
Robotica (2024), 42, pp. 775–791
doi:10.1017/S0263574723001753

RESEARCH ARTICLE

ShakingBot: dynamic manipulation for bagging
Ningquan Gu1 , Zhizhong Zhang1, Ruhan He1 and Lianqing Yu2

1School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China and 2School of Mechanical
Engineering and Automation, Wuhan Textile University, Wuhan, China
Corresponding author: Ruhan He; Email: heruhan@wtu.edu.cn

Received: 9 March 2023; Revised: 9 November 2023; Accepted: 3 December 2023; First published online: 4 January 2024

Keywords: bag manipulation; bagging task; dynamic manipulation; computer vision; dual-arm robot

Abstract
Bag manipulation through robots is complex and challenging due to the deformability of the bag. Based on the
dynamic manipulation strategy, we propose a new framework, ShakingBot, for the bagging tasks. ShakingBot uti-
lizes a perception module to identify the key region of the plastic bag from arbitrary initial configurations. According
to the segmentation, ShakingBot iteratively executes a novel set of actions, including Bag Adjustment, Dual-arm
Shaking, and One-arm Holding, to open the bag. The dynamic action, Dual-arm Shaking, can effectively open
the bag without the need to take into account the crumpled configuration. Then, the robot inserts the items and
lifts the bag for transport. We perform our method on a dual-arm robot and achieve a success rate of 21/33 for
inserting at least one item across various initial bag configurations. In this work, we demonstrate the performance
of dynamic shaking action compared to the quasi-static manipulation in the bagging task. We also show that our
method generalizes to variations despite the bag’s size, pattern, and color. Supplementary material is available at
https://github.com/zhangxiaozhier/ShakingBot.

1. Introduction
Plastic bags are ubiquitous in everyday life, including in supermarkets, homes, offices, and restau-
rants. Bagging is a helpful skill, including opening a bag and inserting objects for efficient transport.
Therefore, handling bagging tasks is meaningful and practical. However, the task is challenging for
the robot because of the inherent complexity of thin plastic dynamics and self-occlusions in crumpled
configurations.

Prior works concerning deformable object manipulation are considerable. Most of the research
focuses on manipulating linear objects [1–5] and fabric [6–10]. Among the most recent manipulation of
more deformable objects, such as bags and sacks, Chen et al. [11] proposed the AutoBag algorithm to
manipulate a robot to open bags, insert items, lift them, and transport them to a target zone. However,
their quasi-static action method required a significant number of interactions.

Dynamic manipulation [12] is a common and efficient action in real life, which can dramatically
reduce the complex configuration of the object without taking into account the initial complex state. For
example, in our daily lives, people will open the crumpled bag by grasping the bag’s handles and shaking
their arms up and down to get air into the plastic bag without considering the crumpled configurations
of the bags. Then, we consider applying the dynamic manipulation strategy to the bagging task with a
dual-arm robot.

Reinforcement Learning and Learning from Demonstration have demonstrated success in cloth
manipulation tasks [13–17]. However, they often require substantial data and are frequently trained in
simulation. It’s more challenging for plastic bags to build dynamic models and collect accurate datasets
whether from simulation or real-world environments. Therefore, we utilize the idea of most visual policy
learning approaches [11, 18] to guide the manipulation with action primitives.
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Figure 1. Opening the bag with dynamic actions. (1) Initial highly unstructured bag and two solid
objects. (2) Through region perception, the robot grasps the two handles and adjusts the distance
between the two arms. (3) The arms shake the bag at high speed according to the pre-defined trajectory,
which makes the air into the bag. (4) One arm holds the opened bag on the workspace. (5) The two arms
lift the bag filled with the inserted items.

In this work, we focus on bagging tasks, including opening the bag and inserting items, where the
key goal is to maximize the opening area of the bag. An ideal bagging approach should be:

• Efficient: The approach should reach enough opening area with a few actions from arbitrarily
crumpled initial configurations to insert items.

• Generalizable: The algorithm should generalize to different colors, patterns, and sizes.

To achieve this goal, we present a new framework, ShakingBot, for manipulating a plastic bag from an
unstructured initial state so that the robot can recognize the bag, open it, insert solid items into it, and lift
the bag for transport. Given an initial highly unstructured bag and two solid objects, we train a perception
module to recognize the key regions of the bag, where we reduce the workload through the colored bags
to get the training dataset. After grasping the recognized handles, the robot iteratively executes a novel
set of actions, including Bag Adjustment, Dual-arm Shaking, and One-arm Holding, to open the bag.
Through dynamic action, we can be very effective in opening the bag. When the bag-opening metric
exceeds a threshold, ShakingBot proceeds to the inserting item stage. The simplicity of ShakingBot,
combined with its superior performance over quasi-static baselines, emphasizes the effectiveness of
dynamic manipulation for bagging tasks. See Fig. 1 for ShakingBot in action on a dual-arm robotic
(consisting of two UR5 robotic arms).

In summary, the main contributions of this paper are:

1. Based on the dynamic manipulation strategy, we propose a new framework, ShakingBot, for
the bagging tasks, which improves the success rate and efficiency compared to the quasi-static
strategy.
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2. We design a novel set of action primitives for dynamic manipulation, including Bag Adjustment,
Dual-arm Shaking, and One-arm Holding, which make it possible to apply dynamic manipula-
tion in bagging tasks.

3. Experiments demonstrate that ShakingBot generalizes to other bags with different sizes, patterns,
and colors, even without training on such variations.

2. Related work
2.1. Deformable object manipulation
Deformable object manipulation remains challenging for robots, primarily due to the complex dynamics
and the limitless set of possible configurations. There have been significant prior works in the manipula-
tion of controlling ropes [1, 3, 19], cables [2, 4, 5, 20, 21], smoothing fabric [8–10, 22], and folding cloth
[6, 7, 13, 23]. However, these methods cannot be generalized to increased complexities of deformable
objects, such as bags and sacks. For example, Weng et al. [6] employed the optimal-flow method to pre-
dict the movement of each fabric particle to calculate pick-and-place points. Yet, their method can only
handle one-step manipulation and requires knowledge of the object’s next state. It is difficult to know the
comprehensive information regarding the state of the bag in each step and to predict the movement of
each bag particle. Mo et al. [7] proposed a sequential multi-step approach with space-time attention for
cloth manipulation. However, their approach focuses on predicting intermediate states during multi-step
manipulation with limited configuration, which cannot be applied to arbitrary configurations of a bag.
On the other hand, the early research work on bag-shaped objects focused on the mechanical design of
robots capable of grasping [24] or unloading [25] sacks. Some studies paid attention to zip bags [26] in
constrained setups or supposed that a sturdy, brown bag was already open for item insertion, as with a
grocery checkout robot [27]. In recent work, Gao et al. [18] proposed an algorithm for tying the handles
of deformable plastic bags. While their approach modeled bags with a set of 19 manually labeled key
points, it is challenging to estimate the representation with a bag in highly unstructured configurations.
Chen et al. [11] proposed an AutoBag algorithm to open the bag and insert items into the bags, where
the bags began empty and in unstructured states. They defined a novel set of quasi-static action primi-
tives for manipulating bags. However, their approach was not validated on bags with different colors and
required many actions to open the bag. In contrast, we focus on the bagging tasks, which can generalize
to different colors, and we are able to execute fewer actions to finish the task.

2.2. Dynamic manipulation
As opposed to quasi-static manipulation, dynamic manipulation [12] uses the acceleration forces pro-
duced by robots to manipulate objects. By building up momentum with high-velocity actions, the system
can manipulate out-of-contact regions of the deformable object. A great deal of progress has been made
in the field of deformable dynamic manipulation. Examples include high-speed cable knotting [28, 29],
cable manipulation with fixed endpoints using learning-based approaches [1], or a free endpoint [30, 31].
Recently, Ha and Song proposed the FlingBot, which learned to perform dynamic fling motions with a
fixed parameter to smooth garments using Dual-UR5 arms. Their approach was first trained in SoftGym
simulation [32] and fine-tuned in the real world to get the learned grasp points with two UR5 robots.
The results suggested significant efficiency benefits compared to quasi-static pick-and-place actions.
However, their research object is fabric, and their action primitives are not suitable for bagging tasks.
In terms of bag manipulation, Xu et al. [33] produced high-speed interactions using emitted air in order
to open the bag. However, they required more equipment. They used a setup with three UR5 robots to
control two grippers and a leaf blower. In contrast, we apply dynamic manipulation to the bagging tasks
with less equipment. By executing a novel set of dynamic action primitives with two UR5 robots, we
can achieve high performance from crumpled initial bag configurations.
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2.3. Learning for deformable object manipulation
Concerning learning methods for deformable object manipulation, Learning from Demonstration and
Reinforcement Learning have demonstrated success in cloth manipulation tasks [13–16]. For instance,
Seita et al. [34] employed deep imitation learning to achieve sequential fabric smoothing, while Canberk
et al. [35] utilized reinforcement learning to unfold and smooth cloth. However, it is important to note
that these methods often require a substantial amount of data, which can be challenging to collect in
real-world environments due to factors such as wear and tear on the robot and limitations in available
observation methods. As a result, they are frequently trained in simulators [32, 36, 37]. When it comes
to manipulating plastic bags, building dynamics models is challenging due to the complex non-linear
dynamics involved. Besides, obtaining accurate datasets for plastic bag manipulation proves particu-
larly difficult, regardless of whether they are obtained from simulations or real-world environments.
This challenge is exacerbated by the thinness of the bags and their interactions with the surrounding air.
Considering these challenges, we chose a more direct approach for our bagging task [11, 18]. Leveraging
visual policy learning approaches to detect the key points of the bag and adopt the method of action prim-
itives to tackle the task. In order to incorporate dynamic manipulation into the bagging task, we design
action primitives to overcome the potential challenges that may arise during dual-arm manipulation.
Moreover, we conduct ablation experiments to demonstrate the effectiveness of these primitives.

3. Problem statement
The bagging task is formulated as follows: First, a bag is placed on a flat surface with random
configurations. Second, we need to open the bag. Lastly, we insert n items and lift the bag for transport.

We use the most commonly used plastic bag, the vest plastic bag, as our research object. We define two
labels for a bag, “handle” and “rim” (see the right of Fig. 2). The “handle” is the point where to grasp by
the robot. The rim surrounds the opening area, and its opening orientation is determined by the direction
of the outward-pointing normal vector from the plane formed by the opening. The larger the opening
area, the easier it is to put items in. In random configurations, the direction and area of the opening are
various. It is assumed that the bag’s initial state is unstructured: deformed, potentially compressed. The
handles and rim of the bag may be in a partial or fully occluded configuration. We need to manipulate
the bags with different colors, patterns, and sizes. See the left of Fig. 2 for an illustration. We do not
consider the case of a brand-new bag without any deformation and wrinkles, the configurations of a
brand-new bag are almost known, and the two sides of the bag stick to each other tightly without any
space. This is an extremely special case.

We consider a bimanual robot (consisting of two UR5 robotic arms) with grippers and a calibrated
camera above a flat surface. Let πθ : RW×H →R

2 be a function parameterized by θ that maps a depth
image It ∈R

W×H at time t to an action at = πθ (It) for the robot. In order to simplify the question, we
constrain the experimental area R

2 to be within reach of the robot. We assume a set of rigid objects O,
placed in known poses for grasping. We are interested in learning the policy π such that the robot can
open the bag. After opening the bag, we insert the objects into the bag. Lastly, we lift the bag off the
table while containing the objects for delivery.

4. Approach
4.1. Method overview
Bagging aims to open the bag from an arbitrarily crumpled initial state and insert the object. Concretely,
this amounts to maximizing the opening area of the bag on the workspace to make it easier to put objects
in. It is intuitive that dynamic actions can appropriately make use of the airflow through a high-velocity
action to open the bag, and then it can achieve high performance on bagging tasks.

Figure 3 provides the overall pipeline of our method. We propose a learned region perception mod-
ule to recognize the bag handles and the rim (Section 4.2). We define a novel set of action primitives
(Section 4.3), including Bag Adjustment, Dual-arm Shaking, and One-arm Holding, for dynamic
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Figure 2. Left: Various plastic bags adopted to train and test the region perception module. The bags
include different sizes, patterns, and different colors. Right: A bag with red paint on its handles and
green paint around its rim. The paint color can be changed into others according to the pattern color of
the bag.

Figure 3. Pipeline for our method: The perception module takes depth images and outputs segmentation
masks for the bag handles and rim. The robot grasps the key points and executes dynamic actions. Last,
the robot inserts the items and lifts the bag.

manipulation. We then describe the ShakingBot framework (visualized in Fig. 4) to open the plastic
bag and insert objects (Section 4.4).

4.2. Region perception module
In this module, we utilize semantic segmentation to identify important regions of the bag, including
the grasp points and the opening area. We define the handles of the bag as the grasping points, while
the rim of the bag is used to calculate the opening area. The neural network is trained by the depth
images of the scene containing the bag. By predicting semantic labels for each pixel point, the network
gives the probability that the pixel contains the handles and rim of a bag. Lastly, we can obtain semantic
segmentation masks of the bag.

In this paper, we employ DeeplabV3+ [38] as the segmentation algorithm for our region perception
module. The rationales behind this choice are demonstrated in Section 5.2.

DeepLabV3+ [38] is an advanced semantic image segmentation model and the latest version in
the DeepLab series. It consists of two parts: the Encoder and the Decoder, see Fig. 5. The Encoder part
consists of a DCNN backbone network and an Atrous Spatial Pyramid Pooling (ASPP) module in a serial
structure. The DCNN backbone, which utilizes the ResNet model, is responsible for extracting image
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Figure 4. Overview of ShakingBot. See the left of the figure. The robot starts with an unstructured bag
and two items. As shown in the flow, ShakingBot opens the bag according to the steps shown (see Section
4.4 for details). When the bag-opening metric exceeds a certain threshold, ShakingBot proceeds to the
item insertion stage. If the robot lifts the bag with all the items inside, the trial is a complete success.

Figure 5. The architecture of Deeplabv3+.

features. The ASPP module processes the output of the backbone network using a 1×1 convolution,
three 3×3 dilated convolutions, and a global pooling operation. The input to the Encoder is the depth
image, and it produces two outputs. One output is directly passed to the Decoder, while the other output is
processed through the ASPP module and then concatenated. A 1×1 convolution is applied to compress
the features and reduce the number of channels. The Decoder part takes the intermediate output of
the DCNN backbone and the output of the ASPP module and transforms them into the same shape.
These outputs are then concatenated and further processed through a 3×3 convolution and upsampling
operations. The final result is obtained after these operations.

In our region perception module, we define the loss L(o, t) to be the mean of the point-wise binary
cross-entropy loss for every class k, k ∈ K:

L(o, t) = 1

K

K∑

k

(− 1

N

∑

i

wi ∗ (t[i] ∗ log (o[i]) + (1 − t[i]) ∗ log (1 − o[i]))) (1)

Where o[i] is the prediction segmentation at the image location i for the class K, while the t[i] is
the ground truth. We add a weight w to deal with the problem of imbalanced distribution between the
positive and negative labels.

As we showed in Section 4.4, the perception allows us to grasp the handle and calculate the opening
area.
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Figure 6. Bag Adjustment: (1) The two arms decrease their distance. (2) Robot swings the bag in the
horizontal left and right directions.

4.3. Action primitive definition
In order to achieve an efficient, generalizable, and flexible bag-opening system, we propose that the sys-
tem contains two arms that can operate in a dynamic action space. Additionally, we address the potential
challenges associated with dual-arm bagging manipulation, such as ensuring sufficient airflow into the
bag, preventing bags from sticking together, maximizing the dual-arm robot’s range of movement, and
preventing the opened bag from collapsing during item insertion. To overcome these challenges, we
introduce a novel set of action primitives, including Bag Adjustment, Dual-arm Shaking, and One-arm
Holding. These novelly defined action primitives enable dynamic manipulation in bagging tasks. The
primitives are as follows.

4.3.1. Bag Adjustment (d, �d, ks, l, f )
After grasping the handles, the two grippers maintain the position left and right symmetrical. We
decrease the initial distance d between the two grippers by �d. This can increase the chances of getting
more air into the bag during the dynamic shaking action, which is beneficial to enlarge the bag. But, if
the distance between the arms is less than the threshold, the action doesn’t execute. After the action, the
robot performs ks times swinging movements with length l and frequency f in the horizontal right and
left directions. It can separate the two layers of the rim, which is beneficial for preventing them from
sticking to each other (see Fig. 6).

The Bag Adjustment primitive could increase the success rate of subsequent Dual-arm Shaking
attempts to enlarge the bag more efficiently.

4.3.2. Dual-arm Shaking (H, H
′
, v)

We define the dynamic shaking action as follows: The dual arms shake the bag dramatically from the
current position to the height of H at v velocity in the vertical direction, then pull down to the height
of H

′
with the same velocity. The direction of the grippers should change from the downward direction

at the initial position to the 45◦ direction from the horizontal at the highest position. When the grippers
return to the height of H

′
, the direction of the grippers returns vertically downward. It can make better

use of the bag’s acceleration and movement space by changing the direction of the grippers. We set the
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Figure 7. Dual-arm Shaking: (1) Preparation for dynamic dual-arm shaking. (2) Long-distance and
high-speed shaking. (3) An enlarged bag.

Figure 8. One-arm Holding: (1) Move the bag to touch the surface of workspace. (2) The gripper
releases the right handle while the bag keeps its shape.

H = 1.4 m to give the bag plenty of movement distance. It is beneficial for making more air into the bag
to enlarge the opening. The H

′
should be higher than the bag’s bottom to prevent the bag from touching

the surface. The RGBD camera can detect the height of the bag’s bottom. The setting of primitive could
make full use of the movement space to open the bag during shaking (see Fig. 7).

4.3.3. One-arm Holding (h)
The dual arms, which grasp the bag, move down to the height of h, and the bottom of the bag just
touches the workspace. The h is determined by the height of the bag’s bottom. After that, the right
gripper releases the handle and moves away. The workspace surface and the left gripper support the bag
together, which can prevent the bag from deforming itself when inserting items (see Fig. 8).

https://doi.org/10.1017/S0263574723001753 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001753


Robotica 783

In addition to the above action primitives, we also adopt some primitives from ref. [11], including
Shake and Recenter primitives. The difference between our Dual-arm Shaking and their Shake is that
our method is a dual-arm action with a significant movement distance in the vertical direction to get air
into the bag. In contrast, their action is to rotate one of the robot’s wrists side by side to expand the bag’s
surface area.

4.4. ShakingBot: bagging task
Firstly, the ShakingBot utilizes the perception module to recognize the positions of the handles to grasp
them. Secondly, it chooses actions to execute according to the bag-opening metrics [11]. Finally, the
ShakingBot inserts the items into the bag and lifts it. See Fig. 4 for an overview. The ShakingBot consists
of the following three steps:

4.4.1. Grasping the handles
We input the depth image to the region perception module and get the predicted handle segmentation.
The center of each handle is the grasp point. If the two handles region of the bag can be recognized, the
robot grasps the two key points directly. Otherwise, the robot executes a Shake. The Shake action can
expand the area of the bag, and its grasp point is obtained from the handle region (if handles are not
visible, we select anywhere on the bag as the grasp point). If the bag is not in the center of the camera
frame, we execute the Recenter action. After these actions, we execute region perception and grasping
action again. If the two handles still can not be grasped, the robot repeatedly executes the above actions.
The grasping height is set to the height of the workspace in order to ensure that the handles can be
grasped successfully because the depth values are unreliable due to the bag’s reflective material. The
grasp position coordinates are specified as Cartesian coordinates in pixels.

4.4.2. Opening the bag
After grasping the two handles of the bag, the two grippers move the bag to a fixed height with a pre-set
distance between the two grippers and the bag is still in a crumpled configuration. The robot applies
Bag Adjustment and Dual-arm Shaking primitives to enlarge the bag iteratively. During each iteration,
our algorithm observes an overhead image of the bag to estimate its rim position and adopts the two
opening metrics, normalized convex hull area ACH and convex hull elongation ECH [11], to evaluate the
enlarged results. Repeating this process until the normalized convex hull area reaches a threshold ACH

value and the elongation metric falls below a threshold ECH value, which means that the opening is large
enough for inserting objects.

4.4.3. Inserting and lifting
The robot performs the One-arm Holding action to place the bag and estimates the openings by fitting
convex hulls on rims. We divide the opening spaces by the number of objects. Later, the gripper grasps
the objects that are placed in known poses, and the robot places them in the center of each divided region.
After performing these actions, the robot identifies the position of the released handle and executes the
grasping action. In the end, the robot lifts the bag from the table.

5. Experiments
In training and evaluation experiments, the bags we use are of size 25–35 cm by 40–53 cm when laid flat.
The colors include red and white with different patterns (see Fig. 2). The flat workspace has dimensions
of 120 cm by 180 cm.
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Figure 9. Data collection process and its utilization for training. Handles and rims are labeled in
different colors. By color-labeling, the ground truth for the network is provided without the need for
expensive human annotations. The network receives a depth image as input, while output is the region
segmentation results. We can get the optimized segmentation network by calculating the loss between
the results and the labels.

5.1. Data collection and processing for training
In order to train the region perception module, it is necessary to have a dataset that includes labels for
the handles and rim. However, labeling these regions in images with crumpled bags is challenging and
would require a significant amount of human annotation effort. To address this challenge, we adopt a
dataset-collecting approach similar to [39, 40], where different colors of paint are used to mark the
objects.

In our work, we use the marker pen to mark the handles and rim of the bag with different colors. It
should be noted that the colors cannot be similar to the pattern color of the bag. Moreover, the marker
pen is very friendly to the plastic bag because it can be cleaned by alcohol very easily. We utilize the
red and green colors to mark the bag. Of course, We can use the blue and orange colors to mark the bag,
but we only need to modify the corresponding color parameter of the HSV. Figure 9 depicts the data
collection process and how applied for training.

We utilize a Microsoft Kinect V2 camera, which can capture RGB-depth information. The camera is
positioned above the workspace, providing a top-down perspective. We collect the data, including RGB
pictures and Depth images, from four training bags by taking 2500 images each (resulting in 10,000
total). Our dataset includes bags in various configurations, such as lying on the workspace or being
grasped by the robots. We aimed to capture a wide range of volume and orientation configurations to
ensure the accuracy and robustness of our perception model.

5.2. Comparison of segmentation network
To optimize the performance of the region perception module, we conduct a comprehensive analysis of
various segmentation algorithms. The algorithms compared in this study include U-Net [41], PSPNet
[42], SegNet [43], and DeeplabV3+ [38]. The U-Net serves as the perception module in one of the
baselines, AutoBag [11], discussed in Section 5.5.

We ensure that all four algorithms are configured with the same parameters and trained on the same
dataset. During training, we employ a batch size of 32 and initialize the learning rate to 1e-3. To enhance
the diversity of our training data, we apply data augmentation techniques such as random image flipping
by 50% chance, scaling by 50% chance, and rotation by 50% chance within the range of [−30 degrees,
30 degrees].
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Table I. The training time of the four models.

Metrics U-Net PSP-Net SegNet DeeplabV3+
Time (h) 34 35 27 43

Figure 10. Comparing the learning curves of four region segmentation models. After 250 epochs, the
DeeplabV3+ model achieves remarkable results in our task. It obtains the lowest loss value among
all models, with a mean intersection over union (mIOU) of 78.0%. Additionally, it demonstrates supe-
rior performance in terms of mean Pixel Accuracy (mPA), achieving a score of 89.4%, surpassing the
other segmentation models in the experiment. These results highlight the performance of DeeplabV3+
compared to the other models.

For the purpose of model training, we adopt an 80–20 train/validation split. All training procedures
are conducted on a Ubuntu 18.04 machine equipped with 4 NVIDIA GTX 2080 Ti GPUs, a 3.50 GHz
Intel i9-9900X CPU, and 128 GB RAM.

The results depicted in Fig. 10 clearly demonstrate the superior performance of DeeplabV3+
compared to the other three segmentation algorithms in our task.

However, the training time for the four networks varies, as shown in Table I. Among them, SegNet
has the shortest training time, followed by U-Net and PSPNet. The limitation of DeeplabV3+ is that it
requires the longest training time due to its more complex architecture and a larger number of parameters.

Considering these comparisons, we choose to employ the DeeplabV3+ algorithm for our region
perception module. This decision is primarily based on the accuracy of detection, which is the main
metric we prioritize.

In addition, we analyze the reasons why DeeplabV3+ can achieve the best performance in our task.
According to the work of Chen et al. [38], DeepLabV3+ utilizes atrous convolution to merge the coarse
features from the lower layers with the fine features from the higher layers, thereby enhancing the
segmentation results in terms of edges and details. To further evaluate the effectiveness of the atrous
convolution in our task, we conducted an additional experiment that excluded the atrous convolution, as
shown in Fig. 11.

5.3. Action primitive parameters setting
In the experiment, we set the parameters of the action primitive. Table II shows the meaning of each
parameter and how they can be obtained. It should be noted that the optimal values may vary depending
on the particular configuration of the robot and the operating environment.
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Figure 11. The learning curves of DeeplabV3+ without atrous convolution. After 250 epochs, the loss
value of the model without atrous convolution has increased compared to the original DeeplabV3+.
The mean intersection over union (mIOU) has decreased from 78.0% to 68.2%, while the mean Pixel
Accuracy (mPA) decreased from 89.4% to 83.8%.

Table II. The action primitive parameters setting.

Action primitive Parm. Meaning Setting
d The initial distance between the two

grippers after moving to the
dangling

Pre-set according to the size of the
bags

�d The amount of change in the
distance between the two grippers
each time

Pre-set fixed values according to
site configuration

Bag adjustment ks The times of horizontal swinging
movement

Pre-set fixed values according to
site configuration

l The horizontal length of swinging
movement

Pre-set fixed values according to
site configuration

f The frequency of swinging
movement

Pre-set fixed values according to
site configuration

H The maximum height that the robot
arm can reach during the shaking
action

Pre-set according to the capability
of the robot. In general, the larger
the value, the better

Dual-arm shaking H
′

The height of grippers after the
robot shaking action

Pre-set fixed value and the value
should be higher than the bag’s
bottom to prevent the bag from
touching the surface

v The speed of shaking action Pre-set according to the max
capability of the robot. In general,
the larger the value, the better

One-arm holding h The height at which the dual arms
descend until the bottom of the bag
comes in contact with the
workspace

Real-time control based on
detecting the lowest point in the
middle of the bag through the
RGB-D camera
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Figure 12. Three tiers of initial bag configurations. The first row shows the RGB images, while the
second shows the corresponding depth images.

5.4. Experiment protocol
To evaluate ShakingBot, we use four bags, one of which is the middle-size bag from training. The other
three bags include an unseen size bag, a different pattern bag, and a pure red color bag. The goal is to
insert two identical bottles into each bag (see Fig. 1). In our definition of a trial, the robot attempts to
perform the entire end-to-end procedure: opening a bag, inserting n items into it, and lifting the bag (with
items). We allow up to T = 15 actions before the robot formally lifts the bag. The robot will be reset to
its home position if it encounters motion planning or kinematic errors during the trial. We evaluate the
ShakingBot with three difficulty tiers of initial bag configurations (see Fig. 12):

• Tier 1: The two handles of the bag can be recognized, and the bag has an expanded, slightly
wrinkled state lying sideways on the workspace. Besides, the rim has an opening. This requires
reorienting the bag upwards.

• Tier 2: The tier is similar to tier 1, but the rim area and the degree of wrinkle. The rim area is
smaller than tier 1. This will need more actions to enlarge the bag.

• Tier 3: There are one or two handles hidden. Another, it has a more complex initial configuration.
This requires some actions to expand the bag.

At the start of each trial, we perform the initialization process, which involves manipulating the bag
so that it falls into one of the tiers. The trial is considered successful (“Full Succ.”), if the robot lifts the
bag off the surface for at least two seconds while containing all items. It is a partial success (“Partial
Succ.”) if the robot lifts at least one object into the bag during the trial. In the report, we describe the
number of times the robot successfully opens the bag (“Open Bag”), the number of objects that the
robot correctly places in the bag opening before lifting (“Placed”), the number of actions which the
robot executes (“Actions”), and the time the robot costs (“Time”).

5.5. Approach comparison
We compare ShakingBot to two baselines and two ablations on three tiers. To evaluate the dynamic
shaking action, we compare it against the quasi-static baseline AutoBag [11], which is the state-of-art
in bagging tasks. They also used a region perception module, of which architecture is U-Net [41], to
recognize the key region of the bag. While they only used the quasi-static action to manipulate the bag,
we adopted the dynamic shaking action. In the comparison experiment, we utilize AutoBag with Depth
images, similar to our training dataset. To evaluate the region segmentation module, we use an analytical
method to detect the handles and rim. The analytical method consists of two parts: Harris [44] is used to
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Table III. Results of ShakingBot and baseline methods.

Tiers Method Open bag Placed Partial succ. Full succ. Actions Time (s)
Analytic & primitives 2/8 0.4±0.7 2/8 1/8 N/A N/A

Tier 1 AutoBag 6/8 1.3±0.9 6/8 3/8 8.2±3.9 195.7±38.8
ShakingBot 7/8 1.6±0.7 7/8 6/8 7.2±1.2 178.5±15.7

Analytic & primitives 1/8 0.3±0.7 1/8 1/8 N/A N/A
Tier 2 AutoBag 4/8 0.9±0.9 4/8 3/8 10.8±2.6 219.0±31.8

ShakingBot 6/8 1.5±0.9 6/8 6/8 8.8±2.6 193.6±29.5
Analytic & primitives 0/8 0.0±0.0 0/8 0/8 N/A N/A

Tier 3 AutoBag 1/8 0.3±0.7 1/8 1/8 14.4±1.5 258.6±17.2
ShakingBot 4/8 0.6±0.8 3/8 2/8 12.5±5.1 227.1±47.9

The significance of the bold values is to show the best value for each metric in this comparison.

Table IV. Results of ablations.

Method Open bag Placed Partial succ. Full succ.
ShakingBot-A 2/6 0.8±1.1 2/6 2/6
ShakingBot-H 0/6 0.0±0.0 0/6 0/6

detect the handles, and Canny [45] is used to calculate the rim area. Subsequently, we execute the action
primitives based on the detection results obtained from the analytical method. We test these baselines
for Tier 1, 2, and 3 configurations.

We report results on the middle-size bag from the training bag in Table III, where we run eight
trials per experiment setting. ShakingBot can achieve both a partial success rate and a full success
rate on the three respective tiers. Compared with the traditional analytic method, the analytical way is
insufficient for the bagging task. It often fails to detect the right grasping points and fails to calculate
the position to place items, especially in complex initial configurations. Compared with the quasi-static
AutoBag, our method can achieve better results with fewer actions and less time, demonstrating dynamic
manipulation’s efficiency and performance in the bagging tasks.

We additionally analyze the failure modes of ShakingBot. Except for the inaccuracy in the prediction
and planning errors, there are other failure modes. For example, when inserting items, the right gripper
grasping the items may touch the opened bag, causing the bag to deform, resulting in failure to put the
items in the bag.

5.6. Ablations
To evaluate the utility of the Bag Adjustment and One-arm Holding primitives, we perform two abla-
tions. ShakingBot-A, where the robot does not perform Bag Adjustment action after grasping the two
handles. ShakingBot-H, where the robot does not perform One-Arm Holding to hold the bag, instead
releasing one of the handles in the air without the support of the desk surface. We perform these ablations
for Tier 2 configuration.

The results are shown in Table IV. The ablations underperform the full method, demonstrating that
Bag Adjustment (Section 4.3.1) as well as One-Arm Holding (Section 4.3.3) help the bagging tasks.

5.7. Generalization
In this part, we adopt three bags for the experiments, an unseen size bag, a different pattern bag, and a
pure red color bag. Table V presents that ShakingBot can attain 5/9 partial success and 4/9 full success
rate. Our approach can generalize to the bag with different patterns and colors because it only takes depth
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Table V. Results of ShakingBot on the bags with different sizes, patterns, and colors.

Types Open bag Partial succ. Full succ.
Unseen-size 2/3 2/3 1/3
Unseen-pattern 1/3 1/3 1/3
Red color 2/3 2/3 2/3

Figure 13. Generalization. Our network is able to generalize to different sizes, patterns, and colors.

as input. It can also perform on the bag of different sizes due to its fully convolutional architecture. See
Fig. 13 for visualizations of these generalization experiments.

6. Conclusion and future work
In this paper, we propose a novel framework, ShakingBot, for performing bagging tasks, including phys-
ical bag opening and item insertion. To realize the tasks, we design a novel set of action primitives for
dynamic manipulation. We demonstrate the effectiveness of our method in various bagging tasks, show-
ing its ability to generalize to different sizes, patterns, and colors. We believe that our method, including
our proposed action primitives, can serve as a valuable guide for handling other similar bag-shaped
objects or deformable containers. In the future, we plan to expand our research from plastic bags to
encompass other deformable objects.

Author contributions. Ningquan Gu and Zhizhong Zhang designed and manufactured the research and contributed equally to
this work. Ruhan He and Lianqing Yu provided guidance for the research.

Financial support. This study was funded by the project, Research on Video Tracking Based on Manifold Statistical Analysis
(No. D20141603), which is the Key Project of the Science and Technology Research Program of the Hubei Provincial Department
of Education.

Competing interests. The authors declare no competing interests exist.

Ethical approval. Not applicable.

https://doi.org/10.1017/S0263574723001753 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001753


790 Ningquan Gu et al.

References
[1] H. Zhang, J. Ichnowski, D. Seita, J. Wang, H. Huang and K. Goldberg, “Robots of the Lost Arc: Self-Supervised Learning

to Dynamically Manipulate Fixed-Endpoint Cables,” In: 2021 IEEE International Conference on Robotics and Automation
(ICRA) (IEEE, 2021) pp. 4560–4567.

[2] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez and E. Adelson, “Cable manipulation with a tactile-reactive gripper,” The
International Journal of Robotics Research 40(12-14), 1385–1401 (2021).

[3] A. Wang, T. Kurutach, P. Abbeel and A. Tamar, “Learning Robotic Manipulation through Visual Planning and Acting,”
In: Robotics: Science and Systems XV, University of Freiburg, Freiburg im Breisgau, Germany, June 22-26 (A. Bicchi, H.
Kress-Gazit and S. Hutchinson, eds.) (2019). doi: 10.15607/RSS.2019.XV.074.

[4] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita, M. Laskey and K. Goldberg, “Real2sim2real: Self-
Supervised Learning of Physical Single-Step Dynamic Actions for Planar Robot Casting,” In: 2022 International Conference
on Robotics and Automation (ICRA) (IEEE, 2022) pp. 8282–8289.

[5] J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier and A. Cherubini, “Robotic manipulation planning for shaping
deformable linear objects withenvironmental contacts,” IEEE Robotics and Automation Letters 5(1), 16–23 (2019).

[6] T. Weng, S. M. Bajracharya, Y. Wang, K. Agrawal and D. Held, “Fabricflownet: Bimanual Cloth Manipulation with a
Flow-Based Policy,” In: Conference on Robot Learning (PMLR, 2022) pp. 192–202.

[7] K. Mo, C. Xia, X. Wang, Y. Deng, X. Gao and B. Liang, “Foldsformer: Learning sequential multi-step cloth manipulation
with space-time attention,” IEEE Robotics and Automation Letters 8(2), 760–767 (2022).

[8] L. Y. Chen, H. Huang, E. Novoseller, D. Seita, J. Ichnowski, M. Laskey, R. Cheng, T. Kollar and K. Goldberg, “Efficiently
Learning Single-Arm Fling Motions to Smooth Garments,” In: The International Symposium of Robotics Research
(Springer, 2022) pp. 36–51.

[9] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani, N. Jamali, K. Yamane, S. Iba and K. Goldberg,
“Visuospatial Foresight for Multi-Step, Multi-Task Fabric Manipulation,” In: Robotics: Science and Systems XVI,
Virtual Event/ Corvalis, Oregon, USA, July 12-16, 2020 (M. Toussaint, A. Bicchi and T. Hermans, eds.) (2020).
doi: 10.15607/RSS.2020.XVI.034.

[10] X. Lin, Y. Wang, Z. Huang and D. Held, “Learning Visible Connectivity Dynamics for Cloth Smoothing,” In: Conference
on Robot Learning (PMLR, 2022) pp. 256–266.

[11] L. Y. Chen, B. Shi, D. Seita, R. Cheng, T. Kollar, D. Held and K. Goldberg, “Autobag: Learning to open plastic bags and
insert objects,” CoRR abs/2210.17217 (2022). doi: 10.48550/arXiv.2210.17217.

[12] M. T. Mason and K. M. Lynch, “Dynamic Manipulation,” In: Proceedings of 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’93), vol. 1 (IEEE, 1993) pp. 152–159.

[13] J. Hietala, D. Blanco-Mulero, G. Alcan and V. Kyrki, “Learning Visual Feedback Control for Dynamic Cloth Folding,”
In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2022) pp. 1455–1462.

[14] Y. Wu, W. Yan, T. Kurutach, L. Pinto and P. Abbeel, “Learning to Manipulate Deformable Objects without Demonstrations,”
In: Robotics: Science and Systems XVI, Virtual Event/ Corvalis, Oregon, USA, July 12-16, 2020 (M. Toussaint, A. Bicchi
and T. Hermans, eds.) (2020). doi: 10.15607/RSS.2020.XVI.065.

[15] R. Jangir, G. Alenya and C. Torras, “Dynamic Cloth Manipulation with Deep Reinforcement Learning,” In: 2020 IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2020) pp. 4630–4636.

[16] B. Jia, Z. Pan, Z. Hu, J. Pan and D. Manocha, “Cloth manipulation using random-forest-based imitation learning,” IEEE
Robotics and Automation Letters 4(2), 2086–2093 (2019).

[17] R. Lee, D. Ward, V. Dasagi, A. Cosgun, J. Leitner and P. Corke, “Learning Arbitrary-Goal Fabric Folding with One Hour
of Real Robot Experience,” In: Conference on Robot Learning (PMLR, 2021) pp. 2317–2327.

[18] C. Gao, Z. Li, H. Gao and F. Chen, “Iterative Interactive Modeling for Knotting Plastic Bags,” In: Conference on Robot
Learning (PMLR, 2023) pp. 571–582.

[19] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik and S. Levine, “Combining Self-Supervised Learning and Imitation
for Vision-Based Rope Manipulation,” In: 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2017) pp. 2146–2153.

[20] H. Nakagaki, K. Kitagi, T. Ogasawara and H. Tsukune, “Study of Insertion Task of a Flexible Wire into a Hole by
Using Visual Tracking Observed by Stereo Vision,” In: Proceedings of IEEE International Conference on Robotics and
Automation, vol. 4 (IEEE, 1996) pp. 3209–3214.

[21] H. Nakagaki, K. Kitagaki, T. Ogasawara and H. Tsukune, “Study of Deformation and Insertion Tasks of a Flexible Wire,”
In: Proceedings of International Conference on Robotics and Automation, vol. 3 (IEEE, 1997) pp. 2397–2402.

[22] H. Ha and S. Song, “Flingbot: The Unreasonable Effectiveness of Dynamic Manipulation for Cloth Unfolding,”
In: Conference on Robot Learning (PMLR, 2022) pp. 24–33.

[23] N. Gu, R. He and L. Yu, “Defnet: Deconstructed fabric folding strategy based on latent space roadmap and flow-based
policy,” arXiv preprint arXiv:2303.00323 (2023).

[24] H. Kazerooni and C. Foley, “A robotic mechanism for grasping sacks,” IEEE Trans. Autom. Sci. Eng. 2(2), 111–120 (2005).
[25] A. Kirchheim, M. Burwinkel and W. Echelmeyer, “Automatic Unloading of Heavy Sacks from Containers,” In: 2008 IEEE

International Conference on Automation and Logistics (IEEE, 2008) pp. 946–951.
[26] R. Hellman, C. Tekin, M. Schaar and V. Santos, “Functional contour-following via haptic perception and reinforcement

learning,” IEEE Trans. Haptics 11(1), 61–72 (2018).
[27] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y. Ng and O. Khatib, “Grasping with Application to an Autonomous

Checkout Robot,” In: 2011 IEEE International Conference on Robotics and Automation (IEEE, 2011) pp. 2837–2844.

https://doi.org/10.1017/S0263574723001753 Published online by Cambridge University Press

https://doi.org/10.15607/RSS.2019.XV.074
https://doi.org/10.15607/RSS.2020.XVI.034
https://doi.org/10.48550/arXiv.2210.17217
https://doi.org/10.15607/RSS.2020.XVI.065
https://doi.org/10.1017/S0263574723001753


Robotica 791

[28] J. E. Hopcroft, J. K. Kearney and D. B. Krafft, “A case study of flexible object manipulation,” Int. J. Robot. Res. 10(1),
41–50 (1991).

[29] T. Morita, J. Takamatsu, K. Ogawara, H. Kimura and K. Ikeuchi, “Knot Planning from Observation,” In: 2003 IEEE
International Conference on Robotics and Automation (Cat. No. 03CH37422), vol. 3 (IEEE, 2003) pp. 3887–3892.

[30] S. Zimmermann, R. Poranne and S. Coros, “Dynamic manipulation of deformable objects with implicit integration,” IEEE
Robot. Autom. Lett. 6(2), 4209–4216 (2021).

[31] C. Chi, B. Burchfiel, E. Cousineau, S. Feng and S. Song, “Iterative residual policy: For goal-conditioned dynamic
manipulation of deformable objects,” CoRR abs/2203.00663 (2022). doi: 10.48550/arXiv.2203.00663.

[32] X. Lin, Y. Wang, J. Olkin and D. Held, “Softgym: Benchmarking Deep Reinforcement Learning for Deformable Object
Manipulation,” In: Conference on Robot Learning (PMLR, 2021) pp. 432–448.

[33] Z. Xu, C. Chi, B. Burchfiel, E. Cousineau, S. Feng and S. Song, “Dextairity: Deformable manipulation can be a breeze,”
arXiv preprint arXiv:2203.01197 (2022).

[34] D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani, A. Balakrishna, B. Thananjeyan, J. Ichnowski, N.
Jamali, K. Yamane, S. Iba, J. Canny and K. Goldberg, “Deep Imitation Learning of Sequential Fabric Smoothing from an
Algorithmic Supervisor,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE,
2020) pp. 9651–9658.

[35] A. Canberk, C. Chi, H. Ha, B. Burchfiel, E. Cousineau, S. Feng and S. Song, “Cloth funnels: Canonicalized-Alignment for
Multi-Purpose Garment Manipulation,” In: International Conference of Robotics and Automation (ICRA) (2022).

[36] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W. Zaremba, “Openai gym,” CoRR
abs/1606.01540 (2016). http://arxiv.org/abs/1606.01540

[37] E. Todorov, T. Erez and Y. Tassa, “Mujoco: A Physics Engine for Model-Based Control,” In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IEEE, 2012) pp. 5026–5033.

[38] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-Decoder with Atrous Separable Convolution for
Semantic Image Segmentation,” In: Proceedings of the European Conference on Computer Vision (ECCV) (2018) pp.
801–818.

[39] D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein, P. Baskaran, S. Iba, J. Canny and K. Goldberg, “Deep
Transfer Learning of Pick Points on Fabric for Robot Bed-Making,” In: The International Symposium of Robotics Research
(Springer, 2019) pp. 275–290.

[40] J. Qian, T. Weng, L. Zhang, B. Okorn and D. Held, “Cloth Region Segmentation for Robust Grasp Selection,” In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020) pp. 9553–9560.

[41] O. Ronneberger, P. Fischer and T. Brox, “U-net: Convolutional Networks for Biomedical Image Segmentation,” In: Medical
Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18 (Springer, 2015) pp. 234–241.

[42] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid Scene Parsing Network,” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017) pp. 2881–2890.

[43] V. Badrinarayanan, A. Kendall and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image
segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017).

[44] C. Harris and M. Stephens, “A combined corner and edge detector,” Alvey Vis. Conf. 15(50), 10–5244 (1988). Citeseer.
[45] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).

Cite this article: N. Gu, Z. Zhang, R. He and L. Yu (2024). “ShakingBot: dynamic manipulation for bagging”, Robotica 42,
775–791. https://doi.org/10.1017/S0263574723001753

https://doi.org/10.1017/S0263574723001753 Published online by Cambridge University Press

https://doi.org/10.48550/arXiv.2203.00663
http://arxiv.org/abs/1606.01540
https://doi.org/10.1017/S0263574723001753
https://doi.org/10.1017/S0263574723001753

	ShakingBot: dynamic manipulation for bagging
	Introduction
	Related work
	Deformable object manipulation
	Dynamic manipulation
	Learning for deformable object manipulation

	Problem statement
	Approach
	Method overview
	Region perception module
	Action primitive definition
	Bag Adjustment 
	Dual-arm Shaking 
	One-arm Holding 

	ShakingBot: bagging task
	Grasping the handles
	Opening the bag
	Inserting and lifting


	Experiments
	Data collection and processing for training
	Comparison of segmentation network
	Action primitive parameters setting
	Experiment protocol
	Approach comparison
	Ablations
	Generalization

	Conclusion and future work


