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SEPARABILITY IN AN ALGEBRA WITH
SEMI-LINEAR HOMOMORPHISM

DAVID J. WINTER

The purpose of this paper is to outline a simple theory of separability for a
non-associative algebra 4 with semi-linear homomorphism ¢. Taking 4 to be
a finite dimensional abelian Lie p-algebra L and ¢ to be the pth power opera-
tion in L, this separability is the separability of [2]. Taking 4 to be an algebraic
field extension K over k and ¢ to be the Frobenius (pth power) homomorphism
in K, this separability is the usual separability of K over k. The theory also
applies to any unital non-associative algebra 4 over a field # and any unital
homomorphism ¢ from 4 to 4 such that o(ke) C ke, e being the identity
element of 4.

Throughout the paper, 4 is a non-associative algebra over a field k, with or
without identity, and ¢ is a semi-linear homomorphism of non-associative
rings from 4 to 4; that is,

clx+y) =oak) + o)
a(xy) = a(x)o(y)
olax) = d(a)a(x)
forx,y € A, a € k, ¢ being a suitable homomorphism of fields from & to k. In
parts of the paper, we assume that 4 and ¢ are unital; that is, 4 has an identity
e and o(e) = e. Then a unital subalgebra of A is a subring B of A such that
e € B.

Definition 1. A o-subspace (o-subalgebra) of A is a subspace (subalgebra)
V of A such that (V) C V.

Definition 2. For x € A, (x) is the o-subspace of 4 generated by x; that is,
the k-span of x, o(x), a2(x), ... .

Definition 3. An element x of A is o-algebraic (o-separable; o-nilpotent) if
(x) is finite dimensional ({x) = (¢ (x)); ¢"(x) = 0 for some positive integer 7).
If A and ¢ are unital, an element x of 4 is o-radical if ¢"(x) € ke for some
positive integer 7.

We emphasize that all that is said in this paper about o-radical objects is
understood to apply only in the case where 4 and ¢ are unital.

Definition 4. The set of o-algebraic (o-separable; ¢-nilpotent; o-radical)
elements of a o-subspace V of 4 is denoted Vaig(Viep; Vai; Viaa). If
V= Veep(V = Via), V is separable (radical).
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One sees readily that if V is a o-subspace (s-subalgebra) of 4, then V,,,
Vanp and V5aq are o-subspaces (o-subalgebras) of A. In order to enable us to
prove that Vg, is also a g-subspace (o-subalgebra) of 4, we now impose for
the remainder of the paper the further condition on 4 that 4 be e-algebraic.

Definition 5. A g-subspace V is o-regular if ¢|V is injective and ¢ maps each
basis of 1" to a basis for V.

ProrosiTiON 1. Let V be a finite dimensional o-subspace of V. Then the
following conditions are equivalent.
(1) V is o-regular;

(2) if x4, . .., xparelinearly independent elements of V, then o (x1), . . ., o (xy)

are linearly independent,

B) if X1y ..., Xp span V, then o(x1), ..., a(xy) span V;

4) a(V) spans V.

Proof. (1) implies (2) since we can expand xi,...,x, to a finite basis
X1, ...,%, (@ = m). And (2) implies (3) since we can contract xy, . . . , %, to
a minimal spanning set xy, . . ., %, (# = m), a basis, which then is mapped to
a basis o (x1), ..., o(x,) by (2). Clearly, (3) implies (4). And (4) implies (1);
for, let x4, . . ., x, be a basis for V. Since ¢ (V) spans V and x4, . . ., x, span V,
a(x1),...,0(x,) span V. Thus, o(x1), ..., o(x,) is a basis for V.

COROLLARY. An element x of A is a-separable if and only if (x) is o-regular.

Proof. A spanning set for (x) is x, o(x), ..., ¢"(x) for some n. Then a
spanning set for (o(x)) is easily seen to be o(x), o2(x), ..., c"(x). Now
(x) = {o(x)) if and only if (x) is e-regular by (3) of the above proposition.

ProrosiTION 2. A o-subspace V of A is a-regular if and only if every finite
dimensional o-subspace of V is a-regular.

Proof. Let V be o-regular and let W be a finite dimensional ¢-subspace of V.
Let xi, ..., x, be linearly independent elements of W and let S be a basis for 7/
containing ¥y, ..., X,. Then o(S) is a basis for V and o(x1), ..., o(x,) are
distinct elements of ¢(S). Thus, o(x1),..., a(x,) are linearly independent
and W is o-regular. Suppose conversely that every finite dimensional o-sub-
space of 1 is o-regular. Let S be a basis for V and let x4, ..., %, € .S. Then
Xy .o, %, € W where W = > i{x;). Since W is a finite dimensional
o-subspace, W is o-regular and o(xy),...,o(x,) are linearly independent.
Thus, ¢ is injective and ¢ (S) is linearly independent. Next, let x € V. Then
x € W where W = (x). Thus, x is in the span of ¢(W), hence in the span of
o (V). Since S spans V, it follows that x is in the span of ¢(S). Thus, ¢(S)
spans V and V is o-regular.

COROLLARY. Let V be a o-regular o-subspace of V. Then any o-subspace W
of V is a-regular.

ProrosiTION 3. Let V be the sum of a family Vy of o-regular o-subspaces of A.
Then V is o-regular.
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Proof. Let W be a finite dimensional s-subspace of V. Then W C Y.\, (W,)
for suitable finite dimensional o-subspaces Wiy, ..., W, each of which is
contained in one of the Vy. By the above corollary the W, are o-regular. Thus,
the span of ¢ (X1 W;) = Yicie(W,) is 2o W, and X5 W; is e-regular.
Thus, W is g-regular. Now V is o-regular by the above proposition.

In the following discussion, we use the notation V;V, for the span of
{xylx € V1,9 € Vu} for V4, Vo C A.

ProrositioN 4. Let Vi, Vs be a-regular a-subspaces of A. Then V1V is a
o-regular a-subspace of A.

Proof. Obviously, V1V, is a o-subspace. Let W be a finite dimensional
o-subspace of V1V, Then W C W,W, for suitable finite dimensional o-sub-
spaces W;of V; (4 = 1, 2). (Any finite subset of a s-subspace V is contained
in a finite dimensional o-subspace of .) Now the span of ¢ (WW,W,) contains
the span of ¢(W;)a (W) and the latter is W1 W,. Since W1W, is finite dimen-
sional it is therefore g-regular. Thus, W is o-regular. It follows that 1717 is
o-regular, by Proposition 2.

THEOREM 1. Let V be a a-subspace (o-subalgebra) of A. Then V is o-separable
if and only if V is o-regular. Moreover, Ve 1s a a-subspace (a-subalgebra) of A.

Proof. Suppose that V is g-regular. Then x € V implies that (x) is o-regular
and hence that x is o-separable. Thus, V is o-separable. Next, suppose that
% € Vigep- Then (x) is g-regular, so that (x) C Vg by the above observation.
Thus,

Veep = Z <x>

2€Vgep

and Ve is a o-regular o-subspace of 4, by Proposition 3. In particular, if V is
o-separable, then V is g-regular. Suppose finally that V is a ¢-subalgebra of 4.
Then Ve Vsep is o-regular, by Proposition 4. Thus, Ve Vep C Viep, and Viep
is a o-subalgebra of 4.

PROPOSITION 5. For x € A, o"(x) is separable for some n.

Proof. Since (x) is finite dimensional, there exists a positive integer # such
that

x) D (o)) D ... D (")) = (") =....
For such an %, ¢"(x) is o-separable.
Definition 6. Let V, W be unital o-subalgebras of 4. Then V is o-separable
if V is the W-span of o(V); that is,
V= {Z?=la(vi)wi]m g 117)1y ey Un € Vywly e ooy Wm € W}.

We now give necessary and sufficient conditions for a finite dimensional
unital o-algebra A to decompose as A = Agp @i Araa (internal tensor
product). The counterpart for fields is [1, p. 50].
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THEOREM 2. Let A and o be unital and suppose that A is finite dimensional
and o injective. Then A = Agep Qi Araa (tnternal tensor product) if and only if
A /A aq is o-separable.

Proof. Suppose first that 4 = Agep @i Araa. Then since the k-span of o(4)
contains A gep, the A qq-span of o(4) contains Agep @i Araa = A. (Note here
that A.q D ke.) Thus, A/A . is o-separable. Suppose, conversely, that
A /A qq is o-separable. Let by, ..., b, span A over A4 Take n such that
o"(b1), ..., 0" (by) are g-separable. Now by, ..., b, span A over A .q, so that
" (b1), ..., 0"(by) span A over Ay by the o-separability of 4 /A4 4. Thus,
A C AgepArag- It remains to show that Age and Ar.q are linearly disjoint
over k. For this, let ay, . . ., @, be linearly independent elements of A4 and
suppose that Y. iia.c; = 0 where the ¢; are in A.q. Choose n such that
0" (c;) € ke for all 1. Then > _16"(c;)d"(a;) = 0. By the linear independence
over k of the ¢"(a;), 6"(c;) = 0 for all 7. But ¢ is injective, so that the ¢; are
all 0. Thus, Ay and A4 .4 are linearly disjoint over 2 and 4 = Agep @i 4 raq-

We conclude with a decomposition theorem which is a form of Fitting's
lemma. It’'s counterpart for Lie p-algebras yields the decomposition of a linear
transformation into its semi-simple and nilpotent parts (cf. [2, p. 120]).

THEOREM 3. Let A be finite dimensional and & surjective. Then
A = Agep @ Annyp (tnternal direct sum).

Proof. For any n, ¢"(4) and

Kern ¢" = {x|o"(x) = 0}
are k-subspaces of 4, since & = ¢"(k). Thus,
c(4) Do2a) D ...
and
Kerne C Kerno?. ..

are chains of subspaces of 4. Since 4 is finite dimensional, ¢"(4) = ¢"t1(4)
and Kern ¢® = Kern ¢"t! for some #. Now ¢"4 = Agep, by Theorem 1, and
Kern 0” = Apyp. Let x € A and choose y € Agep such that o”(x) = o*(y).
This is possible since

Asep = ‘Tn(A) = UZ”(A) = ‘Tn(Asep)-
Nowx =9y 4+ (x — y) withy € Agep. And x — vy € Apyyp since

o*(x —y) = o"(x) — a"(y) = 0.

Since A gep M Apnpp = {0}, it follows that 4 = Agep D Anirp.
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