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WHAT IS KNOWN ABOUT ROBBINS’ PROBLEM?

F. THOMAS BRUSS.* Université Libre de Bruxelles

Abstract

Let X1, X2, ..., X, be independent, identically distributed random variables, uniform
on [0, 1]. We observe the X sequentially and must stop on exactly one of them. No
recollection of the preceding observations is permitted. What stopping rule T minimizes
the expected rank of the selected observation? This full-information expected-rank
problem is known as Robbins’ problem. The general solution is still unknown, and
only some bounds are known for the limiting value as n tends to infinity. After a short
discussion of the history and background of this problem, we summarize what is known.
We then try to present, in an easily accessible form, what the author believes should be
seen as the essence of the more difficult remaining questions. The aim of this article is to
evoke interest in this problem and so, simply by viewing it from what are possibly new
angles, to increase the probability that a reader may see what seems to evade probabilistic
intuition.
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1. Introduction

1 should like to see this problem solved before I die.
Herbert Robbins, 26 June 1990

With exactly these words, Professor Herbert Robbins presented the above described problem
at the International Conference on Search and Selection in Real Time, Amherst, MA, 21-27
June 1990. He also used it to finish his splendid invited final address, which attracted much
attention and admiration. We here restate his problem precisely and introduce the relevant
notation.

1.1. Robbins’ problem

Let X1, X2, ..., X, beindependent, identically distributed (i.i.d.) U[0, 1]random variables,
and let ' be the o -algebra generated by X1, X2, ..., X¢. Let Ri, k =1, ..., n, bethe absolute
rank of Xy, where ranks are defined in increasing order, i.e.

n
Ry =) 1ix;<xy)- ()
i=1
Furthermore, let 7;, be the set of all finite stopping rules adapted to X1, X», ..., X, i.e.

n
T, ={t:{t=k}eF,1 <k <n} and ZP(I:k):l.
k=1
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The problem is to find the value

V(n) = inf E[R,], (2)

teTy,

including its asymptotic behavior as n tends to infinity, and also the stopping rule t* that
achieves this value, namely

™ =1, = argmin E[R,]. 3)

teTly

Remarks. We usually define the largest observations to have rank 1 and allocate ranks in
reverse order of the order statistics of observations. Definition (1) does the contrary. This
makes no difference, of course, because the Xy are uniform i.i.d. variables on [0, 1] if and only
if the variables 1 — X are too. We use definition (1) because it assigns small ranks to small
observations. Also, the U[O0, 1] distribution for the X can, of course, be replaced by any other
continuous distribution function F, since the transformed variables Y; := F(X}) bring us back
to the U[O0, 1] distribution. Finally, we note that E[R;] = E[E[R; | #;]] = E[r: + (n — 1) X ],
where ry is the relative rank of the kth observation. Hence, although Ry is not ¥ -measurable
for k < n, the problem of finding V (n) and t* is well defined (see (2) and (3)).

This is Robbins’ problem in detail.

1.2. Objective of this paper

Our aim is stimulate interest in this problem in order to increase the probability that it will
be solved. Gardner (1960) made the secretary problem known, and this had a great impact on
optimal stopping. Robbins’ problem belongs to the same class of problems. However, it is
much harder to solve, and a complete solution may break new ground.

2. What did Robbins say about his problem?

Robbins said almost nothing about the problem. He dropped the remark that V (n) approaches
a value not far from 2 as n grows, but, almost as if he regretted having said this, this was all
we got from him. As we shall see, this turns out to be rather modest information, and it is here
that the real problems begin.

No further indication was given of why he was interested in this problem, of how he had
tried to tackle it, or where in it he saw the true difficulties. Nevertheless, his severe demeanour
and his suddenly apprehensive way of speaking while presenting this problem — and then his
final words cited above — left a permanent impression on me. It must have been similar for
many colleagues. We soon spoke of Robbins’ problem as if this name had been around forever.

3. How long has the problem been around?

I (the author) could not find out whether Robbins talked about this problem before the
Amberst conference in 1990. Among those I could ask, who collaborated with him or knew
Robbins well otherwise, nobody could recall him discussing the problem before.

A colleague conjectured later that Robbins had seen that this problem is hard and had wanted
to present it in such a way as to have it named after him, without having worked much on it
or having a strong interest in it. However, though I hardly knew Professor Robbins personally,
I think that this is not true. First, this does not fit the image of the truly creative scientist we
know Robbins to have been. Second, it fits even less well the picture of a scientifically generous
person presented so clearly by two of his most significant collaborators (see Siegmund (2003a),
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(2003b) and Lai and Siegmund (1986)). Finally, we will show below that Robbins had a long
interest in expected-rank problems, and we will argue that he is likely to have looked into this
problem as early as in the mid-sixties.

4. Robbins’ problem as the fourth secretary problem

We should look at the context of Robbins’ problem. Preliminary bounds for V (n) will follow
in a straightforward manner just by looking at related problems. These are rank-based selection
problems without recall of preceding observations, often called ‘secretary problems’ (see, e.g.
Ferguson (1989a) and Samuels (1991)). The following four problems stand out.

(I) The classical secretary problem (CSP). A decision-maker sequentially observes the
relative ranks rq, r2, ..., r, of the X; and wants to maximize P(R; = 1). Here, t is adapted
to the sub-o-fields generated by the relative ranks. This is the best-known secretary problem.
Lindley (1961) published the solution first, showing that the limiting optimal probability of
choosing rank 1 is 1/e. See Gardner (1960) for a related problem. Several other independent
solutions were published in later years; see, e.g. Dynkin and Juschkewitsch (1969). (Nowadays
I would recommend direct use of the general odds theorem (see Bruss (2000)), of which the
solution is just a corollary.) The CSP was later generalized and modified in many interesting
ways (see the review by Samuels (1991)), including to the case of an unknown n (see, e.g.
Presman and Sonin (1972)).

According to Ferguson (private communication), Blackwell, Dubins, and others, including
himself, already knew the solution of the CSP in the late fifties. Whittle (private communication)
also knew the solution before 1961. Unlike Lindley, who should get credit for this, most of the
scientists involved did not expect the problem to attract as much interest as it did, which is why
they did not publish their solutions. It is probable that Robbins knew the problem early, and it
is certain that secretary and related problems attracted his interest (see, e.g. Vanderbei (1980)
and, in particular, problems (III) and (IV), below.)

(II) The full-information secretary problem. The situation is as in problem (I), where the
decision-maker wants to maximize the probability of selecting rank 1, except that he now knows
the distribution of the X and can use the observations X1, X», ..., X, (not only their ranks).
The optimal win probability is now 0.5801 - - - (Gilbert and Mosteller (1966)). The term ‘full
information’ refers to the full knowledge of the distribution of the Xy . If the relative ranks are all
the information that the decision-maker has, we speak of the ‘no-information’ case. The CSP
is, hence, the corresponding no-information case. We note that the improvement of the optimal
win probability from 1/e = 0.3678--- (no information) to 0.5801 - - - (full information) is
about 58%.

(IIT) The no-information expected-rank problem. In this problem, the decision-maker must
again base his decision only on the sequential observation of relative ranks, and the problem
is to minimize E[R;]. This problem is harder than (I) and (II). A heuristic approach was given
by Lindley (1961), but the resulting equations were too crude to derive the existence and value
of the limit. This was achieved by Chow et al. (1964): the limiting optimal value (minimal
expected loss) is

0o G4
2
| |<i> ~ 3.8695.
Jj=1 J
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This paper was a little miracle, because it was finished in August 1964 but published in June
1964 (Steve Samuels (private communication)). However, another miracle cannot be hoped
for: dividing 3.8695 by 1.58 (1 plus the 58% improvement observed in passing from (I) to (I))
yields about 2.44, which is greater than V, as we will see.

(IV) The full-information expected-rank problem. Here, the decision-maker can base his
decision on the sequential observation of i.i.d. random variables with a fully known distribution,
and wants to minimize the expected rank. Hence, this is Robbins’ problem.

We see that Robbins’ problem fits perfectly in the two-by-two pattern of these four related
problems, generated by two typical payoff functions and the two opposite extremes of informa-
tion. As Problem (III) is directly related to (IV), it is natural to consider it further. Robbins was
very fond of the paper Chow et al. (1964) on (III) — he said so in his speech in Amherst. Among
other remarks, he cited the first ten or twelve digits of the value 3.8695 - - -. He was fond of
it because this problem is relatively hard. Robbins did not only have a liking for rank-related
problems, but singled out rank-payoff functions as being particularly interesting. This is evident
from his vigorous, and somewhat surprising, ‘Down with googol, up with such problems!” (see
his comment on Ferguson (Robbins (1989)); see also Ferguson’s (1989b) answer). His interest
in rank-payoff functions has been confirmed by several colleagues; it is also apparent in Robbins
(1991).

By the mid-sixties, had Robbins already looked at the problem naturally related to (III), that
is, at ‘his’ problem? If he followed Pélya’s golden rule, he certainly had, but we will never
know for sure. However, we are sure that Robbins did not take long to discover that problem
(IV) is in quite a different class — in the Hobbs class, as G. H. Hardy would have put it: easy
to state and seemingly feasible, but subsequently revealed to be truly in the top class of related
problems.

5. What did Robbins know about his problem?

This is a question that may be harder to answer than Robbins’ problem itself, and it is an
enigma to me as to why ithad to turn out that way. Around 1995/6 I gave up working on Robbins’
problem for good(!?), and I did not keep records. I think I had only one more occasion after the
Amberst conference to speak briefly with Robbins (in around 1992), asking him what he knew.
No doubt he liked to see serious interest, and I remember an encouraging ‘Go on’. This left all
interpretations open. For the remainder, it was a one-sided interview: I got no new information.
I only heard recently from Larry Shepp that this may not have been atypical of Robbins’ style.
I quote (private communication): ‘Robbins was not easy to talk to about problems. He liked to
make jokes frequently, so one was never sure what he really thought about questions like this.’

After several other fruitless efforts to make progress on the problem, I wrote a letter to
Robbins (probably in late 1995 or early 1996), saying in clear terms that we (Bruss, Ferguson,
Assaf, and Samuel-Cahn) had put so much effort into his problem that I thought we deserved
to be told what he knew. I got no answer, and I found this difficult to believe. Actually, I finally
did get an answer, but it was not from Robbins himself but from Ester Samuel-Cahn, asking
me not to be cross with Robbins. This was funny and touching at the same time. Robbins
had told her about my letter when she was visiting him: this was the only reason I knew for
sure that he had received it. She believed, without being sure, that Robbins knew no more than
we did. Independently, Steve Samuels thinks it inconceivable that Robbins witheld part of his
knowledge. Hence, this is the most probable case.
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It was due to Ester’s letter that I then saw Robbin’s behavior in this matter as being very
enigmatic, rather than unfair. Ester says Robbins liked a sarcastic sense of humor. Hence, he
would pardon me that I resolved to say ‘Now, Professor Robbins, I would like to know what
you know about your problem before I die.” Sadly, both his wish and mine are now out of reach:
Professor Robbins died on 12 February 2001.

6. What is known?

As far as I am aware, some ten people have worked on the problem for some time, and several
others have shown interest in it. Also, the problem is the recurrent theme of small discussions
(as, for example, in the conferences in Nagoya (1994), Athens (1995), Kyoto (1998), and
Bedlewo, Poland (2002)). There are three papers specifically on Robbins’ problem. These are
Bruss and Ferguson (1993), Assaf and Samuel-Cahn (1996), and Bruss and Ferguson (1996).
Also, Hubert and Pyke (1997) refer to Robbins’ problem in an addendum, and add a related
problem (also in the Hobbs class).

Throughout this section, we present the main results on Robbins’ problem.

Proposition 1. V (n) is increasing in n.

Proof. There is a neat nontechnical proof of this. Imagine a (modest) prophet who can, at
time 0, foresee the worst observation, i.e. the largest order statistic X ), but who has no other
prophetical abilities. His value V), (n), say, satisfies V,(n) < V (n), because he can do at least
as well as we can. However, V,(n) = V(n — 1) because optimal behavior forces the prophet
to refuse X,y and to solve Robbins’ problem for n — 1 i.i.d. observations with a U[0, X[
distribution, with the same value V (n — 1). Hence, forn > 2, V(n) > V(n — 1).

Assaf and Samuel-Cahn (1996) had, independently, a similar argument.
Proposition 2. V = lim,,_, » V,, exists.

Proof. From Proposition 1, it suffices to show that (V (n)),=1.2,... is bounded from above.
Now, V(n) < V(n), where V(n) denotes the corresponding value in the rank-observation case
(IIT), because full information includes rank information. Since (V(n))n converges (see Chow
et al. (1964)), it is bounded and, hence, (V (n)), is bounded.

6.1. Upper bounds

We now look at upper bounds for V;,. From the solution of (III) in Section 4, we have the
trivial upper bound V < 3.8695. The first idea to obtain better upper bounds is based on the
following observation: there is a strong correlation between the values Xy and their ranks Ry.
Indeed, it is easy to see (Bruss and Ferguson (1993)) that

In—1
corr(Xy, Ry) = Z?%l asn — oo,

from which we might hope that the optimal strategy to minimize E[X s, ] over all stopping rules
M, € T, should also be a reasonable approximation for Robbins’ problem. The solution of
the problem of minimizing E[X s, ] is well known (Moser (1956)) and has asymptotic value
infpr, e7;, E[XMm,] ~ 2/n as n tends to infinity. Note that this is on the order of E[X (2 ], that
is, the expected value of the second-smallest order statistic. Since, here, the loss for accepting
Xk is just Xy, the optimal rule for Moser’s problem is independent of the values of preceding
observations and, therefore, can only depend, at each step, on the currently observed value and
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on the number of observations to come. We will call such rules memoryless threshold rules,
and denote them by M,,. Clearly, M,, C T, forn > 1.

From the result that inf ys¢ 4, E[X p] ~ 2/n, we are naturally encouraged to try the stopping
rule defined by min{k > 1: X; < 2/(n — k 4 2)}, and this yields the following result.

Proposition 3. The memoryless threshold rule M,, defined by

M,,:min k>1: X < —— ¢,
n—k+2

yields
% < % foralln € N.

The proof can be found in Bruss and Ferguson (1993).

We give this rule here because it is convenient and already comes quite close to the optimum
one can achieve in the class of memoryless threshold strategies. It can be improved within
the same class of rules. A first improvement (Assaf and Samuel-Cahn (1996)) is obtained
by replacing the thresholds 2/(n — k + 2) by ¢/(n — k + ¢) and then minimizing the corre-
sponding expected rank with respect to c¢. This yields ¢ = 1.9469 - - -, and 2.3318 - - - for the
expected rank. By a more elaborate analysis, Assaf and Samuel-Cahn (1996) showed that the
limiting optimal value among the class of memoryless threshold strategies, W say, satisfies
2295 < W < 2.3267. By extrapolation techniques, Bruss and Ferguson (1993) estimated
that W = 2.32659. The upper bound W < 2.3267 of Assaf and Samuel-Cahn maintains its
interest, however, because it is obtained through an explicit (complicated) threshold function
that achieves this value (see Lemma 4.1 of Assaf and Samuel-Cahn (1996)). For n not too large,
the precise solution is given by the next proposition.

Vn) B[R 1<1+

Proposition 4. For n fixed, let px = pr(n), and let N(p) be the memoryless stopping rule
defined by N(p) = inf{k > 1: Xy < pi}, where p = (p1, p2,...,pn) With0 < pr <1
for all k. For each n, the optimal memoryless rule, p* = (p}, p5, ..., p;) say, is unique and
satisfies

O<pi<pi<--<pi=1

This rule can be explicitly computed from the system of equations

IE[RN (p)]

=0, k=1,2,...,n—1.
dpk

The proof can be found in Bruss and Ferguson (1993).

We should mention here that E[Ry(p)] can be seen to be quadratic in each variable when
the others are kept fixed (see Equation (3.1) of Bruss and Ferguson (1993)), so that the
OE[Rn (p)]/dpy are easy to work with and the exact solution relatively easy to find. For large
n, we would of course prefer the approximation given by Assaf and Samuel-Cahn (1996). (For
general results on limiting threshold rules, also see Kennedy and Kertz (1990).)

However, an important part of Robbins’ problem is, as we shall see, to prove or disprove the
statement V = W, where, as before, W denotes the limiting optimal value within the class of
memoryless threshold rules. Engaging in a full effort to compute W up to ten decimals, say,
is hard to justify if V < W. For this reason, we state the results in a modest and safe form, as
follows.

Proposition 5. V < W < 2.3267.
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To my knowledge, nobody has found an upper bound for V better than W. At first, the failure
to do so came as areal surprise. Intuitively, there should be one, and we should find one because
memoryless threshold rules do not depend on the history of observations. It is this history that
determines the relative rank of the stopped observation, and this is a substantial part of the loss
function in Robbins’ problem. Hence, it seems reasonable to expect that some modifications
of memoryless threshold rules, which take relative ranks into account, will perform better,
and one would think that memorizing a few smallest relative ranks would make a difference.
However, this seems not to be the case. Clearly, strategies based on relative ranks alone cannot
be optimal. It seems complicated to evaluate the limiting influence of modifications on possible
improvements through a balanced mixture of rank information and a set of ‘critical’ values, and
in this we had no success: trial and error can seemingly not give enough insight.

6.2. Lower bounds

Naturally, we now turn our interest to lower bounds for V. By definition, V (n) > 1 for all n
and it is easy to show that, in fact, V > 1.4198 - - -. Indeed, suppose that we change from R;
to the new loss function

Ry = LRr,=1} +2 g, >2) = 1 + L{g, >0} .

Clearly, R; > < R; and, so, E[R; 2] < E[R]. Minimizing E[R; 2] over 7,, means minimizing
2 — P(R; = 1) or, equivalently, maximizing P(R; = 1) over T,,. However, this being the
full-information secretary problem (II) with asymptotic value 0.580164 as n tends to infinity,
we have V > 2 — 0.5802 = 1.4198.

This is the starting point of a recursive truncation procedure. We will only indicate the
idea here; for the proofs, see Bruss and Ferguson (1993, pp. 623-625). Form = 1,2, ... and

n=m+1,m+2,..., we define a new loss function by
k—1
Yi = Ye(m.n) = 1 +min{m, Zl{xj<xk}} +(n — k) X
j=1

That is, if the relative rank exceeds m, it counts for m + 1, and the expected number of
observations filling the current relative rank up to the expected rank, is, as before, (n — k) Xy.
We note that the latter does not depend on m, whereas the truncated relative rank is clearly
nondecreasing in m. Hence, the Yy (m, n) are nondecreasing in m. We note that Y (m, n) must
yield a better lower bound than that which we find by just truncating the rank. (This explains
why the value 1.4198 - - - obtained above will not be the same as the value for m = 1, below.)
With the weak-prophet comparison we used in the proof of Proposition 1, we can again show
that the new value is also nondecreasing in n. Solving the respective minimization problems

for Yy(m,n),m = 1,2, ..., then yields a sequence of lower bounds V(l)(n), v (n), ..., all
of which are themselves lower bounds for V (n) and, hence, for V. Bruss and Ferguson (1993)
have done this form =1, ..., 5, yielding

v = 1.462, v® — 1.658, v = 1.782, V@ = 1.860, v = 1.908.

Although the described truncation presents a considerable simplification of Robbins’ prob-
lem, the computational problem imposes a severe constraint. The computational work increases
twice exponentially, in the sense that both time and storage requirements increase exponentially
in m. (Actually, in 1991, we had to out-source part of the work and were grateful to Hardwick
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and Schork (1992, private communication to T. S. Ferguson) for having done the computations
for m = 4 and m = 5 at the University of Michigan.) Nowadays, with highly increased
computation speed, we could do the same for some larger m, but we certainly could not go much
further. Computers can provide valuable help in calculating approximations to the value but,
here, they cannot give the answer, which is why no further effort was invested into performing
the calculations for larger values of m. Moreover, no insight is gained about the ‘limiting form’
of strategies that might achieve V. (An independent and purely analytical approach by Assaf
and Samuel-Cahn (1996) yields the lower bound V > 1.8502.) In summary, we have the next
proposition.

Proposition 6. V > 1.908.

As we have said, this lower bound can be improved. (However, so far, we cannot obtain
V — ¢ for arbitrary & > 0.) The first-order differences of the V" displayed above, i.e. 0.196,
0.124,0.078, and 0.048, and their decreasing ratios 0.632, 0.629, and 0.615, indicate a concave
shape pointing towards a value somewhere below 2. If none of the subsequent ratios were to
exceed 0.615, we would obtain V < 1.908 + 0.048(0.615/(1 — 0.615)) < 1.985. This gives
observational support to the conjecture that V < 2 (and, in particular, that V. < W). However,
we do not know if this is true. There are instances of nonmonotonic behavior of functions in
Robbins’ problem (Assaf and Samuel-Cahn (1996), Bruss and Ferguson (1996)) and it seems
hard to say something general about these differences.

6.3. The optimal rule

The goal is now to get a better understanding of the structure of the overall optimal rule.
We will summarize the known results about its form and its properties. As before, let T* :=
7,° denote the optimal stopping time for Robbins’ problem with n observations. Unlike the
memoryless threshold rules considered above, we must now deal with a larger class of rules
based on threshold functions, which, as we shall see, depend stepwise on (essentially) the whole
preceding history.

Proposition 7. Foralln, the optimal rule is a stepwise-monotone-increasing threshold function
rule defined by the stopping time

o =inf(l <k <n: X < p{" (X1, Xa. ... X0},
where the functions p,((")(-) satisfy

0< P;((n)(XI, X2, .00, Xp) < p,(c'zl(Xl, X2, ..., Xk, Xrv1) almost surely,

and

p;(1n—)1(X1’ X0, ., X)) <1= p,(l”)(-) almost surely.

Note that ‘stepwise’ is added here to avoid confusion with any stronger form of monotonicity:
whenever it is optimal to stop on X, it is optimal to stop at k for a smaller value X; < Xj
(this justifies the term ‘threshold’) and, for each history X1, X, ..., Xj for which it is optimal
to stop on Xy, it is then optimal to stop on an X1 with Xz41 < Xj. Although this result is
intuitive, the proof is somewhat technical and, thus, the interested reader is referred to Bruss
and Ferguson (1996, pp. 9-11).
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6.4. Full history dependence.

Full history dependence is a strong result, actually proving that the problem is complex. It
says that, for any n, the optimal rule achieving V (n) depends essentially on the whole history
of values, and that the preceding history allows for no simplification.

Proposition 8. The stopping time t,} is fully history dependent in the sense that, at each step k,
the decision to accept or refuse Xy depends on all X1, Xa, ..., Xi, and no nontrivial statistic
of X1, X2, ..., Xk is sufficient to achieve V (n).

Although technicalities are unavoidable in the proof (see Section 4.2 of Bruss and Ferguson
(1996)), here we can summarize the idea in a simpler style. Imagine two decision-makers, one
(male) having no prophetical ability (like us) and the other one (female) being a ‘half-prophet’
in the following sense: if she comes into the problem at stage k, with no decision to stop having
been taken before, she can foresee the future observations Xy 41, Xg+2, ..., X, provided that
she refuses X and enters stage k + 1. Thus, with respect to the expected loss by stopping,
i.e. Ly = ry + (n — k) X (the expected rank of X), the two decision-makers are on the same
footing at stage k. However, to compute the expected loss by going on, L,j say, he must solve
Robbins’ problem at stage k. She, on the other hand, need only compute the expected rank
generated by the history and the smallest order statistics of what follows, because if she decides
to go on, she knows that she can stop at that smallest order statistic. Her future expected loss
is easily found to be

1 k k
L = / (1 +> 1{Xm§s}> dFjg @) =1+ (1= X)"*,
0

where F;() is the distribution function of the infimum of the n — k i.i.d. U[0, 1] variables
Xk+1, ..., Xy and, hence, dF;)(s) = (n — k)(1 — $)"~%=1ds. She now simply compares Ly
and L? and stops if Ly < LE. Note the influence of k and the X ; on the last sum. If she only
came in at stage k 4+ 1, she would again need all preceding values; knowing LkH and Xy_1,
for instance, is insufficient. Note also that, clearly, he must stop when she stops under optimal
behavior, since he cannot possibly do better than her. The contrary is not necessarily the case,
however; hence, even if she does not stop, he may still have to.

How can we make sure that, in this case, the dependence on the entire history does not
partially cancel out? The trick is to look ahead from stage k to stage n — 1. By the optimality
principle, he must do this because, as we know from Proposition 7, this stage will be reached,
under optimal behavior, with a strictly positive probability. At stage n — 1, however, he has the
same power as her if she only came in at step n — 1. Hence, at stage n — 1 their optimal behavior
is the same! She needs all the preceding observations and, hence, so does he. However, he
could not possibly have all the information unless he had remembered each step.

Unfortunately this is not sufficient to show that remembering all the observations makes a
difference to the asymptotic value. That is, we can show that the probability of reaching stage
n — 1 under an optimal rule tends to 0 as n — oo. Thus, in the limit, the trick is no longer
effective.

6.5. Half-prophets and finite-n improvements on memoryless threshold rules.

Proposition 9. For each n, we can strictly improve on the optimal memoryless threshold rule.
(However, to my knowledge, nobody has so far shown that one can find improvements that are
still strictly positive in the limit as n tends to infinity.)

https://doi.org/10.1239/jap/1110381374 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1110381374

What is known about Robbins’ problem? 117

The idea is that we can improve by using a combined rule on memoryless threshold rules. We
can do it, for example, by making the decree: Stop whenever a half-prophet would stop! That
this indeed yields a strict improvement over the optimal memoryless threshold rule is proved
in Section 5 of Bruss and Ferguson (1996). The proof is based on the half-prophet’s value
max{Ly, L?} and a result on the limiting behavior of the optimal memoryless threshold values
py (n). Perhaps this is a useful beginning for future work. However, so far, these improvements
vanish as n tends to infinity and, hence, it is only a conjecture that a true improvement can
be maintained in the asymptotic case. (Establishing the latter would prove that V. < W, of
course.)

6.6. Poisson embedding of Robbins’ problem

Encouraged by the successes of embedding in the monotone subsequence problem (Bruss
and Delbaen (2001)) and in the best-choice problem (see, e.g. Gnedin (2003)) we may take the
following approach. We consider a planar Poisson process on [0, ¢] x [0, 1] with homogeneous
rate 1, and interpret [0, 7] as the time interval and [0, 1] as the value interval. We sequentially
observe (T1, X1), (T, X3),... with T} < T, < ---, which constitutes a Poisson arrival-
counting process (N (s))o<s<; With associated values (X¢)x=1,2,.... Let v(¢) be the value of the
corresponding Robbins problem on [0, ¢]. Since we may miss the last arrival, we should enforce
a loss of %(t + 1) for missing all the points, just to stay consistent with the discrete setting.
Hence, we propose the initial condition v(0) = %

We can show the following. The value v(¢) is Lipschitz and continuously differentiable on
]0, oo], and increasing in . Its limit v exists. Let v(¢ | x) denote the optimal value conditioned
on a first (artificial) arrival at time O with value x, which cannot be selected. Then, v(z | x) is
monotone decreasing in x on [0, 1], with

vi)+1=v@ |0)=v(it |x)=v(E | 1) =v(), 0<x<I1.

Also, for all ¢ > 0, lim;— o (v(t | €) — v) = 0. Now, v(¢) and v(¢ | -) satisfy the integral-
differential equation

1
V() = —v() +/ min{1 4+ x¢, v(¢ | x)} dx
0

with initial condition v(0) = % If, in this equation, v(¢ | x) were the same function as v(z), we
could mimick the approach of Bruss and Delbaen (2001). Hence, the question is to estimate
v(t | x) in terms of v(¢), ¢, and x sufficiently precisely. Unfortunately, this precision problem
seems to share some of the flavor of Robbins’ problem itself.

7. What is special about Robbins’ problem?

Whenever one gets hooked on a problem, one of course finds it somewhat special; this is
one form of selection bias. Nevertheless, I believe it is worth saying a little about Robbins’
problem by way of comparison with other problems, and singling out distinctions.

In asymptotic-type analytical problems, the difficult part is typically to show that the limit
of a sequence ({y), say, does exists. Once this is proved, the limit £ is usually either evident
or else is found by some fixpoint argument £ = f(£), say. In the worst case, i.e. if the latter
can only be solved numerically, monotonicity of (¢;) usually makes things feasible. Robbins’
problem has all of these helpful properties: monotonicity of V (n) and the existence of V are
easy to show — we even have nice bounds for V. Yet where is the £ = f(£) that should arise
from it? Where, at least, is the recursion?
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Unable to answer, we should ask the next natural question: has Robbins’ problem too
complicated a structure? Would this explain the difficulty we face above?

No, I think it has a comparatively easy structure, and it may not be the structure that makes
the difference. If we stop with X and history X, X», ..., X in Robbins’ problem, we have
a simple formula for our expected loss at time n, namely 1(x,<x,} + -+ + 1x,_,<x,} +1 +
(n — k) Xk, for the appropriate value of n. So, where does intuition fail us?

The following answer is perhaps easiest to defend. Strategies are, a priori, difficult functions.
There are many interesting problems in optimal stopping where these are, fortunately, still
tractable. Fully history-dependent functions, however, have an unbounded number of arguments
and would therefore figure in the list of most undesirable mathematical objects. It is these, as we
have shown, that we have to face in Robbins’ problem. It is understandable, therefore, that the
theory of optimal stopping, still a relatively young discipline by the standards of mathematics,
need not be able to cope easily with such problems.

I have never looked into possible solutions by stochastic approximation, because Monro
and Robbins (1951) can be regarded as the fathers of stochastic approximation and, so, it is
probable that Robbins would have seen this first.

Another thought: if V < W then the speed of convergence of empirical distribution functions
F,(¢) to the limit F(¢) = ¢ is bound to play an essential role. Indeed, the sequence (F; (t))
describes how new points fall between the earlier ones and, thus, how patterns of points appear
sequentially. It is these that must then be responsible for the ‘occasions’ on which memoryless
threshold rules are (possibly) insufficient. If occasions of improvement quickly become less
frequent as n increases, then, again in casual terms, the law of large numbers will take over,
implying that V. = W. Thus, a sound knowledge of the domain of spacings (clusters) and
empirical distribution functions might be the right prerequisite to recognizing or solving the
essential part of the problem. (See, e.g. Brennan and Durrett (1987); see also the constructions
of proofs in Pyke and van Zwet (2004), although these are focused on Kakutani’s (1976) model
and deal with the U[0, 1] model only for comparison.)

I think the solution to Robbins’ problem may give something new. Robbins may have
expected this. As I discovered later, Ronald Pyke would share this point of view. He says (see
Hubert and Pyke (1997, p. 123)): ‘Throughout his work, Herb shows his special knack for
capturing and describing clearly the essence of a new type of problem, often by means of a
deceptively simple example . . . sometimes opening up completely new directions for research.’

8. What is the essence of the open questions?

Let us single out the remaining essential questions in the form of a guide. We must prove
that either

(a) V < W or, alternatively,
(b)) V=W.

If (a) holds then there are many possible further questions, but the complete answers to the
following questions should really be considered to be the complete solution:

(i) Whatis V?
(i1)) What is the form of the optimal strategy?

(iii) Forany n € N and ¢ > 0, how can we determine an n(g)-memory algorithm to compute
an g-optimal strategy o,, € Ty, i.e. a strategy that achieves a value of at least V (n) — ¢ by
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remembering, at each stage, no more than a fixed number 7 (¢) of observed points? (The
answer to the following slightly weaker question may suffice: what are the dominant
features in the sequentially observed patterns of points?)

If (b) holds, fewer interesting questions remain than in the case V. < W. Question (i) is then
trivial, of course, and in answer to question (ii) we would now know that the history dependence
fades as n tends to infinity; that is, the advantage we have by memorizing the whole history at
each step tends to 0, and V can be obtained by the optimal memoryless threshold rule. However,
it remains interesting to compute or approximate the optimal strategy for the n-problem and
the value V (n), that is, to answer question (iii).

If neither (a) nor (b) can be proved, we suggest finding an analytical proof that V < 2 or
V > 2. Indeed, 2 stands out as an interesting constant just by comparison with Moser’s optimal
rule for finding the smallest expected value (see Section 6). What is easier: minimizing the
expected rank, or minimizing the expected value?

A final word. Most of us would agree that mathematics becomes particularly interesting when
teaching us something our intuition fails to grasp. In Robbins’ problem, the optimal strategy
may surprise us. If so, it may remind us of the apocryphal man who experienced the nature of
strategies: ‘My enemy had two possibilities, but then he chose the third.’
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