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1. Introduction

An arithmetic function f is said to be multiplicative if f(1) = 1 and f(mn)
= f(m)f(n) whenever (m,n) =1, where (m,n) denotes as usual the greatest
common divisor of m and n. Furthermore an arithmetic function is said to be
linear (or completely multiplicative) if f(1) = 1 and f(mn) = f(m)f(n) for all
positive integers m and n. The Dirichlet convolution of two arithmetic functions
f and g is defined by

fogln = T flag(h)
for all ne Z*. Recall that the set of all multiplicative functions, denoted by M,
with this operation is an abelian group.

We shall call an arithmetic function f an n-ic function if f is the convolution
of n linear functions. We shall also cal! an arithmetic function h a rational function
of order (n, m) if h is the convolution of an n-ic function f and the inverse of an
m-ic function g, where g—' o g(k) = a(k) = [1/k]. The term rational function
of order (r,s) seems to originate with Vaidyanathaswamy (1931), who examined
this type of multiplicative functions. Note that a rational function of order (1,1)
is commonly called a totient. We shall use the convention that « is a 0-ic function.
Hence, an n-ic function f = fo « can also be considered as a rational function
of order (n,0) and the inverse of an m-ic function can be said to be a rational
function of order (0, m). If se let

R={f | f is a rational function of order (n,m), n,me Z* | {0}},

then it is an easy matter to show (R, o ) is a subgroup of (M, o ).

It is the purpose of this paper to exhibit characterizations of n-ic functions
and rational functions of order (1,7n) as well as examine rational functions of an
arbitrary order (n, m).
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2. n-ic Functions

In this section we will prove a characterization of n-ic functions that will be
exceedingly useful in the remaining sections. An example of an n-ic fnuction that
has been studied extensively is 1§’ (m) = 150 1,0 -+ 0 14(m) (n times), where
to(m) = 1 for all me Z*. This function is seen to be the number of ways m can
be expressed as a product of n factors (including unity factors) (see Dickson
(1919; page 308)), Beumer (1962) and Potter (1968)). The following lemma, which
will be used to prove Theorem 2.2, is easily proved by a straightforward argument.

LemMA 2.1. Let f be an arithmetic function. Then f is n-ic if and only if
f is multiplicative and for every prime pand allaeZ™.

[P = —fiPg~ P + 97 (")

where fy is a linear function, g is a (n — 1)-ic function, and f~! is the inverse
of f with respect to ‘0.

Proor. If f is n-ic, then there exists functions f; and g such that f; is
linear, g is (n — 1) — ic, and f-* = f,™! o g~!. Therefore, since f1 is linear

7Y = e~ ") + 97 (%)
= —fipg~ @) + 97"
for p a prime and a any natural number.

Conversely, to show f is n — ic, since f is multiplicative, we need only show
that f~1(p%) = f{ ' o g~ (p®) for an arbitrary prime p and aeZ*. For p a
prime and aeZ*, since f, is linear, f{ '(p?) = 0 for all a = 2 (Apostol (1971)).
Thus,

7109 = —fi@e ') + 97 (%

= g i PN+ PO P9 T + o+ Y
= g~'o £ (.

The necessity of the following theorem was first proven by Vaidyanathaswamy
(1930). It is beliewed that the proof of the sufficiency appears here for the first
time. Note that this theorem is an analogous generalization of the well-known
characterization for linear functions (n = 1).

Il

THEOREM 2.2. Let f be an arithmetic function. A necessary and sufficient
condition for f to be n — ic is that f is multiplicative and, for each prime p,

1" =0 for all a > n.

ProoF. The reader is referred to Vaidyanathaswamy (1930) for the proof that
the condition is necessary. The sufficiency part of the proof will be proven by
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induction on n. This is known to be true for n = 1 (see Apostol (1971)). Suppose
n > 1 and the theorem is true for kK < n—1. We will construct a linear function
Jf1 and an (n—1)-ic function g such that for every prime p and every acZ+,
we have

D = - ' + g7 (Y.

For a fixed prime p, the construction procedes as follows. Let 4 = A(p)
be the least integer such that f~!(p®) = 0 for all a > A. Clearly n 2 4 =0
and f~(p*) # 0. If 4 = 0, then the matter is trivial — take g(1) = f;(1) = 1
and g(p*) = f,(p*) = Ofor alla > 0. If 4 > 0, consider the polynomial equation
(in x)

A-1
(2.1) 0= k{:o (— 1)"xA—kf—1(pk) —(- 1)Af"1(PA)'

This equation of degree A with non-zero constant term has a nonzero solution
say x = B. Define g (a multiplicative function) inductively at the powers of this
prime p by the first order difference equation

22 g='@) +Bg~ (") =71, a=123-

with the initial condition g=*(p*~') = f~'(p#)/B. The solution of this difference
equation is g~ 1(p*~!) =0foralla > A —1, and
i1
g7l ) = Z (= DB + (= 1Y B (pY),
k=1
j=2,3,-.

{Notice that the solution for j = A is valid since B is a solution of (2.1)). Now
define the linear function f; at this prime p to be fi(p) = — B.

When the construction is completed at each prime, we have f; linear and
g~ l(p®) =0 for all a = A = A(p). Therefore by the induction assumption,
since A(p) < n for all primes p, g is (n — 1) — ic, and (2.2) clearly shows that the
condition of Lemma 2.1 is satisfied. Thus f is n — ic.

3. Busche-Ramanujan identities of order N

A multiplicative function f is said to admit a Busche-Ramanujan identity if
there exists a multiplicative function F such that for all positive integers m and n,

fimn) = X f(m/d)f(n/d)F(d).

d[(m,n)

This definition is due to Vaidyanathaswamy (1931), who showed that the only
multiplicative functions which admit Busche-Ramanujan identities are quadratic
functions (in our notation 2 — ic functions). Busche-Ramanujan identities have

https://doi.org/10.1017/5144678870002070X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870002070X

[4] Multiplicative arithmetic functions 351

been also studied by Ramanathan (1943) and McCarthy (1960). This section
extends their results to N — ic functions.

DErFINITION 3.1. A multiplicative function f is said to admit a Busche-
Ramanujan identity of order N, if there exists a multiplicative function F such
that
(3.1 fmn) = X X,  f(m|d)f(n]e)F(de)

N
d|{(m,Cm) e|(n.Cm/d)

where C,, = pip,---p, if m = p'p3*--p", a;>0 for L i< r, p,py-,p
distinct primes.

We now state a theorem that is due to Vaidyanathaswamy (1931; page 645).
For a proof that depends only the fact that f o f~!(p®) = a(p®) see Gioia (1962).

r

THEOREM 3.2. Suppose that f is a multiplicative function. For a fixed
prime p,acZ*, and beZ™,

a b
(3.2) @) =(-1 .20 ‘20 FE* O D).
i=0 j=
THEOREM 3.3. A multiplicative function f is n—ic if and only if for
each prime p,allaeZ*, and all beZ*,

(3.3) e =(-1) X X ) f(ple)f 1 (de).
d[(pe.p™) e|(p?.p"/d)
Proor. If f is n — ic, then (3.3) follows directly from Theorems 2.2 and 3.2.
Conversely, it suffices to show that f~1(p"**) = 0 for k = 1. Letting a = n
and b = 1, we obtain the following in (3.3):

S = (-1 X X f(p"/d)f(ple)f~"(de)

d|(p",p™) e|(p.p"id)

n-1
(=D Eof(P""'){f(P)f"(P") +fTHEO+ (= DS P

I

n n—1
(= D@ Z f@H @) + (=1 T @S0+

(=1 X 1" 1)F 1
Thus,

n+1

I J@ N = 0= B FQr ) ).

Therefore, f~'(p"*!) = 0. If we assume that f~!(p"**) =0 for 1 £ x £ k and
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we let a = n+(k—1) and b = 1 in (3.3), then, using the same rearrangements
as the case k = 1, we obtain

0= Zof(P"+"‘j)f“(pf) = 2 f@"N ) + £ Y.
j= j=0
Therefore, the theorem is proven by induction on k for each prime p. It is known

that, for m and n positive integers,

(= 1)* if m and n have the same

Clm, n) = k distinct prime divisors,

0 otherwise

is multiplicative in both variables (Vaidyanathaswamy (1931 ; page 645)). W enow
prove the following lemma.

LemMa 3.4. If f is multiplicative and a function g(m,n) is defined by
gmny= X, X, f(m/d)f(nle)f~"(de)C(d,e),

d[(m,Cm) e|(n,Cm/d)
then g(m,n) is multiplicative in both variables.
ProoOF. Let (ac,bd) = 1. We wish to show that g(a, b)g(c,d) = g(ac, bd).
g(a, b)g(c, d)
= X, X, flawf/x)fwx)Clw,x) x

w|(a,Ca) x|(b,Ca/w)

z X, fle/nf@i=f(y)C(y,2)

Yl(e.Ce)  zl@.Ce /)

z:CN ! bzg"/ )f (a/w)f(c/y) f(b]x) f(d]2)f = (wx) f~ (y2)C(w, x)C(y, 2)
wi(a.Ca) x|(b,Ca/w
y](c,CeI:v) z[(d,C?/y)

= %, X, flac/wy)f(bd/x2)f~ (wxyz) C(wy,xz)
wy|(ac,Cac) xz|(bd,Cac/wy)
= g(ac, bd).

THEOREM 3.5. An arithmetic function f is N —ic if and only if f is
multiplicative and

f(mn) = % Z,  Sfmid)f(ne)f~'(de)C(d,e)

N
d|(m,Cn) e|(n,Cm/d)
forallmandninZ*

Proor. By Lemma 3.4 it suffices to consider the case where the argument is
a power of a prime. Thus, let m = p® and n = p® where p is a prime and a and b
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are non-negative integers. If both a and b are in Z*, then we are finished by
Theorem 3.3. If a =0 or b =0, then C(d,e) = 0 unless d = ¢ = 1. Hence, the
result holds for all non-negative a and b.

4. Quadratic functions

Quadratic functions have been studied more than any other type of n — ic
functions (with the possible exception of linear functions) chiefly because
o(n) = 1,0 15(n) are quadratic functions. In addition to the characterizations
of quadratic functions that we have given in sections two and three, we state
the following characterization (see McCarthy (1960)).

THEOREM 4.1. A multiplicative function f is quadratic if and only if,
Jor all primes pand all aeZ*,

f@*Y) = @) ) =S D (@Y.

In this section we give yet another characterization. In general, given an
n — ic function f, it is easy to see that for each prime p, f is completely determined
by £~ p), £~ (p?), --,.f~1(p™). That is, there exists a function F such that

(41) f(.pm) = F(_f_l(p)’f—l(pz): "'9f-1(p")spm)

for all me Z*. However, for an arbitrary n this function F is quite complicated.
For the case f quadratic we explicitly give this function and also show that if f
is multiplicative and f satisfies (4.1) for the given F, then f is quadratic.

THEOREM 4.2. Assume f is a multiplicative function. Then f is a quadratic
Sfunction if and only if for every prime p and every neZ*

(n—1i . .
@y sen= T o ("T)oerrey
05is(n/2]

Before we prove this theorem we prove the following lemma,

LemMA 4.3. Assume f is an arithmetic function possessing an inverse.
Then

4.3) F@p) = —f'OF@"") = @)F(@""?)
for n = 2, where F(p") equals the summation in (4.2).

Proor. This lemma will be proven in two cases.
Case (1) —niseven. Let n = 21 + 2. Then
—[THOFE* Y — [ @) F ()

2041 -1
i

1
= ?0( _ 1)2l+2+i ( (f—l(p))zl+2—2i(f—1(p2))i
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i )
+ 2 (_1)21+1+i(21i l)(f—1(p))2l—2i(f-1(p2))i+1
i=0

- (

N E'l (— 1)2,”“((21 +1- i)+(21 +i1 - i))(f_l(p))z,“_zi y

1

° +

Y- preg-pye

G + (= (-

1+ .

- 21 (- 1)21+2+i(21 + 2 - l)(f—l(p))21+2—2i(j‘-—1(p2))i
i=0 I

— F(p21+2).

Case (2)—nisodd. Letn = 21 + 1.
=fTHDF@™) — T PF@* )

! 21—
_ 21+1+i
(-

)(f— l(p))zl +1 —-2i(f— 1(p2))i

1

1-1 (20 —1—1i
_ 21+
+ X (=1 ( j

i=0

Jor-tanr-- -y

= (- (oo

w2 o (T) (U)o o

1

i

I

= = (- 1)2'“*"(

i=0

2041 -1
i

)(f—l(p))zl+1—-2i(f—1@2))i
= F(p*'*1).

PROOF OF THEOREM 4.2. Assume f is quadratic. Equation (4.2) is easily
seen to hold for n = 1 for every prime p. Let p be an arbitrary prime and assume
Equation (4.2) holds for all powers of p less than n. By Theorem 4.1

f)y = —f@fE") -0 ?)
for all n = 2. By the induction assumption and Lemma 4.2
f@) = =@ f@E" ) - @)
= —fT'@FE") — fPHF@"?)
= F(".
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Conversely, assume [ satisfies Equation (4.2) for all n. By Lemma 4.2 for
alln =2

J@) = @S =T ).

It is now an easy inductive argument that shows f~!(p®) = O for all ¢ > 2.

We obtain some interesting identities if we use specific quadratic functions
in Equation (4.2). Two well-known quadratic functions are the tau function
(the number of divisors of a natural number) and sigma function (the sum of the
divisors of a natural number). For the tau function

) =n+1= X (—1)n+i(ni—i)2n_2,~,

02is(n/2]

and for the sigma function

apy= X (- 1)"”( " z— i )(1 + py-2ip,

0=is([n/2)

5. Rational functions

An arithmetic function f is called a totient if f is the convolution of a linear
function and the inverse of a linear function. Recently Wall and Hsu (1972)
showed that a multiplicative function f is a totient if and only if for each prime
D, f(p),f(p?), -+ is a geometric progression. We define an arithmetic function S
to be a rational function of order (1, n) if f is the convolution of a linear function
and the inverse of an n — ic function. We obtain the following result which is
analogous to Wall and Hsu’s theorem.

THEOREM 5.1. A multiplicative function F is a rational function of order
(1,n) if and only if for each prime p, F(p"), F(p"*1), --- is a geometric progression.

Proor. If F is a rational function of order (1,n), then there exists a linear
function f and an n — ic function g such that F = fo g~*. Let

¢.1 FP) =fog™'(p") = a.
Since f is linear and g is n — ic, forall ke Z*

n+k

F(pn+k) = .Eof(pn+k_i)g—1(pi)

GO 2 76"

GO I FD0" )
Y @a.
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Conversely, let F(p"**) = r*a, k = 0. Let f be a linear function such that
f(p) = r. Consider the following system of n equations in the n unknowns,
X1y Xgytty Xyt

x4+ rxm +x, = F(PO) -1

P 4 T, e Xy = F@pY)—r~?
rx; + X, = F(p*) —-r?
X, = F(p)—r.
Since
[n-1 -2 ro1]
=z pne? 1
det Co = (=124,
r 1
1

there exists a unique solution of this system of equations, say (¥, ¥z, Yu)-
Let g be a multiplicative function such that

g7 )=y, 12i<n and g7!(@"*) =0
for ke Z*. By Theorem 2.2, g is n — ic. For 1 £ j £ n, one sees that
F(p’) = fo g~'(p’)

and forn+k =j
F(p)) = F'**) = r*a = PF(")

@) fo g~ ("
— fO g“(p"*").

Therefore, F is a rational function of order (1, n).

6. The subgroup of rational functions

We shall call a function that is the convolution of an n — ic function and the
inverse of an m — ic function a rational function of order (n,m). If we use the
convention that a(a(n) = [1/n]) is an 0 — ic function, then an n — ic function is
also a rational function of order (n,0) and the inverse of an m — ic function is a
rational function of order (0, m). One notices that « is the only rational function
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of order (0,0). It is easy to see that if we let R = {f l f is a rational function of
order (n,m),n = 0,m = 0}, then (T, 0 ) is a subgroup of (M, 0 ).

As a consequence of Theorem 2.2 we prove that rational functions of order
(n, m) satisfy the following theorem.

THEOREM 6.1. If F is a rational function of order (n,m), then for each
prime p and each k 2 max{n,m} = N there exists an n — ic function f and
an m — ic function g such that

F@h = Z S0 @) /'@

Proor. Note that if we use the convention that f(p*™”) = 0 for x < y, then
the restriction that k = N can be dropped.

Since F is a rational function of order (n, m), there exist functions f and ¢
such that fis n — ic, g is m — ic, and F = fo g~1. Hence

k
F@h = Z (09~

k k
70997100 ~ B F07 @)

k
2 "0 ()~ )

Since k= N, g~'(p) = f~'(p") = 0 for N < i £ k. Therefore, the theorem
follows.

7. Remark

If we replace the Dirichlet convolution by the basic sequence convolution
(Goldsmith (1969)), then, using the severance class theory developed by the authors,
Carroll and Gioia (1971), analogous results for all the theorems in this paper
hold.
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