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Understanding the generation of large-scale magnetic fields and flows in magnetohydro-
dynamical (MHD) turbulence remains one of the most challenging problems in
astrophysical fluid dynamics. Although much work has been done on the kinematic
generation of large-scale magnetic fields by turbulence, relatively little attention has
been paid to the much more difficult problem in which fields and flows interact on an
equal footing. The aim is to find conditions for long-wavelength instabilities of stationary
MHD states. Here, we first revisit the formal exposition of the long-wavelength linear
instability theory, showing how long-wavelength perturbations are governed by four mean
field tensors; we then show how these tensors may be calculated explicitly under the
‘short-sudden’ approximation for the turbulence. For MHD states with relatively little
disorder, the linear theory works well: average quantities can be readily calculated, and
stability to long-wavelength perturbations determined. However, for disordered basic
states, linear perturbations can grow without bound and the purely linear theory, as
formulated, cannot be applied. We then address the question of whether there is a linear
response for sufficiently weak mean fields and flows in a dynamical (nonlinear) evolution,
where perturbations are guaranteed to be bounded. As a preliminary study, we first address
the nature of the response in a series of one-dimensional maps. For the full MHD problem,
we show that in certain circumstances, there is a clear linear response; however, in others,
mean quantities – and hence the nature of the response – can be difficult to calculate.
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1. Introduction

Determining the growth of large-scale structures in disordered or turbulent systems that
are initially homogeneous is a long-standing and challenging problem in many areas
of fluid dynamics. To analyse the development of such structures, one typically seeks
evolution equations whose coefficients depend on average properties of the underlying
homogeneous flows. An obvious first question concerns the form of such coefficients and
their dependence on the symmetries of the problem. A second question, which is much
less often addressed in detail, but is nonetheless of great importance, is whether the formal
expressions that arise can actually be calculated in a meaningful way.

To address these two questions by means of a concrete example, in this
paper we consider the long-wavelength instabilities of a homogeneous nonlinear
magnetohydrodynamical (MHD) state. Our treatment thereby extends the simpler
kinematic studies of, on the one hand, the classical theory of mean field electrodynamics
(see Krause & Rädler 1980; Moffatt & Dormy 2019) and, on the other, the so-called
anisotropic kinetic alpha (AKA) hydrodynamic instability introduced by Frisch, She &
Sulem (1987). Kinematic theory has undoubtedly been of enormous importance in the
development of the subject. Nonetheless, in reality, the velocity is not prescribed but is
driven by body forces, which, crucially, include the back-reaction of the magnetic field on
the flow (the Lorentz force); this may be termed the dynamic theory. Furthermore, dynamo
action in highly electrically conducting fluids, such as those that pertain astrophysically,
typically results in fields that are of similar or smaller spatial scale to the flow – a
small-scale dynamo (see e.g. Childress & Gilbert 1995). These considerations naturally
lead to the analysis of the problem of the growth of a large-scale magnetic field (and
flow) from a basic MHD state, such as may result from the saturation of a small-scale
dynamo. Crucially, in contrast to the kinematic case, the velocity and magnetic field
now have equal prominence. By analogy with the kinematic problem, the aim is to
derive coupled equations for the linear instability of the small-scale MHD basic state
to large-scale perturbations of the magnetic and velocity fields; the tensorial coefficients
are again determined from the basic state. Since this basic state can be highly nonlinear
and chaotic, calculation of the coefficients may be far from straightforward. Nonetheless,
a knowledge of the form of these tensors is very useful in understanding the role of
symmetry and chirality in determining the growth of the instability. In § 2 we revisit the
formal development of the equations, first expounded in Courvoisier, Hughes & Proctor
(2010a), and provide new explicit expressions for the coefficients in a particular case.
Simplified versions of this problem have been considered by Courvoisier et al. (2010a)
and Courvoisier, Hughes & Proctor (2010b). Courvoisier et al. (2010a) studied large-scale
instabilities of two-dimensional MHD flows, thereby extending the seminal work of
Roberts (1970, 1972) from the kinematic to the dynamic regime. Courvoisier et al. (2010b)
considered the full three-dimensional problem, but in order to obtain explicit expressions
for the tensorial coefficients, it was assumed that both the fluid and magnetic Reynolds
numbers were small, with magnetic fields generated through imposed small-scale electric
currents. We also note that there have been other related studies with the aim of extracting
mean field coefficients using perturbation schemes (see e.g. Yoshizawa 1990; Yokoi 2023;
Schrinner et al. 2005). We discuss how the various approaches differ in § 2.

For a given MHD turbulence configuration, in order to apply the theory expounded in
§ 2, it is necessary to calculate the linear response of the turbulence to the imposition of
kinematic uniform (mean) flows and uniform magnetic fields; the tensorial coefficients
are defined in terms of spatial and temporal averages of quadratic fluctuating quantities.
There are parallels between this method and classical linear response theory, which is used
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Nonlinear mean field MHD

to address small perturbations to Hamiltonian systems (see Kubo 1966; Marconi et al.
2008).

In § 3, we calculate the tensorial coefficients, after linearising the perturbation
equations, for a variety of basic state configurations. Reassuringly, we show through
specific examples that there are circumstances in which this approach works perfectly,
with convergence to well-defined mean quantities. We then use these coefficients to
determine the nature of any long-wavelength instabilities of the flows and fields in
question. We demonstrate that the instabilities arising from the traditional α and
AKA effects should not be considered in isolation. There are, however, circumstances
in which the perturbed quantities, and hence quadratic averages of these, increase
exponentially in time, and the theory, as formulated, simply cannot be applied. This
divergence forms the basis of what is known as van Kampen’s objection to classical
linear response theory (Van Kampen 1971; Marconi et al. 2008). It does, however,
prompt the interesting question of whether the theory can be rescued by considering
the fully nonlinear problem with arbitrary imposed fields and flows – for which the
average quantities will be well-defined (see e.g. Proctor 2022) – and then considering the
weak field/flow (kinematic) limit of this dynamical approach. What will be the nature
of the response in this kinematic limit? In particular, is it guaranteed to be linear?
These are questions that may be posed in a somewhat wider context. If a nonlinear
dynamical system – not necessarily hydrodynamical – is perturbed, is the response of
the system readily measurable and, if so, is the response linear in the magnitude of the
perturbation?

Such questions go beyond the realm of linear response theory and are best addressed by
a combination of analysis and numerical computation. In order to gain some elementary
understanding, before tackling the full horrors of the MHD turbulence problem in § 5, in
§ 4 we explore this issue by considering the ostensibly simpler problem of calculating the
responses to small symmetry-breaking terms of a variety of one-dimensional maps. The
nature of the response turns out to depend crucially on the form of the invariant measure
of the system.

In § 5, we expand on the dichotomy outlined in § 4 by reverting to the full
nonlinear MHD problem and attempting to calculate the tensorial coefficients in the
limit of weak imposed fields and flows. As has been noted in other studies of
MHD turbulence, the signal-to-noise ratio can be extremely small, thereby creating
difficulties with obtaining well-defined averages. Furthermore, even when averages can
be obtained, a linear response is more detectable for some mean field tensors than for
others.

A summary of our results is contained in § 6; we also discuss the inherent difficulties
in extracting the signal (i.e. the response) from the noise (i.e. the turbulent fluctuations),
a problem that seems particularly marked in MHD turbulence. In addition, we assess to
what extent one may carry over the results from the one-dimensional maps discussed in
§ 4 to the infinite-dimensional MHD equations.

2. Mathematical and computational formulation

2.1. The long-wavelength stability problem
The basic state of our problem comprises statistically steady and homogeneous
incompressible MHD turbulence, driven by a prescribed forcing F (x, t). It is supposed that
the velocity field U and the magnetic field B are periodic in a cuboidal domain with typical
size L. After a standard non-dimensionalisation, the momentum and induction equations
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take the form

∂U
∂t

+ U · ∇U = −∇P + B · ∇B + Re−1∇2U + F , (2.1)

∂B
∂t

+ U · ∇B = B · ∇U + Rm−1∇2B. (2.2)

The Reynolds number Re and the magnetic Reynolds number Rm are defined as usual by
Re = ÛL/ν and Rm = ÛL/η, where Û is a typical velocity, ν is the kinematic viscosity
and η is the magnetic diffusivity. Here we prescribe the forcing and not the velocity, and
so Û2/L = F̂, where F̂ is a typical magnitude of the forcing. We are interested in finding
the growth rate of very long-wavelength disturbances to this basic state. We assume that
these disturbances are small, so that the perturbation equations can be linearised. We start
by writing down the linearised equations for the perturbation quantities, denoted by u, p
and b:

∂u
∂t

+ U · ∇u + u · ∇U = −∇p + B · ∇b + b · ∇B + Re−1∇2u, (2.3)

∂b
∂t

+ U · ∇b + u · ∇B = B · ∇u + b · ∇U + Rm−1∇2b. (2.4)

We now assume that these quantities evolve on two disparate length and time scales.
By averaging over intermediate scales, we can therefore write u = ū + u′, etc., where
the barred (mean) variables vary only on length and time scales, denoted by X and
T , respectively, that are very long compared with the scales x and t of the basic state.
Equations (2.3) and (2.4) may then be decomposed into mean and fluctuating parts. The
mean equations take the form

∂ū
∂T

+ ∂

∂Xj
(Uju′ + u′

jU) = −∇Xp̄ + ∂

∂Xj
(Bjb′ + b′

jB) + Re−1∇2
X ū, (2.5)

∂ b̄
∂T

= ∇X × (U × b′ + u′ × B) + Rm−1∇2
X b̄, (2.6)

where (∇X)i = ∂/∂Xi. To close these equations we need to express the averaged quantities
in terms of ū and b̄. If we wish only to find terms including first derivatives of ū and
b̄ with respect to X (since these terms will dominate at sufficiently long scales), we can
self-consistently neglect derivatives of ū, b̄ in the equations for the fluctuations. With this
approximation, these then take the form

∂u′

∂t
+ (U · ∇u′ + u′ · ∇U)′ + ū · ∇U = −∇p′ + (B · ∇b′ + b′ · ∇B)′

+ b̄ · ∇B + Re−1∇2u′, (2.7)

∂b′

∂t
+ (U · ∇b′ + u′ · ∇B)′ + ū · ∇B = (B · ∇u′ + b′ · ∇U)′

+ b̄ · ∇U + Rm−1∇2b′. (2.8)

It can be seen that each of u′ and b′ is subject to forcing from both ū and b̄. It is assumed
that the long-time solutions of (2.7) and (2.8) are (statistically) unique, consistent with
the basic state being a (statistical) attractor. If (2.7) and (2.8) are formally solved, and the
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results substituted into (2.5) and (2.6), then we obtain at leading order, after dropping the
diffusive terms, which are subdominant at small wavenumbers:

∂ ūi

∂T
+ ∂

∂Xj
(Γ

(1)
ijl ūl + Γ

(2)
ijl b̄l) = − ∂ p̄

∂Xi
, (2.9)

∂ b̄i

∂T
= εijk

∂

∂Xj
(α

(1)
kl b̄l + α

(2)
kl ūl). (2.10)

The quantities Γ (i), α(i) are tensors, depending only on the properties of the basic state
U , B and so ultimately on those of F (to be more precise, Γ (1) and α(2) are true tensors,
whereas Γ (2) and α(1) are pseudo-tensors). The Γ (i) are always symmetric in their first
two indices, whereas the α(i) have no symmetries in general. It is important to note that
since we are considering forced turbulence in a fixed frame of reference, our system is not
Galilean invariant; in a Galilean-invariant system, the tensors Γ (1) and α(2) would vanish.

Two of the mean quantities appearing in (2.9) and (2.10) are familiar: α(1) is the
well-known dynamo α-effect, which has been extensively discussed in the literature; Γ (1)

can be recognised as the AKA effect introduced by Frisch et al. (1987). The other terms,
which couple the two mean field equations, and were first introduced by Courvoisier et al.
(2010a), have not been widely studied. It is interesting to note that reflectionally symmetric
turbulence leads to constraints on α(1) and Γ (2), being pseudo-tensors (e.g. the symmetric
part of α(1) vanishes), whereas there are no such constraints on α(2) and Γ (1).

As noted in the introduction, it is of interest to compare our formulation with other
approaches to obtaining mean field tensors in turbulent MHD. Yoshizawa (1990) (see
also Yokoi 2023) considered a two-scale approach to MHD turbulence, adopting the
two-scale direct-interaction approximation (TSDIA), retaining the effects both of the mean
quantities and their derivatives, thus capturing effects such as eddy diffusivities, which we
do not consider here. Yoshizawa (1990) considered a system that was Galilean invariant
and, as such, the tensors Γ (1) and α(2) vanish. Moreover, under the TSDIA, Γ (2) also
vanishes. Schrinner et al. (2005) adopted a very different approach. They extracted the
fluctuating velocity from a stationary MHD turbulent state – possibly one with a mean
magnetic field – and then solved the fluctuating induction equation after the imposition
of so-called ‘test fields’, which may be functions of position. They then calculated the
resulting electromotive force (e.m.f.), which they related to the αij and βijk tensors of mean
field MHD. Although their starting point is a saturated MHD state, they did not consider
the equation for the mean velocity.

2.2. Determining the tensors α(i) and Γ (i) under the ‘short-sudden’ approximation
Obtaining analytic expressions for the mean quantities ū, b̄ is not, in general, possible.
However, there are two special cases in which progress can be made. One is when both Re
and Rm are small, which has already been considered in Rädler & Brandenburg (2010) and
Courvoisier et al. (2010b). The other, which we consider here, is when the correlation time
of the turbulence is short and one may adopt the ‘short-sudden’ approximation (see e.g.
Krause & Rädler 1980). In this case, (2.7) and (2.8) are approximated at leading order by

u′ = τ1(b̄ · ∇B − ū · ∇U), b′ = τ2(b̄ · ∇U − ū · ∇B), (2.11a,b)

where τ1 and τ2 are, respectively, the correlation times for the fluctuating flow and field.
Note that u′ is automatically solenoidal, and so the pressure gradient does not enter this
approximation. Substituting for u′ and b′ into (2.5) and (2.6) allows us to calculate the
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mean field tensors. It is straightforward to show that Γ (1) vanishes in this special case,
since

Γ
(1)

ijl = −τ1

(
Uj

∂Ui

∂xl
+ ∂Uj

∂xl
Ui

)
+ τ2

(
Bj

∂Bi

∂xl
+ ∂Bj

∂xl
Bi

)
(2.12)

= −τ1
∂
(
UiUj

)
∂xl

+ τ2
∂
(
BiBj

)
∂xl

= 0. (2.13)

The elements of the tensors α(1), α(2) and Γ (2) are given by

α
(1)
il = εipq

(
τ2Up

∂Uq

∂xl
− τ1Bp

∂Bq

∂xl

)
, (2.14)

α
(2)
il = (τ1 − τ2)εipqγpql, (2.15)

Γ
(2)

ijl = (τ2 + τ1)(γijl + γjil), (2.16)

where

γijl = Ui
∂Bj

∂xl
= −Bj

∂Ui

∂xl
= 1

2

(
Ui

∂Bj

∂xl
− Bj

∂Ui

∂xl

)
. (2.17)

It should be noted that under the short-sudden approximation, the equations for the
fluctuating flow and field, (2.11a,b), take a simplified form. As a consequence, α(1)

contains only products of U with itself and B with itself – in general, however, there
is no reason to expect that α(1) will not contain products of U and B. In a similar vein,
when τ1 = τ2, the symmetry of (2.11a,b) leads to the vanishing of the α(2) tensor, although
τ1 and τ2 cannot be calculated a priori in general. There is an analogous situation in the
approximated system introduced by Rädler & Brandenburg (2010), in which α(2) vanishes
when Re = Rm.

The expression for α(1), which first appeared in Pouquet, Frisch & Léorat (1976), is
the extension of the classical α-effect from hydrodynamic to magnetohydrodynamic basic
states; the velocity and magnetic fields are clearly on an equal footing, as indicated in
the introduction. It is worth noting that this form of α(1) is sometimes interpreted as a
‘quenching’ mechanism for the α-effect as a dynamo evolves to finite amplitude; there
are, however, problems with such an interpretation, as noted by Proctor (2003). The two
terms that couple the basic state velocity and magnetic fields (α(2) and Γ (2)) rely for their
existence on different parts of γijl. In particular, since Γ (2) is symmetric in its first two
arguments, it will vanish if the statistics of the basic state are isotropic. The coefficients of
the γijl tensor are a priori almost unconstrained, although since U and B are solenoidal, we
do have γiji = γijj = 0. It is straightforward to show that for isotropic turbulence, α

(2)
il =

α̃δil, where

α̃ = −
(

τ1 − τ2

3

)
U · ∇ × B = −

(
τ1 − τ2

3

)
B · ∇ × U . (2.18)

It is of interest to note that even if the traditional α-effect (α(1)) vanishes, it still
seems that there can be a long-wavelength instability induced by the coupling terms.
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Nonlinear mean field MHD

Seeking solutions proportional, for example, to exp(i(KZ + ωT)), so that ū3 = b̄3 = 0, we
have the coupled two-dimensional algebraic equations (where G(1)

ij = γi3j, G(2)
ij = γ3ij),

ωū = −(τ1 + τ2)K(G(1) + G(2))b̄, ωb̄ = (τ1 − τ2)K(G(1) − G(2))ū, (2.19a,b)

and so ω2 is an eigenvalue of the matrix

(τ 2
2 − τ 2

1 )K2(G(1) + G(2))(G(1) − G(2)). (2.20)

Unless both eigenvalues ω2 are real and positive, the basic state will be unstable. It
therefore appears that there is a new generic mechanism for long-wavelength instability,
relying on coupling between the mean momentum and induction equations and on
anisotropy in the basic flow statistics.

2.3. From formalism to calculation
In theory, numerical calculation of the Γ (i) and α(i) tensors in (2.9) and (2.10) is
straightforward, albeit computationally expensive. Following the standard mean field
prescription, the fluctuating fields u′ and b′ are calculated from the linear equations (2.7)
and (2.8), solved in concert with the nonlinear equations (2.1) and (2.2), following the
imposition of uniform mean velocity and magnetic fields, ū and b̄. From the fluctuating
fields, we construct the linearised mean total stress and the linearised mean e.m.f.,
defined by

Rij = (Uju′
i + u′

jUi) − (Bjb′
i + b′

jBi), (2.21)

E = U × b′ + u′ × B. (2.22)

Varying the directions of ū and b̄ allows calculation of all the tensorial coefficients, after
spatial and temporal averaging of the various quadratic interactions, with the proviso that
the requisite averages exist.

By contrast, when the averages do not exist, it is necessary, as discussed in the
introduction, to consider fully nonlinear responses to the imposition of mean fields and
flows. We restore the nonlinear terms into the perturbation equations (cf. (2.3) and (2.4)),
which now take the form

∂u
∂t

+ U · ∇u + u · ∇U + u · ∇u = −∇p + B · ∇b + b · ∇B + b · ∇b + Re−1∇2u,

(2.23)

∂b
∂t

+ U · ∇b + u · ∇B + u · ∇b = B · ∇u + b · ∇U + b · ∇u + Rm−1∇2b, (2.24)

where, again, u = ū + u′, etc. Equations (2.23) and (2.24) are solved in concert with (2.1)
and (2.2). The mean total stress and the mean e.m.f. now take the form

Rij = (Uju′
i + u′

jUi + u′
iu

′
j) − (Bjb′

i + b′
jBi + b′

ib
′
j), (2.25)

E = U × b′ + u′ × B + u′ × b′. (2.26)

The MHD equations are solved on a cubic, 2π-periodic domain, using a parallelised,
dealiased, pseudospectral code. Time advancement of the diffusive terms is carried out
exactly using an integrating factor, and the remaining terms are treated using a third-order
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Runge–Kutta scheme. For a detailed description of the numerical method, see Cattaneo,
Emonet & Weiss (2003). The simulations with the largest Reynolds numbers have a spatial
resolution of 1283 grid points. Very long time evolutions are required in order to obtain
meaningful averages; a single simulation can consume on the order of 104 core hours.
A series of simulations with different orientations and strengths of the mean fields is
required in order to measure α(i) and Γ (i).

3. Symmetry breaking in nonlinear MHD (i): linearised perturbations

In this section, we describe the results of direct numerical simulations to calculate the
coefficients of the Γ (i) and α(i) tensors in the mean field equations (2.9) and (2.10).
We have considered a variety of forcing functions F that, at low values of Re and with
no magnetic field, lead to spatially simple flows of the kind often used in kinematic
dynamo studies. Of course our basic state here, governed by (2.1) and (2.2), will be more
complicated even at low Re, as it involves the saturation through the Lorentz force of a
small-scale dynamo. At high values of Re and Rm, all simplicity is lost and the basic
state, even under a simple forcing, is disordered both spatially and temporally. Here we
concentrate on two particular forms of the forcing, defined by

F = F 1 = 1
Re

(sin z + cos y, sin x + cos z, sin y + cos x) (3.1)

and

F = F 2 = 2 sin 2t(sin y, − sin x, cos x + cos y)

+ 2
Re

(sin y sin2 t, sin x cos2 t, cos y sin2 t − cos x cos2 t) + F 1

2
. (3.2)

In the absence of magnetic field, and at sufficiently small Re, the forcing F 1 drives the
well-known 1:1:1 ABC flow, U = ReF 1; since this flow is maximally helical (i.e. velocity
parallel to vorticity), then the nonlinear terms can be balanced by a pressure gradient. This
flow has a long and distinguished history in dynamo theory, dating back to the pioneering
work of Childress (1970), Arnold & Korkina (1983) and Galloway & Frisch (1984). We are
interested in cases where Rm is sufficiently large that the ABC flow acts as a small-scale
dynamo. The basic state then results from the equilibration of the dynamo instability, and
indeed any hydrodynamic instability, resulting in a flow for which B is non-zero and U
differs from the target flow.

As discussed below, the flows resulting from forcing F 1 possess symmetries that lead
to the ‘cross-term tensors’ Γ (2) and α(2) being zero. In order to discover a basic state that
yields non-zero Γ (2) and α(2) tensors, we investigated a variety of less symmetric forcings.
The forcing F 2 is the sum of F 1/2 and that which drives the so-called MW+ flow of Otani
(1993) at low Re.

3.1. When the linear theory works well
In this subsection, we investigate long-wavelength instabilities to the basic state generated
by forcings F 1 and F 2 at low values of Re and fairly low values of Rm (though high enough
to support dynamo action, so that the basic states are magnetohydrodynamic).

First we consider forcing F 1, with Re = Rm = 12; the basic MHD state for these
particular parameters has been studied in some detail by Galanti, Sulem & Pouquet (1992).
In the absence of magnetic field, the 1:1:1 ABC flow is hydrodynamically stable; it does
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(a) (b) (c)

(d ) (e) ( f )

Figure 1. Snapshots of representative slices of the basic state flow and field for forcing F 1, with
Re = Rm = 12. From left to right: (a,b,c) Ux( y, z), Uy(x, z), Uz(x, y); (d,e, f ) Bx( y, z), By(x, z), Bz(x, y).

though support dynamo action for Rm = 12, and so an initially weak field is amplified
until a stationary MHD state is attained in which the flow varies from its hydrodynamic
state. For these parameter values, the basic MHD state has regular periodic oscillations,
with mean values of 〈U2〉 ≈ 1.67 and 〈B2〉 ≈ 0.057, where 〈·〉 denotes a volume and time
average. This new state is not isotropic, but has a preferred direction, which depends on
initial conditions; this state corresponds to the long-time solution shown in figure 3 of
Galanti et al. (1992). Representative two-dimensional slices of the flow and field of the
basic MHD state are shown in figure 1; here the preferred direction is along the x-axis.
Interestingly, although the flow differs from its kinematic (hydrodynamic) form, it is,
nonetheless, almost maximally helical, i.e. with 〈U · ∇ × U〉/

√
〈U2〉〈|∇ × U |2〉 ≈ 1.

The flow is perturbed, in turn, by the imposition of kinematic uniform fields and flows
in the x, y and z directions, allowing us to calculate Rij and E given by (2.21) and (2.22).
By imposing magnetic fields, we can determine α(1) and Γ (2), whereas from the imposed
flows we can determine α(2) and Γ (1). Here, the linear perturbations are also periodic in
time and hence the quadratic quantities needed to calculate the mean field tensors must
have well-defined averages. When the mean values are non-zero, convergence to the mean
is rapid; however, for certain cases where the mean value is zero, some components of the
Reynolds stress converge in amplitude faster than others. After imposing mean magnetic
fields, the tensor α(1) is calculated as

α(1) =
⎛
⎝−1.22 0 0

0 −0.043 0
0 0 −0.043

⎞
⎠ , (3.3)
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where the symmetries of the tensor indicate that the basic state for this run is isotropic
in the yz-plane. The symmetries of the flow and field are such that all components of the
tensor Γ (2) are zero. On imposing a mean flow, all components of the tensor α(2) are
similarly zero; the only non-zero components of Γ (1) are given by

Γ
(1)

132 = Γ
(1)

312 = −Γ
(1)

123 = −Γ
(1)

213 = 0.058. (3.4)

Since both the tensors α(2) and Γ (2) are zero, as a consequence of the symmetries of the
basic state, the mean field equations (2.9) and (2.10) are decoupled. Any instability that
results is therefore either purely magnetic or purely hydrodynamic, although the basic flow
of course depends crucially on both the flow and field.

To obtain insight into the magnetic instability, we consider a scaled form of α(1) given
by (3.3), namely

α(1) =
⎛
⎝−1 0 0

0 −ε 0
0 0 −ε

⎞
⎠ . (3.5)

On seeking solutions of the form exp(iK · X + ST), (2.10) leads to the following
expression for the growth rate S:

S = ±
(
εK2

H + ε2K2
X

)1/2
, (3.6)

where K2
H = K2

Y + K2
Z . The next order correction to (3.6) is O(|K |2) and comprises

molecular diffusion together with eddy effects that would result from inclusion of the
first derivatives of ū and b̄ in the above analysis. For illustrative purposes, if we just retain
the molecular terms, the extension of (3.6) becomes

S = ±
(
εK2

H + ε2K2
X

)1/2 − Rm−1
(

K2
H + K2

X

)
. (3.7)

For ε < 1, the maximum growth rate is εRm/4, when KX = 0 and KH = √
εRm/2. Note

that this dynamo mechanism is very different from that resulting from two-dimensional
flows such as first studied by Roberts (1972), which may be thought of as the case of very
large ε.

To analyse the flow instability, we consider a scaled form of Γ (1) given by (3.4), with
the following non-zero entries:

Γ
(1)

132 = Γ
(1)

312 = −Γ
(1)

123 = −Γ
(1)

213 = 1. (3.8)

The growth rate resulting from (2.9), again with the inclusion of the dissipative term for
illustrative purposes, is then given by

S = ±KX

(
K2

X − K2
H

K2
H + K2

X

)1/2

− Re−1
(

K2
H + K2

X

)
. (3.9)

Note that there is instability provided that K2
X > K2

H and the wavenumbers are sufficiently
small that dissipative effects can be ignored.

We have also considered the nonlinear theory for these parameters and verified, as
expected, that there is good agreement with the linear theory, provided that the imposed
fields and flows are sufficiently small. This point is illustrated in figure 2, which shows the
non-zero components of the e.m.f. E , now calculated via the nonlinear prescription (2.26),
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10–2 10–1 100
10–3

10–2

–ε
x

–ε
y

–ε
z

10–1
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10–2 10–1 100
10–4

10–3

10–2

10–2 10–1 100
10–4

10–3

10–2

b̄x b̄y b̄z

(a) (b) (c)

Figure 2. The nonlinear e.m.f.s for different orientations of the mean field (along (a) x̂, (b) ŷ, (c) ẑ) for
the nonlinear perturbations for forcing F1, with Re = Rm = 12. The dashed straight line shows the linear
prediction.

for various orientations and strengths of the imposed mean field b̄. The figure shows that
the e.m.f. depends linearly on b̄ until |b̄| reaches a value of O(Rm−1).

To explore a less symmetrical situation than that provided by the forcing F 1, with the
aim of coupling the mean field equations (2.9) and (2.10), we now consider the forcing F 2
with Re = 1 and Rm = 12. Representative two-dimensional slices of the flow and field of
the basic state are shown in figure 3. For this case, the mean field tensors take the form:

α(1) =
⎛
⎝−0.31 0 0.339

0 0.418 0
0.71 0 −0.403

⎞
⎠ , α(2) =

⎛
⎝ 0 −0.083 0

0.0208 0 0.187
0 0.074 0

⎞
⎠ , (3.10a,b)

Γ
(1)
ij1 =

⎛
⎝ 0 −0.20 0

−0.20 0 −0.27
0 −0.27 0

⎞
⎠ , Γ

(2)
ij1 =

⎛
⎝2.27 0 1.64

0 3.41 0
1.64 0 2.84

⎞
⎠ , (3.11a,b)

Γ
(1)
ij2 =

⎛
⎝−0.124 0 0.024

0 −0.190 0
0.024 0 0.188

⎞
⎠ , Γ

(2)
ij2 =

⎛
⎝ 0 −0.128 0

−0.128 0 0.081
0 0.081 0

⎞
⎠ ,

(3.12a,b)

Γ
(1)
ij3 =

⎛
⎝ 0 0.614 0

0.614 0 0.254
0 0.254 0

⎞
⎠ , Γ

(2)
ij3 =

⎛
⎝−2.24 0 −0.738

0 −2.92 0
−0.738 0 −1.70

⎞
⎠ . (3.13a,b)

Equations (2.9) and (2.10) are now coupled, with all mean field tensors being non-zero. We
can investigate the linear stability of the basic state by seeking solutions to (2.9) and (2.10)
proportional to exp(i(K · X + ωT)). On eliminating the pressure, these take the form

ωūi = −Kj

(
δip − KiKp

K2

)(
Γ

(1)
pjl ūl + Γ

(2)
pjl b̄l

)
≡ Q(1)

il ūl + Q(2)
il b̄l, (3.14)

ωb̄i = εijpKj

(
α

(1)
pl b̄l + α

(2)
pl ūl

)
≡ R(1)

il b̄l + R(2)
il ūl. (3.15)
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(a) (b) (c)

(d ) (e) ( f )

Figure 3. Snapshots of slices of the basic state flow and field for forcing F 2 with Re = 1, Rm = 12. From left
to right: (a,b,c) Ux( y, z), Uy(x, z), Uz(x, y); (d,e, f ) Bx( y, z), By(x, z), Bz(x, y).

Thus, ω is an eigenvalue of the 6 × 6 real matrix[
Q(1) Q(2)

R(2) R(1)

]
. (3.16)

Since diffusion becomes negligible when |K | is sufficiently small, we see that in this
case there will be instability for any chosen K if there is a complex eigenvalue of the
above matrix. By contrast, if all the eigenvalues are real, then there is stability owing to
the effect of diffusion. Writing K = |K |(sin θ cos φ, sin θ sin φ, cos θ), we can find the
eigenvalues ω for each θ and φ. Figure 4(a) is a Mollweide projection of the largest value
of |Im(ω)|/|K | as a function of θ and φ, showing that there is instability for a wide range
of wavenumber directions. We can compare this figure with those that would arise by
considering the stability problem when retaining the α(1) and Γ (1) tensors in isolation,
as shown in figure 4(b,c). It is of interest to note that the full problem has a wider range
of instability than the union of the unstable regions for the matrices Q(1) and R(1), thus
showing that the cross terms (Q(2) and R(2)) can indeed lead to additional instabilities.

3.2. When the linear theory fails
The flows considered in § 3.1, with reasonably small values of Re and Rm, are fairly simple
in space and time, with well-defined values of the mean field tensors when nonlinear terms
are neglected. In this subsection, we again consider flows driven by the forcing F 1, but with
higher values of Re and Rm; specifically we consider the case of Re = Rm = 100. Figure 5
shows 〈U2〉 and 〈B2〉 vs time for the basic state; the flows and fields are now disordered, in
both space and time.
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0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

(b)(a) (c)

Figure 4. Mollweide (θ, φ) projections of the scaled growth rate (the largest value of |Im(ω)|/|K |), for the
system described by (3.14), (3.15); longitude is in the range −π < φ < π, latitude in the range 0 < θ < π (the
equator is θ = π/2): (a) growth rate for the full system, governed by the matrix (3.16); (b) growth rate for the
system in which only the α(1) effect operates (Q(1), Q(2), R(2) all zero); (c) growth rate for the system in which
only the Γ (1) effect operates (Q(2), R(1), R(2) all zero). In each plot, the maximum of the scaled growth rate
is normalised to unity; the numerical values of the maximum scaled growth rate are (a) 0.338, (b) 0.267 and
(c) 0.338.

0.8

0.6

0.4〈U 2〉
0.2

0
1.10 × 105 1.12 × 105 1.14 × 105 1.16 × 105 1.18 × 105 1.20 × 105

0.04

0.03

0.02

0.01

〈B2〉

0
1.10 × 105 1.12 × 105 1.14 × 105 1.16 × 105

Time

1.18 × 105 1.20 × 105

(a)

(b)

Figure 5. Plots of (a) 〈U2〉 and (b) 〈B2〉 vs time for forcing F 1 with Re = Rm = 100.

On imposing uniform fields and flows, and in stark contrast to the flows of § 3.1, we
find that the solutions to the linear equations (2.7) and (2.8) increase without bound.
This is demonstrated by figure 6, which shows the exponential growth, on average, of the
e.m.f.s and combined Reynolds and Maxwell stresses calculated from expressions (2.21)
and (2.22). As such, the linear theory can give no guide to the mean field coefficients.
We thus have to consider the full nonlinear MHD equations (2.23) and (2.24) – for which
perturbations are guaranteed to be bounded – and to see whether the average response
depends linearly on the imposed mean fields and flows when these are sufficiently small.
To provide some insight into the nature of the response of a complicated system to
an applied perturbation, we delay to § 5 the discussion of fully nonlinear perturbations
in mean field MHD, in order to consider an ostensibly much simpler problem, namely
the nature of the response to small symmetry-breaking perturbations of one-dimensional
maps.

4. Symmetry breaking in one-dimensional maps

In this section, we consider the nature of the response to small symmetry-breaking
perturbations of one-dimensional maps. In systems without sensitive dependence on initial
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Figure 6. Components of the mean e.m.f. (a–c) and mean total stress (d–i), calculated from the linear theory,
with forcing F 1 and Re = Rm = 100, after the imposition of a magnetic field of unit magnitude in the
y-direction.

conditions, the trajectories of the perturbed system will be close to those of the unperturbed
system, and it may therefore be expected that calculations of mean quantities can be
accomplished using the linear equations describing the effects of the perturbation. In a
chaotic system, on the other hand, excursions of the perturbed trajectories will become
large, and so the perturbations can no longer be described by linear equations. However,
when averages of quantities are taken over many iterations or large times, the relevant
property of the map is the invariant measure (described in detail below), which describes
the probability of finding the solution in a given region of phase space. We might hope that
this quantity will change only slightly for small perturbations, and so changes to average
quantities will scale linearly with the size of the perturbation. There are indeed some
systems with special properties for which this hope is realised, but for general systems the
required conditions do not hold and the response is not linear. We first give examples of
three maps giving both linear and nonlinear responses. Following this, we refer to earlier
work to explain how the different behaviours depend on the forms of the maps.

4.1. The invariant measure
The invariant measure (or probability density) μ(x) of a map f (x) is specified in the
following way. First, we need to know the effect of the map on intervals in the domain. For
every point x there is at least one pre-image x̃ such that f (x̃) = x. The number of pre-images
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Figure 7. The map f (x, a) (the cubic tent map, defined by (4.2)), for a = 3 (red) and a = 5 (green); the blue
line denotes the invariant measure μ(x) for a = 5.

depends on the map, but for a chaotic map there are at least two. An interval dx̃ at x̃ is
mapped into an interval dx = | f ′(x̃)| dx̃ at x. Thinking of μ(x) as a (relative) ‘density’ of
points in the domain, we can see that the points in the interval dx at x derive from the sum
of the quantities (μ(x̃i)/| f ′(x̃i)|) dx̃ over the pre-images x̃i. Since the measure or density is
invariant under the map, we have the following functional equation (the Frobenius–Perron
equation) determining μ(x), where the map is defined on the range −1 � x � 1:

μ(x) =
∑

i

μ(x̃i)

| f (x̃i)| and
∫ 1

−1
μ(x) dx = 1. (4.1a,b)

4.2. Maps with linear response (i): the ‘cubic tent map’
In general, μ(x) is very complicated and non-differentiable in nature; see, for example, the
plots of μ(x) for the logistic map in Gottwald, Wormell & Wouters (2016). However, there
are some special problems for which both μ and its dependence on the parameters of the
map can be calculated explicitly. As such an example, here we consider the one-parameter
family f (x, a) defined on −1 � x � 1 (see figure 7):

f (x, a) = −2 − 3x −1 � x � −1/3,

= 3x −1/3 � x � 0,

= ax 0 � x � 1/a,

= 1 + a − 2ax
a − 1

1/a � x � 1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

When a = 3 the map is antisymmetric, with the pre-images of x being x/3, (2 − x)/3 and
−(2 + x)/3. Since the gradients of f (x, a = 3) at each pre-image have modulus 3, (4.1a,b)
is solved by the constant value μ(x) = 1/2. Thus 〈x〉 ≡ ∫ 1

−1 xμ(x) dx = 0.
For a /= 3, the (anti-)symmetry of the map is broken, as shown in figure 7. There are

now two different (absolute) gradients of the map for positive x, and yet a third for x < 0,
and so μ is no longer constant. However, it turns out that μ is still piecewise constant, with
μ = μ+, x > 0; μ = μ−, x < 0. For each x, there are three pre-images x̃i: for x > 0, x̃1 <

0 and 0 < x̃2 < a−1 < x̃3 < 1, whereas for x < 0, x̃1,2 < 0 and x̃3 > a−1. The (moduli
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of the) gradients in x < 0, 0 < x < a−1, a−1 < x < 1 are 3, a, 2a/(a − 1), respectively.
The assumption of piecewise constancy then leads to the two equations

μ+ = μ−
3

+
(

a + 1
2a

)
μ+, μ− = 2μ−

3
+ a − 1

2a
μ+, (4.3a,b)

and hence

μ+ = 2a
5a − 3

, μ− = 3(a − 1)

5a − 3
. (4.4a,b)

Therefore,

〈x〉 = μ−
∫ 0

−1
x dx + μ+

∫ 1

0
x dx = 1

2
(μ+ − μ−) = 3 − a

2(5a − 3)
. (4.5)

Now suppose that a = 3 + δ, where δ 	 1; then, to leading order, μ+ ≈ (1 − δ/12)/2,
μ− ≈ (1 + δ/12)/2 and 〈x〉 ≈ −δ/24, confirming the linear response. This result can be
reproduced by means of a direct perturbation theory.

It should be noted that the perturbation investigated is not the most general. Were we to
change the map so that the two peaks were at different heights, then the invariant measure
would become non-differentiable, and the situation would be much like that for the cubic
logistic map discussed in § 4.4.

4.3. Maps with linear response (ii): the Lorenz map
In the example above, it was possible to compute the invariant measure μ explicitly; in
general, however, μ can only be estimated numerically. Here we give an example of a
chaotic map, where μ has to be calculated numerically, and for which the response to small
perturbations is indeed linear. The ultra-high resolution computations leading to the results
for this map and the following logistic map have been kindly provided by A.M. Rucklidge,
and are described in the Appendix.

The Lorenz map, defined by

g(x, μ0) = μ0 + sgn(x)
(
−1 + 1.5

√
|x|
)

, (4.6)

is chaotic and depends on the parameter μ0 in such a way that when μ0 = 0, the map
is odd and the symmetric chaotic attractor has zero mean. The map, which is shown in
figure 8(a), maps the interval [−1.9, 1.9] to itself. Having computed the average 〈x〉 for
varying μ0 according to the methods in the Appendix, we can see from figure 9(a) that 〈x〉
is proportional to μ0 down to μ0 = 10−6, below which 〈x〉 is indistinguishable from zero.
This linear dependence is in conformity with the results of Bahsoun & Galatolo (2024),
who showed that there is a linear response in a tent-like family of maps with a cusp at the
turning point.

4.4. A map with no linear response: the cubic logistic map
The cubic logistic map, which is shown in figure 8(b), is given by

h(x, μ0) = μ0 + 2.8x − x3. (4.7)

Once more, the term in μ0 breaks the anti-symmetry.
By comparison with the Lorenz map, the cubic logistic map has an entirely different

behaviour as μ0 is varied. For larger values of μ0, above about 2 × 10−6, 〈x〉 increases
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Figure 8. The maps (a) g(x, μ0) (the Lorenz map, defined by (4.6)) and (b) h(x, μ0) (the cubic logistic map,
defined by (4.7)) for μ0 = 0 (red) and μ0 > 0 (green).
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Figure 9. Average 〈x〉 as a function of μ0, averaged over 2000 initial conditions and 109 iterates: (a) Lorenz
map; (b,c) cubic logistic map for different ranges of μ0.

with μ0 (figure 9b). However, for smaller values of μ0, as shown in figure 9(c), 〈x〉 does
not even depend monotonically on μ0; it changes sign, and is significantly different from
zero for all μ0 down to 10−11. Certainly, there is no obvious linear dependence.

What are the properties of these maps that give rise to the different behaviours? Baladi
(2014) has given a general treatment of this question, building on earlier work of Ershov
(1993), who considered the invariant measure on tent maps not of ‘full height’. The
difference between the behaviours of the logistic and Lorenz maps can be principally
ascribed to the form of the invariant measure μ. For a linear response, μ has to be
sufficiently smooth (e.g. piecewise constant); this can occur when the map is sufficiently
mixing. If there are accumulations of discontinuities, for example due to the existence
of arbitrarily long-period stable periodic orbits, then there is no smooth response to a
small parameter perturbation. The tent map shown is stretching everywhere and has no
stable periodic orbits, and μ is piecewise constant. The Lorenz map is also stretching
everywhere, whereas the cubic logistic map, for which the gradient of the map is bounded,
has properties similar to the regular logistic map studied by Gottwald et al. (2016), for
which there is no linear response.
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Figure 10. Cumulative averages of the components of the mean e.m.f. (a–c) and mean total stress (d–i),
normalised by the mean field strength b = |b̄|, calculated from the nonlinear MHD equations, with forcing
F 1 and Re = Rm = 100, after the imposition of a mean magnetic field b̄ = 10−3ŷ.

5. Symmetry breaking in nonlinear MHD (ii): finite-amplitude perturbations

In this section, we return to the MHD problem, and in particular to the case discussed
in § 3.2 for which the linear theory fails. We thus consider the response of the MHD
system after the imposition of a dynamical magnetic field, and to see whether this
response is linear when the field is sufficiently weak. Specifically, we solve (2.23) and
(2.24), in concert with (2.1) and (2.2), after the imposition of uniform fields and flows.
As an example, figure 10 shows the cumulative averages of the components of the
mean e.m.f. and mean total stress calculated from expressions (2.25) and (2.26), after
the imposition of a mean magnetic field b̄ = 10−3ŷ with no imposed mean flow. It
should be noted that the mean e.m.f. and mean stress fluctuate rapidly in time, with
root-mean-squared values determined by fast (turbulent) processes. However, as can be
seen from the figure, determining a meaningful temporal average requires integration over
many thousands of Ohmic (or viscous) diffusion times. Indeed, for quantities such as
Ez, for which the cumulative average is clearly small, convergence is still elusive. It is
clearly necessary to outline a procedure that enables us to extract the mean values from
data such as exhibited in figure 10. We first identify a time at which the most exuberant
transients have decayed, t∗, say, and then average over many Ohmic decay times; over
this time interval, denoted by T , say, we calculate the mean and standard deviation. It
should though be noted that an unambiguous identification of t∗ is not straightforward,
since, as can be seen from figure 10, the different components of the mean field tensors
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Figure 11. Components of the mean e.m.f. (a–c) and mean total stress (d–i), normalised by the mean field
strength b = |b̄|, vs b; the imposed field is in the y-direction. The circles denote the mean values, obtained by
averaging over the interval T ; the error bars are ±1 standard deviation.

converge at different rates. It can be seen that for the particular case of an imposed mean
field b̄ = 10−3ŷ, the cumulative average for Ey has settled down by t = 1.5 × 105, and so
we may adopt this time as a not unreasonable choice for t∗; with this choice, we then
average from t = t∗ = 1.5 × 105 to t = t∗ + T = 2.2 × 105, corresponding to O(700)

Ohmic decay times.
In order to detect whether the response is linear in the imposed field, it is necessary to

conduct numerical simulations for a range of imposed field strengths |b̄|. Figure 11 shows
the mean and standard deviation for all components of the e.m.f. and stress (normalised
by |b̄|) as functions of |b̄| (as in figure 10, the imposed field is in the y-direction, with no
imposed flow; t∗ and T are identified individually for each value of |b̄|). We note that the
dominant component of the e.m.f. is Ey (i.e. the component of E in the direction of b̄),
with Ey/|b̄| tending to a (non-zero) constant as |b̄| → 0 (i.e. a linear response). Although
there is some scatter in the values of Ex and Ez, their values are small, and not inconsistent
with being zero. Similar behaviour for imposed fields in the x- and z-directions (i.e. the
dominant component of the e.m.f. in the direction of the imposed field) would imply that
α(1) is diagonal. The picture for the components of the total stress is, unfortunately, less
clear. The three diagonal entries of Rij have relatively small error bars; R11 is consistent
with a linear response, whereas R22 and R33 are not. The values of the off-diagonal
components are small, with larger error bars, and are not inconsistent with being zero.
It is by no means obvious why the components of the stress are less well-behaved than
those of the e.m.f. However, calculation of the stress Rij, given by (2.25), reveals that
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Figure 12. (a,c,e) Component of the e.m.f. in the direction of the imposed field vs the strength of the field
b = |b̄|. (b,d, f ) Same quantity divided by b. In (a,b), the imposed field is in the x-direction, in (c,d) the
y-direction and in (e, f ) the z-direction; there is no imposed mean flow. The dotted line has unit slope,
corresponding to a linear response.

the linear and nonlinear terms are almost offsetting, with the residual stress being much
smaller than its constituent parts; therefore, the less robust behaviour of the stress is not
altogether unsurprising.

Since the clearest linear response is in the e.m.f., it is of interest, as noted above, to
vary the direction of the imposed magnetic field. Figure 12 shows the components of the
e.m.f. in the direction of the imposed field for a range of field strengths |b̄| and for imposed
fields in the x-, y- and z-directions. For a range of sufficiently small |b̄|, there is indeed a
linear response in all cases. This allows us to calculate the diagonal elements of α(1);
these can be read off from the right-hand column in figure 12, which shows the values of
the e.m.f.s normalised by |b̄|, as α

(1)
11 ≈ −0.14 and α

(1)
22 ≈ α

(1)
33 ≈ −0.1. The fact that the

diagonal elements of α(1) are not all equal reflects a slight lack of isotropy in the basic
state.

The discussion above has considered the mean field response following imposition of
a uniform magnetic field. In theory, assuming a linear response, this would allow us to
determine α(1) and Γ (2); in practise, the lack of a clear linear response in the stress makes
the determination of Γ (2) problematic. Similarly, imposition of a uniform flow in theory
allows the determination of α(2) and Γ (1). The values of the e.m.f.s are found to be small,
suggesting that, as in the case with lower Reynolds numbers (see § 3.1), α(2) is not a
significant player. Again, as for imposed fields, it is difficult to establish a linear response
of the stress to imposed flows; thus, the determination of Γ (1) is similarly problematic.
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6. Conclusions and discussion

Our chief goal in this paper has been to explore the concrete consequences of the formalism
introduced by Courvoisier et al. (2010a) to describe long-wavelength instabilities of
self-consistent three-dimensional MHD states. In § 2.1, we recapitulate the formal
development of the mean field equations. Only in special cases is it possible to obtain
explicit expressions for the mean field tensors α(1), α(2), Γ (1) and Γ (2). One such example,
the case of short-sudden turbulence, is described in § 2.2. The formalism of § 2.1 is
designed to capture the mean field tensors on the basis of linearised equations for the
fluctuating fields and flows, following the classical approach of mean field MHD. This
works well for sufficiently smooth basic states. In § 3.1 we demonstrate the linear response
for two such cases, and show how the results can be used to predict long-wavelength
instability. However, the approach can fail for more disordered flows and fields, for
which the linearised perturbations can grow exponentially. In this case, to ensure that the
fluctuations are bounded, we restore the nonlinear terms in the perturbation equations.
It is then of interest to discover the nature of the mean response to small imposed
mean fields and flows and to ascertain whether this is indeed linear. The question
of a possible linear mean response to perturbations of a nonlinear system has been
widely studied in a number of contexts. To illustrate these ideas in a relatively simple
system, we consider in § 4 several one-dimensional maps, of varying character, and
show that in some cases there is a well-defined mean linear response, whereas in others
there is not. In § 5, we return to the MHD problem and consider a more complicated
basic state, in which nonlinear perturbations have to be included to ensure a bounded
response.

It is of interest to note that the simple maps for which the response of averages is a linear
function of small perturbations have the property that they are stretching everywhere. On
the other hand, for the MHD problem, it is the fields and flows considered here with
minimal or no chaos, for which linear theory works well. In this case, we may readily
extract the mean field tensors and, consequently, determine the stability of the basic
state to long-wavelength perturbations. It may be verified from the full equations that
for small imposed fields and flows the mean response in this case is linear, as might
be expected. For the models with disordered fields and flows, on the other hand, the
linearised perturbation theory fails and the averages grow without limit. Restoration of
the nonlinearities guarantees that the perturbations remain bounded and so averages can,
in principle, be determined. The difficulty here lies in extracting the small signal (the
mean) from the large fluctuations, as previously discussed by Cattaneo & Hughes (2006)
and Hughes & Cattaneo (2008). All this makes it difficult to determine unambiguously the
precise nature of the response.
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Appendix

Here we describe the nature of the computations needed for an accurate determination of
averages for the one-dimensional maps discussed in § 4.

For the Lorenz map, we took 2000 initial conditions for x, spread across the
interval [0.01, 0.99], with values of μ0 in the range 10−12 to 10−2, and computed 109

iterates of each map, for each initial condition and for each choice of μ0. For a given value
of μ0 and each initial condition, averages were taken over the entire run. The resulting
distribution of 2000 values is well represented by a Gaussian, so we used the mean and
standard deviation of the distribution to estimate 〈x〉 and its error. In this case, the error is
typically 4 × 10−7. The cubic logistic map was treated in the same way; in that case the
error is 10−6.

These calculations are delicate, and require the use of high-precision arithmetic in
order to compute the map reliably, particularly in the case of the cubic logistic map. In
any finite-precision numerical computation of this type, maps are not strictly chaotic but
rather have long-period periodic orbits, owing to the limited number of binary digits in
the representation of real numbers. A 52-bit mantissa in double precision should mean of
the order of 1015 different numbers being available. However, in the case of maps with
quadratic maxima, for example the cubic logistic map, the number of different trajectories
is significantly reduced because near the maximum, the function (in double precision)
looks like a series of broad steps up and down, and so the range of possible outcomes
for trajectories that approach the maximum is also much reduced. For example, in double
precision arithmetic, the behaviour of the cubic logistic map with μ0 = 0 is dominated
by a periodic orbit with period on the order of 3 × 107. This orbit is symmetric and has
〈x〉 = 0. The majority of initial conditions converge to this orbit after a transient of up to
108 iterates. However, a small fraction of initial conditions (about 0.4 %) converge to other
periodic orbits, some of which have non-zero mean. This clearly means that an average of
109 iterates of the map, computed in double precision, is not sampling the chaotic attractor.
There are similar issues with non-zero μ0. As a result, double precision calculations
cannot be relied on here, and we carried out our computations in extended precision
arithmetic (using the GNU Multiple Precision Arithmetic Library GMP), specifying a
256-bit mantissa. The results we present in figure 9 are not sensitive to the choice of
mantissa length, provided that it is sufficiently large.
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