}s Biz = {{3}}s B}; = {{2,3}}; B}, ={{1,3}}; Bi; ={{L,2}}; Bai ={{1,2}};
By = {{1,3}}; Bas = {{2,3}}; B3y ={{3}} By, = {{2}} By = {1} Bs1 ={{1,2,3}}; By, ={¥}.
The likelihood function can be restated as
L(¥|%) = ©3(0) + ®3(1) + ®3(2) + P3(3)
= w3f5(x1162)f2(x2162)f>(x3162)

+ w1w§[f1 (x1101)f2(x2102)f2(x3162) + f1(x2101)fa(x11602)f2(x3162)

+ f1(x3101)f2(x1162)f2(x1162)) ]

+ wiw[fi(x1101)f1 (x2101)f2(x3102) + f1 (x1101)f1 (x3101)f2 (x2162)

+ f1(x2160)f1 (x3101)f2 (x1162)) ] + ws f1(x1161)fi (221011 (x3161)

It would worthwhile to mention that a given K-component mixture distribution can be reformu-
lated as

f(x| W) = wyg(x16) + (1 — wp)g* (x| ¥ (-1)),

where

g (x| (=1) =

w1 w]— w]
fi(x|01) + - - -+ L (l011) + i (x16)
— 1—ow —

1

PE_ e (x10K). )
o

This type of presentation will be employed whenever we like to just estimate the parameter of the
Ith component.
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Table 1. Notations and symbols.

Symbol Definition
K Number of components
n e Numberofobservat|ons S
X = (X1, X2, ey Xn)
..B.[r. e Therthsubsetsﬂ Wh|ch hasexact[y,elements S
Bfr e ComplementofB”, et e et —
Sr :iB,-,:r:l,Z,-»-,(',?))
)~(B,., = (Xky» Xky» s Xi;), Where ky, ko, - - -, ki € Bjr
Xs, = Xe/i
)?Bl;’ = Xy, Xi, =+ » Xy ), Where ky, ko, - -+, kn_i € BS,
X = Xi/n 1)
keBf,
0] v = (61,62, ,0k)
¥ (-0 = (01,62, , 61,6141, - -, 0k)
..w[.. We|ght0fthe[thcomponent e
F,(|) e Thecdfforthe[thcomponent S —
01 e parametersofthe/thcomponent e
<I>£,(i) The likelihood function based n observations, whenever i

of n observations belong to the [th component.
)?B,, € PoP|6; For ki, ka,- - - , ki € Bjr, given parameter 6;, random variables
Xiys Xy - -+, Xy are i.i.d with common cdf Fy(|-).

Ex() The expectation with respect to a K—component mixture distribution.

Note: S", 7, Bir and Bf, define on the index of observations rather than their values.

Hereafter now, we assume the K-component mixture distribution (4) is an identifiable model.
The following used the combinatorial method, to restate the likelihood function for the K-
component mixture distribution (4).

Lemma 1. Suppose that random sample Xy, - - - , X,, comes from the K-component mixture dis-
tribution (4). The likelihood function for mixtures of distributions can be restated in the following
recursive manner

" )
Le(¥ID) =Y w1 — )" 3 L (W(=K0IKgg ) [ ficuele),
i=0 r=1 keB;

where Lx_1 (‘I’(—K)|XB;) stands for the likelihood function, based upon the density function g*(-)
(given by Equation (7) and random sample 5(33.
Proof. Using the fact that

K n (7)
XelJpop=JJ (Xa, € PoPx &Xp; ¢ PoPy)
=1 i=0 r=1
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and such partitions are disjoint, one may restate the likelihood function as

n (D
k=YY P(XBH € PoPy, Xp: ¢ PoPx |0, \Il(—K))
i=0 r=1
. O )
=YY" P(Xs, € PoPklbk) P(XB; ¢ PoPK|\II(—K))

i=0 r=1

n (i

)
[ lexfcCulo] T 1Q — ox)g ol ¥(=K))]

i=0 r=1 keB;, keB;,

=) wi(l—wx)" ’ZLK 1( K)|XBC) an x| 0k)-

keBi,

The second equation arrives from the assumption that given parameter vector ¥, two random
samples Xp, and Xpc are independent. O

The Bayes estimator for a given parameter of the K-component mixture distribution (4) under
the squared error loss function is given as follows.

Lemma 2. Assume that random sample X1, - - - , X,, comes from the K-component mixture distri-
bution (4). Moreover assume that 7w (01,0, - ,0k) = ]_[K=1 7(0;). Then, the Bayesian estimator,
under the square error loss function, for parameter 0 is

n ()
E(@”X) = Z Z CEPE(@HXBW S POPI) >
i=0 r=1

where

K
ch=p (XB,,, € PoP, Xpe ¢ PoPX e | J PoPl> .
=1

Proof. The posterior distribution of @;|X can be restated as

n ( ) K
w(61X) =YY 7(6:1X5, € PoP;, X, ¢ PoP)) P (5(3" € PoP, Xy, ¢ PoP|X e | PoPk>

i=0 r=1 k=1
w ()
=> "> CVn(6Xs, € PoP, Xy ¢ PoP))

i=0 r=1

— Xn: Z co

e / / P(X,, € PoP, & Xy ¢ PP v (—)m(6) ( (—))d6dy (1)
(=D

f P(X,, € PoP, & Xy ¢ PoPil6 1 (—) () (¥ (~)dys (—1)
V(1)
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ﬂ(GI)P(XB[,GPf)PzI@z)/ P(Xy, ¢ PoP|y(=D) 7 (¥ (=D)dy (=)

e

il / 7 (0)P(Xs, € PoP/19)) d6) / PRy ¢ PoP, [y (—D)) ( (—)dyr(—)

61 Y(=D)

n ()
=YY CVn(6IXs, €PoP),

i=0 r=1

where fl//(—l) stands for f91 e f91_1 f91+1 . 'f91<’ dy (=) =d6, - - - dO;_1d0, 1 - - - dOk and Cg) =

K
P(XB,., € PoP, X ¢ PoP|X e ) PoP,) .
I=1
Since the Bayes estimator under the squared error loss function is the posterior expectation, we
obtain the desired result. O

Now, we concentrate on the Bayesian credibility mean for the K-component mixture distribu-
tion (4).

3. A Recursive Formula for the Bayesian Credibility Mean
The Bayesian credibility mean of X, based upon the past information X1, Xz, -+ , X, is
E(Xn-i-l'XlaXZ; e )Xn)- (8)

The following represents a recursive statement for the Bayesian credibility mean under the K-
component mixture distribution (4).

Theorem 1. Assume that the observations X1, - - , X, come from the K-component mixture dis-
tribution (4). Moreover, suppose that the prior distribution 7w (61,0, - - , 0k) is independent, i.e.,
701,05, ,0k) = ]_[szl 7k(0x). The Bayesian credibility mean based upon such random sample

and the K—component mixture distribution is

(Xn11X) = Z Z C(K) [a)KEl (Xu411X5,, € PoPx) + (1 — wx)Ex—1 <Xn+1|XB§, ¢ POPK)] ,
i=0 r=1

K
where CX) = P(XB,., € PoPx, Xy ¢ PoPi|X e J PoPk> .
k=1

Proof. Using the definition of C lr ), one may conclude that

EK(Xn+1|X) ( w110k W(_Kﬂx € U POPl))

=1

K
=Y E(X,al {Xs, € PoPx, Xy ¢ PoPy}) p(}?&, € PoPy, Xy ¢ PoPx|X €| Pop,>

=1

=Y Y COE(E[X, |0k, ¥ (—K)] | {X, € PoPy, Xy ¢ PoPx})
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n

=> Z C [wkE(14(Ox)IXs, € PoPy) + (1 — w)E(u(¥(—K))| Xy, ¢ PoPx)]

i=0 r=1

n

= Z Z C(K) U)KE1 n+l|XB,, € POPK) +(1 - wK)EK—l(XnJrllXBf, ¢ POPK)] . O

i=0 r=1

Theorem 1 provides a recursive formula to evaluate the Bayesian credibility mean. A practical
application of this theorem is very expensive, to see that, please see the following example.

Teicher (1960, 1963) established the identifiability of a class of mixture Gamma distribution,
using this fact, the following example provides the Bayesian credibility mean (or premium) for a
class of 2-component exponential distribution with Gamma conjugate prior distributions.

Example 1. Suppose given parameter vector W = (6;,6,), random sample Xi,X5,---,X,
obtained from a 2-component exponential distribution with density function

w1Exp(01) + w2Exp(6,),

where w1, w3 € [0, 1] and w1 + w; = 1. Moreover, consider the conjugate prior Gamma(a;, B;) for
parameter 0;, for i = 1, 2. Now, we are interested in the Bayesian credibility premium under this
setting.

To obtain the desired Bayesian credibility premium, we employ the result of Theorem 1.
Application of this theorem arrives under the following two steps:

Step1) C? = P(XB,., € PoP, & Xy ¢ PoPa|X e U2, PoPl> ,
Step2) E; <Xn+1 |XB§’ € PoPl) and E; <Xn+1 X5, € Pon).

For Step 1 observe that:

2
c? = P(XBZ,, € PoP, & Xp: ¢ PoPX €| | PoPl>
=1
P(Xs, € PoP, &Xiy, ¢ PoPy)

n (D
Yy P(XB” € PoP & Xz ¢ Pon)

i=0 r=

—

Therefore, one has to calculate

P<XBZ',€ PoP, &Xquri POP2 = / / P XBir € PoP, &XB; ¢ PoP,|01, 92) 7 (61)7(02)d6,do;
6, JO,

= [ [ b=~ T[] st T fitson)n @) @n1deace

keBi, keB;,
; _ B5* _
—wh (1 = 0, 92Xk>< 2 0‘2 1 ﬂ292>d9
w5 (1 —wy)" [ /0 kle_B[ ( be (az) )
/ I1 (aﬁw)(rﬂl g1 ﬂlel)de)l]
kBt (1) !
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o]

1 I'n—i+ap)
F(Oll) ((

= wh(1 — )"

o (n—itay)
n—i)xg + /51>

2 LG+ ay)
L(@2) (ixp, + )T

Using the above findings, we have

aq

: T(n—i+o) 5. Tli+w)

@ (1 — )" ! - .
2 (o) ((” i+ /31>(n—z+a1) I'(ay) (ikBir + ﬂz)(1+az)

c? =
g n (”) (03] . o .
_ D(n—j+a;) ’ L@+ o)
>y et | 2 2 |
(n—j+ar) (+a2)
=0 = YO (=, + 1) T (g, )

Now observe that:
P(XBI, € POP2|92) 7(67)
f02 (XB,r (S POP2|92 7'[(92)6192

[lkes, (92@ 62"")( ﬂfxz)@az : _ﬂﬁz)

fooo erB,«, (Qze—ﬂzxk)( ,32 9052 1 —ﬂz@z)d@z

52 P2 piter-l —92(Zkes,-, xk+/32)
(Oéz) 2

o B e B

7 (62|1Xp, € PoP,) =

— (i+az)
T(i+a) 2 '

One may similarly calculate 77 (6, (5( B € P0P1) .
Now, we move to Step 2.

E; (Xnﬂ X5, € PoPZ) = E(E(Xn+1 162X, € Pon)

1 -
=E| —|Xpg.. € PoP
(®2| Bir 2)

o0 1 -
= / _Tr(02|XBir € POPz) d092
o 0

ixp, + B2
i+oap

. .
=[, 5c3,.,+<1—, : )é]
i+ay i+ay/ az
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Table 2. Number of combinators that one has to
calculate for Equation (9).

Sample size Number of combinators
5 31
201,048,575 .....
50 1.125%e+15

..1.0.0. e 126765194.30 e

Similarly,

5 n—i _ n—i B1
Ej| Xpt1|Xpe ¢ PoPy | =| ————xp + |1 ——— ) —|.
i n—i+o;y 7 n—i+o; /) ag
Therefore, using Theorem 1 the Bayesian credibility premium is

n

@) ) )
) i i B2
EXpi11Xy, -+, X =E E C _ 1—
(Xn+11X1 n) ir w2|:i+a2x3”+< i—|—a2) Olz]

i=0 r=1
n (5

(2) n—i _ n—i /31
N P (e S s

i=0 r=1

It is worthwhile mentioning that, in a situation that w; =1 (or w,; =0), the summation

Yo ZS’Z)I Cl(r2 ) just valid for i =0 which C(()zl) = 1. Therefore, under this setting the Bayesian
credibility premium, given by Equation (9), is the well-known Bayesian credibility premium under
the Exponential-Gamma assumption, in the other words,

E(X, 111X X)=—" et (1- )P
>ttt = xXsn - >
e Y e n+ar) o

where xgn =X=__; x/n.

The combinatorial object in the Bayesian credibility mean (see Equation (9)) for Example 1
makes it very hard to use. Table 2 represents the number of combinators one has to be considered,
whenever he/she would like to use Equation (9). As one may observe, implementation of Equation
(9) even for sample size n = 30 is very expensive and cannot be done with a regular computer.

To remove such barrier, we have two possibilities:

e Approximate Cg) by a function which just depends on i an [

e Impose some restriction on our problem such that Cl(»f) does not depend on r.

Somehow, the first approach has been employed by Lau et al. (2006). They employed the
sampling scheme based on a weighted Chinese Restaurant algorithm to estimate the Bayesian
credibility for the infinite mixture model from observed data.

The next section considers a situation where the above recursive formula is simplified and the
exact Bayesian credibility mean is obtained.
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4. Exact Bayesian Credibility Mean
Hereafter now, we follow the second approach. Therefore, we consider the following model

assumption.
Model Assumption 1. Suppose given parameter vector W, random variables X1, - - - , X, are i.i.d.
Moreover suppose that there is an additional information Z;,,- - - , Z; , where given such infor-
mation random variable X;, with probability w;, has the cdf Gi(-), for I=1,2,--- ,K, where
K
The following lemma shows that, under the above model assumption, random variables
X, -+, X, are a member of the K-component mixture distributions (4).
Lemma 3. Under Model Assumption 1, given W, random variables X, - - - , X, are a member of

the K-component mixture distributions (4).

Proof. Under Model Assumption 1 given ¥, random variables X, - - - , X, are i.i.d. Therefore,
we just need to find distribution of the random variable X;

—~

Fx,jw(t) = P(X; < t|W¥)

1
M=

P(X1 <t|X, € PoP}, ¥) w,
1

~.
Il

I
M=

a)jGj(t). 0
1

~.
Il

Another useful property of Model Assumption 1 has been given by the following.

Lemma 4. Under Model Assumption I, the c¥ defined in Theorem I can be simplified as

ir
Cg) = w;(l N

Proof. Conditioning the Cg) on ¥, one may restate

K
ch=p (XB” € PoP; & Xy ¢ PoP|X e PoPk)
k=1

=/ P(XBI., € PoP,, X e ¢ PoP)|W, X, Xs, - - - ,Xn>n(\II|X1,X2,--- LX) dW
‘I’ i
=f P(X3, ePoPl|91)P<)~(qur ¢PoPl|\Il(—l)> (WX, Xa, -, Xp) dW¥
v
=/ [P(X1 € PoP|6)]' [P(Xy ¢PoPl|\11(—l))]”*"n(\It|x1,xz,... LX) dW¥
v

:a); (1 _wl)n_i/ 77"(‘1’|X1>X2>"' ;Xn) d‘l’
v
= w;(l — "t

The last two equations arrive from the fact that P(X; € PoP;|W¥) = wj and the posterior distribution
7 (¥|X1,Xa, - -+, X,) is a proper distribution. O
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Under Model Assumption, 1’s result of Theorem 1 can be simplified as follows.

Corollary 1. Under Model Assumption 1, the Bayesian credibility mean is

n ()
Ex(X11X) =) Y~ ok (1 — wr)" ™ [wkE1 (Xp111X5, € PoP)
i=0 r=1

+(1 — wk)Ex—1 (Xn+1|XBf, ¢ POPK)] :

Now, by several examples, we develop the Bayesian credibility mean under the single-
parameter exponential family of distributions.

For simplicity in presentation, hereafter now, we just consider the single-parameter exponen-
tial family of distributions, given by Equation (1), with ¢(0) = —0 for some possible extension of
our finding see section 5.

Before move further, it would be useful to observe that

() -
Z ixp, =i Xp;; +Xp, +---+ )_CBL(”)]
r=1 ) l

i observations i observations
Xt xo g Xitxa+o+ay
: +ot :

1 1

-

_ () i (10)

Identifiability of a class of mixture of normal distributions has been established by Teicher
(1960, 1963). Therefore, we may consider the following example.

Example 2. Suppose that under Model Assumption 1, the random sample X;, X5, - - - , X, given
parameter vector W = (61, 6, 03)’, has been distributed according the following 3-component
normal mixture distribution

a)lN(Hl, 012) + a)zN(@z, 022) + a)3N(93, 032) R

where 012, 022 032 are given, w1, w2, w3 € [0, 1] and w; + wy + w3 =1.
Moreover, suppose that, for | =1, 2, 3, 6; has the conjugate prior distribution N (1, b%) .

Now using result of Corollary 1, the recursive Bayesian credibility mean/premium is

n

©)
E3(Xpt11X) = Z Z @4(1 — @3)" " [03E1 (Xn41/1X5, € PoP3)
i=0 r=1

+ (1= 03)Es (Xos | X, ¢ PoP3) ]. (11)
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Another application of Theorem 1 leads to

E, (Xn-H |XB;, ¢ POPs) = C,(fe) (1 —E; ( 411X, € PoP,)
d=0 e=1
—|—1 — E1< n+1|Xpe € POPI))
n—i ("z") d n—i—d
w) w1 w? >
= ( ) ( ) E; (Xu111Xp,, € PoPy)
oy 1—w; 1—ws 1—ws

n—i ,;l) d n—i—d
w) w1 w1 =
+ E; (Xn-H |Xpe € P0P1) .
— = 1— w3 1— w3 1—ws de

The exact Bayesian credibility mean under a 1-component normal mixture distribution helps us
to conclude

ib? 02
E1(Xu411Xp, € PoP3) = 5 3 5 XB; 5 2M3, fori=0,---,n,
ib5 + 03 b

. av? o? ,
Ei (X+1|X3p,, € PoP>) = P 2 2 XB,, + P = el ford=0,--- ,n—i,

) (n—i—dp? o2
E(X XcePoP)z X + L ford=0,-- ,n—i,
1{ Xn+1|1Xpe, 1 =i ol et G i—ar Ml f

see Bithlmann & Gisler (2005), among others for more details.
Substituting the above findings in Equation (11) and an application of Equation (10), the
Bayesian credibility mean E3 (X, |X) can be restated as

n () i o ib2 ) 032
Zza)3(1_w3) w3 bz 2 B,r+ 1b§+02M3

i=0 r=1 3

—i (") d n—i—d
S $ 8 () (2

i=0 r=1 d=0 e
wy db% _ 02
s | di2+ o2 P T gz g2t
n (:’ n i(n.;l)

w1 (n—z—d)b2 _ 012
X C
T—ws | (i—i— AP+ 02 P (n—i—dp? o2
LI ) ib? n o2 n
— i1 — n—i 3 X4+ 3 ()
w3i§w3( @3) |:ib§+a32<i> i +o2\i)"
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n n—i d n—i—d 2 ;
. » w) w1 db; n—i\/n)\._
rn et 2 () (225) T i () ()
ZO: g 1—ws 1—ws db%—}—ozz d i
n 022 n—i\[n
o2\ a4 J\i)"”

n n—i d n—i—d . 2 .
i n—i @ w1 (n—i—d)by (n—1i\(n)_
+a)1§:w3(1—w3) 2_:(1—60) <1—w3> [(n—i—d)bf-i—olz( d )(i)x

L 012 n—i\[n
n—i-ar+o2\ d J\i)"

=w3[83x + (1 — &3)us] + wa[Hx + (1 — L)zl + o1 [G1X 4+ (1 — &) pa ],

where

n n—i d n—i—d . 2 R
E, ' f'Z w2 w1 (n—i—d)b n—i\(n

o i=0 } ’ =0 1 —w; 1 —ws (n—i— d)b% + 012 d i
n n—i d n—i—d 2 .

i n—i wy w1 dbz n—1i n
= ]_ —
& ;:Oan( ws3) dZ:0<1—w3> (1—w3) db§+o§< d )(,)

n
. n
= wh(1 — w3)" —_
{3 ; 3 ( 3) <i)ib§+o32

To show application of recursive formula represented in Theorem 1, the following considers a
4-component mixture distribution.

Example 3. Suppose that under Model Assumption 1, the random sample X;, X5, - - - , X;,, given
parameter vector ¥ = (01, 62, 63, 04)', has been distributed according the following 4-component
normal mixture distribution

a)lN(Ql, 012) + a)zN(Gz, 022) + a)gN(93, 032) + a)4N(94, 042) ,

where for [ =1, 2, 3, 4, variance alz, are given, w; € [0, 1] and w1 + @y + w3 + ws = 1.
Moreover, suppose that, for [ = 1,2, 3, 4, 6, has the conjugate prior distribution N (4, blz) .
Now an application of Corollary 1 leads to the following Bayesian credibility mean

n ()
Es(Xpi11X) = Z Z wy(1 — @4)"" [04B1(Xy41|Xp, € PoPy)
i—0 r=1

+ (1 — w4)E3 (Xn+l|XBfr ¢ P0P4)] : (12)
And again, application of Corollary 1 leads to
) n—i ("7 03 /15— o\ o )
E; (Xn+l|XB;?r ¢ P0P4) = Z Z (1 — a)4> ( o ) 1 w4E1(Xn+1|XBde € PoP3)

—i 3 d 1— w3 —wy n—i—d
+Zg(l—w4>< 1 —ws )

E, (Xn-H |XB;e ¢ P0P3)
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—id (n i— d) 0 h w1 n—i—d—h
E (X Xpge ¢ PoP )
2\ Xnt1|1Xps & PoPs Z Z (1_0)3 a)4) (1—603 0)4)
h=0 o=1
By (Xut11X5,, € PoPy)

" 0
pp—— 1(Ant+1l4By, 2

n—i—d (n - d)

h w1 n—i—d—h
(1—&)3 > (1—0)3—0)4)

w1
E, (Xn+1|XBf EPOPl)
1-— w3 — W4

The exact credibility mean is well-known for a 1-component normal mixture distribution
(Bithlmann & Gisler, 2005), using this knowledge, we may have

. ib? o}
Ei(Xnt11Xp, € PoPy) = ——*—Xp, + % 4, fori=0,---,n,
(X ) ib2 + 02 iv2 +o f
3 2 2
E; (Xn+1|XBde € POP3) dbz-: 2 _Bde + db j— U3, fOT’d 0,---,n—1i,
- hb? o?
Ei(Xn411X8,, € PoP,) = o+ 2 Z_Bha W2+ 72 2,le, forh=0,--- ,n—i—d,
By (X,11X;, € PoP (n_l_d_h)b% X
1\ An+1lAdB € Lo 1)= - Xpe
ho (n—z—d—h)b%+(rl2 de

2
!

+
(n—i—d—hb +

51 forh=0,--- ,n—i—d.

Putting the above findings in Equation (11), the Bayesian credibility mean is

E4(Xn411X) = 04[aX + (1 — S sl + 3[83X + (1 — 83)ua] + w2[02X + (1 — &) 2]
+ o1[G1x+ (1 = &)l

where

n . n—i ws d 1— w3 —wy n—i—d
=Y wy(1—wy)""
=3 o1 -0 > (7)) (520

d=0

n—i—d h w1 n—i—d—nh
x Z (1—603 ) (1—603—6()4)
n—i—d-— h)b2 (n)(n—i)(n—i—d)
(n—z—d h)bz—i—cr1 d h

d 1— _ n—i—d
5= Zw4(1_w4)n 12(16_03&)4) ( lci?’w4w4)

d=0
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"Xl:d h w1 n—i—d=h hbs n\ (n—i\/n—i—d
X 2
1—6()3 1—w3—wy hb%—i—azz i d h
d n—i—d 2 .
w3 1 — w3 —wy dbs n\ (n—i
(1— n—i
b= Z“"* 1) Z(l—w4> < 1=y ) v +o2\i)\ d
1b2 n
44—20)4 (1— )" lbz ( )

i=0 +G4

In the above two examples, we just consider a situation, in which all elements of the mix-
ture distributions belong to a family of distribution. The following example considers a case that
the mixture distributions are the union of different distributions. Using Atienza et al. (2006)’s
method, we established (but for briefness we eliminate its proof) that a mixture union of Gamma,
Lognormal and Weibull distributions constructs a class of identifiable distributions. Therefore,
without any concern about identifiability, we may consider the following example.

Example 4. Suppose that under Model Assumption 1, the random sample X;, X5, - - - , X, given
parameter vector W = (61, 6, 83), has been distributed according the following distribution

w1 Gamma(a, 61) + w2 LN (62, 002) + w3 Weibull(03, 1),

where parameters «, 002, A are given and given weights w;, w; and w3 satisty w1 + w2 + w3 = 1.
Moreover, suppose that 0, 6, and 1/63, respectively, have the conjugate prior distribution
Gamma(ay, B1), N(/Lz, b%) and Gamma(as, B3).
It is well-known that the exact Bayesian credibility mean for a 1-component Gamma mixture, a
1-component Lognormal mixture and a 1-component Weibull mixture distributions, respectively,

are
- (Xkes, % + B2)
E{ (X X, € PoP3)=———"——~ fori=0,---,n,
1(Xn411XB, 3) T fori
- b3 > ken,, Ln(xi) + 11203
_ de 2 _ .
E1(Xy411XB,, € PoP;) = e , ford=0,--- ,n—i,
E (X X PP) Dokery, ¥+ P ford=0 j
c € — =0,---, —1,
I\ P18, o%2 n—i—da;+n or nt

see Bithlmann & Gisler (2005), among others, for more details.
Using the above results along with double applications of Corollary 1, the Bayesian credibility

mean is
n G _
E3 (X 111X) = 3 Z Z wi(1 — 3)""E1(Xu411Xp, € PoP3)
i=0 r=1
n (3
-0 )Y b1 - w3)" (Xn+1 X ¢ P0P3>
i=0 r=1
n ) _
=w;3 Z Z oh(1 = 3)" By (Xup1 |Xp, € PoPs)
i=0 r=1
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n n—i (n;l) d w1 n—i—d
+(1—w wi(1 —ws3)""!
( 3>zz (1= ) (+2) ()
i=0 r=1 d=0 e=1
X E; (Xn+1|XBdg EPOPz)
1—w;s
n n—i (n;) d w1 n—i—d
RTROD 35 ST IR 35 of o 20y
i=0 r=1 d=0 e=1 1—0)3 1—603

" n(x;
—601|:(1—§1)Q+§ Zn i|+a)2|:(1—§2)/i2+§ i nn(x)j|

x}
-|-603|:(1—§3)&-i-§Z :|

w1 ~
E; (Xn+l | Xpe € P0P1>
3

where

= ni d n—i—d . .
_ iy \n—itl w1 n—i—do (n _ 1) (n)
Cl_§w3(l “) Z(l_w3) (1_603) (n—i—dar+n\ d i

=0

—i d n—i—d 2 ;
db n—i\[(n
(1— n— 1+1 w1 2
i
(1— n—i
&3= ;wa w3) ( )—H—rz—l

The next section develops a practical idea based on the logistic regression to derive a probabilis-
tic model to use the additional information Z;; - - - , Z; ,, to assign population’s weight whenever,
we partition measurable space X" into two populations.

5. Logistic Regression Credibility for Two Populations

Consider a situation that the measurable space &' can be partitioned into two populations.
Moreover, suppose that for each random variable X; there is some additional information
Zi1--- >Zim, are available. Now using the logistic regression, one may evaluate the first
Population’s weight by

w=P(X; € PoPi|zi1 -+, Zim)

__exp{Bo+ X0, Bz}
L+ exp{fo + 21L, Az}

(13)

Therefore, the result of Corollary 1 can be simplified by the following. Since this result initiated
from the logistic regression, hereafter now, we call it “Logistic Regression Credibility.”
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Remark 1. Suppose that measurable space X can be partitioned into two populations, then, under
Model Assumption 1, the Bayesian credibility mean is

)
B[ Xut11X1, X2, o0 Xu] = Z Z o'(1 — ©)"' [©E; (Xp+1|Xp, € PoPy)
i=0 r=1

+ (1= 0By (X1 1Ky, ¢ PoP1) |
where w is given by Equation (13).

The following example represents a practical application of the Logistic Regression Credibility
(given by Remark 1)

Example 5. Suppose an insurance company based upon its past experience classified its pol-
icyholders in two homogenous groups, labelled “Group 1” and “Group 2,” where claim size
distribution for the Group 1 is a Normal distribution (with mean ) and variance 0.36) and for the
Group 2 is a Normal distribution (with mean 6, and variance 0.40) where 6, and 6,, respectively,
have been distributed according N(9, 0.25) and N(10, 0.25). Moreover, suppose that the insur-
ance company developed the following logistic regression model to assign its policyholder to the
“Group 1”
exp{20.33 4 1.37z; — 2.87z + 0.10z3 — 10.06z4 + 0.50z5}

1 + exp{20.33 4 1.37z; — 2.87z 4 0.10z3 — 10.06z4 + 0.50z5} ’
where zj,--- ,zs5, respectively, stand for Gender (0=male and l1=female), Marital Status
(0=single and 1=Married), Age (ranges from 20 to 80), Occupation class (distinct values 1,2,
3, and 4) and location (distinct values 1 to 30).

Now consider a 40 years single man who lives in location labelled 9 and his job is labelled
3. Moreover, suppose that his 10 years loss reports are 16.19502, 13.92823, 15.69760, 15.00515,
15.30293, 16.54005, 16.03626, 16.84823, 14.49716, 14.75258.

Using the Equation (14), the policyholder with probability w =0.2378 (1 —w =0.7622)
belongs to “Group 1”7 (“Group 27), and his next year Bayesian credibility premium is

0 ()

E>[X111X1, X3, ..., X10] = Z Z w'(1— w)mi[a)El (X111Xp, € PoPy)
i=0 r=1

P(Y=1|z)=

(14)

+(1-w)kE (XH Xpe ¢ P0P1> } — 16.79856.

The Logistic Regression Credibility, say LRC, and the Regression Tree Credibility, say RTC,
share a same idea. Both of them use a statistical model to partition the measurable space X" into
some populations. But, the RT'C method develops a credibility prediction for each population
while the LRC provides just one credibility prediction for all populations with different weight.
The following subsection shows that at least for some cases the LRC has a lower risk function.

5.1 Logistic regression credibility versus the regression tree credibility

Diao & Weng (2019) introduced the RTC model. Their model, in the first step, employs some
statistical techniques (such as logistic regression) to partition the measurable space X into some
small regions in which a simple model provides a good fit. Then, in the second step, for each
region they applied the Bithlmann-Straub credibility premium formula for each region to pre-
dict credibility premium prediction. More precisely, given observed data X; and its associated
information Z;; - -+ , Zjm, for i=1,--- ,n. Using a statistical model, such as logistic regression
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given by Equation (13), it determines the probability that such claim experience X, Xa, - - - , X,
arrives from the Population 1. If such a probability passes 1/2, the credibility premium pre-
dicts using the model which developed for Population 1, otherwise, the model developed for
Population 2.

Under the squared error loss function, the RT'C method decreases risk function of prediction
compared to the regular credibility method. Diao & Weng (2019) presented its theoretical proof
for the situation where measurable space X has been partitioned into two distinguished classes.

The following lemma shows that at least for an interval about 1/2, the LRC’s risk function
dominates the RTC’s risk function.

Lemma 5. Under Model Assumption 1, consider two following different scenarios to predict the
credibility mean based upon the i.i.d. random claim experience X1, X2, -+ , Xy..

Scenario 1 (the LRC approach): The claim experience X1, Xs, - - - , X,, given parameter vector ¥ =
(01, 62)', has been distributed according the following 2-component normal mixture distribution
a)N(Gl, 012) +(1— w)N(Qg, 022) , where 012, 022 are given, w € [0, 1] and for j=1,2, 6; has the
conjugate prior distribution N(Mj, T]z) .

Scenario 2 (the RTC approach): The measurable space X partitions into two populations in which

if the i.i.d. random claim experience X1, X, -- , X, are belong to Population j=1,2, then
E(X;) = uj, Var(E(X;|©)) = 1:j2 and E(Var(X;|®)) = ojz.

Then, at least for the situation that the population’s weight, w, (given by Equation (13)) locates in
an interval I = [(1:22 — Rz) / (R1 + 122) , (R +Ry)/ (Rz + 1:12)] under the squared error loss func-
tion, the LRC’s risk function dominates the RTC’s risk function, where R; = al 7] z/ (n‘cl +o; ?) for
I=1,2.

Proof. Similar to Example 2, one may show that under the Scenario 1, the Bayesian credi-
bility premium is o[£1X + (1 — &)p1] + (1 — w)[£2X + (1 — &)u2] and its corresponding risk
function under the squared error loss function is

2
Lirc(w) =a)2[ 12(% +(1 - El)zflz} +(1— 60)2[ —=+(1-5) Tz}

n i n—i(n 171 n i n—i(n (n_i)TZZ
where &1 =) " j0'(1 —w) ( ) and&H=)"" (o'(l —w) (,)— 7

2+(72 (nfz)rzeraz
However under the Scenario 2, since the RTC method employs the Bithlmann-Straub credibil-
ity premium formula, its credibility premium is aiX + (1 — ocj) Hj» where o= W, whenever

Population j =1, 2 has been chosen. Therefore, its corresponding risk function under the squared
error loss function is

Lrrc(w) = |:061— +(1—a)’r } +(1- a))[az— +(1-a)’r }
where the probability that the past claim experience X, X, - - - , X, belong to Population 1, w,
derived from Equation (13).

Now observe that, difference between the above two risk functions, L;gc(w) — Lrrc(w), can be
restated as

2.2 n .1 L1
o7 ; i\ 2 iw?2 n iw?2 n
== Za)(l—a)) )| 2 i nt s N I R s St S
‘o it] +01 ntj +ol ity —i—ol ntg —i—ol
> 1 > 1
O’ ‘L' w? w?
HZ“’“— ”612 2 3T 2 ) 2 2 2
it] —I—a1 nty —|—01 it] —{—al nty —|—al
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Now without losing the generality, assume that we can take a derivative with respect to i and
observe

0H;(w) 2012112 2‘[120'12(1’1 — 1) 3 0221'22 21'122(722
M;:= — = —w > 23—i—(l—a)) > 3
di no (it} +of) no((n—i)ts +03)
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ati=0, My <0, at i =n, M,, > 0, and 3°H;(w)/d%i > 0. This means H;(w) is a concave function
with respect to i that attains its maximum at i=0 and i = n.

Therefore,
Lirc() — Lrrc(@) < Y o'(1— w)n_iC.Z)Ho(w) = Hy(o) (15)
i=0
Lirc(®) — Lerc(@) < Y o/(1— )" (’Z)Hn(w) = Hy (o). (16)
i=0

Imposing negativity on Equations (15) and (16), perspectively, lead to @ < (R; + Ry)/ (1} + R,)
and1 —w < (R; +Ry)/ (122 + Rl) . This observation completes the desired result. O

One should note that, the above H;(w) also can be stated as
Hi(w) = (AE”C‘“ + A§2’C<2>) w? + (—B“)C“) —249Cx (2) + B<2>C<2>) »
T ( ADCO _ B<2)C<z>> ,

where A(.l) _ (1171')21']2er712 o _ n2r12+n012
' ((”_i)flz+‘712)2 (”712"'”12)2

Since Agl) is an increasing function with respect to i, one may observe that Al(.l) <A and Ag) =

2.2
and CV = % forl=1,2.

B®. This fact allows one to conclude that
4H (0 = 0.5) = Al(l)clgl) _ 7A,('2)C(2) — 280 c() _ 2p2) (2)
=W [A<.1> - 23(1)] — 7AW@ _ 25
1 1
<c [A]g) _ 23(1)] —_ 7A@ _ 5@ c®
- 1

— _cWp®) _74@cQ) _ 522
i
<0

and consequently Lyrc(w = 0.5) — Lrrc(w = 0.5) < 0. The continuation of Lirc(w) — Lrre(w) in
o shows that at least in an interval about w = 0.5 the LRC’s risk function dominates the RTC’s risk
function. This means that at least in a situation where one with probability a bit more than 50%
is going to assign the past claim experience to one of the population and using the RTC’s method
derives the credibility mean for the future claim. We suggest him/her to use the LRC’s method.

Figure 1 illustrates behaviour of Lipc(w) — Lrrc(w) with respect to w, for some values of
(”’ 01,02, 71, 7:2)-

6. Discussion and Suggestions

This article considered the Bayesian credibility prediction for the mean of X,,1; under a finite
class of mixture distributions. In the first step, it developed a recursive formula for the Bayesian
credibility mean under such a class of distributions. Since the implementation of the recursive for-
mula is very expensive (see Example 1), therefore, it imposed some additional conditions on the
problem. More precisely, it assumed random variables X;, fori=1, - - - , n, corresponding to the
observed sample x; accompanied with additional information Z; 1, - - - , Z; ,, where under a prob-
abilistic model one may use such observable information to determine the population of random
variables X;, see Model Assumption 1 for more details. Under this new assumption, it developed
an exact Bayesian credibility mean whenever all members of such a class of mixture distributions
belong to the single-parameter exponential family of distributions. Finally for a situation that the
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Figure 1. Behaviour of L;gc(w) — Lgrc(w) with respect to w, under Lemma 5’s assumptions, whenever (n, o1, 02, 71, 72) = (10,
1, 2,1,2) (Panel, a); (50, 1, 2, 1, 2) (Panel, b); (100, 1, 2, 1, 2) (Panel, c); (10, 2, 1, 10, 12) (Panel, d); (50, 2, 1, 10, 12) (Panel, e);
(100, 2, 1,10, 12) (Panel, f); (10, 200, 1, 10, 120) (Panel, g); (50, 200, 1, 10, 120) (Panel, h); and (100, 200, 1, 10, 120) (Panel, i).

measurable space X’ can be partitioned into two populations, it employed the logistic regression
and introduced the Logistic Regression Credibility which in the sense of the risk function in some
specific population’s weight dominates the Regression Tree Credibility.

We should note that assumption on the additional information Z; 1, - - - , Z; , has a slight dif-
ference by assumption on latent variable Z;; in the EM algorithm (see Note 2). More precisely,
under Model Assumption 1, Z;,,- - - ,Z;,, are observable and give a probabilistic information
about distribution of random variable X;, say population’s weight. While under the missing data
approach, Zj; is a latent variable which provides certain information about distribution X;. This
fact persuades us to claim assumptions in Model Assumption 1 are available and practicable in
many cases, see Example 5 as an evidence.

Our finding can be extended for (1) other indices of X1, such as the variance of X,
as represented in Equation (3), (2) the M-parameter exponential family of distributions, and
(3) the Bayesian non-parametric credibility under the Dirichlet process mixture models, which
introduced by Fellingham et al. (2015) and enriched by Hong & Martin (2017, 2018).

To see the second possible extension, the following recalls Jewell (1974)’s findings for the M-
parameter exponential family of distributions with probability density/mass function

£(x16) = a(x)eXm=1 9Ot 1 (9) ¥ x € Sy, (17)
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where a(-), ¢m(:), tm(), for m=1,2,--- , M, are given functions and the normalising factor ¢(-)
is defined based on the fact that | s (x16)dx = 1. To derive the Bayesian credibility prediction

for a given index of X,y under the M-parameter exponential family of distributions, he set
Nm = —@m(0), and considered the conjugate prior distribution

(A = [o(A)] 20X merPowmnd s (e, By),

where A = (11,12, - - - , na) . Then, he showed the Bayesian credibility can be expressed based on
the sufficient statistics t,,(-) as

- Bo
E(tm(Xn+1)|X1, e Xy) = Cntm,n(x) + (1 - Cn)a_;n, orm=1,2,---,M, (18)

where the credibility factor ¢, = n/(n + ap) and t,, ,(X) = o7 b(xi)/n.
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