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Reynolds-averaged models for solving the Navier–Stokes equations are implicitly based
on Kolmogorov’s theory for describing energy transfers between the different turbulent
scales, which means that all the energy produced at large scales is transferred at a
constant rate to the smallest turbulent scales where it is dissipated. As a result, these
models use a single scale to describe the turbulence spectrum, which in cases of
non-equilibrium turbulence does not provide an adequate description of the transfers
actually observed. This is particularly the case for wall-bounded flows at high Reynolds
numbers, such as turbulent channel flows. Taking up an approach developed by Schiestel
(2007 Modeling and Simulation of Turbulent Flows, ISTE Ltd and John Wiley & Sons),
which aims to define a Reynolds-averaged Navier–Stokes model transporting several scales
of turbulence, a two-scale Reynolds stress model (RSM) was developed in order to take
into account the interactions between the inner and outer regions of wall-bounded flows.
The results obtained with the model are compared with the direct numerical simulations
(DNS) of Lee & Moser (J. Fluid Mech., vol. 860, 2019, pp. 886–938) in a turbulent channel
for several friction Reynolds numbers up to Reτ = 5200, for which partial integrations
in spectral space were carried out, highlighting distinct behaviours between small and
large scales of turbulence. The model developed provides an accurate description of the
contributions at small and large scales and thus reproduces the high-Reynolds-number
effects observed in DNS data. In addition, comparisons with the DNS data served to
validate a large part of the closure relations used for the various terms in the two-scale
RSM.
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1. Introduction

For equilibrium turbulence, Kolmogorov’s theory implies that the energy flux cascading
from large scales (LS) to small scales (SS) is equal to the dissipation rate of energy. Thus,
the dissipation rate is determined entirely by the large energy-containing eddies. From this
standpoint, the dissipation rate is independent of the Reynolds number, if the latter is large
enough. Only the dissipation scale depends on the Reynolds number. In real situations,
turbulence is evolving and not necessarily at equilibrium, so dissipation will not be equal
to the energy flux coming from the energetic eddies. There is a delay in this energy transfer,
which corresponds to the characteristic time it takes for a large eddy to cascade and give
rise to smaller eddies. Local and non-local interactions take place in turbulent flows (Laval,
Dubrulle & Nazarenko 2001), which translates spectrally into possible energy transfers
between remote wavenumbers. Direct transfers to immediately higher wavenumbers are
the most energetic, but a small proportion of the energy can be transferred to remote
wavenumbers. Inverse energy transfers, from SS to LS, can also occur.

Standard turbulence models are based on one-point closures and are therefore local
models. Their great popularity is attributable to their ability to correctly predict
non-homogeneous turbulent shear flows, which are those most commonly encountered
in industry. However, in addition to the purely local nature of one-point closure models,
these models also suffer from the single-scale assumption underlying their development.
A single-scale model means that the length and time scales are linked together, through
the turbulent quantities transported. This hypothesis derives directly from Kolmogorov’s
theory and the expected universal character of the spectrum shape. In these models, the
dissipation is used to evaluate the energy-containing eddies acting at LS. The energy
transfer rate is implicitly equal to the dissipation, which from a physical viewpoint is
related to the smallest structures, i.e. Kolmogorov’s scale. The single-scale hypothesis
can therefore only represent an equilibrium turbulence.

Multi-scale models offers a framework to tackle the turbulent interactions between the
different parts of a turbulent spectrum still using one-point closures. Pioneer works may
be attributed to Schiestel during his PhD (Schiestel 1974) and were further improved by
introducing a spectrum partitioning (Hanjalić, Launder & Schiestel 1979). Multi-scale
equations were then formally derived from partial integration of spectral equations
applicable to homogeneous anisotropic turbulence (Schiestel 1987). There are few concrete
models based on his ideas, with the notable exception of the work of Gleize, Schiestel
& Couaillier (1996), Grégoire et al. (1999) and Cadiou, Hanjalić & Stawiarski (2004).
More recently Chaouat & Schiestel (2007) proved the applicability of the approach on
non-isotropic non-homogeneous turbulence based on the work of Laporta & Bertoglio
(1995) and using the hypothesis of locally constant mean velocity gradient. The partial
energies and the spectral fluxes are used to define the different length scales to characterise
mechanisms such as return to isotropy, dissipation and turbulent diffusion. The ratio of
the partial energies or of the spectral fluxes are direct measures of the departure from the
equilibrium situation. The main difficulty of this approach lies in the definition of a closure
relation for the tensorial form of the spectral fluxes that derives from the partial integration
of the two-point transport equations (Schiestel 2007).

High-Reynolds-number wall-bounded flows are a major concern in fluid mechanics
and are notoriously challenging to study both experimentally and numerically. The
wall-blocking effect (Manceau & Hanjalić 2002) creates high levels of inhomogeneity
and anisotropy, making Kolmogorov’s theory invalid in these areas. In the near-wall
regions, with high Reynolds numbers, the turbulence spectra cannot simply be described
by a constant-rate energy cascade. Wall-bounded flows are generally broken down into
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High-Reynolds-number effects in fully developed channel flows

an inner region and an outer region, which are characterised by scale separation. The
mean velocity profile then behaves logarithmically with respect to the wall distance in the
overlap zone at high Reynolds numbers, with a constant and universal slope, although this
last point remains controversial (Nagib & Chauhan 2008; Monkewitz 2017; Monkewitz &
Nagib 2023). SS eddies dominates near walls, whereas LS eddies dominate further out
(Hutchins & Marusic 2007b). The classical description of near-wall turbulence assumes
the inner region to be independent from the outer region making time-averaged normalised
quantities using wall units independent of the Reynolds number. However, this view has
now been proved to be erroneous and one of the most remarkable example for this is that
it is now well-established (Marusic, Baars & Hutchins 2017) that the near-wall peak of the
streamwise turbulence intensity depends on the Reynolds number Re. A secondary peak,
the intensity of which depends on Re, also arises at LS and modulates the SS energy
in the near-wall region (Marusic, Mathis & Hutchins 2010b). At large high Reynolds
numbers, i.e. when the scale separation is sufficient, the footprint of the LS is seen as
a modulated boundary condition by the SS, through a change of the inner scaling as
Marusic et al. (2017) explained. High-Reynolds-number effects are well-documented in
channels (Sillero, Jiménez & Moser 2013; Lee & Moser 2015), in pipes (Ono, Furuichi
& Tsuji 2023) and in boundary layers (Vallikivi, Hultmark & Smits 2015; Marusic,
Mathis & Hutchins 2010a). Concerning channel flows, Lee & Moser (2019) applied a
spectrum partitioning to their direct numerical simulations (DNS) in order to separate LS
contributions from SS ones on the different terms involved in the transport equations of
the Reynolds stresses. The dimensionless cut-off wavelength was set to 1000 allowing the
SS streamwise intensity to be independent of the Reynolds number. The LS counterpart is
then shown to be strongly affected by Re.

Standard one-point closure Reynolds-averaged Navier–Stokes (RANS) models of first
or second order relying on the single-scale assumption can provide only a unique
prediction for the inner region, the outer region being scaled accordingly. Wall-unit
quantities are all independent of the Reynolds number in the inner region, which
notably results from the assumed equilibrium between production and dissipation of the
turbulent kinetic energy in the logarithmic region. It is therefore pointless to hope to
capture high-Reynolds-number effects with a single-scale RANS model. Nevertheless,
although a model having a physically relevant predictions up to second-order moments
is always desirable, single-scale models are commonly used in many wall-bounded flow
applications since the effects of high Reynolds numbers are not visible on the mean
flow. The main motivation for developing a model capable of handling the LS and SS
contributions revealed at high Reynolds numbers comes from recent evidence of the role
played by both types of contributions in boundary layers exposed to high freestream
turbulence levels (Jooss et al. 2021) or adverse pressure gradients (Harun et al. 2013). The
framework developed in the present study for high-Reynolds-number effects, for which
comprehensive DNS data can be exploited (Lee & Moser 2019), is thus intended to serve
as a basis for other important applications where single-scale models fail, even for mean
flow. The objective here is to reuse the foundations of the multi-scale approach developed
by Schiestel (2007) and implement it on the basis of a Reynolds stress model (RSM). The
multi-scale approach is recalled in § 2 and applied to the elliptic blending Reynolds stress
model (EBRSM) of Manceau (2015). This model was chosen for its ability to describe the
behaviour of Reynolds stresses in the near wall. It provides an excellent basis on which
to develop a multi-scale model. The model is tested in § 3 against the DNS database of
Lee & Moser (2019) and the SS and LS contributions are examined on the different terms
involved in the Reynolds stress transport equations.
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2. A multi-scale RSM

Let ϕij be the spherical mean of the Fourier transform of the two-point correlation tensor
depending on the position x and the wavenumber κ = ‖κ‖, such that the Reynolds stress
Rij is given by its integral:

Rij(x) =
∞∫

0

ϕij(x, κ) dκ. (2.1)

The corresponding spectrum can be split into n + 1 slices as illustrated in figure 1.
Formally, a multi-scale RSM derived from the approach proposed by Schiestel (2007)
may be written for an incompressible fluid as follows:

DR(m)
ij

Dt
= P(m)

ij + F(m−1)
ij − F(m)

ij + Φ
(m)
ij + D(m)

ij − ε
(m)
ij , (2.2)

with

R(m)
ij = u′

iu
′
j
(m) =

κm∫
κm−1

ϕij dκ. (2.3)

The overbar symbol is used for the Reynolds-averaged quantities whereas prime is
used for fluctuating quantities. Here P(m)

ij = −R(m)
ik (∂uj/∂xk) − R(m)

jk (∂ui/∂xk) is the exact

production term in slice m, Φ
(m)
ij is the pressure–strain correlation corresponding to the

redistribution term in the slice, D(m)
ij the diffusion term including the viscous diffusion,

the turbulent diffusion, denoted by T(m)
ij in the following, and the pressure diffusion and

ε
(m)
ij the dissipation associated with slice m. The velocity–pressure gradient correlation is

here decomposed into the pressure–strain correlation Φij and the pressure diffusion term.
The flux term F(m)

ij denotes the rate of energy transfer leaving slice m. Therefore, in the

last slice all the outgoing energy is dissipated and F(n)
ij = ε(n+1).

Implicitly, the above partitioning means that any flow quantity q is averaged from an
extended form of the Reynolds decomposition which reads

q = q̄ +
n∑

j=1

q
′( j). (2.4)

To model the energy flux, Schiestel (2007) assumed that the slice width is given by a length
scale related to the turbulent kinetic energy flux F(m) = 1

2 F(m)
ii such that

κ(m) − κ(m − 1) ∝ F(m)

k(m)3/2 . (2.5)

When deriving the ϕij equation (Schiestel 2007) and then applying (2.3), it is shown
that the transfer rate F(m) is composed of an inertial transfer contribution Ft

(m) from the
energy cascade, a rapid transfer contribution Fu

(m) due to straining of turbulence through

1000 A65-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.984
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Fij    = εij
(n) (n+1)

Fij
(1)

Pij
(1)

Dij
(1)

Rij
(1)

Rij
(m)

Fij
(m–1)

Fij
(m)

κ(n)κ(m)κ(1) κ(m – 1)

ϕij(κ)

Pij
(m)

Dij
(m)

Φij
(m)Φij

(1)

Figure 1. Spectrum partitioning of the two-point correlation tensor ϕij. In each slice m such that κ ∈
[κ(m−1), κ(m)], P(m)

ij is the corresponding production term, D(m)
ij the diffusion term, Φ

(m)
ij the redistribution

term and F(m)
ij the rate of transfer tensor. The one-point velocity correlation R(m)

ij is obtained by integration of
ϕij over slice m.

the action of the mean velocity gradients and a contribution due to the variations in the
splitting wavenumbers, which gives

F(m) = Ft
(m) + Fu

(m) − K (κ)
∂κ

∂t
, (2.6)

where K is the turbulent kinetic energy density in the spectral space such that k(m) =∫ κ(m)

κ(m−1)
K dκ . We remark that in developed turbulent channel flows, the contribution Fu

(m)

is zero due to homogeneity in the horizontal (x and z) directions. From the two previous
relations (2.5) and (2.6) and after a little algebra, Schiestel (2007) proves that F(m) is ruled
by a transport equation of the general form:

DF(m)

Dt
= F(m)

k(m)

(
C(m)

1 P(m) + C(m)
2 F(m−1) − C(m)

3 F(m) − C(m)
4 ε(m)

)
. (2.7)

Finally, a formulation inspired by Rotta hypothesis is retained to assess F(m)
ij :

F(m)
ij = F(m)

k(m)

(
A(m)R(m)

ij + 2
3

(
1 − A(m)

)
k(m)δij

)
, (2.8)

with A(m) a constant ranging from 0 to 1. For slices m involving large wavenumbers where
isotropy is expected, A(m) is assumed to take a value close to zero, whereas for slices m in
the region of low wavenumbers, A(m) may reach values close to unity. More complicated
attempts were also proposed by Schiestel (2007) to model the energy transfer, in particular
to account for the fast transfer contribution which also causes energy redistribution among
the Reynolds stress tensor components.

All previous developments are valid for free flows, without consideration of wall effects.
Although some proposals were formulated by Schiestel (2007) to incorporate near-wall
behaviour with ad hoc wall functions, no complete multi-scale RSM was fully derived to
compute wall-bounded flows. This is one of the most challenging aspects of developing a
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multi-scale model, and was a stumbling block to date. For the description of wall-bounded
flows with emphasis on the similarities existing in the near-wall region, physical quantities
are generally made dimensionless using the kinematic viscosity ν and the friction velocity
uτ . The sign + is used in the following to denote dimensionless quantities.

To revisit the approach developed by Schiestel and implement it to capture
high-Reynolds-number effects in channel flows, the spectrum is split into three parts
(n = 2, see figure 1) in analogy with the scale separation proposed by Lee & Moser
(2019) and, thus, forming a two-scale model. The EBRSM model of Manceau (2015) is
considered as the base model from which the closure relations for the pressure–strain
correlation and the turbulent diffusion are taken. In order to distinguish dissipation from
energy transfers between spectral bands, which are mixed up in single-scale models,
we slightly modify Manceau’s model by decomposing dissipation into a homogeneous
part ε̃, corresponding to the energy flux, and a near-wall inhomogeneous part εw, as is
conventionally done (Jones & Launder 1972; Gleize et al. 1996). Numerical tests on the
EBRSM model showed the best agreement with the original model for ε = ε̃ + εw, where

εw = 2νk
y2

[
1

y+0.8 tanh
(

y+

2.5

)
+
(

1 − tanh
(

y+

2.5

))]
, (2.9)

which guarantees correct theoretical behaviour at the wall. In Schiestel’s approach, the
transfer rate F(m) is directly related to the spectral width of the slice. By adjusting the
level of these fluxes, we can adjust the location of the cut-off in spectral space. In
the analysis proposed by Lee & Moser (2019), the energy transfers are found to take
place in the logarithmic region, well beyond the buffer layer and the viscous sublayer.
This reflects the fact that the large structures transfer energy to the small structures
and that the large structures are essentially located further from the wall than the small
ones (Hutchins & Marusic 2007b). Hence, in order to position the spectral cut-off for
a wavelength λ+ = 1000 as Lee and Moser did, the damping functions associated with
the two transported scales are judiciously adjusted. In the EBRSM model, the damping
is controlled by a blending function derived from an elliptic equation. In our two-scale
model, the coefficients governing each of the elliptical equations associated with the
transported scales can be used to adjust the position of the spectral cut-off.

Lee & Moser (2019) showed that partitioning the spectral space into a LS contribution
and a SS contribution with a cut-off wavenumber fixed at λ+ = 1000 is an appropriate
choice for describing the near-wall behaviour of channel flows. This corroborates previous
observations on wall flows where two distinct turbulent scales can be identified, one
characterising the near-wall cycle (Jiménez & Pinelli 1999) and a second characterising
the ‘superstructures’ appearing at high Reynolds numbers (Hutchins & Marusic 2007a). To
comply with these findings and to limit the number of transport equations, the multi-scale
approach is applied by considering only two scales. As mentioned above, the original
EBRSM model, which is implicitly based on the single-scale hypothesis, admits a unique
solution in the inner region, irrespective of the Reynolds number. Lee and Moser have
shown that the contributions of the SS are practically independent of the Reynolds number,
which means that the EBRSM formulation can be reused almost identically to describe the
m = 2 (SS = (2)) spectral slice. In addition, for this slice, the outgoing energy flux is equal
to the viscous dissipation, which confirms the idea of reusing the equation for ε from the
EBRSM model with minor adjustments to take account of certain effects such as energy
transfers from LS contributions of slice m = 1 (LS = (1)).

The pressure–strain correlation of the EBRSM model (see Appendix A) is composed
of the Speziale–Sarkar–Gatski (SSG) model (Speziale, Sarkar & Gatski 1991) for its
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homogeneous part and, in order to be consistent with the strong anisotropy encountered
near the walls, includes an inhomogeneous contribution taken from the work of Manceau
& Hanjalić (2002). This closure formulation is left unchanged in the two-scale RSM
for both spectral slices to model Φ

(m)
ij terms. This choice is questionable, particularly

for the inhomogeneous part close to the wall in the slice m = 1 (LS). The use of SSG
model for the homogeneous part, which performs satisfactorily in the EBRSM model, can
legitimately be applied to the slice m = 2 (SS) and its use in the slice m = 1 (LS), fairly
far from the wall, seems reasonable, although Schiestel (2007) showed that increasing
coefficients for the linear part should be considered as wavenumbers increase in the case
of homogeneous anisotropic turbulence subjected to strain. The use of the inhomogeneous
part defined by Manceau & Hanjalić (2002) for the slice m = 2 also seems coherent. For
m = 1 there is no evidence to justify this choice, but the inhomogeneous contribution for
the slice m = 1 is almost zero, since by construction the slice m = 1 is essentially acting
far from the wall. Similarly, the Daly & Harlow (1970) formulation used for turbulent
diffusion is directly reused in the transport equations for partial Reynolds stresses R(m)

ij .
Analysis of Lee and Moser’s DNS clearly shows that the transfer rate term F(1) from LS

to SS essentially acts from the logarithmic region onwards and that no transfer from LS
to SS exists in the buffer layer, particularly around the peak of turbulence kinetic energy
about y+ = 15. However, as demonstrated by Marusic et al. (2010a), the LS acting in the
outer region modulate the behaviour of the SS in the buffer layer, leading notably to an
increase in the peak near the wall of R11 as the Reynolds number increases. To take this
modulation effect into account, a term denoted M(1)

ij is added to the transport equation of

R(1)
ij to reproduce the action of the LS in the inner region.
In the present two-scale context, the extended Reynolds decomposition (2.4) reduces to

q = q̄ + q′(1) + q′(2) for any quantity q. Therefore, the Reynolds tensor is decomposed into
two parts Rij = R(1)

ij + R(2)
ij . To comply with the usual notation used in RANS modelling,

we note ε̃(m) = F(m), m ∈ {1, 2}, in what follows. Partial energy dissipation ε(m) = 1
2ε

(m)
ii

can thus be broken down into a transfer component ε̃(m) and a near-wall viscous dissipation
component ε

(m)
w . To complete the two-scale RSM, a transport equation must be defined

for the flux F(1) = ε̃(1). The model equation (2.7) is completed with a diffusion term to
resemble a standard transport equation. Ultimately, the two-scale RSM reads

DR(1)
ij

Dt
= −R(1)

ik
∂uj

∂xk
− R(1)

jk
∂ui

∂xk
+ Φ

(1)
ij − ε

(1)
ij + M(1)

ij + ∂

∂xl

[(
ν + cs

σk(1)
R(1)

lm t(1)
t

)
∂R(1)

ij

∂xm

]
,

DR(2)
ij

Dt
= −R(2)

ik
∂uj

∂xk
− R(2)

jk
∂ui

∂xk
+ ε̃

(1)
ij + Φ

(2)
ij − ε

(2)
ij + ∂

∂xl

[(
ν + cs

σk(2)
R(2)

lm t(2)
t

)
∂R(2)

ij

∂xm

]
,

Dε̃(1)

Dt
= C′(1)

ε1 Pk
(1) − C(1)

ε2 ε̃(1)

t(1)
t

+ ∂

∂xl

[(
ν + cs

σε
(1)

R(1)
lm t(1)

t

)
∂ε̃(1)

∂xm

]
,

Dε̃(2)

Dt
= C′(2)

ε1 Pk
(2) − C′(2)

ε2 ε̃(2) + C(2)
ε3 ε̃(1)

t(2)
t

+ ∂

∂xl

[(
ν + cs

σε
(2)

R(2)
lm t(2)

t

)
∂ε̃(2)

∂xm

]
,

α(1) − l(1)
t

2∇2α(1) = 1; α(2) − l(2)
t

2∇2α(2) = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

Concerning the partial dissipation tensors ε
(1)
ij and ε

(2)
ij , the approach followed by Manceau

(2015) is modified slightly by generalising the formulation used far from the walls. Instead
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of considering an isotropic distribution of ε
(m)
ij , the possibility of taking into account some

anisotropy far from the walls is introduced:

ε
(m)
ij =

(
1 − fw(m)

) R(m)
ij

k(m)
ε(m) + fw(m)

(
C(m)

ε

R(m)
ij

k(m)
ε(m) +

(
1 − C(m)

ε

) 2
3
ε(m)δij

)
;

ε(m) = ε̃(m) + ε(m)
w ; ε(m)

w = 2νk(m)

y2.8 tanh
( y

2.5

)
+ 2νk(m)

y2

(
1 − tanh

( y
2.5

))
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(2.11)

If the original approach of Manceau (2015) was followed, the coefficients would have
been C(m)

ε = 0. In practice, for the LS contribution, C(1)
ε = 0 is used, but taking C(2)

ε =
0.3 slightly improves the results. The transfer rate tensor ε̃

(1)
ij , which enters the transport

equation of R(2)
ij is also modelled using the same ideas:

ε̃
(1)
ij =

(
1 − f (2)

w

) R(1)
ij

k(1)
ε̃(1) + f (2)

w

(
Cε̃

R(1)
ij

k(1)
ε̃(1) + (1 − Cε̃)

2
3
ε̃(1)δij

)
. (2.12)

Here Cε̃ = 0.3 was chosen as the best compromise. The previous formulations for ε
(m)
ij

and ε̃
(1)
ij are discussed in § 3 from the DNS results.

The damping functions f (m)
w , blending the homogeneous and inhomogeneous parts of

Φ
(m)
ij , ε

(m)
ij and ε̃

(1)
ij , are calculated directly from α(m) and are written as f (1)

w = α(1)2 and

fw(2) = α(2)3. They play a key role in the spatial separation of turbulent scales. To complete
the model, characteristic turbulent timescale t(m)

t and length scale l(m)
t are taken identically

from the relations used by Manceau (2015) and originally introduced by Durbin (1991):

t(m)
t = max

(
k(m)

ε(m)
, CT

(m)
( ν

ε(m)

)1/2
)

,

l(m)
t = CL

(m) max

(
k(m)3/2

ε(m)
, Cη

(m)

(
ν3

ε(m)

)1/4)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.13)

The modulation term M(1)
ij was added to the transport equations of R(1)

ij to reproduce the

increase in the near-wall peaks with Reynolds number only observed for R(1)
11 and R(2)

33
in the DNS calculations of Lee & Moser (2019). In wall-parallel bounded flow, with
no transverse pressure gradient, M(1)

ij must thus have two non-zero components, and in
this sense it can be written as aligned with δij − ninj. However, in the present study, no
generalisable expression for this term was found and we simply use a formulation adapted
to developed turbulent channel flows. The terms are made proportional to the production
of the turbulent kinetic energy of slice m = 2 and to the ratio of the Reynolds stress
component to k(2):

M(1)
11 = Cm

(
1 − f (2)

w

) Pk
(2)

k(2)
R(1)

11 ,

M(1)
33 = Cm

(
1 − f (1)

w

) Pk
(2)

k(2)
R(1)

33 .

⎫⎪⎪⎬
⎪⎪⎭ (2.14)
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Although the model proposed in (2.14) is not rotationally invariant, it can nevertheless
demonstrate the influence of the LS contribution in the inner region as the Reynolds
number increases.

The coefficients involved in the two-scale RSM model are given in Appendix A.

3. High-Reynolds-number channel flows application

The two-scale RSM model described above is applied on the turbulent plane channel
configuration for the four friction Reynolds, i.e. Reτ = {550; 1000; 2000; 5200}, treated
by Lee and Moser. A specific one-dimensional (1-D) channel code was developed for this
purpose. Details on the numerical procedure are given in Appendix B. Figure 2 shows
the mean velocity profiles on the left and the evolution of the cut-off wavelength λ+
in the boundary layer thickness on the right. The latter was assessed directly using the

assumption proposed by Schiestel (2007) λ+ = 2π(k(1)+3/2
/ε̃(1)+) given by (2.5) since

κ(0) = 0. The mean velocity profiles obtained with the two-scale RSM model are very
similar to those obtained with the EBRSM model and match the DNS profiles. We also
noticed that the results between the two versions of the EBRSM model, with or without
the decomposition ε = ε̃ + εw, are almost identical and only the results from the original
model are presented. Since in slice m = 1 the turbulent kinetic energy k(1) = 1

2 R(1)
ii

and the transfer rate ε(1) = 1
2ε

(1)
ii are dominated by their first diagonal component, i.e.

R(1)
11 = u′2(1)

and ε
(1)
11 (see figures 3 and 6), λ can be considered as the characteristic

scale of eddies carrying u′2(1)
. These eddies are known to be very elongated in the

longitudinal direction x (Hutchins & Marusic 2007a) and therefore λ can be equated with a
longitudinal wavelength λx. This explains why λ+ can reach very large values, well above
the dimensionless height of the channel Reτ . Figure 2 indicates that the evolution of λ+ is
not very sensitive to Reτ . However, λ+ is not constant in y+. Here λ+ is around 1000 in the
inner region and increases with y+, which is consistent with the results of Lee and Moser.
Indeed, the spectra show a shift in the LS contribution towards longer wavelengths as y+
increases. The model therefore appears to be able to predict a separation between the SS
and LS contributions as observed in DNS.

In figure 3, the SS and LS contributions of the diagonal Reynolds stresses are plotted for
all Reτ numbers. First, the figure shows that the EBRSM model behaves well even though
it is unable to capture the effects of the Reynolds number, such as the evolution of the
u′2 peak. The two-scale model performs very well at both SS and LS, and is able to give
a fairly accurate account of Reynolds-number effects. Some notable weaknesses can be
pointed out in the model concerning the LS contribution on v′2 and w′2 or at low Reynolds
numbers, but the overall agreement is very satisfactory and was hitherto unattainable
with RANS models. The model predicts a SS contribution almost independent of Reτ

as found in the DNS. The LS contribution is twofold, with on the one hand a bump
appearing on each of the diagonal stress in the logarithmic region and on the other the
modulation effect occurring in the buffer region for u′2 and w′2. The LS contribution in the
logarithmic region is slightly overpredicted when the Reynolds number diminished, which
reflects the limits of this approach specifically designed to handle high-Reynolds-number
effects where the scale separation is large enough. The LS contribution is even more
overestimated for the v′2 and w′2 components. However, the modulation effects occurring
in the buffer layer for u′2 and w′2 are reasonably captured for all Reτ numbers. According
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Figure 2. (a) Velocity profiles for the different Reynolds numbers, Reτ ∈ [550, 1000, 2000, 5200]. Profiles
are shifted up two units as Reτ increases. Darker symbols or lines indicate higher Reτ values. (b) Cut-off
wavelength estimates (see (2.5)) obtained with the two-scale RSM for the four Reynolds numbers.

to the DNS results of Lee & Moser (2019), there is no effect of modulation on the v′2
component, which somewhat mitigates the view that the inner region ‘sees’ a modified
mean outer condition (Marusic et al. 2017). If this was the case, all the Reynolds stresses
would be affected by the modulation by the change in the inner scaling.

A further analysis of the results is presented in figure 4 where the SS and LS
contributions to the production term, the transfer rate and the dissipation of the turbulent
kinetic energy are presented. To emphasise the LS contributions all terms are multiplied by
y+. The SS and LS contributions to the production terms Pk

(1) and Pk
(2) are well-described

by the present two-scale model. The independence of Pk
(2) on Reτ is satisfied and the

growing contribution of the LS with Reτ fairly captured, even though the agreement is not
perfect, especially for low Reynolds numbers. From a modelling perspective, the recovery
of the dissipation ε(2) and, more importantly, of the transfer rate ε̃(1) are remarkable.
Concerning ε(2), the agreement with DNS results is very satisfactory and reflects the
good ability of the transport equations for the SS m = 2 to mimic the self-sustained
near-wall cycle (Jiménez & Pinelli 1999) and to maintain it independent of the outer-layer
turbulence. However, the most noticeable agreement is that on the transfer rate ε̃(1).
Discrepancies can be seen with the DNS results regarding the evolution with Reτ or
the amplitude of the term but the two-scale offers a very reasonable description of
this rate of transfer. This is a key component of the two-scale model which is absent
of single-scale-based RANS models since the integral of the transfer rate over the all
wavenumber spectrum is zero.

In order to validate the assumptions made in the model (2.11) and (2.12) about the
anisotropy of the dissipation tensor ε

(2)
ij and the transfer rate tensor ε̃

(1)
ij , the evolution

of the diagonal components of these terms are plotted on figures 5 and 6. Only the highest
Reynolds number Reτ = 5200 is presented since the SS terms are almost independent
of Reτ . Similar results are obtained for the lower Reynolds numbers. The results for
the EBRSM model are also shown in figure 5 since the vast majority of the energy
is dissipated on SS and so we have εij ≈ ε

(2)
ij . The tensorial expression in (2.11), also

used by Manceau (2015) in the EBRSM with Cε = 0, turns out to provide convincing
agreement with the DNS results allowing a good representation of the anisotropy. The
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Figure 3. Reynolds stress diagonal component profiles. The Reynolds number value Reτ increase from top to
bottom. For the sake of clarity, the SS, LS and total contributions of the two-scale RSM results are all drawn
with solid lines. The y-axis label is given on top for each column.

strong anisotropy observed in the inner region is well-reproduced by this formulation.
The use of C(2)

ε = 0.3 for the two-scale model delays the expected return to isotropy at
large values of y+ as the energy decreases on each of the components. However, slight
improvements are observed in the inner region (up to y+ = 300) with C(2)

ε = 0.3 in the
two-scale RSM results where the anisotropy is enhanced. The benefit of using C(2)

ε = 0.3
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Figure 4. Turbulent kinetic energy budget for production (Pk
(m)), transfer rate (ε̃(1)) and dissipation terms

(ε(2)), as log densities. Darker grey indicates higher Reynolds number Reτ .

is more tangible on the Reynolds stress profiles of figure 3, although the effect is quite
moderate. A lesser match is obtained for the diagonal components of the transfer rate
tensor ε̃

(1)
ij . The choice made for modelling ε̃

(1)
ij turns out to be a good approximation

of what is observed at high Reynolds numbers, i.e. for Reτ = 5200 in figure 6. The
introduction of constant Cε̃ = 0.3 in (2.12) enables to recover a correct breakdown between
the diagonal components of ε̃

(1)
ij . Even far from the wall, the transfer rate tensor is still

strongly anisotropic. More surprising, contrasted effects are observed on the anisotropy as
the Reynolds number changes. The ratios ε̃

(1)
22 /ε̃

(1)
11 and ε̃

(1)
33 /ε̃

(1)
11 increase with Reτ while

ε̃
(1)
22 /ε̃

(1)
33 drops as Reτ increases. These trends are poorly captured by the model. According

to (2.12), Cε̃ should be a function of Reτ , which is not desirable from a numerical point of
view. This shows quite clearly the limitations of the model adopted for ε̃

(1)
ij . Despite these

limitations, the agreement with the DNS data is reasonable and this partly explains the
good behaviour of the two-scale model on the SS and LS contributions (figure 3).

To better understand the origin of the modulation effect observed in the buffer region
(figure 3) and whose contribution is due to the LS, figures 7 and 8 present the budgets

for u′2(1)
and w′2(1)

for y+ < 1000 at Reτ = 5200, respectively. Similar trends but less

pronounced are observed at lower Reynolds numbers. The budgets of v′2(1)
for all Reτ

values do not show any LS contribution in the buffer layer as it was expected from figure 3.
The very near-wall balance in the viscous sublayer is governed by viscous diffusion
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Figure 5. Diagonal components of the dissipation tensors (a) ε
(2)
ij and (b) εij at Reτ = 5200.
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Figure 6. Diagonal components of the transfer rate tensor ε̃
(1)
ij at different Reτ values. Darker grey indicates

higher Reynolds number Reτ .

and dissipation. Above, for y+ ∈ [2, 20], the budget for u′2(1)
is governed by a balance

between the LS contributions of production, rate of transfer and turbulent diffusion on the
one hand and viscous diffusion and dissipation on the other, the LS contribution of the
pressure–strain correlation being almost zero. The dominant positive contribution is due
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Figure 7. Budget of R(1)
11 = u′2(1)

for Reτ = 5200. (a) DNS contributions. (b) Comparisons between sums of
different DNS contributions and the modulation term (2.14) of the two-scale model.

to turbulent diffusion T(1)
11 which must be seen as the transport by turbulence of the u′2(1)

in
the wall-normal direction y as pointed out by Lee & Moser (2019). A positive contribution
is also due to −ε̃

(1)
11 involving energy transfer from the SS to the LS. This backscatter is

not accessible with the current model since the transfer rate tensor ε̃
(1)
ij has only positive

values, i.e. only energy transfer from LS to SS are accounted for. From y+ = 5 a small
contribution of the production term P(1)

11 manifests, the balance above y+ = 20 being
mainly governed by the production and the rate of transfer. The two-scale RSM uses the
term M(1)

11 to represent the various contributions of LS in the buffer layer and figure 7
shows an overall good agreement of this term with the sum T(1)

11 − ε̃
(1)
11 + P(1)

11 + Φ
(1)
11

despite a slight shift in y+ and a small underestimation of the amplitude. The picture

is slightly different regarding the budget of w′2(1)
. Since the production is zero for 	w′2(1)

,
the rate transfer −ε̃

(1)
33 is balanced with the redistribution term Φ

(1)
33 for large y+ values,

i.e. y+ > 40. In the buffer layer, the balance involves the turbulent transport T(1)
33 and

a backscatter flux from SS with negative values of ε̃
(1)
33 observed for y+ ∈ [2, 40]. The

model (2.14) for the M(1)
33 term gives a reasonable agreement compared with the positive

contribution T(1)
33 − ε̃

(1)
33 + Φ

(1)
33 obtained in the DNS, still with a shift in y+ and this time

an overprediction of the amplitude. The LS contribution for w′2 is more spread out than

for u′2, resulting in a wider spread of w′2(1)
and a more pronounced peak for u′2(1)

around
y+ = 15 (figure 3). To conclude on the so-called modulation effect, the DNS results show
that, in fact, there are multiple contributions, involving in particular turbulent transport and
backscattering, and affecting only the R11 and R33 components of the Reynolds tensor. It
is difficult to judge from these data alone the precise origin of these transfers and the
underlying mechanisms. The modelling proposed in the multi-scale model framework
reflects the fact that backscatter cannot be considered, i.e. the rate of transfer components
ε̃
(1)
ij are strictly positive in the current approach. The modulation model (2.14) that gathers

the main contributions is nevertheless consistent for the two contributions to the stresses
R11 and R33.
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Figure 8. Budget of R33
(1) = w′2(1)

for Reτ = 5200. (a) DNS contributions. (b) Comparisons between sums
of different DNS contributions and the modulation term (2.14) of the two-scale model.

4. Conclusion

Describing near-wall flows using RANS approaches was a long-standing quest, but in
recent years it has come up against the challenge of modelling the interactions between
inner and outer regions, highlighted at the start of the 2010s. These interactions become
manifest when the Reynolds number becomes large enough. They were described in detail
in the DNS of Lee & Moser (2019), where partial integrations of two-point correlation
spectra illustrate the behaviour of SS and LS as the distance from the wall increases,
for different Reynolds numbers. Building on the seminal work of Schiestel (2007), who
established a rigorous formalism for deriving multi-scale RANS equations, a two-scale
RSM was developed based on Manceau’s EBRSM (Manceau 2015). In order to control
the cut-off in spectral space, we rely on the observation (Hutchins & Marusic 2007b) that
small structures are located in the near-wall region whereas larger structures are located
further away. By appropriately controlling the damping functions of the transported scales
in the two-scale RSM, the contributions of the SS and LS can be separated. Moreover, as
Lee & Moser (2019) showed, the SS contribution is practically independent of Reτ , which
a standard single-scale model is capable of reproducing. To describe the behaviour of SS
structures, it is sufficient to replicate a single-scale formulation almost identically, simply
ensuring that it does not operate far from the wall, where LS must be preponderant. The
modelling of LS contribution is carried out by analogy with that of SS and by following
the principles laid down by Schiestel (2007). An equation for the transfer rate ε̃(1) is
obtained and coupled to the equation for the dissipation ε̃(2). In order to represent the
modulation effect of large structures on smaller ones, which was characterised by Marusic
et al. (2010b) in particular, an additional term is added to the stress transport equations
R(1)

11 and R(1)
33 . The result is a model consisting of 16 equations corresponding to two

sets of transport equations for LS and SS Reynolds stresses, their respective transfer
and dissipation rates and two elliptic blending functions. Comparisons with DNS data
show excellent agreement on the SS and LS contributions for Reynolds stresses. This
provides a model that describes the LS and SS turbulent contributions to channel flow
fairly accurately for relatively large Reynolds numbers. The modelling choices made for
the dissipation and transfer rate terms have proved to be judicious in the light of the DNS
results.

1000 A65-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.984


F. Chedevergne, S. Coroama, V. Gleize and H. Bézard

There is still room for improvement in certain aspects of the two-scale RSM. The
evolution of the anisotropy of the ε̃

(1)
ij tensor as a function of the Reynolds number is

poorly reproduced. The error made at low Reynolds numbers is not problematic since
the LS contributions are small and consequently the influence of this term on the overall
balance is very limited. However, it remains to be seen whether this type of modelling is
sufficient for larger Reynolds numbers. Furthermore, the modulation term is currently an
ad hoc correction that needs to be reworked. This effect of LS on to the smallest only acts
on wall-parallel Reynolds stress components and involves contributions from turbulent
transport and backscatter from SS towards LS. It would therefore be desirable to further
analyse DNS data to understand precisely the energy transfers between SS and LS in the
buffer layer and how they evolve with the Reynolds number. Potential models could result
from such analysis.
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Appendix A. Two-scale RSM details

To complete equations set (2.10), the following relations are used:

C′(1)
ε1

= C(1)
ε1

(
1 + A(1)

1

(
1 − f (1)

w

) Pk
(2)

ε(2)

)
,

C′(2)
ε1

= C(2)
ε1

(
1 − f (2)

w + 1.2f (1)
w + A(2)

1

(
1 − f (2)

w

) P(2)
k

ε(2)

)
,

C′(2)
ε2

= C(2)
ε2

(
1 − A(2)

2 f (2)
w

P(2)
k

ε(2)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

As explained by Manceau (2015), function (1 − α(m))(Pk
(m)/ε(m)) is a good indicator of

the location of the R11
(m) peak, located in the buffer layer for m = 2 and further away

for m = 1. In general, the production/dissipation ratio associated with the corresponding
damping function is used to target the action of specific terms.
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The constants of the model are

C(1)
ε1

= 1.6; C(2)
ε1

= 1.45;
C(1)

ε2
= 1.95; C(2)

ε2
= 1.7; C(2)

ε3
= 1.6;

A(1)
1 = 1.3; A(2)

1 = 0.22; A(2)
2 = 0.48;

cs = 0.21;
σ

(1)
k = 0.9; σ

(2)
k = 1.0;

σ (1)
ε = 0.8; σ (2)

ε = 1.1;
C(1)

T = 6.0; C(2)
T = 6.0;

C(1)
L = 0.26; C(2)

L = 0.107; C(1)
η = 150; C(2)

η = 80;
Cm = 0.262.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

The velocity–pressure gradient correlation terms Φij
(m) are taken from Manceau (2015):

Φij
(m) =

(
1 − f (m)

w

)
Φij

(m)w + f (m)
w Φij

(m)h
. (A3)

The terms combine an homogeneous part obtained from the SSG model (Speziale et al.
1991):

Φij
(m)h = −

(
g1 + g∗

1
Pk

(m)

ε(m)

)
ε(m)bij

(m) + g2ε
(m)

(
bik

(m)bkj
(m) − 1

2
bkl

(m)bkl
(m)δij

)

+
(

g3 − g∗
3

√
bkl

(m)bkl
(m)

)
k(m)Sij

+ g4k(m)

(
bik

(m)Sjk + bjk
(m)Sik − 2

3
blm

(m)Slmδij

)

+ g5k(m)
(

bik
(m)Wjk + bjk

(m)Wik

)
(A4)

and a near-wall model (Manceau & Hanjalić 2002):

Φij
(m)w = −5

ε(m)

k(m)

(
R(m)

ik njnk + R(m)
jk nink − 1

2
R(m)

kl nknl
(
ninj + δij

))
, (A5)

where bij
(m) = Rij

(m)/2k(m) − 1
3δij is the anisotropy tensor and Sij = 1

2 (∂ui/∂xj + ∂uj/∂xi)

and Wij = 1
2 (∂ui/∂xj − ∂uj/∂xi) are the strain rate and rotation rate tensors, respectively.

The constants involved in (A4) are

g1 = 3.4; g∗
1 = 1.8; g2 = 4.2; g3 = 0.8; g∗

3 = 1.3;
g4 = 1.25; g5 = 0.4.

}
(A6)

Recall that g2 = 0 in Manceau (2015) but g2 = 4.2 was also considered without significant
differences in the results.

The expression given for ε
(m)
w involves the distance to the wall which is not desired in a

general Navier–Stokes solver. To generalise the model, the damping functions α[m) can be
used to replace the hyperbolic tangent functions.
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Appendix B. Numerical method

The solution of a steady turbulent channel flow is 1-D solution. A 1-D code was designed
to solve the momentum equation associated with the two-scale RSM equations (2.10), i.e.
a system composed of 13 equations since each partial Reynolds stress tensor has only 4
non-zero components. The elliptic equations for α(m) are treated as diffusion equations,
with flux coefficients equal to one. The equations are all turned dimensionless using
the wall variables, therefore the Reynolds number Reτ remains the unique parameter of
the equations sets. A similar code was also designed to solve the same problem using
the EBRSM. The codes use a finite volume approach with continuous fluxes at the
interfaces. Each discretised equation provides a tridiagonal linear system which solution
is found using Thomas algorithm. A pseudo-stationary convection term, associated with
a pseudo-time step, is added to reinforce the diagonal and stabilise the system. On
convergence this term tends towards zero. The convergence is reached by an iterative
process with a convergence criteria based on the L∞ norm equals 10−8. The mesh
discretisation is controlled by the first cell size (about 0.02) and the common ratio (about
1.02) controlling the geometric expansion. The maximum grid size is limited to 0.01Reτ .
The number of grid points then varies from 439 points to 663 points for the four tested
Reτ values. Initialisation is made with a mixing length model and using Bradshaw’s
relation to assess the turbulent kinetic energy. The dissipation is then deduced from the
turbulent kinetic energy and the eddy viscosity. The turbulent kinetic energy is split upon
the three diagonal components of the Reynolds stress tensor with constant coefficients
taken from the equilibrium solution of the EBRSM in the logarithmic region. This
procedure is applied on both variables sets for m = 1 (LS) and m = 2 (SS). Functions α(m)

are initialised with a hyperbolic tangent function equal to tanh(y+/20). No realisability
constraints are applied to the Reynolds stresses, whether on slices m = 1 or m = 2 and
neither on the total stresses.
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MANCEAU, R. & HANJALIĆ, K. 2002 Elliptic blending model: a near-wall Reynolds-stress turbulence closure.
Phys. Fluids 14 (2), 744–754.

MARUSIC, I., BAARS, W.J. & HUTCHINS, N. 2017 Scaling of the streamwise turbulence intensity in the
context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2 (10), 100502.

MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010a High Reynolds number effects in wall turbulence. Intl J.
Heat Fluid Flow 31 (3), 418–428.

MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010b Predictive model for wall-bounded turbulent flow. Science
329 (5988), 193–196.

MONKEWITZ, P. 2017 Revisiting the quest for a universal log-law and the role of pressure gradient in
“canonical” wall-bounded turbulent flows. Phys. Rev. Fluids 2 (9), 094602.

MONKEWITZ, P. & NAGIB, H. 2023 The hunt for the Kármán “constant” revisited. J. Fluid Mech. 967, A15.
NAGIB, H. & CHAUHAN, K. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids

20 (10), 101518.
ONO, M., FURUICHI, N. & TSUJI, Y. 2023 Reynolds number dependence of turbulent kinetic energy and

energy balance of 3-component turbulence intensity in a pipe flow. J. Fluid Mech. 975, A9.
SCHIESTEL, R. 1974 Sur un nouveau modèle de turbulence appliwué aux transferts de quantité de mouvement

et de chaleur. PhD thesis, University of Nancy I.
SCHIESTEL, R. 1987 Multiple-time-scale modeling of turbulent flows in one-point closures. Phys. Fluids

30 (3), 722–731.
SCHIESTEL, R. 2007 Modeling and Simulation of Turbulent Flows. ISTE Ltd and John Wiley & Sons.
SILLERO, J.A., JIMÉNEZ, J. & MOSER, R. 2013 One-point statistics for turbulent wall-bounded flows at

Reynolds numbers up to δ+ ≈ 2000. Phys. Fluids 25 (10), 105102.
SPEZIALE, C.G., SARKAR, S. & GATSKI, T.B. 1991 Modelling the pressure–strain correlation of turbulence:

an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272.
VALLIKIVI, M., HULTMARK, M. & SMITS, A.J. 2015 Turbulent boundary layer statistics at very high

Reynolds number. J. Fluid Mech. 779, 371–389.

1000 A65-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.984

	1 Introduction
	2 A multi-scale RSM
	3 High-Reynolds-number channel flows application
	4 Conclusion
	Appendix A. Two-scale RSM details
	Appendix B. Numerical method
	References

