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1. Introduction. Let © be a bounded open set in Euclidean n-space, E,.
Let @« = (@1, ..., a,) be an m-tuple of non-negative integers;

Ia]=a1+...+a,,;

and denote by Q, the set {a|0 < |a| < m}. Denote by x = (x1,...,%,) a
typical point in E, and put

D*=D®...D D,=-

In this paper we establish, under certain circumstances, the existence of weak
and classical solutions of the quasi-linear Dirichlet problem

1) Au(x) = Mlul(x), «x€Q
Du(x) =0, @€ Qua  x€0Q

Here A is a linear elliptic partial differential operator of order 2m given in the
generalized divergence form

Au(x) = a;’é;@ D[ () D%u ()]

where the coefficients a,s(x) are complex-valued functions on Q. Also, fu](x)
is a complex-valued function depending on x, #(x), and all the derivatives of
1 (x) of order not exceeding m — 1. We write

flul(x) = flx, u(x), Du(x), ..., D™ u(x))

where D* represents the vector of all derivatives of order k.

We shall restrict f in such a way that our problem is not a generalization of
the linear case Au(x) = Au(x). Among other things our work generalizes
results of Duff (7) for the equation Au(x) = —f(x,u(x)), f> 6> 0. In
particular, it yields suitably normalized eigenfunctions for equations of the
form

Ay (x) = flx, u(x),..., D™ u(x))
for a wide class of functions satisfying, for fixed § > 0, either f > d or f < —s.
The conditions on our problem are given in §3 below. The principal results are
contained in Theorem 3 of §5 and Theorem 4 of §6.
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2. Sobolev spaces. Let Cy°(Q) denote the class of infinitely often con-
tinuously differentiable functions with compact support in .

Let Wm?(Q) denote, for 1 < p < «, the collection of functions in L?(Q)
whose derivatives (in the weak sense—see (2, p. 3, Definition 1.5)) of order
not exceeding m all belong to L?(Q2). This is a separable, reflexive Banach
space with respect to the norm

lallns = § 25 (1D%l[25{ ™

where ||ul]o,, is the L?(Q) norm. W™2(Q) is a Hilbert space with respect to
the inner product
[u,9), = Y, [D%, D%]
acQ,y,

where [, v] is the L2?(Q) inner product. Let H™?(Q) be the closed linear sub-
space of W™?(Q) obtained by taking the closure of the linear manifold Co” ()
in the norm || . ||n,,- The Hilbert space H™2(Q) is the setting of much of our
work.

The principal results concerning the Sobolev spaces W™?(Q) and H™?(Q2)
and their embedding theorems (the Sobolev and Kondrasev theorems) which
we shall use may be found in (2; 4; 8).

3. Conditions on the problem. Throughout this paper we assume that
the following conditions are satisfied:

(A) The functions a.s(x) are measurable and uniformly bounded on Q.
(B) There exists a constant ¢ > 0 such that the Dirichlet form

(2) alu,v) = Y, fﬂ as () DPu (x) D% (x) dx:

a,B€Qmn
satisfies |a(u, u)| > c||u||m2 for all u(x) € C,°(Q).

(C) If t us the complex vector (o) (a € Qu_1), then f(x,t) is measurable in x
for x in Q and fixed t and is continuous in t. (Note that flu](x) = f(x, ) where
te = to(x) = D2u(x).)

(D) The growth conditions:

e 0l <K +3 3 Gl

acQy

where K 15 a constant and where, if n < 2m — 2k, Cy(r) is a non-decreasing
Sfunction of v for 0 < r < w. If n > 2m — 2k, then Cy(r) = By r°* where B,
15 a constant and

. n + 2m .

1) 1<0k<n—-2m+2k if n > 2m,

. 2n .

(i) 1<0k<n_2m+2k if 2m > n > 2m — 2k,
(iit) 1< < o if n = 2m — 2k.
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By a weak solution of the problem (1) we mean an element u(x) € H™2(Q)
satisfying

3) a,0) = [ flul G ax

for all v(x) € H™?(Q). The weak solution is non-trivial provided ||u|,,» > 0.
A classical solution is one that is sufficiently differentiable to satisfy the differen-
tial equation and boundary conditions in a pointwise sense.

4. The operator equation. We now replace equation (3) above by an
operator equation in H™2(Q).

THEOREM 1. Suppose that the conditions (A)—(D) of §3 are satisfied. Then there
exists a bounded linear operator L mapping H™*(Q) onto itself and possessing a
bounded inverse L7, and also a completely continuous operator C mapping
H™2(Q) into itself such that for all u(x), v(x) € H™?2(Q)

4) a(u,v) = [Lu, v,

Q S 1w s = (€@, ol

Any weak solution of (1) is a solution of
6) = NL71C(u)
and conversely. Finally, there exists a non-decreasing function g(r) for0 < r < o

such that ||C(w)||m,2 < g([|tt]|m,2) for all uw € H™2(Q).

Proof. The existence of L satisfying (4) is an immediate consequence of
condition (A) and the Riesz representation theorem. The invertibility of L on
H™2(Q) is a consequence of condition (B), the fact that C¢*(Q) is dense in
H™2*(Q), and the Lax-Milgram representation theorem (2, p. 99).

The left side of (5) is a conjugate linear functional of v on H™2(Q). That it
is bounded follows from condition (D) and Sobolev’s embedding theorem.
For example, suppose # > 2m. Then H™2(Q) is embedded continuously in
L7(Q) where r = 2n(n — 2m)~'. If »~1 4 s7! = 1, then

o s < 2n(n — 2m + 2k)1
and so H™*2(Q) is embedded continuously in L?(Q) where p = o, s. Thus
if |a] = &,
J i @) dx < 10l ol
< const. || D] |mx,2][0]|m,2
<

const. ||u||m 2| |v]|m,2-
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Condition (D) now gives

1) Uf 1()o ) dx| < const. {1 +}: pagiic }Hv s

The other cases follow similarly. The existence of C satisfying (5) follows by
the Riesz representation theorem. The function g(|[#|| 2) is given by the factor
multiplying ||v||,2 on the right side of (7) (for the case n > 2m).

In proving the complete continuity of C we again consider only the case
n > 2m, the other cases being similar though more tedious. (A detailed proof
for all cases may be found in (1).) Since oy < (n + 2m)(n — 2m + 2k)71,
there exist constants ¢, > O such that o, (1 + ¢) < (# 4+ 2m) (n — 2m + 2k)~1.
Define ¢; = 2n(n — 2m + 2k)~'(1 4+ €)' choosing ¢, smaller if necessary so
that ¢; > 1. By the Kondrasev theorem (also called Rellich’s lemma) the
embedding map

Tyt H™52(Q) — Liv(Q)

is completely continuous. Thus, so is the product mapping

m—1 m—1
J:J1 I 5@ —]1 TI L*(@),
k=0 a€Qy k=0 a€Qy

J(...,uj, ...) = (..., Jkuj, ...),u;EHm_kﬂ(ﬂ).
Here the product spaces are normed by the Pythagorean formula. We define
the operator

m—1

B: 11 II L*@ —L"(2)

k=0 acQy
where p = 2n(n + 2m)~! by the formula
B(t(x)) = f(x, t(x)).

If we put px = qx p~, we have p, > g5 and so by condition (D)

m—

1B(t(x))| < K+Z Z Bi|ta(x) ™.

k=0 ac€
By an extension of a theorem of M. M. Vamberg (10, p. 253) which can be
proved using the method of (10) (the proof can be found in (1)) it follows
that B is a continuous mapping. Hence the mapping

m—1

BJ: I IT H™"*Q) — L"(©Q)

k=0 a€Qy
is completely continuous. Now is #, — u weakly in H™'2(Q), it is easily verified
that Dou, — D*u weakly in H™*:2(Q). By Hélder's inequality and Sobolev’s
theorem, we obtain, using (5),
Hc(un) - C(u)“m,2 = | ]SUP L I[C(un) - C(u), v]m]
Vlim,2=
< const. ||f[ua] — flulllo.
< const. [|BJ((D"tn)acq,,_,) — BI((D*)aca,,_,) |0
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which tends to 0 as 7 tends to infinity. This completes the proof, the rest of
the theorem being obvious.

5. Existence theory. Using various well-known fixed-point theorems, we
demonstrate the existence of a solution of equation (6). In order to be sure that
the solution is non-trivial we assume that C(0) # 0in H™2(Q), or equivalently,
1£Ge, 0) o2 0.

THEOREM 2 (Schauder, Schaefer, Birkhoff-Kellogg). Let B, be the ball of
radius r centred at the origin in the separable Hilbert space H, and let S, be its
surface. Let T be a completely continuous operator in H. Then

(@) if T maps B, into B,, it has a fixed point in B,;

(b) if T maps H into H and o > 0, either there exists uw ¢ H such that

= N T'(u) or for any r > O there exisis u € S, and N\ with 0 < X\ < \o such
that uw = AT (u);

(c) if T maps S, into S,, it has a fixed point on S;.

The proofs of these results may be found in Cronin (6).

THEOREM 3. Suppose the conditions (A)-(D) of §3 are satisfied. Let B, be the
ball of radius r centred at the origin tn H™2(Q), and let S, be its surface. Then we
have the following:

@) If ||C0)||m.2 > 0O, then for any r > O there exists No > 0 such that if
0 < N < )\ then there exists a non-trivial solution of (6) in B,.

(b) Given Ao > 0, either there exists w € H™2*(Q) such that u = Ng L71C(u)
or for any r > 0 there exists a solution of (5) on S, for some A < \,.

(c) If for some r > 0, C satisfies

2) inf ||C(%)||m,2 = 8 > 0,
u€s,

then there exists a solution of (6) on S, for some \ satisfying

R R||L]|
T T S A ——.
[Z7]g@®) ="~ 8
Proof. Part (a) follows from Theorem 2(a) if we put
R

T(u) = \L™C(u), )\0=“—L_THR'R—).

Part (b) is an immediate consequence of Theorem 2(b).
Part (c) follows from Theorem 2(c) if we put

L7'C(u)
[[L7C@)|lm.2’
for since |[L7'C(%)||m,2 > 0(||L|])~ for u € S,, it follows that L-1C(S;) is
bounded away from the origin. But then the projection P from the origin of
H™2(Q) onto S, is continuous on L~1C(S;) and so T" = PL™!C is completely
continuous.

T(u) =R
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Remark. Condition (8) may be put in the equivalent form

8" inf sup

UESr v€S)

=0>0.

J 1w ax

The existence of a 6 > 0 satisfying (8) is equivalent to the condition
[|C(®)|[m,2 > 0 for all u € B, because each element of B, is the weak limit of a
sequence on S, and ||C(#)]||n,2, being a weakly continuous functional, takes
on its infimum on the weakly compact set B,.

6. Regularity theory. We denote by C™(Q) (by C™(Q)), the class of
functions which together with all their derivatives of order not exceeding m
are continuous in @ (are uniformly continuous on the closure @ of ). C""(Q)
is the class of functions in C™(Q) which together with all their derivatives of
order not exceeding m satisfy a Holder condition of exponent 7 in Q.

We place the following regularity conditions on our problem:

(E) A is uniformly elliptic and if n = 2 1t satisfies the ‘‘roots condition”
3, p. 57). Also, ams(x) € C™(Q).

(F) Qs of class C*™ in E, (cf. definition in (2, p. 128)).

(G) f(x, t) satisfies a local Lipschitz condition in each component of t, and also
a Hélder condition of exponentr (0 <r < 1) wn x.

LeEMMA. Suppose that conditions (A)—(G) are satisfied and let u(x) be a weak
solution of problem (1). Then u(x) € W ?(Q) for any p < .

Proof. Again we consider only the case #» > 2m. The other cases are similar
but more complicated and are treated in detail in (1). Since u(x) € H™?(Q),
it follows from Sobolev’s embedding theorem that

Du(x) € L"*(R), 0L o) =k m—1,

where 71, = 2n(n — 2m + 2k)~1. Defining ¢ as in the proof of Theorem 1,
we put € = min ¢, > 0. It follows from condition (D) that

|Du(x)|™ € L"*(Q)

where p,. = ru(ox)™ > 2n(1 + ) (n 4+ 2m)~' = p; > 1. Hence, if we put
fx) = flul(x),

fx) € L™(@).

It follows by a theorem of Agmon (3, p. 88, Theorem 8.2), the conditions of
which are fulfilled under our stated conditions, that

u(x) € W™ (Q).

From this point, we may repeat the above argument and obtain

D'u(x) € L™(Q), 0L o] =k <m—1,
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where, if # < (2m — k)p1, 7 is any finite number greater than unity, or,

_ npl 2n
T = = (2m—k)p1<n—2m+2k(l+e)'

It follows that

ID°u|™ € L7 (@)

where por = ra (o)™ > 2n(1 + €)2(n + 2m)~1 = (1 + €)p1 = p». Again by
the theorem of Agmon referred to above we have

u(x) € W™ (Q).

This “‘boot-strapping’’ procedure can be continued to produce

u(x) € W (Q)

for a sequence of values p, = (1 4 €)*"'p; tending to infinity. This completes
the proof.

COROLLARY. #(x) € C*™(Q) M C™1(Q).

Proof. For p large enough (p > n(m — r)~1), any function in W2»?(Q)
belongs, after possible redefinition on a subset of @ of measure zero, to C™"(Q),
by Sobolev’s embedding theorem. In particular, u(x) € C™1(Q). Since, for
0 < |a|] < m — 1, Du(x) is uniformly bounded on €, and since f(x, ¢) satisfies
condition (G), it follows that f(x) = f[u](x) belongs to C%7(2). By a theorem
of Browder (5, Theorem 1(iii) ), the conditions of which are satisfied under our
stated conditions, it follows that u(x) € C*™7(Q') for any compact subdomain
Q' C Q. In particular, u(x) € C*™(Q).

THEOREM 4. Under conditions (A)-(G) any weak solution u(x) of (1) is a
classical solution.

Proof. Since u(x) € C™1(Q) N H™2(Q), it follows for a € Q,_; that
Deu(x) € C°(Q) M H'2(Q), and so be a lemma of Nirenberg (9, §2, Lemma 8)
Doy (x) = 0 in a pointwise sense on the boundary of Q. Since u(x) is a weak
solution of (1), we obtain from (3), by integration by parts in (2), that

J e — Wik dx = 0

for all functions v(x) € Cy”(2). Since the term in the square brackets is con-
tinuous, it vanishes identically in Q. Thus u(x) is a classical solution of (1).
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