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Abstract
A superelliptic curve over a discrete valuation ring O of residual characteristic p is a curve given by an equation
C : yn = f (x), with Disc( f ) �= 0. The purpose of this article is to describe the Galois representation attached to such
a curve under the hypothesis that f (x) has all its roots in the fraction field of O and that p � n. Our results are inspired
on the algorithm given in Bouw and WewersGlasg (Math. J. 59(1) (2017), 77–108.) but our description is given in
terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary
Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.).

1. Introduction

Galois representations play a crucial role in different aspects of modern number theory. The main source
of Galois representations is the geometric ones, namely the ones obtained by looking at the étale coho-
mology of varieties. Among varieties, the case of curves is the easiest one. If C is a plane curve defined
over a global field K , the local L-function of C at a prime p of good reduction (that we denote by Lp(t))
can be computed counting the number of points of C over different finite extensions of the residue finite
field Fp. Such a counting can be done quite efficiently using, e.g., the method described in [15].

Let � be a prime not dividing the norm of p and let ρC,� denote the �-adic representation attached
to the curve C obtained by considering the action of the Galois group Gal(K/K) on the Tate module
of the Jacobian Jac(C ). By the Néron–Ogg–Shafarevich criterion, the image of the inertia subgroup is
trivial, so the restriction of ρC,� to a decomposition group at p is completely determined by the action
of a Frobenius element. Its image corresponds to a semisimple matrix whose characteristic polyno-
mial matches the local L-factor Lp(t), which can be computed sing the aforementioned algorithm of
Sutherland.

However, when C has bad reduction at p, understanding the image of the whole decomposition group
at p or of its inertia subgroup is not so easy. Since the action of the decomposition group D(p) on C/K
matches its action on C/Kp (the completion of K at the prime ideal p), it is enough to study the case
when K is a local field of characteristic p.

Among the bad reduction cases, the so called “semistable” case is the easiest to study, since the image
of the inertia subgroup consists of many copies of the two-dimensional Steinberg representation (see
Definition 5.1), corresponding to the toric part of the abelian variety Jac(C ). The number of copies can
be read from the component graph attached to a semistable model of C, as explained in [4] (see also
Theorem 5.4). The nonsemistable case is more subtle, and it is hard to provide an algorithm to explicitly
describe the image of the decomposition group at p.

During the last years, a somewhat combinatorial approach was proposed via the use of “clusters” to
study minimal models and Galois representations of hyperelliptic curves (see the fundamental article
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[8] and also [6] and [9]). The main purpose of this article is extend their combinatorial algorithm to the
superelliptic case.

Let O be a complete discrete valuation ring, let π be a local uniformizer, let K denote its field of
fractions, and let k denote its residue field of characteristic p. Suppose that the n-th roots of unity belong
to the field K .

Definition. An n-cyclic or superelliptic curve is a nonsingular curve given by an equation of the form

C : yn = f (x), (1.1)

where f (x) ∈ O [x] has no repeated roots (equivalently Disc(f (x)) �= 0).

Remark. Sometimes in the literature (like in [2]) an equation of the form (1.1) over a field not containing
the n-th roots of unity is still called superelliptic.

Our main result is a description of the image under ρC,� of the inertia subgroup (when � �= p) using
the weighted cluster description introduced in [8], when f (x) has all its roots in K and p � n (which is not a
semistable situation, but closed to it). Over an abelian extension K2 of K (K2 can be taken to be K( n

√
π )),

the curve admits a stable model. Such a model consists of the union of different connected components
Y (i)

t (the notation and an algorithm to compute them are given in Sections 2 and 4). Let ϒ be the dual
graph of the components {Y (i)

t } (see Section 5). Then there is an isomorphism of Gal(K/K2)-modules

V�(Jac(C )) �
⊕

V�(Y (i)
t ) ⊕

⊕
i

St(2) ⊗ χi, (1.2)

where the second sum runs over generators for the first cohomology group of ϒ , St(2) is the Steinberg
2-dimensional representation (see Definition 5.1) and the χi are explicit unramified characters (see
Proposition 5.2).

The description of the irreducible components {Y (i)
t } in the article [4] is given in terms of ordered

triples (up to an equivalence relation) of the ramified points of the cover map C → P1 (sending
(x, y) → y). Our first contribution is to compute the stable model in terms of the so called clusters, a
more combinatorial description given in [8] for hyperelliptic curves. For that purpose, recall how a sta-
ble model of C is obtained: start with a stable model X of a marked projective line, and compute its
normalization Y under the natural projection map C → P1. The cluster picture is a powerful combi-
natorial way to compute the stable model X, as explained in [8] (which clearly is independent of the
cover and its degree). While recalling the cluster picture construction, we show explicitly how to go
from clusters to the triples considered in [4] and vice versa.

The new phenomena appearing in the nonhyperelliptic case (i.e. when n> 2) is that the normaliza-
tion of projective lines might not be irreducible. This very interesting phenomena will be explained
in Section 4. Unlike the hyperelliptic case, the irreducible components of the normalization might have
positive genus (hence each of them contribute to the first summand of (1.2)). The genus of an irreducible
component however can be read from the cluster picture (as described in Proposition 4.3).

Another new problem that arises when the normalization has reducible components consists on
describing how the irreducible components intersect between themselves and the action of the Galois
group Gal(K/K) on the intersection points. We provide an answer to both problems, via a nice combi-
natorial formula in Section 4. Our description not only allows us to describe the component graph of the
special fiber of Y, but also to describe the Galois action on the intersection points (and on the connected
components graph), providing also an explicit description of the characters appearing in the second part
of (1.2).

The aforementioned tools provide an explicit description of V�(Jac(C )) as Gal(K/K2)-module. Its
structure as Gal(K/K)-module is a little more subtle. It depends not only on the component graph, but
also on the action of the Galois group Gal(K2/K) on each component Y (i)

t . In particular, one needs to
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incorporate to the decomposition (1.2) twists by ramified characters (corresponding to subextensions
of K2/K). Such an extra information can be also encoded in a combinatorial object using the so called
weighted clusters (as described in Section 6.1). In Propositions 6.6 and 6.8, we explain how to get a
decomposition similar to (1.2) over K .

The article contains different examples aimed to show how the method works and provide a better
understanding of the definitions and results. Special emphasis is given to Example 2, which serves as
our testing object through different sections.

Notations. Let us introduce the main notations used through the article:

• K denotes a local field, O denotes its ring of integers, π denotes a local uniformizer of O, k
denotes its residue field, and v(x) denotes the normalized valuation of K (so that v(π ) = 1).

• K2 = K[ n
√
π ], an abelian extension of K.

• The symbol R denotes the set of roots of the polynomial f(x).
• S denotes the set of ramified point of our cover C → P1, namely it equals R ∪ {∞} if n � deg(f (x))

and R otherwise. The letter D denotes the divisor supported at S, i.e. D =∑
r∈S [r].

• T denotes the set of triples of distinct elements of S.
• (X, D) denotes the stable model of the marked projective line (P1, D). The letter Y denotes the

normalization of X in the function field K(C ).
• X denotes the special fiber of X and Y

(�)

t denotes the components of the special fibers of Y.

Two strong assumptions of this article are that R ⊂ K and that p � n. Since we are mostly concerned
with the image of inertia (and p � n), we also assume that ζn ∈ K. In the first sections, we further assume
that f (x) is a monic polynomial, in particular f (x) =∏

r∈R (x − r). The last section explains how to
deduce the general case from the monic one (corresponding to a suitable twist).

The recent article [7] presents a general method to compute the Galois representation V�(Jac(C ))
attached to a curve C/L, without the assumption that f (x) factors linearly over L. The main idea of the
method is the following: let K be the field obtained by adding to L the n-th roots of unity together with
the roots R of f (x), and let K2 = K( n

√
πK), where πK denotes a local uniformizer of K . As explained

before, the Galois representation ρC,� attached to Jac(C ) restricted to Gal(K/K2) decomposes like

ρC,�|Gal(L/K2) �
⊕

j

ηj ⊕
⊕

i

St(2) ⊗ χi,

where the characters ηj, χi are unramified characters. Since the characters χi, ηj are unramified ones,
they can be extended to unramified characters χ̃i, η̃j of Gal(K/L). By Frobenius reciprocity, ρC,� is a
subrepresentation of (compare with [7, Theorem 1])

IndGal(K/L)
Gal(K/K2)

ρC,�|Gal(K/K2) �
(⊕

i

η̃j ⊕
⊕

i

St(2) ⊗ χ̃i

)
⊗ IndGal(K/L)

Gal(K/K2)
1.

The representation IndGal(K/L)
Gal(K/K2)

1 is an Artin representation, whose irreducible components can easily be
computed. Which irreducible parts on the right hand side appear in the representation ρC,� can be com-
puted via counting the number of points of the semistable model of C (that will be described in Section 4)
at all unramified subextensions of K2, as explained in [7, Theorem 1, ii)]. In particular, a combination of
our method and their algorithm provides a complete description of the Galois representation attached
to an hyperelliptic curve C over a local field K when p � n.

The article is organized as follows: The first section recalls the description of the stable model (X, D)
of the marked projective line P1 following the description given in [4]. The second section explains (and
proves) its relation with the cluster picture of [8]. In particular, we describe explicitly a map from (X, D)
to proper clusters and prove that it gives a bijection between such sets. A crucial result is Theorem 3.7,

https://doi.org/10.1017/S0017089522000386 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000386


Glasgow Mathematical Journal 359

which states that under such a map, two components of X intersect if and only if the respective clusters
are parent/child to each other (a result proven in [8]).

Section 4 is devoted to describe the semistable model Y over K2. In particular, Proposition 4.1 gives
an explicit formula for the number of components over each line of X in terms of information that
can easily be read from the cluster picture. Proposition 4.3 gives a formula for the genus of each such
irreducible component.

As explained before, equation (1.2) implies that our Galois representation is completely determined
by the stable model and its graph of components (as expressed more concretely in equation (5.1). In
Section 5 (Theorem 5.4), we give a formula for the number of terms in the second sum of (1.2) in terms
of the cluster picture and explain how to compute the unramified characters χi appearing in (1.2).

In Section 6, we explain how to compute the Galois representation over our base field K . For that
purpose, one first needs to understand how a Galois representation attached to a superelliptic curve
varies under “twisting”. More concretely, given two superelliptic curves

C : yn = f (x),

and

C ′ : yn = c · f (x),

how are the Galois representations of C and C ′ related?
Answering this question in particular allows to consider general polynomials f (x) (not only monic

ones as assumed before), relaxing our starting hypothesis. Although such a problem is well known to
experts, we did not find a precise reference to a solution, so we studied it in Section 6.3. For each divisor
d of n, there is a contribution to V�(Jac(C )) from the curves

Cn/d : yn/d = f (x).

In particular, our module splits as a sum of what might be called the d-new contributions, and it is enough
to understand the effect of twisting on them. The main result of Section 6.3 is Proposition 6.6, where the
effect of a twist on the d-new part is explained and proved. The key point is to consider V�(Jac(C ))d-new

as a module not over Z� but over Z�[ζd].
The Z[Gal(K/K)]-module V�(Jac(C )) admits then a decomposition similar to that of (2.1), after

adding some ramified twists. The information regarding the new extra twists can also be encoded into the
cluster picture, using what is called a weighted cluster. The purpose of Section 6 is to describe weighted
clusters and show how to read the new characters from them (as stated in Proposition 6.8).

2. The minimal stable model (X, D)

Assume that the curve C has positive genus (as otherwise the Galois representation is trivial). The
method presented in [4] to compute the stable minimal model of C is the following: consider the cover
p : C → P1 obtained by sending (x, y) → x. Since K contains the n-th roots of unity, this is a cyclic Galois
cover of degree n ramified precisely at the points

D =
∑
r∈R

[r] +
{

[∞] if n � deg(f (x)),

0 otherwise.

Consider the marked curve (P1, D) and compute its minimal semistable model (X, D). A semistable
model of C is then obtained as the normalization Y of X in the function field of C, i.e. Y fits in the
following diagram
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The stable model (X, D) is obtained by gluing open affine lines blown up at a point in the special fiber
of P1 (as explained in [8, Section 3],[4] and also [13]). Recall the algorithm given in [4] to compute
(X, D). Let

S = Supp(D) = R ∪
{

∞ if n � deg(f (x)),

∅ otherwise.
(2.1)

Remark 2.1. The assumption that C has positive genus implies in particular that S has at least 3 ele-
ments. Otherwise, either f(x) has degree 1 or it has has degree 2 and n = 2, but in both such cases the
curve C has genus 0.

Let T denotes the set of triples of distinct elements of S. The coordinate function of t = (a, b, c) ∈ T
is defined as

ϕt(x) = (b − c)

(b − a)

(x − a)

(x − c)
. (2.2)

It corresponds to the Möbius transformation sending (a, b, c) to (0, 1, ∞). Define an equivalence relation
on T by declaring that two elements t1, t2 ∈ T are equivalent (denoted t1 ∼ t2) if the map φt2 ◦ φ−1

t1
extends

to an automorphism of P1
O; equivalently, the map φt2 ◦ φ−1

t1
can be represented by a matrix in PGL2(O ).

Lemma 2.2. The equivalence relation satisfies the following properties:

(1) The permutation of a triple (a, b, c) is equivalent to (a, b, c).
(2) Any triple is equivalent to one with v(b − c) = v(a − c) ≤ v(a − b).

Proof. The first assertion follows from a straightforward matrix computation. For the second
one, note that the map from triples of elements to triples of rational numbers given by (a, b, c) →
(v(b − c), v(a − c), v(a − b)) is S3 invariant, hence we can assume v(b − c) ≤ v(a − c) ≤ v(a − b). But
a − b = (a − c) + (c − b) hence

v(a − b) ≥ min{v(a − c), v(b − c)} = v(b − c)

with equality if both values are different. Then the assumption v(b − c) ≤ v(a − c) ≤ v(b − c) implies
that v(a − c) = v(b − c).

Definition 2.3. An ordered triple is a triple (a, b, c) with v(a − c) = v(b − c) ≤ v(a − b).

If (a, b, c) is an ordered triple, define its radius to be μ= v(a − b).

Proposition 2.4. Let (a, b, c) be an ordered triple.

(1) If ∞ ∈ S then any ordered triple (a, b, c) is equivalent to the ordered triple (a, b, ∞).
(2) The radius μ depends only on the equivalent class of the triple.
(3) The ordered triple (a, b, c) is equivalent to the ordered triple (α, β, γ ), if and only if the

following two properties hold:

• they have the same invariant, i.e. μ= v(a − b) = v(α− β),
• a ≡ b ≡ α ≡ β (mod πμ).

Proof. By the equivalence relation definition, an ordered triple T1 = (a, b, ∞) is equivalent to a triple
T2 = (a, b, c) (with c �= ∞) if and only if λ2 ◦ λ−1

1 extends to an automorphism of P1
O, where λi is the
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Möbius transformation sending the triple Ti to the triple (0, 1, ∞). Such maps are explicitly given by

λ1(x) =
(

1 −a

0 b − a

)
·
(

x

1

)
, λ2(x) =

(
(b − c) −a(b − c)

(b − a) −c(b − a)

)
·
(

x

1

)
,

where
(

a b
c d

) · ( x
1 )= ax+b

cx+d
. Then, the Möbius matrix attached to the composition λ2 ◦ λ−1

1 equals

[λ2 ◦ λ−1
1 ] =

(
c −ab

1 c − a − b

)
.

The matrix has integral entries, and its determinant equals (a − c)(b − c), whose valuation is even (since
v(a − c) = v(b − c)) so it corresponds to an element in PGL2(O ). In particular, both triples are indeed
equivalent.

To prove equivalence of ordered triples (a, b, c), (α, β, γ ), since we can add ∞ to the set, it is enough
to restrict to the case (a, b, ∞) and (α, β, ∞). It is easy to check that the transformation sending one
triple to the other one is given by the matrix

M =
(

(a − b) (α − a)

0 (α− β)

)
.

For a multiple of M to lie in GL2(O ), it must happen that v(a − b) = v(α − β), hence the two triples have
the same radius, as stated. At last, under such assumption, the two triples are equivalent if and only if
v(a−α) ≥μ (the radius of the triples). Recall that μ= v(a − b), so a ≡ b(mod πμ) and the same holds
for α and β, as stated.

The semistable model X consists of one component (a projective line) for each equivalence class
of T .

Definition 2.5. A special point is either an element of S or a singular point where two components of
X intersect.

The special fiber X̄ of X is a tree of projective lines where each component contains at least 3
special points. For each t ∈ T , the map ϕt extends to a proper O-morphism ϕt : X → P1

O, whose reduction
(denoted ϕt) is a contraction morphism with contracts all but one component of X̄ to a closed point (see
[4, Proposition 4.2]). Furthermore, if r ∈ R then ϕt(r) = ϕt(r). Extend the valuation v on O by setting
v(∞) = −∞.

Remark 2.6. Given a cyclic curve C : yn = f (x), there are many transformations that preserve the model
(for example translation). The combinatory behind the computation of a stable model of P1 attached to
the roots of p(x) depends on the particular equation. However, the information obtained from it (number
of components, discriminant, etc) does not.

Example 1. Let p be an odd prime number congruent to 1 modulo 3 (so the 6-th roots of unity belong
to Qp). Let C/Qp be the superelliptic curve given by the equation

C : y6= x(x − p2)(x − p)(x − p − p2)(x − 2p)(x − 2p − p2)(x − 1)(x − 1 − p)(x − 1 − 2p).

The set of roots equals R = {0, p2, p, p + p2, 2p, 2p + p2, 1, 1 + p, 1 + 2p} and S = R ∪ {∞} (since 6 �
deg( f )). By Proposition 1.4, any ordered triple (a, b, c) is equivalent to the ordered triple (a, b, ∞), and
there are 36 such triples. The radii are given in Table 1.

By Proposition 1.4 (3), all elements in the first three rows are equivalent, all elements in fourth and
fifth rows are equivalent, the three first elements of the last row are not equivalent, and the last three
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Table 1. Ordered triples and radii for Example 1.

Pair (0, 1) (0, 1 + p) (0, 1 + 2p) (p2, 1) (p2, 1 + p) (p2, 1 + 2p)
Radius 0 0 0 0 0 0
Pair (p, 1) (p, 1 + p) (p, 1 + 2p) (p + p2, 1) (p + p2, 1 + p) (p + p2, 1 + 2p)
Radius 0 0 0 0 0 0
Pair (2p, 1) (2p, 1 + p) (2p, 1 + 2p) (2p + p2, 1) (2p + p2, 1 + p) (2p + p2, 1 + 2p)
Radius 0 0 0 0 0 0
Pair (0, p) (0, p + p2) (0, 2p) (0, 2p + p2) (p2, p) (p2, p + p2)
Radius 1 1 1 1 1 1
Pair (p2, 2p) (p2, 2p + p2) (p, 2p) (p, 2p + p2) (p + p2, 2p) (p + p2, 2p + p2)
Radius 1 1 1 1 1 1
Pair (0, p2) (p, p + p2) (2p, 2p + p2) (1, 1 + p) (1, 1 + 2p) (1 + p, 1 + 2p)
Radius 2 2 2 1 1 1

Figure 1. Special fiber of X.

elements in the last row are equivalent, hence there are six equivalent classes. The ordered triples and
the charts can be taken to be:

• t0 = (0, 1, ∞), ϕ0(x) = x
• t1 = (0, p, ∞), ϕ1(x) = x

p

• t2 = (0, p2, ∞), ϕ2(x) = x
p2

• t3 = (p, p + p2, ∞), ϕ3(x) = x−p
p2

• t4 = (2p, 2p + p2, ∞), ϕ4(x) = x−2p
p2

• t5 = (1, 1 + p, ∞), ϕ4(x) = x−1
p

Then the special fiber of X looks like Figure 1.

3. Clusters and their relation with (X, D)

Clusters were defined in [8] to study hyperelliptic curves. We strongly recommend the reader to take
a look at such article as well as the expository article [1] since we follow closely their definitions and
notations.

Definition 3.1. A cluster s is a nonempty subset of R of the form s= D(z, d) ∩ R, for some disc D(z, d) =
{x ∈ K : v(x − z) ≥ d} where z ∈ K and d ∈Q. A proper cluster is a cluster with more than one element.

Let Cl(R) denote the set of proper clusters of R. For a cluster s, let |s| denote the number of elements
of R contained in s.

Lemma 3.2. Given s1, s2 clusters, then either they are disjoint or one is contained in the other.
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Proof. The result follows from the fact that in the ultrametric world, any point belonging to a ball can
be taken to be its center (see [8, Section 1.5]).

Definition 3.3. If s, s′ are clusters with s′ � s a maximal subcluster, we write s′ < s and refer to s′ as a
child of s and s as a parent of s′.

The diameter of a proper cluster s is given byμ(s) = min{v(z − t) : z, t ∈ s} (note that in [8] the authors
use the term depth for such invariant).

Lemma 3.4. Let s be a proper cluster, and let a, b ∈ s two elements satisfying that v(a − b) =μ(s). Then
s= D(a,μ(s)) ∩ R.

Proof. Clearly, v(a − b) ≥μ(s) for all b ∈ s, hence s⊂ D(a,μ(s)) ∩ R. For the other inclusion, by
definition s = D(α, d) ∩ R, for some α and d. Since a ∈ s, a ∈ D(α, d), we can take it as the ball cen-
ter, so s= D(a, d) ∩ R. But μ(s) is the minimal valuation between elements in s hence d ≥μ(s) and
D(a,μ(s)) ∩ R ⊂ s.

Definition 3.5. The maximal cluster is the cluster containing all other clusters and all elements of R.
We denote it by smax.

Let (a, b, c) be an ordered triple in T , and let μ= v(a − b) be its invariant. Define a map � : T →
Cl(R) by

�((a, b, c)) = Dμ(a) ∩ R. (3.1)

Theorem 3.6. The map � gives a well-defined map between equivalence classes of T and the set of
clusters of R. Furthermore, the map � satisfies the following properties:

(1) It is injective.
(2) The set Cl(R) \ {smax} ⊂ Im(�).
(3) The cluster smax lies in the image of � if either one of the following properties hold:

i. The element ∞ ∈ S,
ii. there are three different elements a, b, c ∈ R satisfying

μ(smax) = v(a − b) = v(b − c) = v(a − c)

(equivalently, smax has more than two childs).

Proof. To prove that� gives a well-defined map on classes, we need to prove that if t1 = (a, b, c) and
t2 = (α, β, γ ) are equivalent ordered triples of T then �(t1) =�(t2). By Proposition 2.4, the condition
t1 ∼ t2 implies that μ= v(a − b) = v(α− β) and a ≡ b ≡ α≡ β mod πμ. Then α ∈ Dμ(a), so Dμ(a) =
Dμ(α) and �(t1) =�(t2).

(1) Injectivity: let t1 = (a, b, c) and t2 = (α, β, γ ) be two ordered triples such that �(t1) =�(t2).
Note that

v(a − b) =μ(�(t1)) = min{v(z − t) : z, t ∈�(t1)}. (3.2)

Then we can recover the invariantμ of the triple t1 as the diameter of�(t1). Since�(t1) =�(t2),
the μ invariant of t2 equals that of t1. On the other hand, since �(t1) =�(t2), {α, β} ⊂�(t2) so
a ≡ b ≡ α≡ β (mod πμ) and t1 ∼ t2 by Proposition 2.4.
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Figure 2. Special fiber of X.

Figure 3. Attached clusters.

(2) Let s ∈ Cl(R) be a proper cluster which is not maximal. Let a, b ∈ s be a pair such that v(a −
b) =μ(s). Clearly s= Dμ(a) ∩ R. Since s is not maximal, let c be any element not in s. Then
s=�(a, b, c).

(3) As before, given smax, let a, b ∈ smax be a pair such that v(a − b) =μ(smax).

i. If ∞ ∈ S, then smax =�(a, b, ∞).
ii. If there exists a, b, c ∈ smax with v(a − b) = v(a − c) = v(b − c) then smax =�(a, b, c).

Finally, if smax has precisely two childs, we need to prove it does not lie in the image. Let s1 and
s2 be the maximal subclusters. Any triple (a, b, c) satisfies (without loss of generality) that two
elements lie in s1 and the other in s2 or the three of them lie in s1. In both cases, it is easy to
check that �(a, b, c) ⊂ s1, hence smax is not in the image.

Example 2. The case when smax is not in the image of � corresponds to a model (X, D) with precisely
two lines intersecting in a single point. For example, if p> 3 is a prime number, then the curve with
equation:

C : y6 = x(x − p)(x − 1)(x − 1 + p)(x − 1 + 2p)(x − 1 + 3p),

satisfies that smax is not in the image of�. In Figure 2, we give the special fiber of the model (X, D) and
in Figure 3 its cluster picture.

As stated in Section 2, the connected components of X correspond to elements in T/∼; hence to
get a complete description of X, we need to understand how the components intersect with each other
and how the points of S distribute between the components. Representing elements as clusters gives the
natural answer, namely in general two components will intersect precisely when the cluster attached to
one of them is a child of the other. More concretely,

Theorem 3.7. The components attached to clusters s1, s2 in the image of � intersect if and only if one
of the following holds:

(1) s1 is a maximal subcluster of s2 or vice-versa, or
(2) s1 ∩ s2 = ∅ and both s1, s2 are maximal clusters in the image of �.

The second case corresponds precisely to the case explained in Example 3. The statement is implicit
in [8] (see Section 5 and Theorem 1.10) as well as in [4], but we present a different proof which depends
on understanding special points on clusters and how the coordinate functions evaluate at them.
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Definition 3.8. Let s ∈ Cl(R). A point of s is one of the following:

• a child of s (i.e. maximal subclusters of s),
• a parent of s (i.e. a minimal supercluster of s),
• If ∞ ∈ S, one point (denoted ∞) in smax.
• If smax �∈ Im(�) one extra point in each maximal cluster of Im(�) (corresponding to the

intersection point of the two components, see Example 3).

Note that we did not ask the clusters to be proper while defining points. In particular, any element of
S is a point in some cluster. The component graph of the special fiber X̄ of X is a stably marked tree
(see Section 4.2 of [4]) so each cluster contains at least 3 points. Let P be the disjoint union of points
in proper clusters s ∈ Cl(R), i.e.

P =
⊔

s∈Cl(R)

{points in s}.

Note that the set R ⊂P .

Remark 3.9. If s is a nonmaximal cluster and t = (a, b, c) ∈ T is an ordered triple mapping to s under
�, we can assume that its last coordinate c does not belong to s. Otherwise, changing c by any element
not belonging to s (which exists since s is non-maximal) gives an equivalent triple.

To simplify proofs, from now on we will assume that if �(a, b, c) = s, a nonmaximal cluster, then
c �∈ s. Furthermore, if ∞ ∈ S, we also assume that c = ∞.

Lemma 3.10. Let t ∈ T , and x1, x2 ∈ R be roots. Let s=�(t) be the associate cluster. Then the
coordinate function ϕt satisfies:

(1) if there exists a proper subcluster s̃� s such that x1, x2 ∈ s̃ then ϕt(x1) = ϕt(x2).
(2) if x1, x2 ∈ s but they do not lie in a common maximal subcluster then ϕt(x1) �= ϕt(x2).
(3) if x1 �∈ s then ϕt(x1) = ∞.

Proof. Let t = (a, b, c), and consider first the case when�(t) is not the maximal cluster (hence c �∈ s).
By definition,

ϕt(x1) − ϕt(x2) = (b − c)

(b − a)

(x1 − x2)(a − c)

(x1 − c)(x2 − c)
. (3.3)

(1) Let x1, x2 ∈ s̃. Recall that the valuation of the difference between one element of R in s and one
element of R outside s is constant, then since c �∈ s, v(b − c) = v(c − a) = v(x1 − c) = v(x2 − c).
The hypothesis that x1, x2 lie in a proper subcluster implies that v(x1 − x2)> v(a − b) =μ(�(t))
so the right hand side of (3.3) is divisible by π and hence ϕt(x1) ≡ ϕt(x2) (mod π ).

(2) If x1 and x2 do not lie in a proper subcluster, then v(x1 − x2) = v(a − b), hence the right hand
side of (3.3) is a unit, hence ϕt(x1) �≡ ϕt(x2) (mod π ).

(3) If x1 �∈ s, ϕt(x1) = (b−c)
(b−a)

(x1−a)
(x1−c)

. The nonarquimedean triangle inequality implies that v(x1 − c) =
min{v(x1 − a), v(b − c)} (recall that v(a − c) = v(b − c)). On the other hand, since (a, b, c) is
an ordered triple, v(b − a) is the cluster’s diameter. The hypothesis x1, c �∈ s imply that v(b −
a)>max{v(b − c), v(x1 − a)}. Then v(x1 − c)v(b − a)> v(x1 − a)v(b − c) and consequently
ϕt(x1) = ∞.

Assume on the contrary that �(t) is the maximal cluster, hence v(b − c) = v(a − b) = v(a − c).
Distinguish two cases depending on whether x1, x2, c belong to a common proper subcluster or not.
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In the first case, v(xi − c)> v(xi − a) for i = 1, 2 since xi lies in the same subcluster as c. In particular,

v

(
(b − c)(xi − a)

(b − a)(xi − c)

)
= v

(
(b − c)

(b − a)

)
+ v

(
(xi − a)

(xi − c)

)
≤ v

(
(xi − a)

(xi − c)

)
< 0,

hence ϕt(xi) = ∞. In particular, if x1, x2 lie in a common proper subcluster, ϕt(x1) = ϕt(x2).
In the second case, if x1 is not in the same proper subcluster as c, v(x1 − c) ≤ v(x1 − a) hence

ϕt(x1) �= ∞. If x1, x2 are two roots not in the same proper subcluster as c, v(b − c) = v(c − a) = v(b −
a) = v(x1 − c) = v(x2 − c) and the same proof as before applies.

3.1. Functions on clusters

If s ∈ Cl(R) lies in the image of �, define a function ϕs : P → P1 extending the coordinate function ϕt

to P as follows.

Definition 3.11. Let s ∈ Cl(R) be in the image of�, say s=�(t), and let p ∈P be a point, so p is a point
of some cluster s̃ ∈ Cl(R). In particular, p is either a root (i.e. an element of R) or p = s′ a parent/child
of s̃. Define

ϕs(p) =

⎧⎪⎨⎪⎩
ϕt(α) if p = α ∈ R and α ∈ s,

ϕt(a) if s′ =�((a, b, c)) ⊂ s,

∞ otherwise.

Remark 3.12. If ∞ ∈ S, the point ∞ ∈ smax evaluates to ∞ at all functions ϕs. This is clear for the
function ϕs when s is not the maximal cluster, and for the maximal cluster it follows from the assumption
c = ∞ of the ordered triple attached to it.

Lemma 3.13. Let s ∈ Cl(R) be an element in the image of �.

• If s′ ∈ Cl(R) is a cluster not contained in s, the map ϕs takes the same value at all points of s′.
• If s1, s2 are two different childs of s, then ϕs takes different values at points of s1 and of s2.

Proof. The statements follow easily from Lemma 3.10.

Suppose that p, q ∈P with p ∈ s and q ∈ s′ satisfy one of the following hypothesis:

• s= s′ and p = q,
• s is a child/parent of s′,
• smax is not in the image of �, in which case we identify the extra points of the two maximal

proper clusters of Im(�) (see Example 3).

Then Lemma 3.13 implies that ϕs(p) = ϕs(q). In particular, all coordinate functions do not distinguish
them (which explains why they are identified in the model X ). By definition, the function attached to
a cluster s=�(t) equals the one attached to t hence they share the same properties; for example, ϕs

contracts all components different from t to points (see [4, Proposition 4.2]). We extend the function ϕs

to clusters defining

ϕs(s′) =
{

∞ if s ⊂ s′,

ϕs(p) otherwise
(3.4)

Proposition 3.14. Let X1, X2 be two components of X. Then they do not intersect if and only if there
exists a component Xt whose coordinate function ϕt collapses X1 and X2 to two different points.
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Figure 4. Cluster of C.

Proof. If X1 and X2 do not intersect, then since X is connected, there exists a component Xt in the
path connecting them which is not equal to X1 nor X2. Then ϕt collapses X1 to one point in P1(Fp) and
X2 to a different one.

We can now give a proof of how the components intersect.

Proof of Theorem 3.7. By Proposition 3.14, the clusters si =�(ti) do not intersect if and only if there
exists t3 such that ϕt3 takes different values at s1 and s2. Distinguish the following cases:

• Suppose that s1 ∩ s2 = ∅ and they are maximal clusters in the image of � (so smax does not
belong to the image of �). In particular, if s3 is any other subcluster, s3 ⊂ s1 or s3 ⊂ s2 by
Theorem 3.6. Then from (3.4), ϕs3 (s1) = ∞ in the first case and ϕs3 (s2) = ∞ in the second one.
Then Proposition 3.14 implies that s1 and s2 do intersect.

• Suppose that s1 ∩ s2 = ∅ and s1, s2 are subclusters of a cluster s̃ in the image of �. Without
loss of generality, we can assume that s̃ is the minimal cluster containing both s1 and s2. Then
the cluster s̃ contains two childs s̃1 and s̃2 such that si ⊂ s̃i for i = 1, 2. By Lemma 3.13, the
function ϕs̃ takes different values at s̃1 and s̃2, and by Lemma 3.10 ϕs̃ (̃si) = ϕs̃(si), so ϕs̃ takes
different values at s1 and s2 and the two components do not intersect.

• Suppose that s1 is a subcluster of s2 which is not maximal. Then there exists a subcluster s3

such that s1 � s3 � s2. Then ϕs3 takes the value ∞ at s2 and sends s1 to an element in k, hence
they do not intersect.

• Suppose s1 is a maximal subcluster of s2. If they do not intersect, then there exists a clus-
ter s3 such that ϕs3 takes different values at s1 and s2. Then Lemma 3.13 gives the following
implications

– If s1 ⊂ s2 ⊂ s3, ϕs3 (s1) = ϕs3 (s2).
– If s3 ⊂ s1 ⊂ s2, ϕs3 (s1) = ϕs3 (s2) = ∞.
– If s3 ∩ s2 = ∅, ϕs3 (s1) = ϕs3 (s2).

Then s1 and s2 must intersect.

Example 1 (Continued). Let us study the cluster picture of Example 2. The set of proper cluster equals:

s1 = {0, p2, p, p + p2, 2p, 2p + p2}, s2 = {0, p2}, s3 = {p, p + p2},
s4 = {2p, 2p + p2}, s5 = {1, 1 + p, 1 + 2p}, smax = R.

Keeping the notation of Example 2, the map � sends the triples ti to si for i = 1, . . . , 5 and t0 to smax.
The cluster picture is given in Figure 4, where the roots follow the same order as the one given for R.
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4. The semistable model

From now on we fix an n-th root of unity ζn ∈ K2. If d | n, by ζd we denote the d-th root of unity ζ n/d
n .

Let Y be the normalization of X in the function field of YK2 (recall that K2 = K( n
√
π )). By [4, Corollary

3.6], the fact that R ⊂ K and n
√
π ∈ K2 implies that Y is a semistable model of Y .

An explicit description of the special fiber Ȳ of Y is the following: let t ∈ T and let�(t) = s, such that
s= D(r, d) ∩ R, for some r ∈ R as in Lemma 3.4. Then the cluster s corresponds to a component of the
special fiber of X̄. Let xt := φ∗

t (x) be the pullback of the standard coordinate x of X. The two variables
are related by the formula x = π dxt + r.

Let et be the valuation of the content of the polynomial f (xt) (in Section 6.1 we will explain how to
read the value et from a weighted cluster) and let ft(xt) = f (xt)π−et . Define the curve:

Y t : yn
t = ft(xt). (4.1)

The curve Yt is then the normalization of Y t. Note that the curve Yt might be reducible, and its com-
ponents might not even be defined over K (but over an unramified extension of degree at most n). The
number of components of Yt might be read from the cluster picture. Concretely, let s̃1, . . . , s̃N be the
children of s, let αi ∈ s̃i be any root and let ai = |s̃i|. Each cluster s̃i correspond to a factor of ft(xt) and
the number ai gives the multiplicity of the root αi. Define

ct =
∏

β∈R\{s}

(r − β)

‖(r − β)‖p

.

Proposition 4.1. Following the previous notation, let d := gcd(n, a1, . . . , aN). Then the curve Yt has d
irreducible components defined over the extension K2( d

√
ct). In particular, the same holds for Yt.

Proof. If β ∈ R is a root not contained in s then the term x − β = π dxt + r − β reduces to (r−β)
‖r−β‖p

up to
a power of π (which can be removed from the equation by the assumption d

√
π ∈ K2). Then the reduction

of the polynomial ft(xt) equals ft(xt) = ct

∏N
i=1(xt−αi)ai . For �= 0, . . . , d − 1 let

Y (�)
t : yn/d

t = ζ �d c1/d
t

N∏
i=1

(xt−αi)
ai/d. (4.2)

Clearly

Y t =
d−1⊔
�=0

Y (�)
t . (4.3)

Furthermore, each curve Y (�)
t is irreducible. The reason is that since the cover K[xt, yt]/(yn

t − ft(xt))
of K[x] is Galois, the ramification degree at any point is divisible by the number of components. In
particular, the number of components divides both n and ai for all i, hence it divides d.

To fully understand the semistable model Y, we only need to describe how different components inter-
sect. If P is a point in Xt, then the number of points of ϕ−1

t (P) in Yt equals rP = gcd(n, vP(ft)) (where vp(ft)
denotes the order of vanishing of the polynomial ft at the point P) and each preimage has ramification
degree n

gcd(n,vP(ft))
. In particular, each irreducible component of Yt gets rP

d
different points.

Remark 4.2. If P is not a root of ft then the point is automatically unramified, and there are as many
points as the degree of the cover. When P is a root of ft, the value vP(ft) matches precisely |s| (where
�(t) = s) so it can be read from the cluster picture.
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Let P ∈ R, and to easy notation suppose that P = 0 (this can always be done after a translation). Then
the normalization of (4.1) in an open set around 0 is given by the equations⎧⎪⎨⎪⎩ zr

t = ct

N∏
i=2

(xt−αi)
ai

ztx
a1/r
t = yn/r

t .

In particular, the set ϕ−1
t (0) consists of the rP points with coordinates (xt, yt, zt) given by⎧⎨⎩Qi =

⎛⎝0, 0, ζ i
rP

(
ct

N∏
i=2

(−αi)
ai

)1/r
⎞⎠ : 0 ≤ i ≤ r − 1

⎫⎬⎭ .

Recall that d = gcd(n, a1, . . . , aN), so in particular d | rP = gcd(n, a1). From the decomposition (4.3)
and the irreducible components definition (4.2), it follows that Qi ∈ Y (�)

t precisely when i ≡ � (mod d).
In particular, Q0 belongs to the zeroth curve, Q1 to the first one, and so on.

Let s̃ be a child of s (corresponding to t̃ ∈ T); say s̃= s̃1 in the above notation and the center is again 0.
Let c̃ = ct̃

∏N
i=2 (−αi)ai . Then (from (4.1)) the curve Yt̃ has a defining equation

Yt̃ : yn
t̃ = c̃

Ñ∏
i=1

(xt̃ − βi)
bi , (4.4)

where the product runs over childs {s̃i} of s̃, the number bi equals the number of roots in s̃i, and βi is a
root in s̃i. Note that

∑Ñ
i=1 bi = a1. The gluing (as described in [8] before Remark 3.9) corresponds in our

coordinates to identify the infinity point in the chart t̃ with the zero point in the chart t. For that purpose,
write equation (4.4) as (

yn/r
t̃

xa1/r
t̃

)r

= c̃
Ñ∏

i=1

(
1 − βi

xt̃

)bi

. (4.5)

This equation is the key to identify the points Qi in s with their counterparts in s̃ as defined in (4.5) (or
its irreducible components if it happens to be reducible), providing the intersection points of s and s̃
(see the formulas in [8, Proposition 5.5]).

Let d̃ = gcd(n, b1, . . . , bÑ), then the curve Yt̃ consists on d̃ components (ordered according to powers
of d̃-th roots of unity) and (due to our compatible choice of roots of unity) the point Q0 lies at the infinity
part of the zeroth component, Q1 in the first component and so on. Let us illustrate the situation with
some examples.

Example 1 (Continued II). Recall that there are six components (see Figures 1 and 4), namely:

• Ym : y6
m = x6

m(xm − 1)3 (with relations xm = x,),
• Y1 : y6

1 = (−1)x2
1(x1 − 1)2(x1 − 2)2 (with relations x1 = x/p, y1 = y/p),

• Y2 : y6
2 = (−4)x2(x2 − 1) (with relations x2 = x/p2, y2 = y/p4/3),

• Y3 : y6
3 = (−4)x3(x3 − 1) (with relations x3 = (x − p)/p2, y3 = y/p4/3),

• Y4 : y6
4 = (−4)x4(x4 − 1) (with relations x4 = (x − 2p)/p2, y4 = y/p4/3),

• Y5 : y6
5 = x5(x5 − 1)(x5 − 2) (with relations x5 = (x − 1)/p, y5 = y/p1/2).

The curves Y2, Y3, Y4, are nonsingular irreducible curves of genus 2, while Y5 is a nonsingular curve
of genus 4. On the other hand, the curves Ym and Y1 are reducible. The curve Ym consists of the union
of three (genus 0) curves Y (�)

m , �= 0, 1, 2 with defining equations

Y (�)
m : y2

m = ζ �3 x2
m(xm − 1) (ym = y),
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Figure 5. Special Fiber of Y.

Figure 6. Cluster picture.

where ζ3 is a third root of unity in Fp. The curve Y1 consists of the union of two genus 1 curves Y (�)
1 ,

�= 0, 1 with equation

Y (�)
1 : y3

1 = (−1)�
√−1x1(x1 − 1)(x1 − 2) (y1 = y/p).

Note that the components of Y1 need not be defined over K2, but at most over an unramified quadratic
extension of it (since p � 6, K2(

√−1)/K2 is unramified). The normalization explained in the previous
section, in an open neighborhood of 0 (but not of 1) of the curve Y (�)

m has equation{
z2

m = ζ �3 (xm − 1)

zmxm = ym.

The preimage of 0 in the �-th component corresponds to the points P±
� = (

0, 0, ±√−1ζ 2�
3

)
. In particular,

it intersects Y1 in 2 points. The component graph of the special fiber of Y is given in Figure 5.

Example 3. Let p be an odd prime congruent to 1 modulo 3 and let C/Zp be the curve defined by

y6 = x(x − p2)(x − p)(x − p − p2)(x − 2p)(x − 2p − p2)(x − 1)(x − 1 − p2)(x − 1 − 2p2)

(x − 1 − p)(x − 1 − p − p2)(x − 1 − p − 2p2)(x − 2)(x − 2 − p)(x − 2 − 2p).

It is a curve of genus 34. The set of roots of f(x) equals R = {0, p, p2, p + p2, 2p, 2p + p2, 1, 1 + p, 1 +
p2, 1 + 2p2, 1 + p + p2, 1 + p + 2p2, 2, 2 + p, 2 + 2p}. There are nine clusters as shown in Figure 6.
They give the components:

• smax is the disc with center rm = 0 and diameter μ= 0. It corresponds to a component Ym : y6
m =

x6
m(xm − 1)6(xm − 2)3 consisting of 3 irreducible components Y (�)

m : y2
m = ζ �3 x2

m(xm − 1)2(xm − 2),
0 ≤ �≤ 2 of genus 0 (see Proposition 4.3).

• s1 = {2, 2 + p, 2 + 2p} = D(2, 1) ∩ R, with variable x = px1 + 2, y = p1/2y1 and equation
Y1 : y6

1 = 26x1(x1 − 1)(x1 − 2). It is an irreducible curve of genus 4.
• s2 = {1, 1 + p, 1 + p2, 1 + 2p2, 1 + p + p2, 1 + p + 2p2} = D(1, 1) ∩ R, with variable x =

px2 + 1, y = py2 and equation Y2 : y6
2 = −x3

2(x2 − 1)3. It consists of three irreducible compo-
nents Y (�)

2 : y2
1 = −ζ �3 x1(x1 − 1), 0 ≤ �≤ 2 of genus 0.

• s3 = {1, 1 + p2, 1 + 2p2} = D(1, 2) ∩ R, with variable x = p2x3 + 1, y = p3/2y3 and equation
Y3 : y6

3 = x3(x3 − 1)(x3 − 2). It is an irreducible curve of genus 4.
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Figure 7. Special Fiber of X.

Figure 8. Special Fiber of Y.

• s4 = {1 + p, 1 + p + p2, 1 + p + 2p2} = D(1 + p, 2) ∩ R, with variable x = p2x4 + 1 + p, y =
p3/2y4 and equation Y4 : y6

4 = −x4(x4 − 1)(x4 − 2). It is an irreducible curve of genus 4.
• s5 = {0, p, p2, p + p2, 2p, 2p + 2p2} = D(0, 1) ∩ R, with variable x = px5, y = py5 and equa-

tion Y5 : y6
5 = −8x2

5(x5 − 1)2(x5 − 2)2. It consists of two irreducible components Y (�)
5 : y3

5 =
(−1)�2

√−2x5(x5 − 1)(x5 − 2), �= 0, 1 of genus 1.
• s6 = {0, p2} = D(0, 2) ∩ R, with variable x = p2x6, y = p4/3y6 and equation Y6 : y6

6 =
−32x6(x6 − 1). It is an irreducible curve of genus 2.

• s7 = {p, p + p2} = D(p, 2) ∩ R, with variable x = p2x7 + p, y = p4/3y7 and equation Y7 : y6
7 =

−8x7(x7 − 1). It is an irreducible curve of genus 2.
• s8 = {2p, 2p + p2} = D(2p, 2) ∩ R, with variable x = p2x8 + 2p, y = p4/3y8 and equation
Y8 : y6

8 = −32x8(x8 − 1). It is an irreducible curve of genus 2.

The special fiber of X and Y are given in Figures 7 and 8, respectively.

4.1. Genus of Yt

Keeping the previous notations, let Yt be a component of the special fiber of Y (we do not assume that it
is irreducible), above a component X of X, corresponding to a cluster s. The genus of each irreducible
component of Yt can be read from the cluster picture.

Proposition 4.3. Let s̃1, . . . , s̃N be the children of s, let ai = |̃si| and let d := gcd(n, a1, . . . , aN). Then
irreducible components of Yt have genus

1

2d

(
n(N − 2) −

N∑
i=1

gcd(n, ai)

)
+ 1 +

{
0 if n |∑N

i=1 ai

n
2d

− gcd(n,
∑N

i=1 ai)

2d
if n �

∑N
i=1 ai
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Proof. Since the genus of a curve equals that of its normalization, we can look at the components of
Yt. By Proposition 4.1, we know that the components are given by an equation of the form Y�

t : yn/d
t =

ζ �d c1/d
∏N

i=1(xt−αi)ai/d.
If π : X → X′ is a general degree D map between two nonsingular curves, the Riemann–Hurwitz

formula (see for example [11, Corollary 2.4]) relates the genus of X (denoted g(X)) with the genus of X ′

(denoted g(X ′)) via the formula

2g(X) − 2 = D(2g(X′) − 2) +
∑

P

(eP − 1),

where eP denotes the ramification degree of the map at P. Taking X =Y�
t and X′ = P1, g(X′) = 0, D = n

d

and

• eP = 1 for all points P �= αi and P �= ∞,
• as mentioned before, each point αi has ramification degree n

gcd(n,ai)
and there are gcd(n,ai)

d
points

above it.
• If n |∑N

i=1 ai = deg(ft(xt)), ∞ is not ramified. Otherwise, it is a ramified point, with ramification
degree n

gcd(n,deg(ft(xt)))
and gcd(n,deg(ft(xt)))

d
points.

Then the Riemann–Hurwitz formula implies that the genus of Y (�)
t equals

1

2

(
n

d
(N − 2) −

N∑
i=1

gcd(n, ai)

d

)
+ 1 +

{
0 if n |∑N

i=1 ai,
n

2d
− gcd(n,

∑N
i=1 ai)

2d
if n �

∑N
i=1 ai.

5. The Galois representation of C over K2

Let ϒ = (V , E) denote the dual graph of the special fiber of Y (also referred as the graph of components
in [4]); it is an undirected graph whose vertices V are the irreducible components of Y . Given two
irreducible components Y1 and Y2, the set E contains one edge between them for each intersection point
of Y1 with Y2. Under our hypothesis, the action of Gal(k/k) on the set X is trivial, but its action on the
set of irreducible components of Yt (and on ϒ) might not be.

Let � be a prime number, with � �= p. The hypothesis � �= p implies that the wild inertia subgroup
acts trivially on the �-adic étale cohomology. Furthermore, the restriction to the inertia subgroup Ip

factors through the quotient corresponding to the maximal pro-� quotient (as explained in [10, Corollaire
3.5.2]), which is canonically isomorphic to Z�(1). Let σ : Ip →Z� be the �-adic tame character. Recall
the definition of the following well-known representation.

Definition 5.1. The special (or Steinberg) 2-dimensional representation (denoted Sp2) is the �-adic
representation of Gal(K/K) given on h ∈ Ip by

Sp2(h) =
(

1 σ (h)

0 1

)
,

and whose value at a Frobenius τK equals

Sp2(τK) =
(

1 0

0 q

)
,

where q = #k.

This is precisely the representation that appears while considering an elliptic curve with a prime of
multiplicative reduction (thanks to the theory of Tate curves, as explained in [14] Chapter V, Section 5).
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Then [9, Corollary 1.6] (see also [10, IX, Section 12]) it follows that as Q�[GK]-modules

H1
ét(Y , Q�) =

∑
Ỹ∈V

H1
ét(Ỹ , Q�) ⊕ H1(ϒ , Z) ⊗ Sp2. (5.1)

The direct sum decomposition comes from the study of the Picard group Pic0(Y). It contains an abelian
part and a toric one (see for example [3], Example 8, p. 246). The rank of the toric part equals the rank
of H1(ϒ , Z), and its Galois representation consists of Jordan blocks of size 2 (see [10, Proposition 3.5],
p. 350). The action of Gal(K/K) on Y(K) extends to a semilinear action on the geometric points of Y
(see [8, equation (2.18)], [9, Corollary 1.6] and p. 13 of [5]).

The Galois module structure of the first summand on the right hand side of (5.1) is the easy one,
since the action of the inertia subgroup Ip of GK on H1

ét(Ỹ , Q�) is trivial. Recall that the quotient GK/Ip is
topologically generated by a Frobenius automorphism, and its characteristic polynomial is determined
by a point count computation. Then we are led to understand the action of GK on the last summand.

The decomposition (5.1) in terms of the representation of the Tate module of C translates into an
isomorphism of GK-modules

V�(Pic0(Y)) � ((
H1(ϒ , Z) ⊗Z Q�

)⊗ Sp2

)⊕
⊕
Ỹ∈V

V�(Pic0(Ỹ)),

where inertia acts trivially on H1(ϒ , Z).

Proposition 5.2. There exists |E| − |V| + 1 unramified characters {χi} of GK such that

V�(Pic0(Y)) �
|E|−|V|+1∑

i=1

(
Sp2 ⊗ χi

)⊕
⊕
Ỹ∈V

V�(Pic0(Ỹ)). (5.2)

Proof. The rank of H1(ϒ , Z) equals |E| − |V| + 1 (because the graph is connected). Since inertia acts
trivially on H1(ϒ , Z), the GK action on it is uniquely determined by the action of a Frobenius element.
But the action of Frobenius at H1(ϒ , Z) is given by a permutation matrix, corresponding to its action
on the different irreducible components.

Remark 5.3. As already mentioned, the action of a Frobenius element at V�(Pic0(Ỹ)) can be obtained
via counting the number of points of Yt over different extensions of k, providing an explicit description
of V�(Pic0(Y)) as a GK-module.

Theorem 5.4. The rank of H1(ϒ , Z) equals∑
s̃

gcd(n, |s̃|) −
∑
s

gcd(n, |s̃1|, . . . , |s̃N |) + 1,

where the first sum runs over all proper clusters except the maximal one, the second sum runs over all
proper clusters, and the elements s̃1, . . . , s̃N denote the children of s (which might not be proper).

Proof. Recall that the rank of H1(ϒ , Z) equals |E| − |V| + 1. The value |V| (the number of irreducible
components) equals the second term by Proposition 4.1. The number of intersection points follows from
the discussion after the same proposition, that states that #ϕ−1

t (P) = gcd(n, vP(ft)). Since vP(ft) = |s̃| the
result follows.

Example 1. (Continued III). The graph of components ϒ (which can be read from Figure 5) is given
in Figure 9. Using the previous theorem, looking at the cluster description of Figure 4, it follows that
H1(ϒ , Z) has rank 7 (which can be easily verified from the graph picture since the graph of components
ϒ contains 9 vertices and 15 edges). An important feature of Theorem 5.4 is that we do not need to
know the graph of components! (the cluster picture is enough). In particular, the image of inertia (of the
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Figure 9. The component graph ϒ .

Galois representation) consists of 7 copies of the Steinberg representation Sp2 (sending a generator of
the inertia subgroup to the matrix

(
1 1
0 1

)
) and the identity elsewhere.

Recall by (5.1) that the Galois representation of C has two parts, one coming from the compo-
nents and one coming from the graph of components. Let σ denotes the Frobenius automorphism of
Gal(Kur

2 /K2). If we want to understand its action on the graph of components, we need to consider two
different cases: if

√−1 ∈ K2, then all components as well as the intersection points are defined over K2.
In particular, its action is trivial (and the 2 × 2 blocks correspond precisely to the classical Steinberg
representation). However, if

√−1 �∈ K2, then Frobenius interchanges the two components Y (0)
1 and Y (1)

1 ,
so we must compute its eigenvectors. A basis for the graph cohomology are the cycles:

• e1 = {Y (0)
m , Y (0)

1 , Y4, Y (1)
1 },

• e2 = {Y (0)
m , Y (0)

1 , Y3, Y (1)
1 },

• e3 = {Y (0)
m , Y (0)

1 , Y2, Y (1)
1 },

• e4 = {Y (0)
m , Y (0)

1 , Y (1)
m , Y5},

• e5 = {Y (0)
m , Y (1)

1 , Y (1)
m , Y5},

• e6 = {Y (0)
m , Y (0)

1 , Y (2)
m , Y5},

• e7 = {Y (0)
m , Y (1)

1 , Y (2)
m , Y5}.

Clearly σ fixes e1, e2, e3, while it interchanges e4 ↔ e5 and e6 ↔ e7. In particular, a basis of eigenvec-
tors for σ is given by {e1, e2, e3, e4 + e5, e6 + e7, e4 − e5, e6 − e7}, where σ acts trivially on the first five
elements, and it acts as multiplication by −1 on the last two ones. In particular, the action of σ on the
last two eigenvectors matches the action of the character χ−1 (corresponding to the unramified quadratic
extension K2(

√−1)/K2). Then(
H1(ϒ , Z) ⊗Z Q�

)⊗ Sp2 = Sp5
2 ⊕ (Sp2 ⊗ χ−1)

2.

Note that the sum of the genera of the components equals 12, and 7 + 12 = 19 which is the genus of
C (as it should be).

Example 3 (Continued). From the cluster picture (see Figure 6) and Theorem 5.4, we get that H1(ϒ , Z)
has rank 14, hence the image of inertia equals 14 Jordan blocks of size 2 × 2. The component graph
ϒ contains 14 vertices and 27 edges (which can be read from Figure 8 and Figure 10). The sum of the
genera of the components equals 20 and 20 + 14 = 34 which is the genus of C.

A similar analysis as the one made in the previous example can be used to determine the graph
component representation. For the components Y (i)

m and Y (j)
5 to be defined over K , we need

√−2 to be an
element of K2. Start supposing this is the case. The group GK2 fixes the vertices of the graph, but might
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Figure 10. The component graph ϒ for Example 3.

not fix the edges (corresponding to the intersection points). The intersection of Y (i)
m with Y (j)

5 consists of
two points with coordinates in K2(

√−2ζ i
3), which is fixed by GK2 under our hypothesis. However, the

intersection of Y (i)
m with Y (i)

2 corresponds to two points with coordinates in K2(
√−ζ i

3).
If

√−1 also belongs to K2, the Galois representation attached to C decomposes as a direct sum of
representations of dimensions 8 + 8 + 8 + 2 + 2 + 4 + 4 + 4 (corresponding to the curves Y1, Y3, Y4,
Y (0)

5 , Y (1)
5 , Y6, Y7 and Y8, respectively) and 14 blocks where the action of Frobenius is trivial and a

generator of inertia acts by
(

1 1
0 1

)
(corresponding to the Steinberg representation).

If
√−1 �∈ K2, let σ ∈ Gal(K2/K2) be an element sending

√−1 to −√−1. Then σ permutes the two
edges joining the vertices Y (i)

m and Y (i)
2 (the blue ones in Figure 10). Note that the difference of these two

lines is a cycle, where σ acts by −1. If C is any cycle in H1(ϒ , Z), then either C does not contain any
edge joining Y (i)

m and Y (i)
2 (in which case it is fixed by σ ), or otherwise it contains such an edge. Consider

the integral decomposition

C = C + σ (C)

2
+ C − σ (C)

2
.

The first term is invariant under σ , while the second term lies in the span by the three blue loops. This
implies that the lattice where σ acts trivially has rank 11, while the one where it acts by −1 has rank 3.
In particular, (

H1(ϒ , Z) ⊗Z Q�

)⊗ Sp2 = Sp11
2 ⊕ (Sp2 ⊗ χ−1)

3.

Recall that χ−1 is an unramified character (since p � 6).
If

√−2 �∈ K2, let σ ∈ Gal(K2/K2) be an element sending
√−2 to −√−2. Then σ permutes the two

components Y (0)
5 and Y (1)

5 (and their respective intersection points), which induces another involution on
the components’ graph. Consider two different cases: if

√−1 ∈ K2, then σ is the unique element acting
(via an involution) on the graph. If C is any cycle, then C − σ (C) involve only black and red paths. Such
a graph contains 8 vertices and 12 edges, so its first cohomology has rank 5. In particular, the action of
σ is trivial on a rank 9 lattice, and(

H1(ϒ , Z) ⊗Z Q�

)⊗ Sp2 = Sp9
2 ⊕ (Sp2 ⊗ χ−2)

5.

At last, if
√−1 �∈ K2, the Galois group Gal(K2(

√−1,
√

2)/K2) acts on the graph, hence we can split the
graph in terms if the representations of such a group, corresponding to the characters χ−1, χ−2 and χ2

(where χj denotes the character whose kernel fixes the field K2(
√

j)). From the previous descriptions, it
follows that (

H1(ϒ , Z) ⊗Z Q�

)⊗ Sp2 = Sp6
2 ⊕ (Sp2 ⊗ χ−2)5 ⊕ (Sp2 ⊗ χ−1)

3. (5.3)
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Remark 5.5. We want to emphasize that when restricting the Galois representation to K2, the image
of inertia depends only on the components graph, which can easily be read from the cluster pic-
ture. The same is true over K if we use the weighted clusters that will be introduced in the next
section.

6. The Galois representation of C over K

The purpose of this section is to show how the previous results can be extended to give a description of
the action of GK on the étale cohomology of C (still under the assuming that all roots of f (x) belong to
K and that p � n).

Let K2 = K( n
√
π ). The action of GK2 on C was described in Chapter 5, so we are led to understand the

action of Gal(K2/K) on the special fiber of Y . Note that the extension K2/K is abelian, so it is reasonable
to expect that some ramified characters should appear in our Galois representation. From a geometric
perspective, the characters should correspond to some sort of “twisting” operation. This is indeed the
case, as explained in Section 6.3.

To understand the twisting (and how it affects our Galois representation), one first needs to decompose
the Galois representation attached to our curve C into its “new” parts coming from the different quotients
of it. For each d | n, the curve

Cd : yd = f (x),

is a quotient of our curve (as described in Section 6.2), so its Galois representation is a constituent of
that of C. The “new” part corresponds to the complement of all the old ones. The key result (given in
Proposition 6.6) is a description of the twisting operation on each new part of the representation attached
to C.

A natural problem is how to encode the twisting operation into the cluster picture. This can be
done via the so called weighted clusters introduced in [8]. A weighted cluster is a cluster (as defined
before) that also contains information on the radii of the discs (and their difference). The knowl-
edge of the radii was already needed in the description of the irreducible components of Yt given
in the proof of Proposition 4.1. In particular, the equations for Yt involve working also with non-
monic polynomials f (x). Moving from a monic polynomial to a nonmonic one is precisely what a twist
does.

6.1. Weighted clusters

Definition 6.1. Let s be a proper cluster (i.e. s �=R). Define its relative diameter (that will be denoted
ds) by

ds =μs −μP(s),

where P(s) denotes the parent of s.

Following [8], a weighted cluster is a cluster picture that also encodes the diameter of the different
clusters as follows: in a maximal cluster include a subscript denoting its diameter; for all other clusters
include its relative diameter as a subscript.

Example 1. Recall that Table 1 gives the diametersμsmax = 0,μs1 =μs5 = 1,μs2 =μs3 =μs4 = 2. Then
their relative diameter equal

ds1 =μs1 −μsmax = 1, ds5 =μs5 −μsmax = 1,

ds2 =μs2 −μs1 = 1, ds3 =μs3 −μs1 = 1, ds4 =μs4 −μs1 = 1.
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Its weighted cluster is given by

Given s1, s2 two clusters (or roots), let s1 ∧ s2 denote the smallest cluster that contains both of them.
For instance, in the previous example 0 ∧ 1 =R, s2 ∧ s3 = s1 and s2 ∧ p + p2 = s1. Keep the notation
of the previous sections, and let et be the valuation of the content of the polynomial f (xt) (in particular
et = v(ct)).

Proposition 6.2. If t ∈ T corresponds to a component of the special fiber of X associated to a cluster s,
the content valuation of the polynomial f (xt) equals

et =
∑
r∈R

μr∧s.

Proof. Recall that if t corresponds to a cluster s= D(α,μs) then x = πμsxt + α where α ∈ s and

f (xt) =
∏
r∈R

(πμsxt + α− r).

Each factor (πμsxt + α− r) has content valuation min{μs, v(α− r)} contributing to the content valua-
tion ct of f (xt). Consider the following two cases:

• If r ∈ s then min{μs, v(α − r)} =μs =μs∧r.
• Otherwise, min{μs, v(α− r)} = v(α − r) =μs∧r as well.

Then the formula follows.

6.2. Decomposing the representation of C

A good reference for the present section is [12]. Let G denote the group μn of n-th roots of unity, whose
group algebra equals

Q[G] =Q[t]/(tn − 1) �
∏
d|n

Q[t]/φd(t), (6.1)

where φd(t) denotes the d-th cyclotomic polynomial (whose complex roots are the primitive d-th roots of
unity). Fix ζn a primitive n-th root of unity (which belongs to K). The group G acts on C via t · (x, y) =
(x, ζny). This action extends to an action of Q[G] in Aut0(Jac(C )) := Aut(Jac(C )) ⊗Z Q. Let V�(Jac(C ))
denotes the Q� Tate module T�(Jac(C )) ⊗Z�

Q�. The natural injective morphism End(Jac(C )) ⊗Q� ↪→
End(V�(Jac(C )) gives an action of Q�[G] on V�(Jac(C )).

If H is a subgroup of G (corresponding necessarily to the group of d-th roots of unity for some
d | n), we have a natural surjective map πH : C → C/H := CH . In particular, if H = Hn/d (corresponding
to μn/d), denote the quotient curve C/H by Cd, with equation:

Cd : yd = f (x). (6.2)

The quotient map is given explicitly byπd(x, y) = (x, yn/d) (an n/d to 1 map). This induces two morphisms
between Jac(C ) and Jac(Cd) namely the push-forward

π∗ : Jac(C ) → Jac(Cd),

and the pullback

π ∗
d : Jac(Cd) → Jac(C ).
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The kernel of π ∗
d is contained in the n/d-torsion of Jac(Cd). Let Ad denote the connected component

of ker(π∗). For any prime �, we get an injective morphism on the Q�-Tate modules π ∗
�

: V�(Jac(Cd)) →
V�(Jac(C )) and

V�(Jac(C )) = V�(Ad) ⊕ π ∗
�
(V�(Jac(Cd))).

The group μd acts on Cd. For any α ∈Q[μd] let π ∗(α) = d
n
(π ∗

d ◦ α ◦ π∗). Then π ∗(α)|V�(Ad ) = 0 and
π ∗(α)|π∗

�
(V�(Jac(Cd ))) = α (see the proof of Proposition 2 in [12]).

In particular, the Galois representation attached to the curve yn = f (x) contains for each d | n what
might be called a d-new part coming from the curve yd = f (x) and

V�(Jac(C )) =
⊕

d|n
V�(Jac(Cd))d-new. (6.3)

Furthermore, following the decomposition (6.1), the action of the group algebra Q�[t]/φd(t) on
V�(Jac(C )) is nontrivial precisely in the subspace corresponding to V�(Jac(Cd))d-new.

Example. Suppose that n = p · q with p, q distinct prime numbers. Then

V�(Jac(C )) = V�(Jac(C ))pq-new ⊕ V�(Jac(Cp)) ⊕ V�(Jac(Cq)),

where V�(Jac(C ))pq-new = V�(Ap) ∩ V�(Aq). The group algebra Q[t]/φpq(t) acts nontrivially on the first
summand, Q[t]/φp(t) on the second and Q[t]/φq(t) on the third one.

An explicit description of V�(Jac(C ))n-new can be given as virtual representations using the inclusion–
exclusion principle.

Remark 6.3. The contribution from H = G in the above formula is trivial, as it corresponds to a genus
0 curve. This is the reason why one can remove the term with d = 1 in (6.1) and (6.3).

6.3. Twisting

Let c ∈ K be a nonzero element, f (x) ∈ K[x] and consider the following two curves:

C : yn = f (x),

and

C ′: yn = c · f (x).

It is clear that they become isomorphic over the (abelian) extension K( n
√

c), so they are what can be called
a “twist” of each other. By class field theory, the extension K( n

√
c)/K comes from a Hecke character (that

corresponds to the twisting character).

Problem: what is the relation between the Galois representations of C and that of C ′?

An answer to this problem for example allows to remove the assumption made in the first section of
f (x) being monic. As mentioned in the introduction of the present section, the irreducible components
of our semistable model involve equations where the defining polynomial is not monic (Proposition 4.1)
and we need to twists by a d-th root of ct.

The problem is probably known to experts (as happens for example in the case of an elliptic curve
twisted by a quadratic character, or an elliptic curve with CM by Z[ζ3] while twisted by a cubic or sextic
character) but we did not find a good reference to its solution in the literature, so we briefly present it
here.

Since both curves become isomorphic over the extension K[ n
√

c], their representations must be related
by some twist. More concretely, if we base extend C to L = K[ n

√
c] (let CL denote such curve) and we
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do the same to C ′ then both curves become isomorphic, so their Galois representations are isomorphic
as well. Recall that the representation attached to Jac(C ) and ResK(Jac(CL)) are related via

V�(ResK(Jac(CL))) =
⊕
χ

V�(Jac(C )) ⊗ χ , (6.4)

where χ ranges over the characters of the (abelian) group Gal(L/K). In particular, one is tempted to
believe that the representations attached to C and C ′ differ by a twist.

This picture however is a little misleading, as it is not true that V�(Jac(C ′)) equals V�(Jac(C )) ⊗ χ

(for any character χ ) in general; for example, the latter does not even have the right determinant! What
happens is that V�(Jac(C )) (respectively V�(Jac(C ′))) has a decomposition (as explained in Section 6.1)
of the form:

V�(Jac(C )) =
⊕

d|n
V�(Jac(Cd))d-new.

Recall that Q�[t]/φd(t) acts on V�(Jac(Cd))d-new, hence the latter admits a decomposition in terms of the
action of the d-th roots of unity. For that purpose, let O� be the minimal extension of Z� containing the
d-th roots of unity, and let F� be its field of fractions.

Lemma 6.4. There exists a decomposition

V�(Jac(Cd))d-new ⊗Z�
F� =

d⊕
i=1

gcd(i,d)=1

V (i)
� (Jac(Cd))d-new ⊗Z�

F�, (6.5)

as Q�[GalK]-modules, where t acts on V (i)
� (Jac(Cd))d-new ⊗Z�

F� like ζ i
d.

Proof. For every value of i, 1 ≤ i ≤ d prime to d, the map t − ζ i
p is an endomorphism of

V�(Jac(Cd))d-new ⊗Z�
F�, and V (i)

� (Jac(Cd))d-new ⊗Z�
F� equals its kernel. Since the polynomials t − ζ i

d and
t − ζ

j
d are relatively prime (if i �= j), the kernels do not have intersection (and we get a direct sum). The

fact that

d∏
i=1

gcd(i,d)=1

(t − ζ i
d) = φd(t) = 0,

implies that for each j prime to d, the map Pj = φd (x)

(x−ζ j
d )

(t) vanishes at V (i)
� (Jac(Cd))d-new ⊗Z�

F� for all i �= j,

and Pj at V (j)
� (Jac(Cd))d-new ⊗Z�

F� acts like multiplication by the non-zero element φd
′(ζ j

d). Since the
polynomials

{
φd (x)

(x−ζ j
d )

}
are relative prime, 1 can be written as a linear combination of them, hence the

images of the maps Pj span the whole vector space V (i)
� (Jac(Cd))d-new ⊗Z�

F�.

Remark 6.5. The previous decomposition holds for V�(Jac(Cd))d-new ⊗Z�
O� if � � d. The reason is that if

� � d

O�[t]/ϕ(t) =
d⊕

i=1
gcd(i,d)=1

O� · ζ i
d.
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Fix ζn an n-th root of unity in K . Such a choice determines an element (abusing notation) ζn ∈
End(Jac(C )) and an element ζn (abusing notation again) in V�(Jac(C )) (its image under the map
End(Jac(C )) ⊗Z� ↪→ End(T�(Jac(C )))).

Proposition 6.6. Let L = K[ n
√

c], let r = [L:K], and let V (i)
� (Jac(Cd))d-new ⊗Z�

F� denote one subspace of
the decomposition (6.5). Let σ ∈ Gal(L/K) be the generator sending n

√
c to ζ n/r

n
n
√

c and let χ :Gal(L/K) →
Q� denote the character sending σ to ζ n/r

n . Then for all 1 ≤ i ≤ n, prime to n we have

V (i)
� (Jac(Cd))d-new ⊗Z�

F� � (V (i)
� (Jac(Cd

′))d-new ⊗Z�
F�) ⊗ χ i.

Proof. Let ϕ : C → C ′ be the map ϕ(x, y) = (x, n
√

c y) and let σ̃ ∈ GalK be such that its restriction to
K[ n

√
c] equals σ . We claim that

σ̃ ◦ ϕ = ζ n/r
n · ϕ ◦ σ̃ . (6.6)

If we compute both maps at a point (x, y), the left hand side equals

(σ̃ (x), σ̃ ( n
√

c) · σ̃ (y)) = (σ̃ (x), ζ n/r
n

n
√

c · σ̃ (y)),

which clearly equals the right hand side hence the claim. The result follows easily from (6.6) recalling
that on V (i)

� (Jac(Cd)d-new) ⊗Z�
F� the element t acts by (ζ n/r

n )i.

Remark 6.7. The previous description is consistent with (6.4), since

V�(ResK(Jac(CL)))d-new =
⊕
ψ

V�(Jac(C ))d-new ⊗ψ =
⊕
ψ

⎛⎜⎜⎝ d⊕
i=1

gcd(i,d)=1

V (i)
� (Jac(Cd))d-new ⊗ψ

⎞⎟⎟⎠

=
⊕
ψ

⎛⎜⎜⎝ d⊕
i=1

gcd(i,d)=1

V (i)
� (Jac(Cd

′))d-new ⊗ χ iψ

⎞⎟⎟⎠= V�(ResK(Jac(CL
′)))d-new,

where the last equality follows from the fact that while ψ varies over all characters of the group
Gal(L/K), the product χ iψ also varies over all such characters.

The Galois representation of the semistable model included already twists (of the Steinberg represen-
tation), but they were unramified ones (see for example the Galois representation of Example 2, equation
(5.3)). Unramified twists affect the value of Frobenius, but do not change the image of inertia.

To compute the effect of twisting on a component of positive genus of the semistable model by
an unramified character, it is probably more effective to compute the number of points of the twisted
curve (using the method described in [15]) rather than assuming the polynomial f (x) is monic and then
computing the twist as explained before. Ramified twists on the contrary affect the image of inertia and
their action cannot be computed via counting points over K (however, in [7] a method to compute the
action of ramified twists is given in terms of counting the number of points over different extensions
of the base field). The use of weighted cluster is very handful to distinguish whether the twist by ct

appearing on the components of Proposition 4.1 are ramified or not.

Proposition 6.8. Let t be a component of X corresponding to a cluster s. Then the components of Y (�)
t

are ramified twists of a nonsingular superelliptic curve precisely when d � et.
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Proof. The extension is unramified if and only if d divides the valuation of ct. But et is by definition
the valuation of ct.

In particular, Proposition 6.2 allows to check whether this condition is verified or not for a component
from the weighted cluster picture. Note that for each d | n, if d � et then the image of inertia in the abelian
piece of the d-new part is given by rt-copies of

d⊕
i=1

gcd(i,d)=1

χ i,

where χ is the ramified character corresponding to the extension K( d
√
π et )/K and rt = 2g(yd

t =ft(xt))
φ(d)

.

Example 1. Consider once again the first example (of degree 6), given by the equation

C : y6= x(x − p2)(x − p)(x − p − p2)(x − 2p)(x − 2p − p2)(x − 1)(x − 1 − p)(x − 1 − 2p)

Its weighted cluster picture equals

Proposition 6.2 gives that: esmax = 0, es1 = 6, es2 = es3 = es4 = 8 and es5 = 3. This implies that no
ramified twist is involved on Y (l)

1 (its components are genus 1-curves), while the curves Y2, Y3 and Y4 (all
of them of genus 2) involve a ramified twist χ corresponding to the extension Qp( 3

√
p)/Qp. Such curves

have a 2-new part (of genus 0), a 3-new part (of genus 1) giving the representation of inertia χ ⊕ χ 2 and
a 6-new part (also of genus 1) giving the same representation of inertia.

Regarding the component Y5 (of genus 4), let ψ be the character attached to the representation
Qp(

√
p)/Qp. The curve has a 2-new part of genus 1, giving the representation ψ ⊕ψ (since 2 � es5);

has a 3-new part (also of genus 1) which does not involve any twist (as 3 | 3) hence inertia acts triv-
ially in this 2-dimensional part; and a 6-new part (of dimension 4) where inertia acts via the quadratic
character ψ .

To understand the toric part, we need to understand the action of Gal(Qp( 3
√

p)/Qp) on the component
graph. The way to compute this action is well explained in [9] (see Examples 1.9 and 1.11). Concretely,
it is given by what they call the “lift-act-reduce” procedure. Let σ ∈ Gal(Qp/Qp) and (x̄, ȳ) a point on Ym.
Any lift corresponds to a point (x̃, ỹ) (on the curve C), hence the reduction of (σ (x̃), σ (ỹ)) corresponds
to the point (σ (x̄), σ (ȳ)).

If we apply such a procedure to our example, it follows easily that such an action fixes the components
Y (i)

m as well as its intersection points. The same happens for the component Y1, as the change of variables
is defined over Qp. However, while looking at the component Y2 the situation is quite different.

Let σ ∈ Gal(Qp( 3
√

p)/Qp) be the automorphism determined by σ ( 3
√

p) = ζ3
3
√

p. If (x2, y2) is an element
of Y2, and P = (x̃2, ỹ2) is any lift, then P corresponds to the point in C with coordinates (p2x̃2, p4/3ỹ2),
which maps under σ to the point (p2x̃2, ζ3p4/3ỹ2), corresponding to the point (x̃2, ζ3ỹ2) on Y2, which
reduces to (x2, ζ3y2) = ζ3 · (x2, y2). In particular, Gal(Qp( 3

√
p)/Qp) acts via the cubic character χ sending

σ to ζ3.
A similar computation shows that Gal(Qp( 3

√
p)/Qp) acts also via the same character χ on the com-

ponents Y3 and Y4, but trivially on the irreducible components of Y1 and on Y5. Note however that the
action is trivial on the components graph (as it fixes all components and their intersection points). In
particular, the image of inertia in the toric part is the same over Qp than over Qp( 3

√
p).
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