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SUMMARY

This study aimed to investigate the spatial clustering and dynamic dispersion of dengue incidence

in Queensland, Australia. We used Moran’s I statistic to assess the spatial autocorrelation of

reported dengue cases. Spatial empirical Bayes smoothing estimates were used to display the

spatial distribution of dengue in postal areas throughout Queensland. Local indicators of spatial

association (LISA) maps and logistic regression models were used to identify spatial clusters and

examine the spatio-temporal patterns of the spread of dengue. The results indicate that the spatial

distribution of dengue was clustered during each of the three periods of 1993–1996, 1997–2000

and 2001–2004. The high-incidence clusters of dengue were primarily concentrated in the north of

Queensland and low-incidence clusters occurred in the south-east of Queensland. The study

concludes that the geographical range of notified dengue cases has significantly expanded in

Queensland over recent years.
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INTRODUCTION

Dengue is one of the most widespread mosquito-

borne diseases in the world and its global range of

transmission has increased dramatically in recent

decades [1–3]. Some 2.5 billion people are now at risk

from dengue fever. It has been estimated that there

are 50 million dengue infections worldwide per year,

with several hundred thousand cases of dengue

haemorrhagic fever, mostly in children aged <15

years, with a mortality rate of about 2.5% [4]. Dengue

is caused by a flavivirus that is transmitted by

mosquito vectors, in particular the domesticated

species Aedes aegypti [2]. A. aegypti thrives in urban

areas, thus transmission is most common in urban

settings [5]. The large-scale reappearance of dengue

over the past few decades means this disease is

now a serious public health problem, especially in

tropical and subtropical regions [1, 2, 6–9] including

Queensland, Australia, which in 2009 experienced the

largest dengue epidemic in recent history.

With the rapid development of geographic in-

formation systems (GIS), spatial data analysis is

playing an increasingly important role in infectious

disease epidemiology [10–12]. Mosquito density and

longevity depend on environmental and ecological

factors (e.g. temperature, humidity, precipitation and

presence of mosquito-breeding habitats) [13–15].
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Mosquito-borne diseases are often clustered in high-

risk areas. The identification of these high-risk areas

can assist existing surveillance and control efforts by

permitting limited resources to be expended where

they are most likely to have an impact. In the case

of Queensland, identification of high-risk areas will

enable currently overstretched public health units

to concentrate their efforts in areas where dengue

outbreaks are most likely to occur.

In this study we analysed the spatio-temporal dis-

tribution of notified dengue fever infections using

GIS and spatio-temporal analysis methods. First, we

aimed to determine if dengue notifications are clus-

tered at the postal area (PA) level, then we aimed to

visualize smoothed patterns of dengue risk (eliminat-

ing ‘noise ’ due to small area variation) and to identify

clusters of PAs with high and low dengue risk. Finally,

we aimed to determine if the spatial pattern of dengue

has changed in Queensland over a 12-year period

(1993–2004). We interpreted the findings to facilitate

more efficient risk-based dengue surveillance.

MATERIALS AND METHODS

Study area

Queensland is located in the northeast of Australia

between latitudes of 10–28x S and longitudes of

138–153x E. The south-east corner is the most densely

populated part of the state. Queensland occupies the

north-eastern quarter of the continent and covers

approximately 1 727 200 km2, with 7400 km of main-

land coastline. The state is divided into 404 PAs, with

populations ranging in size from 60 to 92 317. PAs are

widely used by researchers in Australia because they

are readily available in many datasets. There is sig-

nificant variation in climate across the state. Low

rainfall and hot summers are typical for the inland

west, a monsoonal pattern of wet and dry seasons

occurs in the far north, and warm temperate condi-

tions occur along the coastal strip. Low minimum

temperatures are experienced in southern ranges and

inland.

Data collection

As dengue is a notifiable disease, positive test results

by law have to be reported by laboratories to the

Queensland Department of Health, where they are

archived by the Communicable Diseases Unit [16].

We obtained a computerized dataset containing num-

bers of notified dengue fever cases (acquired locally

and overseas) by PA in Queensland for the period

of 1 January 1993–31 December 2004 from the

Queensland Department of Health. Each notification

included a unique reference number, date and PA of

onset. This data can be used for monitoring trends of

notifiable dengue fever and for targeting research,

prevention, and control efforts [17]. Relevant popu-

lation data and electronic boundaries of PAs were

retrieved from the national census database managed

by the Australia Bureau of Statistics.

Spatial autocorrelation analysis

Moran’s I spatial autocorrelation statistic was calcu-

lated to determine whether spatial clustering was

a feature of dengue in three different periods of

1993–1996, 1997–2000 and 2001–2004 (Appendix 1).

Note that it is a ‘global ’ autocorrelation statistic, i.e.

it indicates whether there is spatial autocorrelation in

the dataset but does not indicate the location of spa-

tial clusters. Moran’s I ranges from x1 to 1 and can

be interpreted as follows: a value close to 0 indicates

spatial randomness, while a positive value indicates

positive spatial autocorrelation and a negative value

indicates negative spatial autocorrelation.

The locations of dengue fever cases were geo-coded

to digital base PA maps using ArcView [18]. A conti-

guity-based spatial weights matrix using a rook

structure (where PAs that shared a border were con-

sidered neighbours) was constructed for each pair of

PAs. Moran’s I requires an assumption of constant

variance. Since this assumption was not appropriate

given that incidence at the PA level varied greatly in

different populations, the Assuncao-Reis empirical

Bayes standardization was performed. Following

calculation of Moran’s I, a permutation test was

conducted to determine the significance of spatial

clustering [19].

Spatial smoothing using empirical Bayesian analysis

Spatial smoothing can be used to reduce random

variation associated with small populations and en-

ables identification of spatial disease clusters that

may not be apparent from direct observation of

the raw data [20, 21]. We grouped the dataset into

three categories, each consisting of a 4-year period

between 1993 and 2004. For each period, we spatially

smoothed the dengue incidence data using an empiri-

cal Bayes spatial smoothing procedure (Appendix 2)

using the GeoDa software [19].
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Spatial cluster analysis

Local indicators of spatial association (LISA) analy-

sis was used to identify high-high and low-low

groups of PAs (typically referred to as spatial clus-

ters) and high-low and low-high groups of PAs

(termed spatial outliers) using the GeoDa software

[19]. High-high refers to PAs with high dengue inci-

dence that are surrounded by neighbouring PAs with

high dengue incidence and low-low refers to PAs

with low dengue incidence that are surrounded by

neighbouring PAs with low dengue incidence – these

are indicative of positive spatial autocorrelation.

High-low refers to PAs with high dengue incidence

that are surrounded by PAs with low dengue inci-

dence and low-high refers to PAs with low dengue

incidence that are surrounded by PAs with high

dengue incidence; these are indicative of negative

spatial autocorrelation. We used a spatial empirical

Bayes transformation to smooth the incidence of

dengue, and applied the rates to identify dengue

clusters. The statistical significance of clusters and

outliers was tested by comparing 999 Monte Carlo

permutations, generated under conditions of com-

plete spatial randomness.

Dynamic dispersion of dengue fever

We attempted to identify whether changes in

dengue fever incidence varied with latitude and

longitude of PA centroids in the periods 1993–1996,

1997–2000 and 2001–2004. Logistic regression mod-

els were constructed with the dichotomous outcome

variable defined as whether or not an increase of

dengue fever occurred in each PA between the three

periods. Longitude and latitude of PA centroids was

entered as explanatory variables. Spatial dispersions

were expressed in terms of odds ratios (OR) for

longitude and latitude, with 95% confidence inter-

vals (CI).

RESULTS

Descriptive analysis

Table 1 shows summary statistics for monthly average

numbers of PAs with notified dengue cases in

Queensland. For 1993–1996, 1997–2000 and 2001–2004

these were 1.9, 3.4 and 6.1, respectively. There was a

clear trend of geographic expansion of dengue trans-

mission in Queensland.

Figure 1 shows that there was a striking variation in

monthly numbers of dengue cases and monthly num-

bers of PAs with dengue from 1993 to 2004. A large

peak of dengue incidence occurred in April 1993 (283

cases). Peaks in incident cases generally coincided

with high monthly numbers of PAs with dengue fever

cases.

Boxplots of the monthly numbers of PAs with

dengue indicate a strongly seasonal pattern (with a

peak in autumn) and also suggest that an upward

trend of dengue incidence occurred from 1993 to 2004

(x2=57, P=0.000) (Fig. 2).

Figure 3 shows the geographic distribution of raw

incidence of notified dengue cases in Queensland in

the three time periods. The PAs with the highest total

number of dengue cases were ‘4810’ in 1993–1996

(303 cases), ‘4870’ in 1997–2000 (220 cases) and

‘4870’ in 2001–2004 (425 cases).

Spatial autocorrelation of dengue fever

There was a significant positive spatial autocorrela-

tion of dengue incidence for all three periods, with

Moran’s I statistics of 0.143 (95% CI 0.142–0.145,

P=0.004) during 1993–1996, 0.087 (95% CI

0.085–0.090, P=0.017) during 1997–2000, and 0.026

(95% CI 0.025–0.027, P=0.033) during 2001–2004

(Table 2). There was a decrease in spatial auto-

correlation over the study period, reaching the lowest

value during 2001–2004.

Table 1. Descriptive statistics of monthly numbers of postcode areas with

notified dengue cases

Period Mean S.D. Minimum Q1* Median Q3# Maximum

1993–1996 1.90 3.68 0.00 0.00 1.00 2.00 19.00

1997–2000 3.40 2.81 0.00 1.00 3.00 5.00 13.00
2001–2004 6.10 5.40 1.00 2.00 5.00 8.75 28.00

* Q1, first quartile value.
# Q3, third quartile value.
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Spatial empirical Bayesian smoothed rates

Figure 4 depicts the geographic distribution of

smoothed estimates of dengue incidence in

Queensland in the three time periods. It shows that

the incidence of dengue varied geographically across

the state. A PA with a small population at risk tended

to have its observed rates adjusted considerably

towards the neighbourhood average whereas for a

larger PA, the rate did not substantially change.

LISA analysis

Figure 5 shows four types of spatial correlation ob-

served between PAs with dengue cases (high-high,
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Fig. 2. Boxplots of the seasonal distribution of numbers of postcode areas (PAs) with dengue infection in three periods,

Queensland Australia. The boxplot displays the values of the 25th, 50th and 75th percentiles. The whiskers extend to the most
extreme data point <1.5 times the inter-quartile range.
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Fig. 1.Numbers of dengue cases ( ) and postcode areas (PAs) with dengue notifications (......) between January 1993 and
December 2005 in Queensland, Australia.
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low-low, high-low, low-high) in three different peri-

ods; The areas shaded in bright red and bright blue

had positive spatial autocorrelation while those

shaded in light red and light blue had negative

spatial autocorrelation. The high-high clusters were

primarily concentrated in the north of Queensland

during 1993–1996 and low-low clusters were occurred

in the south-east of Queensland during 2001–2004.

Spatio-temporal trends in dengue incidence

Table 3 shows that geographical variation (i.e. longi-

tude and latitude) was associated with changes of

dengue fever. The results indicated that changes of

dengue fever were significantly associated with longi-

tude (OR 1.28, 95% CI 1.18–1.38) and latitude

(OR 0.91, 95% CI 0.86–0.97) between the periods

2001–2004 and 1997–2000, and associated with

longitude (OR 1.12, 95% CI 1.06–1.20) and latitude

(OR 0.96, 95% CI 0.90–1.01) between the periods

1997–2000 and 1993–1996, and associated with

longitude (OR 1.24, 95% CI 1.15–1.33) and latitude

(OR 0.95, 95% CI 0.90–1.00) between the periods

2001–2004 and 1993–1996.

DISCUSSION

The results of this study indicated significant variation

in the spatial distribution of dengue fever notifications

in Queensland and that the geographic range of

notified cases has expanded in Queensland over the

study period. High-incidence clusters were primarily

concentrated in northern Queensland and the trans-

mission of dengue fever appears to have expanded in

Queensland during 1993–2004.

The climate of north Queensland provides a suit-

able habitat for A. aegypti, which is widely present in

this region [22]. Major outbreaks of dengue, which

have occurred in Cairns, Townsville and the Torres

Strait islands [23, 24] have increased in frequency

and intensity over recent years [16]. The virus is not

currently endemic in Australia and local transmission

is usually initiated by infected travellers [22]. Ac-

cording to notifications to Queensland Health, there

is an average of 10 imported cases to north Queens-

land each year. About 60% of these cases were from

Papua New Guinea and East Timor, with most of the

remainder coming from Thailand, Bali and the South

Pacific nations [16]. Climate factors (rainfall, tem-

perature, humidity) influence mosquito survival and
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Fig. 3. Choropleth maps showing raw dengue incidence rates in three periods.

Table 2. Spatial autocorrelation analysis for dengue in

Queensland, 1993–2004

Period
Annual
incidence Moran’s I E [I ] P

1993–1996 5.15 0.14 x0.0025 0.004

1997–2000 5.09 0.08 x0.0011 0.017
2001–2004 7.64 0.03 x0.0025 0.033
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longevity [25, 26]. The area suitable for transmission

of dengue fever might increase due to global warming

[27–31]. Recent research suggests that under the ‘no

action’ policy scenario, the dengue zone could move

1800 km south along the densely populated coastal

and hinterland strip of south-eastern Australia as far

as Sydney by 2100 [32]. Our study suggests that the

geographic range of dengue transmission had already

begun to extend south-easternwards in Queensland

between 1993 and 2004.

Social and economic factors may also play an es-

sential role in the transmission of dengue fever [33].

Tourism and travel have also become important me-

chanisms for facilitating the spread of dengue fever

and its vectors [34, 35]. Unplanned urbanization and

declining/inadequate resources for vector control are

also among key factors that promote dengue trans-

mission [36]. Recent research shows the implemen-

tation of new water tanks, combined with already

warm summer temperatures, could spread dengue fe-

ver [37]. However, the use of air conditioning, screens

and safe water supplies can help prevent and protect

people from dengue fever [38].

Spatial autocorrelation and LISA analysis are

valuable tools to study how spatial patterns change

over time. This study shows that dengue fever in

Queensland has high-to-low spatial autocorrelation in

three different periods and provides an indication of

clustering patterns within Queensland. LISA shows

that there was high-high (hot spot) clustering of

dengue in the north of Queensland, indicating a high

positive spatial autocorrelation between these PAs in

this area. There was a low-low (cold spot) cluster of

PAs in the south-eastern area of the state during

2001–2004, indicating a low positive spatial auto-

correlation in the south of the state (Fig. 5). The

changes in ‘hot’ and ‘cold’ spot clustering between

the study periods suggest that changes in regional

socio-ecological characteristics might continue to play

an important role in determining dengue fever trans-

mission. The spatial approach in this study may be

used in the surveillance of dengue fever and other in-

fectious diseases to identify and monitor high-risk

areas over different periods of time.

This is the first study to examine the geographic

variation of dengue transmission in Queensland using

GIS and spatial analysis approaches and lays a foun-

dation for further investigation into the social and

environmental factors responsible for changing dis-

ease patterns. The results can be used to identify high-

risk areas where surveillance efforts should be con-

centrated and where public health interventions are

most needed.

This study also has three limitations. First, in our

analysis, reported cases were aggregated by PA, which

prohibits analysis at a higher spatial resolution and

might lead to important clusters being filtered out but

this is the highest resolution at which the data are
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Fig. 4. Spatially smoothed maps of dengue incidence using empirical Bayesian rates in three periods. Spatially smoothed map

for dengue fever incidence was created for correcting the variance instability of incidences.
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currently available. Second, there was also likely to

be variation in the quality of the National Notifiable

Diseases Surveillance System (NNDSS) data. For in-

stance, awareness of dengue fever among medical

practitioners and the public may vary with time and

place, and it might affect assessment of the geographic

distribution of this disease. Underreporting is possible

in the NNDSS data when people infected by dengue

have subclinical infections and/or did not seek medical

attention [39]. Finally, this study only focused on the

geographic variation of dengue transmission but did

not examine its causes. Future research should deter-

mine the key socio-ecological factors (e.g. social,

demographic, climate, vegetation, and mosquito den-

sity) which affect the transmission patterns of dengue

fever.

In summary, this study has revealed that the

transmission cycles of dengue fever vary in different

spatio-temporal settings, and the geographic distri-

bution of dengue fever appears to have expanded over

recent years. Based on these findings, it is necessary to

further improve our understanding of the impact of

socio-environmental change and ecosystem stress on

the transmission of dengue fever. Early warning sys-

tems should be developed to improve the effectiveness

and efficiency of dengue control and prevention pro-

grammes, as no vaccine against different strains of

dengue virus is available. Evidently, to achieve these

goals, a well-coordinated, interdisciplinary approach

is imperative and urgently needed.

1993–1996

1997–2000

2001–2004

High-High

Low-Low

Low-High

High-Low

Not significant

Fig. 5. Local indicators of spatial association cluster maps
of dengue fever in three periods. The areas shaded in bright
red and bright blue had positive spatial autocorrelation

while those shaded in light red and light blue had negative
spatial autocorrelation of dengue fever incidences. A posi-
tive spatial autocorrelation refers to a map pattern where

Table 3. Changes of dengue fever on latitude and

longitude, Queensland, Australia, 1993–2004

Changes in periods*

Latitude Longitude

OR 95% CI OR 95% CI

Period 3 – Period 1 0.94 0.89–1.00 1.24 1.16–1.33
Period 2 – Period 1 0.95 0.90–1.01 1.12 1.06–1.20

Period 3 – Period 2 0.91 0.86–0.97 1.28 1.18–1.39

OR, Odds ratio ; CI, confidence interval.
* Period 1, 1993–1996; period 2, 1997–2000; period 3,
2001–2004.

geographic features of similar dengue incidences tend to
cluster on a map, whereas a negative spatial autocorrelation
indicates a map pattern in which geographic units of similar

dengue incidences scatter throughout the map.
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APPENDIX 1

Moran’s I

Moran’s I is defined by:

I(d)=
Xn
i

Xn
j

wij(xix�xx)(xjx�xx)
.

S2
Xn
i

Xn
j

wij

 !
,

where

S2=
1

n

Xn
i

(xix�xx),

xi and xj denote the observed value at location i and j,

x is the average of the x values over the n locations,

and wij is the spatial weight measure.

APPENDIX 2

Empirical Bayesian rates

If we assume that the prior distribution is character-

ized by a mean h and variance w, the Bayesian esti-

mate for the underlying risk at i then becomes a

weighted average of the raw rate pi and the prior, with

weights inversely related to their variance. This can be

shown to yield:

p̂p=wipi+(1xwi)h,

where

wi=
w

w+(h=Pi)

and Pi is the population at risk in area i.
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