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An interesting resurrection phenomenon (including the initial complete submersion,
subsequent resurfacing and final rebounding) of a superhydrophobic sphere impacting
onto a liquid bath was observed in experiments and direct numerical simulations
by Galeano-Rios et al. (J. Fluid Mech., vol. 912, 2021, Al7). We investigate the
mechanisms of the liquid entry for a superhydrophobic cylinder in this paper. The
superhydrophobic cylinder, commonly employed as supporting legs for insects and robots
at the liquid surface, can exhibit liquid-entry mechanisms different from those observed
with the sphere. The direct numerical simulation method is applied to the impact of a
two-dimensional (2-D) superhydrophobic cylinder (modelled as a pseudo-solid) onto a
liquid bath. We find that for the impacting cylinder the resurrection phenomenon can
also exist, and the cylinder can either rebound (get detached from the liquid surface) or
stay afloat after resurfacing. The cylinder impact behaviour is classified into four regimes,
i.e. floating, bouncing, resurrecting (resurrecting-floating and resurrecting-bouncing) and
sinking, dependent on the Weber number and the density ratio of the cylinder to the
liquid. For the regimes of floating and bouncing, the force analysis indicates that the form
drag dominates the motion of the cylinder in the very beginning of the impact, while
subsequently the surface tension force also plays a role with the contact line pinning on
the horizontal midline of the cylinder. For the critical states of the highlighted resurrecting
regime, our numerical results show that the rising height for the completely submerged
cylinder of different density ratios remains nearly unchanged. Accordingly, a relation
between the maximum ascending velocity and the density ratio is derived to predict
whether the completely submerged cylinder can resurface.
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1. Introduction

It is important to understand the statics and dynamics of bodies under the effect of
gas—liquid interface in nature, ranging from standing and locomotion of insects on water
(Bush & Hu 2006) through water entry of bodies (Truscott, Epps & Belden 2014) to
mineral flotation (Ueda et al. 2010). The design of micromachines or microrobots on the
gas-liquid interface is becoming increasingly popular in research, for example, processing
platforms floating on a liquid surface (Bowden et al. 1997; Barbot et al. 2019; Basualdo
et al. 2021; Jung et al. 2021), water walking microrobots (Hu, Chan & Bush 2003; Hu
et al. 2018) and strider-like water jumping microrobots (Koh et al. 2015).

Floating and sinking are the two main states of a small object on the liquid surface in
the absence of an initial velocity of the body, considering the effect of surface tension and
gravity. Vella (2015) presented a review of research on floating and sinking states of a small
object. A small object with larger density than water can float at the water surface under
the effect of surface tension or sink in the water. Whether the state is floating or sinking
is determined by some parameters, e.g. the density, size, shape and surface properties of
the object, and the distance away from nearby other objects. Pierson & Magnaudet (2018)
conducted experimental research on the inertial settling of a sphere through an interface
between two immiscible liquids with moderate density difference, and investigated the
floating and sinking regimes. In addition to different sinking modes, due to the absence of
initial sphere velocity, only the static state of flotation of sphere was illuminated but the
transient state of initially sinking and then floating has not been mentioned.

The impact of bodies onto liquid can lead to rich physical phenomena, which involve
the inertial force, the surface tension force, the hydrodynamic force and the gravitational
force. Research on this topic focuses on the impact of spherical particles onto liquid. For
a relatively low impact speed, the particle may either sink into the liquid with the pulled
cavity pinching off or rebound with the pulled cavity not pinching off (Chen et al. 2018),
depending on the properties of the particle and the liquid. For a high impact speed, a region
of high pressure in liquid can appear and form a splash in the early stage of the impact
(Thoroddsen et al. 2004; Marston, Li & Thoroddsen 2012). Wagner’s theory (Wagner
1932) describes this important early stage, and is often applied in many studies concerning
the high-speed impact between two phases (solid-liquid or liquid-liquid), e.g. Cointe &
Armand (1987), Howison, Ockendon & Wilson (1991) and Cimpeanu & Moore (2018).

Recently, Galeano-Rios ef al.’s (2021) experiments on impact of a superhydrophobic
sphere onto water for three densities of particle (1.2, 2.2 and 3.2 g cm™>), three radii
of particle (0.83, 1.24 and 1.64 mm) and different impact velocities (30-110 cm s
found a new dynamical phenomenon that the pulled cavity pinches off and eventually the
particle rebounds. This phenomenon was called resurrection, which occurs in a narrow
range of impact velocities and for a sufficiently small density difference between the
particle and the water. The observed resurrection was reproduced by direct numerical
simulations (DNS) conducted for the particle density of 1.2 g cm™. The observation
of the interesting resurrection phenomenon may be crucial to the design of strider-like
water jumping microrobots (Koh et al. 2015). Up to date, the ranges of values in main
parameters for the occurrence of resurrection have not been determined due to the limited
cases of experiments and more limited cases of DNS.

A strider has long cylinder-like legs, and the cylinder-like shape can increase the surface
tension force in order to bear the weight of the strider and the impact especially as
the strider jumps. Vella, Lee & Kim (2006) performed an experiment to investigate the
descending process of a horizontal cylinder on the air—water interface, and developed
a simple hydrodynamic model based on the experimental data. Using the developed

994 Al11-2


https://doi.org/10.1017/jfm.2024.691

https://doi.org/10.1017/jfm.2024.691 Published online by Cambridge University Press

Resurrection of a superhydrophobic cylinder

model, they predicted that the sinking time taken for the cylinder to reach the fully
immersed state due to gravity is directly proportional to /l.4/g Where [, is the capillary
length and g is gravitational acceleration. Vella & Metcalfe (2007) developed a nonlinear
two-dimensional (2-D) mathematical model of equilibrium of a floating infinite cylinder
and studied the criterion for the cylinder sinking. According to Bhatnagar & Finn (2006)
and Chen & Siegel (2018), a floating cylinder under the surface tension effect may
reach equilibrium states, but some of these states are unstable. Janssens, Chaurasia &
Fried (2017) studied a partly submerged cylinder under the effect of the surface tension
imbalance and discussed the Marangoni propulsion for the floating cylinder, which
possibly inspires a new way to manipulate long cylinders at the liquid—gas interface. By
comparing the stabilities of confined and unconfined floating cylinders, Zhang & Zhou
(2023) found the confinement by two hydrophobic plates with a small spacing can assist
with the interfacial floatation of a cylinder with a larger weight.

Different from the floatation behaviour of a 2-D body, the impacting dynamical
behaviour of a 2-D body or a long cylinder onto a liquid bath is much richer, dependent on
the impacting velocity and the particle-to-liquid density ratio. Some experimental research
about a long horizontal cylinder falling or impacting onto water was conducted. Greenhow
& Lin (1983) and Greenhow (1988) experimentally observed the evolution of air—water
interface as a horizontal long circular cylinder descends through the interface. Colicchio
et al. (2009) conducted experimental and numerical investigations of the water-entry and
water-exit of a light (lighter than water) circular cylinder either freely falling at a height
above the interface or exiting the water at a depth below the interface. Goharzadeh &
Molki (2012) designed a release unit of horizontally releasing a horizontal cylinder to
make the horizontal cylinder vertically descend through the interface and experimentally
observed the impact dynamics of a cylinder and the surface wave. Wei & Hu (2014)
experimentally investigated the three-dimensional (3-D) effect on water entry with an
impacting horizontal circular cylinder. Lyu ef al. (2015) experimentally studied the water
entry of a horizontal circular cylinder into flowing water with an impact velocity. The
horizontal displacement was found to increase as the water velocity increases, and the
trajectories of the hollow cylinder collapsed at the initial stage of submerging in water
when the ratio of impact velocity to water velocity was the same as the solid cylinder.
When the impact speed is relatively high, Wagner’s (1932) theoretical framework can
be used to study the impacting dynamical behaviour. For the liquid entry of an arbitrary
2-D body, Zhao & Faltinsen (1993) presented a simple asymptotic solution based on the
Wagner theory, without considering the surface tension effect. Korobkin (1997) used the
method of matched asymptotic expansions to analyse the high-speed liquid—solid impact
problem while the role of the surface tension can be estimated by this method.

Some numerical research about a 2-D body or horizontal long cylinder falling or
impacting onto water was also conducted. Zhu, Faltinsen & Hu (2007) numerically
simulated the deformations of water surface induced by the water entry and exit of
a horizontal 2-D circular cylinder with both forced and free vertical motions, and the
simulated results were found to be in favourable agreement with the experimental results
by Greenhow & Lin (1983). Hafsia et al. (2009) conducted a 2-D numerical simulation
of a horizontal cylinder entering into and pulled out from water and well predicted
the deformation of the interface as simulated by Lin (2007). Liu, Gao & Ding (2017)
conducted 2-D modelling and simulations of fluid—structure interaction involving dynamic
wetting as a horizontal circular cylinder sinks through the interface. Kiara, Paredes & Yue
(2017) carried out a 2-D numerical investigation of the water entry of horizontal cylinders
without and with spin. Iranmanesh & Passandideh-Fard (2017) performed 3-D numerical
simulations on the water entry of a horizontal circular cylinder for low Froude numbers,
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and the numerical results were found to be in a good agreement with the experimental data
by Wei & Hu (2014).

Up to date, the work about the occurrence or non-occurrence of the resurrection
(observed for an impacting superhydrophobic sphere; see Galeano-Rios et al. 2021) for
a small cylinder impacting onto a liquid bath has not been reported. In this situation,
some intriguing questions have been raised. Will the interesting resurrection occur for
a small 2-D cylinder impacting onto a liquid bath? What are the ranges of the density
of the impacting cylinder, the impact velocity, and the surface tension coefficient for
the occurrence of the resurrection? What are the occurring mechanism and condition
of the resurrection? Without doubt, these questions are crucial to the research about the
impacting of small particles onto a liquid bath and the related industry.

In this paper, in order to answer the questions well, the impact of a small
superhydrophobic cylinder onto a liquid bath is investigated using DNS based on the
pseudo-solid method. The dynamic modes of the cylinder are studied and classified into
four types. Various states of the impacting cylinder are comprehensively identified in a
space of two parameters (the density ratio of the cylinder to the liquid and the Weber
number). The occurring mechanism and condition of the resurrection are investigated.

2. Problem formation and mathematical methods

Figure 1 shows a schematic of a 2-D superhydrophobic circular cylinder of diameter D
impacting downwards onto a liquid bath from air in a computational domain (spanning
10D in width and 20D in length) in a downward gravity field in Cartesian coordinates
(X, ¥). The initial cylinder velocity of non-zero magnitude is V (when the cylinder contacts
the undisturbed liquid—gas surface), which is chosen as the reference velocity for our
system. The related physical parameters used in our 2-D simulations can be found in
table 1. To simplify the simulation of the fluid—solid interaction, the pseudo-solid approach
is adopted (see the details in Appendix A), which has been shown as a satisfactory model
for the impact of a solid sphere with a very large contact angle (Galeano-Rios et al.
2021). Within the pseudo-solid approach, a special stiff 2-D droplet with high viscosity
(restricting the liquid motion inside) and high surface tension coefficient (restricting the
relatively large deformation during impact) is used to simulate the solid cylinder. In our
2-D calculations, the densities of the pseudo-solid, the liquid and the gas are denoted by
Ps, pr and pg, respectively, while the dynamic viscosities of the pseudo-solid, the liquid
and the gas are denoted by iy, ©; and g, respectively. The surface tension coefficients
of the pseudo-solid surface and the liquid surface are denoted by o and o, respectively.
The dynamic viscosity of the pseudo-solid (i.e. the cylinder) is 250 times as large as that
of the liquid in the bath (see /4 in table 1), while the surface tension coefficient of the
pseudo-solid surface is 150 times as large as that between the liquid and the gas (see o4/0;
in table 1).

Within the pseudo-solid method, it is unable to impose a value for the contact angle
of the pseudo-solid. Instead, the contact angle of the pseudo-solid remains 180° naturally,
due to the specific relation among the surface tensions of the solid-liquid, solid—gas and
liquid—gas interfaces (see the details in Appendix A). Applying the pseudo-solid method,
we find that there is a very thin film of gas with the thickness of approximately three
meshes (less than D/100) between the pseudo-solid and the liquid and there is no triple
contact line (CL; contact point in two dimensions) on the pseudo-solid. However, the
liquid-entry behaviour with the superhydrophobic surface appears to be little influenced by
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Figure 1. Schematic of a superhydrophobic circular cylinder impacting on the liquid surface. The origin of the
dimensional Cartesian coordinates system (x,y) is located at the intersection of the symmetry axis (the vertical
dot-dashed line) and the undisturbed liquid—gas interface (the horizontal dashed line). The azimuth angle o of
the contact line (contact point in two dimensions) starting from the negative y axis is equal to the inclination
angle ¢ of the liquid surface at the contact line starting from the positive x axis, because the theoretical contact
angle 6 is equal to 180° in the simulations (see Appendix A). Here « and ¢ are both measured counterclockwise.

Parameter Symbol Definition Value
Surface tension coefficient ratio — oslog 150
Density ratio of gas to liquid — pglp1 1072
Density ratio of pseudo-solid to liquid Ap pslp1 1-1.5
Viscosity ratio of gas to liquid — Mg/t 1072
Viscosity ratio of pseudo-solid to liquid — s/ 1L 250
Reynolds number Re pDV/in —
Reynolds number for the liquid Re; oDV 2167.52
Weber number We pDV%/o —
‘Weber number for the liquid We; p,DVz/a i 5-80
Froude number Fr V/(gD)l/ 2 5.60
Contact angle of the cylinder 0 — 180°

Table 1. Values of relevant parameters used in our DNS.

the microscopic details of the contact with this surface, according to Galeano-Rios ef al.
(2021). We have explained this from the perspective of energy in Appendix B.
The physical parameters are non-dimensionalised as follows:

x=x/D, y=y/D, u=u/V, v=v/V, v,=v/V, t=1tV/D, (2.la+)

where u and v are the dimensionless horizontal and vertical velocities of the fluid,
respectively, vy is the dimensionless vertical velocity of the cylinder mass centre, and t
is the dimensionless time. The governing Navier—Stokes equations in dimensionless form
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are given by
V.u=0, (2.2)

§z+u-Vu=—Vp+—LV%b+Jﬂdn+—i— (2.3)
ot Re We Fr2’ ’

where the definitions of the dimensionless numbers Re, We and Fr are listed in table 1, the
Nabla operator V = (d/0x,0/9y), the velocity vector u = (u, v), k denotes the curvature of
the liquid—gas interface (the liquid surface) or the pseudo-solid surface, n denotes the unit
normal of the interface and § denotes the Dirac delta function at the interface. The Bond

number Bo (with Bo = ,ogDz/a) is commonly employed for interfacial floatation (Vella
2015). To employ the Bond number in this paper is also feasible with the relationship
Bo = WelFr?. To simplify our analysis, the Froude number Fr is set as a moderate constant
(table 1), under which the highlighted resurrection is likely to occur. By changing We, the
relative importance of the gravity and the surface tension (measured by Bo) varies. Thus,
for the liquid-entry problem in this paper (with Fr fixed), there is no essential difference
between using Bo and using We.

To mark the interface location, the volume fraction functions c;(x, y, ¢) and c(x, y, t) are
used, with which the value of ¢;, ¢s and 1 — ¢; — ¢ denote the volume fraction of the liquid,
the pseudo-solid and the gas, respectively, in a computational cell. The domains of ¢; =1,
c;=0and 0 < ¢; < 1 represent the liquid, the gas and the liquid surface, respectively, while
the domains of ¢y =1, ¢, =0 and 0 < ¢; < 1 represent the pseudo-solid, the liquid or gas
and the pseudo solid surface, respectively. The volume fractions ¢; and ¢, are governed by
the advection equations:

acy
— 4+ V . (cu) =0, 2.4)
0T
dcg
— 4+ V . (csu) =0. (2.5)
aT

For the whole computational domain, the density p (dynamic viscosity w) can be

interpolated with the pseudo-solid density p, (dynamic viscosity py), the liquid density
p1 (dynamic viscosity ;) and the gas density p, (dynamic viscosity ftg):

P = pscs + pici + pg(l —cs — ¢, (2.6)

m = psCs + picr + pg(l — e — cyp). 2.7

To reduce computational cost, the symmetry boundary condition is set at the left side

of the computational domain. Only the right half of the physical domain will be computed

(see figure 1). In addition, the outflow boundary condition is employed at the top of

computational domain as

d 0
Ay, 2.8)
dy  dy
while no-slip boundary conditions are employed at the right side and the bottom of the
computational domain as

u=v=0. (2.9)

The DNS are implemented using the well-known, open-source, volume-of-fluid (VoF)
package Gerris (Popinet 2003, 2009). The adaptive mesh refinement is adopted and the
local mesh sizes are adjusted depending on the interfacial location, the velocity gradient
and the vorticity. An independence analysis is conducted to determine the appropriate
domain size and grid refinement (see Appendix C).
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Figure 2. (a) Trajectory of the lowest point on the sphere. Solid curves correspond to experimental data by
Galeano-Rios et al. (2021) and dashed curves to our 2-D axisymmetric simulations. The circle points indicate
the moment when the sphere gets detached from the water surface in our simulations. (b) Time evolution of
pseudo-solid deformation in our simulation. The data in (b) correspond to the simulation of V =0.4024 m g1
in (). The deformed diameters D; and D5 are as defined in the inset of (b). For the liquid (i.e. water), the
parameters are given as density p; = 103 kg m—3, viscosity ; = 0.978 x 10~3 Pa s and the surface tension
of the liquid surface o; =0.072 N m~". For the solid sphere (pseudo-solid in simulations), the parameters are
given as initial diameter D = 0.166 cm, density p, = 2.2 x 10° kg m~3, viscosity jy =250 11; and the surface
tension of the pseudo-solid surface oy =20 ;. These values of parameters are also seen in Galeano-Rios et al.
(2021). For the parameters of gas (not given in Galeano-Rios et al. 2021), p; = 10kg m~3 and Mg = 107 Pas
are employed in our simulations.

3. Results and discussion

In order to show the validity of our DNS results, we simulate the impact of a
superhydrophobic sphere onto a liquid bath using the 2-D axisymmetric model and
compare the calculated results at different times with the experimental data by
Galeano-Rios et al. (2021), as shown in figure 2. The parameters of liquid and solid in
Galeano-Rios et al. (2021) are employed in these simulations while the parameters of
gas in theirs are not given. We employ p, = 10 kg m~—> (with Pg/P1 = 1072) and Mg =
107 Pas for the gas in these simulations. The gas—liquid density ratio of pg/p1 = 1072 is
larger than that in reality (approximately 10~3) while the influence of gas is still negligible.
In addition, we find the density ratio of pg/0; = 10~2 (also in table 1) can possibly tune
the Gerris solver for better convergence. The numerical results are in a good agreement
with the published experimental data. Notably, the equilibrium contact angle of the sphere
is 160° for the experiments in Galeano-Rios et al. (2021) while the contact angle in
our simulations is naturally 180°, which may account for the error of our simulations in
figure 2(a). In addition, the deformation of the pseudo-solid used to simulate the sphere is
generally less than 5 % of the original sphere diameter, as shown in figure 2(b). This proves
validity and applicability of the pseudo-solid approach used here, as it was in Galeano-Rios
et al. (2021). It should be noted that surface tension and viscosity of the pseudo-solid for
the 2-D axisymmetric model are adopted from Galeano-Rios et al. (2021). For the 2-D
cases focused on in this paper, the pseudo-solid parameters (i.e. 0 ¢/o; and (is/ 4 in table 1)
can also achieve the maximum deformation less than 5 % of the original cylinder diameter.

3.1. Four flow regimes

For the simplicity of our investigation, the Reynolds number for the liquid Re; is fixed in the
following (as in table 1). Four typical flow regimes are identified in our simulations. Flow
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Figure 3. Representative snapshots of a superhydrophobic cylinder impacting on the liquid surface (where
Ap =12 and 6 = 180°) for four distinct impact regimes: (a) floating for We; = 15, (b) bouncing for We; = 30,
(c) resurrecting for We; =37 and (d) sinking for We; =40. The blue curves denote the gas—liquid interfaces,
and the black arrows denote the velocity vectors. The width for the domain depicted in each snapshot is 4D
(see the first snapshot in d) and the scale is uniform in length and width. The enlarged drawing at the right in
this figure corresponds to the snapshot of 7 =16.9 in (c), where gas is trapped around the cylinder.

characteristics (including the interface evolution and the liquid velocity vector) of the four
are shown in figure 3. For a given density ratio 4,, the four regimes (floating, bouncing,
resurrecting and sinking) appear in sequence as the liquid Weber number We; (which is
more representative than the Weber number for the gas or pseudo-solid) increases. For the
different regimes in figure 3, the corresponding mass centre location and velocity of the
cylinder are shown in figure 4(a,b), respectively. An interesting observation can be made
for the highlighted case of resurrecting (see figure 3(c) and the green dot-dashed line in
figure 4a). When the cylinder reaches the lowest position (with the minimum value of y),
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Figure 4. Time evolution of (a) centre height and (b) vertical velocity of the cylinder centre for the four
flow regimes in figure 3, i.e. floating (We; = 15), bouncing (We; = 30), resurrecting (We; =37) and sinking
(We; = 40). The black solid line of y = 0 indicates the undisturbed liquid line height, (J) indicates the moment
when the cylinder starts to detach from the liquid, (O) represents the moment when the cylinder is just fully
submerged by liquid and (x) indicates the moment when the cylinder starts to resurface from the liquid.

the cylinder is not yet fully immersed and the surface tension still plays a role. The cylinder
begins to ascend after passing the lowest position and then becomes fully immersed. It is
founded that this interesting process typically accounts for approximately 10—15 % of the
entire impact (from initial touch of v =0 to the moment of resurfacing, see the cross in
figure 4).

For the floating regime (in figure 3a), the cylinder remains descending after coming
into contact with the liquid, and then starts to ascend at the lowest position (see the
image of T =5.6 in figure 3a) due to the recovery of the liquid—gas interface. Meanwhile,
the cylinder remains attached to the liquid—gas interface. For the bouncing regime (in
figure 3b), the cylinder movement is similar to that of the floating regime, except that the
cylinder separates from the liquid during the ascent motion (see the image of 7 =19.9 in
figure 3b). For the resurrecting regime (in figure 3c¢), the cylinder also undergoes a descent
motion and then an ascent motion. During the ascent motion, the air cavity pinches off
and the cylinder is fully submerged (see the image of T = 12.8 in figure 3¢). However, the
cylinder will finally break through the interface (see the image of v =37.8 in figure 3c).
For the sinking regime (in figure 3d), the cylinder will never break through the interface
after fully submerged.

Figure 5 shows the phase diagram of the flow regimes for a cylinder impacting on the
liquid surface in a parameter space (d,, We;). Only the cases of 4, > 1 are considered,
because the cylinder with its density smaller than the liquid density (1, < 1) will manifest
itself eventually even if the impacting velocity is extremely high. When the density of
the cylinder is slightly smaller than that of the liquid, the impacting cylinder can become
fully immersed at first while it may take a significant time for the cylinder to resurface,
depending on the impact velocity V. For a specific density ratio A,, as We; increases from 0
to a large enough value, the four regimes, i.e. floating, bouncing, resurrecting and sinking,
appear sequentially. It can be seen from figure 5 that the resurrection occurs in a very
narrow region (between the solid curve and the dot-dashed curve). For a large enough
density ratio A, (larger than 1.3 or so), the resurrection will never occur.

In most cases of the resurrecting regime, we find that the cylinder will remain afloat after
resurfacing (see figure 3(c) and black crosses in figure 5). Meanwhile, in very rare cases of
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Figure 5. Phase diagram of a 2-D cylinder impacting onto a liquid bath in a parameter space (1,, We;). The
four phases include the regimes of floating, bouncing, resurrecting (with floating and bouncing) and sinking.
The cases of resurrecting with bouncing are rare for the impacting cylinder. Other parameters are listed in
table 1.

the resurrecting regime, the cylinder will bounce and get detached from the liquid surface
after resurfacing (denoted by red crosses in figure 5). However, for the superhydrophobic
sphere impacting onto the liquid, the regime of resurrecting with bouncing has been found
(see figure 11 in Galeano-Rios et al. 2021) but the regime of resurrecting with floating has
not been found so far. Though the cases of resurrecting (with bouncing or floating) are rare
for both the impacting cylinder and the impacting sphere, the resurrection with floating
seems more possible to occur for the cylinder while the resurrection with bouncing seems
more possible to occur for the sphere.

An interesting result can be found in figure 5 that the large density ratio 4, is helpful to
the occurrence of bouncing rather than floating for the impacting cylinder (at a given value
of Wey, e.g. We; =20). A similar result can also be seen in figure 7 of Lee & Kim (2008).
Only the cases of bouncing and floating are considered here. When the superhydrophobic
cylinder descends at the beginning, its mechanical energy is absorbed by the liquid. After
the cylinder reaches the lowest point, the surface tension force lifts the superhydrophobic
cylinder up and the energy returns to the cylinder (with a dissipation of the energy). Similar
to the cases of the impacting sphere (Galeano-Rios et al. 2021), the cylinder with higher
density (larger value of A,) recovers relatively more energy during impact than the cylinder
with lower density. Thus, the large density ratio A, promotes the occurrence of bouncing.

3.2. Force analysis

For the force analysis of the cylinder, we use the dimensional forms for all physical
quantities to aid in the comprehension. During the impact, the forces acting on the
cylinder are the capillary force, the gravitational force and the hydrodynamic force. The
hydrodynamic force can be regarded as the sum of the form drag, the hydrostatic pressure
and the added inertia force.

Though there is no microscopic three-phase CL (point) in our simulations with the
pseudo-solid approach (due to the very thin gas film between the solid and the liquid),
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So

Figure 6. The volumes of liquid displaced by the wetted portion of the cylinder (S,,), the deformed
liquid—gas interface (S, ) and the cavity above the wetted portion of the cylinder (S.).

the interface configurations in our simulations are relatively accurate because of the same
essence in surface energies (see Appendix B). To analyse the forces on the cylinder
theoretically, the position of the CL is estimated based on the configurations from the
simulations. The position on the cylinder where the thickness of the thin gas film rapidly
increases (i.e. the end of the thin gas film) is deemed as the contact point.

From the Newton’s second law, the motion of the cylinder can be described as

Aoy - - - -
<m+wm§%=ﬁ+ﬁ+ﬁ+m, 3.1)

where the mass of the cylinder is given by m; = wD?p,/4 and m, denotes the added mass.
Here fp, fu.f5 and fg are the vertical components of the hydrostatic pressure force, the
form drag force, the surface tension force and the gravitational force, respectively. The
vertical component of the hydrostatic pressure force f, is equal to the total weight of liquid
displaced by the wetted portion of the cylinder and the cavity above the wetted portion of
the cylinder. Following Vella & Li (2010) and Bush & Hu (2006), the vertical component
of the hydrostatic pressure force can be expressed as

fo = [Sw + S)]pig, (3.2)

where S, = (@ — sina cos a)p1D2/4 is the volume of liquid displaced by the wetted
portion of the cylinder, S, = p;Dsina(—h + (D/2) cos«) is volume of liquid displaced
by the cavity above the wetted portion of the cylinder (see figure 6) and /4 is the vertical
coordinate of the cylinder centre. The other three force components can be expressed as

fa=—3CapiD|5s|05.  fo =20sing, fo = —msg, (3.3a—c)

where C; denotes the drag coefficient. The added mass m, denotes the mass of liquid
displaced by the wetted portion of the cylinder (where m, = p;S,,). With (3.2) and
(3.3a—c), we can rewrite (3.1) as

D? dy 1 I .
(psnT + /OlSC) e [Sc + Swloig + ECdPlDUZ + 20 sing — myg. (3.4)

For the cases of medium We; in this paper, the impact process in each flow regime can
be divided into three stages: slamming, pinning and sliding. Figure 7(a) shows the time
evolution of the vertical components of the hydrodynamic force, the capillary force and
the gravitational force exerted on the cylinder for the three stages. In figure 7(b), sinx

994 All-11


https://doi.org/10.1017/jfm.2024.691

https://doi.org/10.1017/jfm.2024.691 Published online by Cambridge University Press

W. Zhang, Y. Mei, C. Fu and X. Zhou

(@)
0.6 '
! — — - Hydrodynamic force
‘\ —— Capillary force
0.4 F\ — Gravity 4
\
a A
N }1 1
Q. i
= 02011 8
S~ I
I 1
RN :
ol il N~
i R ]
A B | C
0.1 & 1 ‘
0 2 4 6 8 10 12
(b) T
Pinning stage Sliding stage
1.0 ‘, : — T T
A A ,"\h‘
g L
0.8 /' \ o
B I |
/ ! [
/ \ H
0.6 / \ R
3 / \ Pl
g / \ II 1
/ \ \
0.4 Sl \ 5I< n
' 1
CL sliding CL sliding‘, —We; =151
02 upward downward\ _____ We, =18 \
: - We =36
|~ -We =37
‘ . ‘ L m— Me=40
0 5 10 15 20 2535 40

T

Figure 7. Time evolution of (a) vertical components of the total hydrodynamic force, the capillary force and
the gravitational force exerted on the cylinder for the case of floating regime at We; =15 and 1, = 1.2, and
(b) strength of the vertical component of the capillary force in terms of sin o at 1, = 1.2 for We; = 15 (floating),
We; = 18 (bouncing), We; = 36 (bouncing), We; = 37 (resurrecting) and We; =40 (sinking). In (@), time ranges
A, B and C correspond to the slamming, pinning and sliding stages, respectively. In (b), ([J) indicates the
moment when the cylinder starts to detach from the liquid, (O) represents the moment when the cylinder is
just fully submerged by liquid and (x) indicates the moment when the cylinder starts to resurface from the
liquid. The snapshots in the four insets of (b) correspond to T =0.4, 5, 13 and 19.5 (from left to right) for
We; = 36. For We; =15, 37 and 40, the corresponding snapshots are seen in figure 3.

can indicate the position of the CL and the magnitude of the vertical capillary effect.
The slamming stage is the early period of impact process, at which the cylinder velocity
decreases rapidly due to the hydrodynamic force. The CL rapidly climbs to the cylinder
surface of o ~90°, where the vertical component of the capillary force reaches almost
its maximum value. In this stage, the movement of the cylinder is dominated by the
hydrodynamic force. After climbing to the cylinder surface of « &~ 90°, the CL is pinned at
this position, and the pinning stage starts. The capillary force remains nearly constant due
to pinning (see figure 7a) and the hydrodynamic force decreases slowly from a relatively
low value. At this pinning stage, the most dominant force is the capillary force.
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At the end of the pinning stage, the downward velocity of the cylinder further decreases
to approximately zero. At the sliding stage, the cylinder begins to ascend under the effect
of the capillary force. For a relatively small We; (in the floating regime), the CL begins
to slide downward from the pinned position (i.e. o decreases from 90°, see figure 3a).
Meanwhile, for a relatively large We; (in the resurrecting or sinking regime), the CL begins
to slide upward from the pinned position (i.e. « increases from 90°, see figure 3c,d). In
the bouncing regime, the CL may slide downwards continuously from the pinned position
before the cylinder becomes detached from the liquid (e.g. We; = 18 in figure 7b), or the
CL will slide upwards from the pinned position and then slide downwards continuously
before the detachment (e.g. We; = 36 in figure 7(b), see the corresponding insets).

3.3. Early stage motion analysis

In this section, we present a simplified model to predict the early-stage motion of an
impacting cylinder for the cases in the regime of floating and the regime of bouncing
according to the above force analysis.

At the slamming stage, the hydrodynamic force is dominant. From Ji, Song & Yao
(2017), the magnitude of the hydrostatic pressure force is much smaller than the form drag
and the added inertia force. The hydrostatic pressure force can be neglected throughout
this stage. Due to the relatively high velocity of the cylinder during this stage (We; > 5
in this paper), the form drag is significantly greater than other forces. Therefore, we only
consider the form drag at this stage, and (3.4) can be rewritten as

dvgy  2Cqp1 5
— = . 3.5
dt osTTD Us (3-5)

Integrating (3.5) with the initial condition v = —V, we can obtain the cylinder velocity
as a function of the time at the slamming stage:

by = o 1D (3.6)
o= —. .
2Cqt + 7D,V

Previous studies on the drag coefficient of a partially immersed superhydrophobic cylinder
remain inadequate. The experiments in Hunt et al. (2023) indicate that the drag coefficient
is 0—1.5 for a partially immersed superhydrophobic sphere, depending on the impacting
velocity, the diameter and the vertical position. When fully immersed, the drag coefficient
of the cylinder is approximately double that of the sphere with the same diameter for
Re ~ 10° (White 2016). Taking these into account, we find that the value of 1.5 can be
appropriate for Cy at the slamming stage in the cases of this paper.

At the pinning stage of the cylinder, the capillary force starts to play a role and its vertical
component can be seen as a constant (see figure 7a). In the meantime, the form drag and
the added inertia force also play roles, because the cylinder velocity is still large enough at
the whole stage. The volume of liquid displaced by cylinder is equal to half the volume of
the cylinder, leading to o &~ 90° or sin o & 1 (see figure 7b). The gravity force is also taken
into consideration. At this stage, (3.4) is therefore reduced to

) D" d, L CooDi? +20 + i (3.7)
- Nn—— = = v (o} m—4d. .
Ps 2,01 4 dr ) dpIVg Ps 48
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Figure 8. Time evolution of the non-dimensional cylinder velocity vy (where v, = v/ V) at the slamming
stage and the pinning stage for a case of the floating regime at We; =15 and A, =1.2. The dashed curve
denotes theoretical results that are calculated from (3.6) and (3.8).

Integrating (3.7), we can obtain the time evolution of the cylinder velocity at the pinning
stage:

_ |80 + A, pD*g 2t
= — |—————tan(—,/2CsDp;(8 AopD2g)———— 1+ C), (3.8
Vs 2CupD an( \/ aDpi(8o + A, 01 g)mez(l T2, +0), (3.8)

where C denotes a parameter to be determined.

Figure 8 shows the DNS result of the cylinder velocity for the case of figure 3(a), which
is also compared with the theoretical prediction of (3.6) and (3.8). For this case, when
T = tV/D =~ 0.7, which corresponds to the start of the pinning stage, the cylinder velocity
is given by vy = v5/V = —0.68. Accordingly, we can obtain the parameter C =0.846 in
(3.8). For the drag coefficient of the partial immerged body at the pinning stage, we use
C;=0.6 (in Vella & Li (2010), C; =0.6 was also used in a similar case) in theoretical
calculations.

3.4. Critical condition for resurrection

As shown in figure 5, the transition between the resurrecting regime and the sinking
regime only exists for 4, <1.3. From figure 3(c,d), the cylinder will be completely
submerged after the cavity above the cylinder pinches off. Then the cylinder continues to
accelerate upward under the inertial propulsion of the surrounding fluid for a short time.
Subsequently, the cylinder starts to decelerate due to the drag of the surrounding fluid.
During the decelerating process, the forces acting on the cylinder are the buoyancy force,
the form drag, the gravitational force and the added inertia force. Therefore, following Kim
et al. (2015), the motion of the fully immersed cylinder can be expressed as

7
(m, +ma>d—”t =T +Ja+Jc. (3.9)

where f, = nD?p;g/4. For the fully submerged cylinder moving perpendicular to the
axis of itself, by substituting @ = 7 into m, = (¢ — sin« cos o) piD? /4, the added mass
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Figure 9. (a) The definition of the non-dimensional critical height difference, where AH,, = AH,, /D.
(b) AH,, for different values of A,; (x) indicate the results from DNS.

becomes m, = nD2p1 /4 (see also White 2016). The drag coefficient is given by Cy ~ 1.5,
which is the appropriate value for a fully submerged cylinder (see Vella & Li 2010).
Equation (3.9) can therefore be rewritten as

20,02 d
% (A, + 1)§. (3.10)

[(1—25)8] - oD

We consider the critical cases that the cylinder velocity will precisely decelerate to zero
at the moment when it breaks through the interface (see the cross in figure 4). At t =1#,
the cylinder just reaches its maximum upwards velocity v., (see figure 9a). This velocity
is critical for the regime of sinking and the regime of resurrecting. Solving the ordinary
differential equation (3.10), it can be obtained that

Uy = /% tan[C3 — / C1 Ca(t — 15)], (3.11)
2

where

A, —1 2C, C
C = u, C) = —d, C3 = arctan —Zﬁcr . (3.12a—c)
Ap+1 (Ap + DpymD Ci

For the case that is precisely at the transition between the resurrecting regime and the
sinking regime, the cylinder velocity will precisely decelerate to zero at the moment when
it breaks through the interface. By letting vy = 0 in (3.11), we can get the moment 7, when
the cylinder just breaks through the interface. Integrating the velocity vy in (3.11) from
t=t,to t=t,, we can obtain

_ 1 c
AH, =—Tn (1 + —263,) , (3.13)

where AH,, denotes the critical height difference between the point where the cylinder
is just reaches its maximum upwards velocity v, and the point where the cylinder just
breaks through the interface (see figure 9a). _

We find that the critical height difference AH., almost remains constant for different
density ratios, as is shown in figure 9(b). Notably, for a very large density ratio 4, (larger
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Figure 10. Non-dimensional critical velocity v, as a function of A,, where v., = v./V. All crosses are
obtained from the cases in the resurrecting regime closest to the boundary between the resurrecting regime
and the sinking regime in the phase diagram (figure 5), except for the cross at A, =1, which is predicted
theoretically.

than 1.3 in figure 5), the regime of resurrecting does not exist, leading no critical case. As
depicted in figure 5, the allowable parameter region for resurrecting is relatively narrow
for both A, and We;, which may account for the constancy of the value of AH,,. Thus, the
critical velocity v, of the fully immersed cylinder can be obtained from (3.13) as

C _
B = \/—l(eZCzAH 1. (3.14)
(6]

The critical velocity v, for different A, calculated by (3.14) is compared with the
corresponding DNS results, as shown in figure 10. During the whole entry, if the maximal
velocity of the cylinder after fully immersed is larger than v.,, the resurrection will occur
for the cylinder.

4. Conclusions

We have numerically investigated the impact of a superhydrophobic cylinder onto a
liquid bath. The results demonstrate that with an increase in the Weber number, the
system exhibits four distinct flow regimes, i.e. floating, bouncing, resurrecting and sinking
regimes. The highlighted resurrecting regime pictures that, even if the cylinder is fully
submerged in the liquid during the impact, it can still emerge from the liquid. With a
further analysis, we find that when the cylinder reaches the lowest position, the cylinder
is not fully immersed yet and the surface tension still plays a role. After reaching this
position, the cylinder begins to move up when influenced by the surface tension force.
Subsequently, the cylinder is fully immersed in the liquid and the surface tension effect
on the cylinder disappears. For the resurrecting regime, the duration for the cylinder
ascending from the lowest position to the full immersion position is approximately
10-15 % of the entire process (from initial touching the liquid surface to resurfacing).
The fully immersed cylinder then continues moving up and resurfaces eventually, even if
its speed is slowed down by the viscous drag.
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From further numerical results, the phase diagram for the four regimes is presented
in a parameter space of the Weber number and the particle-to-liquid density ratio. The
resurrection regime for the impacting cylinder can only exist at a relatively narrow
parameter space (where the Weber number is medium and the cylinder density is not
very large). A force analysis is conducted for the impacting cylinder, and three stages
(i.e. slamming, pinning and sliding) can be divided according to the effect of the surface
tension (or the CL position). We find that the form drag dominates in the slamming stage
while the surface tension force and the gravity force also play roles in the pinning stage,
which can be applied to analyse the early stage motion of an impacting cylinder.

In order to predict whether the interesting resurrection phenomenon will occur for the
impacting cylinder, the dynamics is investigated for the cylinder when it is fully immersed.
We find that the critical height for the cylinder to resurface is almost constant for different
cylinder densities. With this finding, the critical velocity of the fully immersed cylinder is
derived, which can be used for the prediction of resurrection.
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Appendix A

To aid in the comprehension of the pseudo-solid approach, the volume fractions of liquid
and solid (c; and cy) for the three phases are shown in figure 11. At the triple-phase region,
the (surface tension) force balance can be expressed as

Olg COS @ + 05 COS B + o5 cosy =0, (Ala)
Olg SIn @ + 05 sin B + o siny =0, (A1Db)

where 04, 05 and o denote the surface tension coefficients for the liquid—gas interface,
the solid—gas interface and the solid—liquid interface, respectively.

For the VoF method, the theoretical surface tension coefficient o; (o), as presented
in table 1, works in the domain where 0 <¢; <1 (0 <c¢y; <1). Thus, we have o =0,
for the liquid—gas interface, while having o, = o for the solid—gas interface. The two
points meet our expectations. However, for the solid-liquid interface, both 0 < ¢; < 1 and
0 < ¢5 < 1 are satisfied, leading to the relation that

05 = O] + 05 = Ojg + Ogg. (A2)

Notably, the relation (A2) is deduced from the characteristic of the VoF method, instead
of the physical fact. With (Ala,b) and (A2), we can obtain the angle relation:

p=8, y=¢p—m. (A3a,b)
From (A3), it can be deduced that the contact angle 6 is fixed, given by
0=¢p—y=m. (A4)

The theoretical contact angle for the pseudo-solid approach is 180°, which accounts for
the agreement with the superhydrophobic cases.
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Figure 11. Surface tension forces at the three-phase region. The surface tension coefficients for the liquid—gas
interface, the solid—gas interface and the solid-liquid interface are denoted by o¢, 05 and o, respectively.
The direction angles B, ¢ and y of these forces are all measured counterclockwise starting from the positive
X axis.

Appendix B

Though we have explained that the theoretical contact angle in the pseudo-solid approach
is naturally 180°, there still exists an important problem. There is a very thin gas film
(with its thickness negligible) between the superhydrophobic cylinder and the liquid in the
numerical simulations, while this gas film may not necessarily be maintained in reality.
For the cases with and without the thin gas film, why do the motions of the impacting
superhydrophobic cylinder (or sphere in Galeano-Rios et al. 2021) agree well with each
other? This will be explained from the perspective of energy.

When there is no gas film between the cylinder and the liquid, the sum of surface
energies of the whole system can be expressed as

E= Esgo'sg + Elgo'lg + X041, (B1)

where X, X/, and X denote the areas of the solid—gas interface, the liquid—gas interface
and the solid-liquid interface, and o, 0/ and o are the three corresponding surface
energy per area.

When there is a very thin gas film between the cylinder and the liquid (considering the
same configurations as in (B1)), the solid-liquid interface with area Xy mentioned above
becomes the liquid—gas interface and the solid—gas interface. Thus, the sum of surface
energies of the whole system becomes

According to the well-known Thomas Young’s relation, the contact angle can be
expressed as
Osg — Osl

cosf = (B3)

Olg

When the contact angle 6 of the solid (e.g. the pseudo-solid in this paper) is equal to 180°,
we have the following relationship from (B3):

Osl = Osg + Olg. (B4)
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Figure 12. Trajectory of the lowest point on the cylinder under different (a) grid refinement level and (b) width
of the computational domain. The parameters are given as We; =15 and 1, = 1.2 (other parameters are listed
in table 1).

With (B4), it can be found that the sum of surface energies of the whole system is
the same whether there is a very thin film or not (i.e. E = E’) when 6 = 180°. The surface
energies govern the surface tension effect on the cylinder, and the surface tension forces are
related the first variations of the surface energies (Kralchevsky et al. 1993). Therefore, it is
demonstrated why the liquid-entry behaviour of a superhydrophobic solid is less dependent
on the microscopic details of the contact with the solid surface.

Appendix C

The grid independence analysis and the domain-size independence analysis are conducted
in this appendix. As shown in figure 12(a), the simulations of different minimum mesh
sizes are performed for a computational domain spanning 10D in width and 20D in
length (as in figure 1). It is found that the maximum grid refinement of level 12 (i.e. the
minimum grid size of 10D/2'2) is sufficient for the numerical simulations by comparisons
with the cases of levels 11 and 13. Thus, the grid refinement of level 12 is adopted in
our simulations. In order to obtain the appropriate size of the computational domain, we
compare the numerical results for the widths of 7.5D, 10D and 15D (with the length—width
ratio fixed at 2 as in figure 1) in figure 12(b). The numerical results for the width of 10D are
very close to those for the width of 15D, which shows that the width of 10D is large enough
for the computational domain for the numerical simulations. Thus, the computational
domain that spans 10D in width and 20D in length is adopted in our simulations.

It is worth noting that, when the physical parameters of a simulation case are very close
to the limits of the parameter regimes (see the demarcation curves of the phase diagram
in figure 5), the fate of the impacting cylinder can possibly change significantly with a
very slight disturbance in both physical and computational parameters (e.g. from sinking
to resurrecting, see the snapshots in figure 3c,d). For example, in a case with physical
parameters very close to the demarcation of regimes of sinking and resurrecting, a change
in the minimum mesh size (e.g. from the maximum refinement level 11 to 12) may cause
a significant difference for the trajectory of the impacting cylinder, which seemingly leads
to a bad result for the convergence test on grid independency. However, for the cases with
physical parameters a little far from the demarcation, the grid independency is easy to
verify (see e.g. figure 12). Furthermore, when exploring the critical Weber numbers for
different regimes (with other physical parameters the same, see figure 5), the critical values
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of We; obtained under two different refinement levels may be different but the difference
is very slight (typically, much less than 1). This indicates that our numerical results are
relatively reliable though the discussed impacting behaviour can be very sensitive to
parameters.

REFERENCES

BARBOT, A., TAN, H., POWER, M., SEICHEPINE, F. & YANG, G.-Z. 2019 Floating magnetic microrobots
for fiber functionalization. Sci. Robot. 4, eaax8336.

BASUALDO, F.N.P., BOLOPION, A., GAUTHIER, M. & LAMBERT, P. 2021 A microrobotic platform actuated
by thermocapillary flows for manipulation at the air—water interface. Sci. Robot. 6, eabd3557.

BHATNAGAR, R. & FINN, R. 2006 Equilibrium configurations of an infinite cylinder in an unbounded fluid.
Phys. Fluids 18, 047103.

BOWDEN, N., TERFORT, A., CARBECK, J. & WHITESIDES, G.M. 1997 Self-assembly of mesoscale objects
into ordered two-dimensional arrays. Science 276, 233-235.

BUsH, J.W.M. & Hu, D.L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech.
38, 339-369.

CHEN, H., L1U, H.-R., LU, X.-Y. & DING, H. 2018 Entrapping an impacting particle at a liquid—gas interface.
J. Fluid Mech. 841, 1073-1084.

CHEN, H. & SIEGEL, D.J. 2018 A floating cylinder on an unbounded bath. J. Math. Fluid Mech. 20,
1373-1404.

CIMPEANU, R. & MOORE, M.R. 2018 Early-time jet formation in liquid-liquid impact problems: theory and
simulations. J. Fluid Mech. 856, 764-796.

COINTE, R. & ARMAND, J.L. 1987 Hydrodynamic impact analysis of a cylinder. ASME J. Offshore Mech.
Arc. Engng 109, 237-243.

CoLICCHIO, G., GRECO, M., M10z71, M. & LUGNI, C. 2009 Experimental and numerical investigation of
the water-entry and water-exit of a circular cylinder. In The 24th International Workshop on Water Waves
and Floating Bodies, Zelenogorsk, Russia, 19-22 April.

GALEANO-RIOS, C.A., CIMPEANU, R., BAUMAN, I.A., MACEWEN, A., MILEWSKI, P.A. & HARRIS,
D.M. 2021 Capillary-scale solid rebounds: experiments, modelling and simulations. J. Fluid Mech. 912,
Al7.

GOHARZADEH, A. & MOLKI, A. 2012 Experimental study of water entry and exit of a circular cylinder at free
surface. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition,
IMECE?2012, Texas, USA, pp. 329-335.

GREENHOW, M. 1988 Water-entry and -exit of a horizontal circular cylinder. Appl. Ocean Res. 10 (4), 191-198.

GREENHOW, M. & LIN, W.-M. 1983 Nonlinear free surface effects: experiments and theory. MIT Internal
Rep. 83-19.

HAFSIA, Z., MNASRI, C., MOHAMED, O. & MAALEL, K. 2009 Water entry and exit of horizontal cylinder
in free surface flow. In CONV-09. Proceedings of International Symposium on Convective Heat and Mass
Transfer in Sustainable Energy, 26 April-1 May, Hammamet, Tunisia.

HowisoN, S.D., OCKENDON, J.R. & WILSON, S.K. 1991 Incompressible water-entry problems at small
deadrise angles. J. Fluid Mech. 222, 215-230.

Hu, D.L., CHAN, B. & BUSH, J.W.M. 2003 The hydrodynamics of water strider locomotion. Nature 424,
663-666.

Hu, W., LuM, G.Z., MASTRANGELI, M. & SITTI, M. 2018 Small-scale soft-bodied robot with multimodal
locomotion. Nature 554, 81-85.

HUNT, R., ZHAO, Z., SILVER, E., YAN, J., BAZILEVS, Y. & HARRIS, D.M. 2023 Drag on a partially
immersed sphere at the capillary scale. Phys. Rev. Fluids 8 (8), 084003.

IRANMANESH, A. & PASSANDIDEH-FARD, M. 2017 A three-dimensional numerical approach on water entry
of a horizontal circular cylinder using the volume of fluid technique. Ocean Engng 130, 557-566.

JANSSENS, S., CHAURASIA, V. & FRIED, E. 2017 Effect of a surface tension imbalance on a partly submerged
cylinder. J. Fluid Mech. 830, 369-386.

J1, B., SONG, Q. & YAO, Q. 2017 Numerical study of hydrophobic micron particle’s impaction on liquid
surface. Phys. Fluids 29 (7), 077102.

JUNG, D., et al. 2021 Highly conductive and elastic nanomembrane for skin electronics. Science 373,
1022-1026.

KIARA, A., PAREDES, R. & YUE, D.K.P. 2017 Numerical investigation of the water entry of cylinders without
and with spin. J. Fluid Mech. 814, 131-164.

994 A11-20


https://doi.org/10.1017/jfm.2024.691

https://doi.org/10.1017/jfm.2024.691 Published online by Cambridge University Press

Resurrection of a superhydrophobic cylinder

KM, S.J., HASANYAN, J., GEMMELL, B.J., LEE, S. & JUNG, S. 2015 Dynamic criteria of plankton jumping
out of water. J. R. Soc. Interface 12 (111), 20150582.

KoH, J.S., YANG, E., JUNG, G.P., JUNG, S.P., SON, J.H., LEE, S.I., JABLONSKI, P.G., WooD, R.]J.,
KM, H.Y. & CHO, K.J. 2015 Jumping on water: surface tension—dominated jumping of water striders and
robotic insects. Science 349, 517-521.

KOROBKIN, A.A. 1997 Asymptotic theory of liquid—solid impact. Phil. Trans. R. Soc. A 355, 507-522.

KRALCHEVSKY, P.A., PAUNOV, V.N., DENKOV, N.D., IVANOV, [.B. & NAGAYAMA, K. 1993 Energetical
and force approaches to the capillary interactions between particles attached to a liquid—fluid interface.
J. Colloid Interface Sci. 155, 420-437.

LEE, D.G. & KM, H.Y. 2008 Impact of a superhydrophobic sphere onto water. Langmuir 24, 142—145.

LIN, P. 2007 A fixed-grid model for simulation of a moving body in free surface flows. Comput. Fluids 36,
549-561.

Liu, H.-R., GAo, P. & DING, H. 2017 Fluid-structure interaction involving dynamic wetting: 2D modeling
and simulations. J. Comput. Phys. 348, 45-65.

Lyu, X., WEI, Z., TANG, H., NEw, T.H. & L1, H. 2015 On the motion of a falling circular cylinder in
flows after water entry. In Proceedings of SPIE International Conference on Experimental Mechanics 2014,
vol. 9302, 930233.

MARSTON, J.O., LI, E.Q. & THORODDSEN, S.T. 2012 Evolution of fluid-like granular ejecta generated by
sphere impact. J. Fluid Mech. 704, 5-36.

PIERSON, J.-L. & MAGNAUDET, J. 2018 Inertial settling of a sphere through an interface. Part 1. From sphere
flotation to wake fragmentation. J. Fluid Mech. 835, 762-807.

POPINET, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex
geometries. J. Comput. Phys. 190, 572—600.

POPINET, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.
228, 5838-5866.

THORODDSEN, S.T., ETOH, T.G., TAKEHARA, K. & TAKANO, Y. 2004 Impact jetting by a solid sphere.
J. Fluid Mech. 499, 139-148.

TrRuscoTT, T.T., Epps, B.P. & BELDEN, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46,
355-378.

UEDA, Y., TANAKA, M., UEMURA, T. & IGUCHI, M. 2010 Water entry of a superhydrophobic low-density
sphere. J. Vis. 13, 289-292.

VELLA, D. 2015 Floating versus sinking. Annu. Rev. Fluid Mech. 47, 115-135.

VELLA, D., LEE, D.-G. & KiMm, H.-Y. 2006 Sinking of a horizontal cylinder. Langmuir 22, 2972-2974.

VELLA, D. & LI, J. 2010 The impulsive motion of a small cylinder at an interface. Phys. Fluids 22, 052104.

VELLA, D. & METCALFE, P.D. 2007 Surface tension dominated impact. Phys. Fluids 19, 072108.

WAGNER, H. 1932 Uber Stoss-und Gleitvorgange an der Oberfluche von Flussigkeiten. Z. Angew. Math. Mech.
12, 193-215.

WEIL, Z. & HU, C. 2014 An experimental study on water entry of horizontal cylinders. J. Mar. Sci. Technol.
19, 338-350.

WHITE, F.M. 2016 Fluid Mechanics, 8th edn. McGraw-Hill.

ZHANG, W. & ZHOU, X. 2023 Equilibria and stabilities of a confined floating cylinder. J. Fluid Mech. 954,
A22.

ZHAO, R. & FALTINSEN, O. 1993 Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593—612.

ZHU, X., FALTINSEN, O.M. & HU, C. 2007 Water entry and exit of a horizontal circular cylinder. J. Offshore
Mech. Arctic Engng 129, 253-264.

994 Al1-21


https://doi.org/10.1017/jfm.2024.691

	1 Introduction
	2 Problem formation and mathematical methods
	3 Results and discussion
	3.1 Four flow regimes
	3.2 Force analysis
	3.3 Early stage motion analysis
	3.4 Critical condition for resurrection

	4 Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

