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Abstract

We present a complex analytic proof of the Pila–Wilkie theorem for subanalytic sets. In
particular, we replace the use of Cr-smooth parametrizations by a variant of Weierstrass
division. As a consequence we are able to apply the Bombieri–Pila determinant
method directly to analytic families without limiting the order of smoothness by a
Cr parametrization. This technique provides the key inductive step for our recent proof
(in a closely related preprint) of the Wilkie conjecture for sets definable using restricted
elementary functions. As an illustration of our approach we prove that the rational
points of height H in a compact piece of a complex-analytic set of dimension k in Cm
are contained in O(1) complex-algebraic hypersurfaces of degree (logH)k/(m−k). This
is a complex-analytic analog of a recent result of Cluckers, Pila, and Wilkie for real
subanalytic sets.

1. Introduction

1.1 Statement of the main results
For a set A ⊂ Rm we define the algebraic part Aalg of A to be the union of all connected
semialgebraic subsets of A of positive dimension. We define the transcendental part Atrans of A
to be A\Aalg.

Recall that the height of a (reduced) rational number a/b ∈ Q is defined to be max(|a|, |b|).
For a vector x of rational numbers we denote by H(x) the maximum among the heights of the
coordinates. For a set A ⊂ Cm we denote the set of Q-points of A by A(Q) := A ∩Qm and use
the notation

A(Q, H) := {x ∈ A(Q) : H(x) 6 H}. (1)

For A ⊂ Rm+n and y ∈ Rn we denote the y-fiber of A by

Ay ⊂ Rm, Ay := {x ∈ Rm : (x, y) ∈ A}. (2)

In this paper we develop a new approach to the proof of the following theorem.

Theorem 1. Let A ⊂ Rm+n be a bounded subanalytic set and ε > 0. There exists an integer
N(A, ε) such that for any y ∈ Rn,

#(Ay)
trans(Q, H) 6 N(A, ε)Hε. (3)
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The result of Theorem 1 is not new. In fact, it was conjectured in [Pil04, Conjecture 1.2] and
proved, in a more general form, in the work of Pila and Wilkie [PW06], where the same result
is shown to hold for any A definable in an O-minimal structure. Our goal in the present paper
is to develop an alternative complex analytic approach to this theorem. In particular, while the
proof in [PW06] requires the use of Cr parametrizations of subanalytic sets, we are able to carry
out the arguments completely within the analytic category. The proof of Theorem 1 is given at
the end of § 5.3. As a first illustration of the advantage of this approach, we prove the following
complex analog of a recent result of [CPW16].

Theorem 2 (Cf. [CPW16, Theorem 2.3.2]). Let X ⊂ Cm+n be a locally analytic subset and
K b X be a compact subset. Suppose dimCXy 6 k for every y ∈ Cn. Then there exists a
constant C = C(K) such that for any y ∈ Cn, if H > 2, then Ky(Q, H) is contained in the union
of at most C complex algebraic hypersurfaces of degree at most (logH)k/(m−k) in Cm.

The proof of Theorem 2 is given following Corollary 13. In [CPW16, Theorem 2.3.2] a result
similar to Theorem 2 is stated for real globally subanalytic sets. The dimensions are taken
over R and the algebraic hypersurfaces constructed are real. We give the complex version for
variation, and also since in most applications the sets involved are, in fact, complex analytic.
Note that in this case the complex analytic version gives more than the real version: the degree
of the hypersurface is the same as in [CPW16, Theorem 2.3.2], but intersecting with a complex-
algebraic hypersurface imposes two independent real-algebraic conditions. We also remark that
the real version [CPW16, Theorem 2.3.2] could also be derived with our method by the same
complexification arguments used in our proof of Theorem 1.

Our principal motivation for the complex-analytic approach developed in this paper is the
Wilkie conjecture on the improvement of the asymptotic O(Hε) to polylogarithmic for certain
structures (see § 1.2 for details). Theorem 2 can be seen as a natural first inductive step toward
this conjecture. However, pursuing this induction further requires analyzing the behavior of the
constant C(A) with respect to the complexity of the set A; a problem which requires finer
analysis that cannot be carried out in the generality of general analytic sets (as illustrated by
counterexamples due to Pila [Pil04, Example 7.5]). In a closely related preprint [BN17] we build
on the ideas developed in this paper to prove the Wilkie conjecture for sets definable using
the restricted exponential and sine functions; a problem which had previously seemed quite
challenging due to the difficulty of computing Cr parametrizations.

In § 1.2 we present some motivations for our approach. In § 1.3 we briefly review the method
of Bombieri–Pila–Wilkie and, in particular, explain the point at which Cr-parametrizations are
required. In § 1.4 we give an outline of the complex-analytic approach developed in this paper
and explain how it avoids the use of Cr-parametrizations.

Note. Shortly after the appearance of the first version of this manuscript (and the closely
related preprint [BN17]) on the arXiv, the independently developed preprint [CPW16] by
Cluckers, Pila and Wilkie appeared. Some of the methods appear to be related: in particular
the ‘quasi-parametrization theorem’ [CPW16, Theorem 2.2.3] appears similar to our notion of
a decomposition datum, and the diophantine application [CPW16, Theorem 2.3.2] is also a
consequence of our approach. We wish to clarify that Theorem 2 was not included in the original
version of this manuscript and appeared (in the real version) originally in [CPW16]; in a later
version we included the complex Theorem 2 to illustrate how our approach can be used to derive
similar results.

2172

https://doi.org/10.1112/S0010437X17007333 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007333


The Pila–Wilkie theorem for subanalytic families

1.2 Motivation

There are two directions in which one might hope to improve the Pila–Wilkie estimate

#Atrans(Q, H) 6 N(A, ε)Hε.

• Effective estimates: one may hope to obtain effective estimates for the constant N(A, ε) in

terms of the complexity of the equations/formulas used to define A.

• Sharper asymptotics: one may hope to improve the asymptotic dependence on H if A is

definable in a suitably tame structure. As a notable example, the Wilkie conjecture states

that if A is definable in Rexp, then #Atrans(Q, H) = N(A)(logH)κ(A).

Both of these directions have been considered in the literature, see e.g. [But12, JT12,

Pil10, Pil07]. However, as discussed in § 1.3, the proof of the Pila–Wilkie theorem in arbitrary

dimensions requires the use of Cr-reparametrizations, whose complexity is difficult to control

even in the semialgebraic case. For this reason, most of the work (to the best of the authors’

knowledge) has been restricted to A of (real) dimension one or two.

Our primary goal in this paper is to develop an approach that replaces the use of

Cr-parametrization by direct considerations on the local complex-analytic geometry of A. In

the preprint [BN17] we use this approach to prove the Wilkie conjecture for sets definable

using the restricted exponential and sine functions, where Proposition 11 provides the key

inductive step. The estimates in [BN17] are also effective in a suitable sense. We believe that

the analytic approach may also play a significant role in advancing toward an effective version

of the Pila–Wilkie theorem for Noetherian functions.

Finally, while in this paper we work in the complex analytic setting, our arguments are

essentially algebraic; tracing to the Weierstrass preparation and division theorems. One may hope

that such an approach could allow a more direct generalization to different algebraic contexts

where the analytic notion of Cr-parametrization may be more difficult to recover. In particular,

we consider it an interesting direction to check whether the method developed in this paper can

offer an alternative approach to the work of Cluckers et al. [CCL15] on non-archimedean analogs

of the Pila–Wilkie theorem. We remark in this context that in our primary model-theoretic

reference [DvdD88], the complex-analytic and p-adic contexts are treated in close analogy.

1.3 Exploring rational points following Bombieri–Pila and Pila–Wilkie

1.3.1 The case of curves. Let X ⊂ R2 be compact irreducible real-analytic curve. Building

upon earlier work by Bombieri and Pila [BP89], Pila [Pil91] considered the problem of estimating

#X(Q, H). More specifically, he showed that if X is transcendental, then for every ε > 0 there

exists a constant C(X, ε) such that #X(Q, H) 6 C(X, ε)Hε. Bombieri and Pila’s method involves

constructing a collection of Hε hypersurfaces {Hk} of degree d = d(ε) such that X(Q, H) is

contained in
⋃
kHk. We briefly recall the key idea, starting with the notion of an interpolation

determinant.

Suppose first that X can be written as the image of an analytic map f = (f1, f2) : [0, 1] → X

(the general case will be treated later by subdivision). For simplicity, we will suppose that f1, f2

extend to holomorphic functions in the disc of radius 2 around the origin, with absolute value

bounded by M .

Let g := (g1, . . . , gµ) be a collection of functions and p := (p1, . . . , pµ) a collection of points.

We define the interpolation determinant

∆(g,p) := det(gi(pj))16i,j6µ. (4)
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Let d ∈ N and set µ = d(d+ 1)/2, the dimension of the space of polynomials in two variables
of degree at most d. We define the polynomial interpolation determinant of degree d to be

∆d(f ,p) := ∆(g,p), g = (fk1 f
l
2 : k, l ∈ N, k + l 6 d). (5)

Note that ∆d(f ,p) = 0 if and only if the points f(p1), . . . , f(pµ) all lie on a common algebraic
hypersurface of degree at most d. More generally, if P ⊂ I and ∆d(f ,p) = 0 for every p ⊂ P ,
then the points f(p) : p ∈ P all lie on a common algebraic hypersurface of degree at most d.

Let H ∈ N. Our goal is to construct a collection of algebraic hypersurfaces Hk whose union
contains X(Q, H). By the above, it will suffice to subdivide I into intervals Ik such that for
any p ⊂ Ik, if H(p) 6 H, then ∆d(f ,p) = 0. We begin with the following key estimate on the
polynomial interpolation determinant.

Lemma 1 (Cf. Lemma 9). Let I ⊂ [0, 1] be an interval of length δ < 1/2, and p= (p1, . . . , pµ) ∈
Iµ. Then

|∆d(f ,p)| 6 µ!(2µ+ 2)µMdµδµ
2/2. (6)

Proof. By translation we may suppose that I = [−δ, δ] and that f1, f2 are holomorphic in the unit
disc D ⊂ C with absolute value bounded by M . Denote by ‖ · ‖ the maximum norm on the disc
of radius δ around the origin.

Every function in g is holomorphic in D with absolute value bounded by Md. Consider the
Taylor expansions

gi =

µ−1∑
j=0

mj(gi) +Rµ(gi), mj(gi) := ci,jx
j , i = 1, . . . , µ (7)

and Rj(gi) are the Taylor residues. From the Cauchy estimates we have

‖mj(gi)‖ 6Mdδj , ‖Rµ(gi)‖ 6 2Mdδµ. (8)

Expand the determinant ∆d(f ,p) by linearity using (7), to obtain a sum of (µ+ 1)µ summands
with each gi replaced by either mji(gi) or Rµ(gi). Note that any summand where two different
indices jk, jl agree vanishes identically since the corresponding functions mjk(gk),mjl(gl) are
linearly dependent. Therefore, any non-zero summand must contain a term of order at least one,
a term of order at least two, and so on. Then an easy computation using (8) and the Laplace
expansion for each determinant gives (6). 2

Let I,p be as in Lemma 1 and suppose f(p1), . . . , f(pµ) ∈ X(Q, H). Using the bounded
heights of f(pj) one proves (cf. Lemma 10) that either ∆d(f,p) = 0 or

|∆d(f,p)| > H−O(d3). (9)

Comparing (6) and (9) and recalling that µ ∼ d2 we have either ∆d(f,p) = 0 or

H−O(d3) 6 |∆d(f,p)| 6 2O(d3)δΩ(d4), (10)

where we treat M as O(1). Thus, if δ = H−Ω(1/d), then ∆d(f,p) must vanish for any p as above.
Thus, as explained above, all points f(p) ∈ X(Q, H) with p ∈ I belong to a single algebraic
hypersurface Hk ⊂ R2 of degree at most d.
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Fix ε > 0 and subdivide I into Hε subintervals Ik of length δ = H−ε. Then, by the above,

all points of X(Q, H) belong to a union of Hε hypersurfaces Hk ⊂ R2 of degree d = O(1/ε).

If X is irreducible and transcendental, then it intersects each Hk properly, and the number of

intersections between X and Hk is uniformly bounded by some constant C(X, d) depending only

on X and d (for instance, by Gabrielov’s theorem). Thus, we have #X(Q, H) 6 C(X, ε)Hε.

To handle the case of a general compact irreducible analytic curve X ⊂ R2 we note that any

such curve can be covered by images of analytic maps f : [0, 1] →X and the preceding arguments

apply.

1.3.2 Higher dimensions. It is natural to attempt to generalize the proof of § 1.3.1 to sets

X ⊂ Rm of dimension ` > 1 by induction over `. Namely, the estimates (6) and (9) can be

generalized in a relatively straightforward manner, replacing the map f : (0, 1) → X by an

arbitrary analytic map f : (0, 1)` → X parametrizing an `-dimensional set X. One similarly

obtains Hε hypersurfaces Hk of some fixed degree d = d(ε) such that

X(Q, H) ⊂
⋃
k

X ∩Hk. (11)

One would then seek to continue treating each intersection X∩Hk by induction on the dimension.

However, at this point a problem arises: even if the original set X was parametrized by an

analytic map f : (0, 1)` → X it is not clear that X ∩ Hk could be parametrized in a similar

manner. Moreover, if one does obtain a parametrization for each intersection X ∩Hk, then the

induction constant C(X ∩Hk, ε) would now depend on the specific parametrizations chosen for

X ∩Hk, and one must show that these constants are uniformly bounded over all Hk of the given

degree d.

In fact, it is not always possible to choose analytic, or even C∞-smooth, parametrizations

for the fibers of a family in a uniform manner; even for semialgebraic families of curves. This

fundamental limitation was observed in the work of Yomdin [Yom87a]. Consider for example the

family of hyperbolas Xε := (−1, 1)2 ∩ {x2 − y2 = ε}. If one attempts to write Xε as a union

of images Imφj for C∞-smooth functions φ1, . . . , φNε : (0, 1) → Xε with the maximum norms

of the derivatives of every order bounded by 1, then Nε necessarily tends to infinity as ε → 0.

Thus, it would not be possible to parametrize all fibers of this family in a uniform manner and

apply to them the methods of § 1.3.1.

Surprisingly, a theorem due to Yomdin and Gromov [Yom87a, Yom87b, Gro87] states that

one can recover the uniformity of Nε if one replaces the C∞ condition by Cr-smoothness for a

fixed r, at least for semialgebraic families. In [PW06], Pila and Wilkie generalized this result to

the O-minimal setting. Namely, they show [PW06, Corollary 5.1] that for any set X ⊂ (0, 1)m

of dimension ` definable in an O-minimal structure and any r ∈ N, one can cover X by images

of Cr-maps φ1, . . . , φN : (0, 1)` → X where N = N(X, r) and every φj has Cr-norm bounded

by 1 in (0, 1)`. Moreover (see [PW06, Corollary 5.2]), if X varies in a definable family (and r is

fixed), then N can be taken to be uniformly bounded over the entire family.

One can now check that in the proof sketched in § 1.3.1 the analyticity assumption can be

replaced by Cr-smoothness (with bounded norms) for sufficiently large r = r(ε). The intersections

X ∩ Hk can all be seen as fibers of a single definable family by adding parameters for the

coefficients of Hk. One can thus parametrize each intersection X ∩Hk by a uniformly bounded

number of Cr maps with unit norms, and the induction step can be carried out as sketched

above.
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Understanding the behavior of the parametrization complexity N(X, r) in terms of the
geometry of the set X and the smoothness order r is a highly non-trivial problem, even
in the original context of the Yomdin-Gromov theorem where X is semialgebraic, and certainly in
the context of the O-minimal analog. It is this difficulty that prompted us to seek a more direct
approach for resolving the problem of uniformity over families.

1.4 An approach using holomorphic decompositions
We return to the case of a compact irreducible real-analytic curve X ⊂ R2. Let p ∈ X and
consider (X, p) as the germ of a complex-analytic curve. Then by Weierstrass preparation X can
be written locally (up to a linear change of coordinate) in the form

X = {h = 0}, h(x, y) = yν + aν−1(x)yd−1 + · · ·+ a0(x), (12)

where aν−1, . . . , a0 are holomorphic in a neighborhood of p. By Weierstrass division it follows
that any F holomorphic in a neighborhood of p can be written in the form

F =

ν−1∑
i=0

∞∑
j=0

ci,jy
ixj +Q, (13)

where Q vanishes identically on (X, p). Moreover, the coefficients ci,j are bounded in terms of the
norm of F (cf. Lemma 3). Let ∆p ⊂ C2 denote a complex polydisc where the decomposition (13)
is possible for any holomorphic F . We suppose for simplicity that ∆p has polyradius 1 (the
general case can be treated by rescaling).

The polydiscs ∆p serve as a replacement for the parametrizations of § 1.3.1: we will show
that one can construct, in a completely analogous manner, Hε algebraic hypersurfaces of degree
d = d(ε) containing all points of (∆p ∩ X)(Q, H). Thus, instead of covering X by images
of analytic parametrizing maps, we are led to the problem of covering X by such ‘good
neighborhoods’ ∆p.

The key argument is the following analog of Lemma 1. Let f1, f2 be two holomorphic functions
on the polydisc of radius 2 around p and let their absolute values be bounded by M .

Lemma 2 (Cf. Lemma 9). Let D⊂∆p be a polydisc of polyradius δ < 1/2, and p= (p1, . . . , pµ) ∈
(D ∩X). Then

|∆d(f ,p)| 6 µ!(µ+ 1)µMdµδΩ(µ2). (14)

Proof. The proof is essentially the same as that of Lemma 1. We simply replace the Taylor
expansion of the function f1, f2 by the expansions (13) (and note that Q vanishes on all points
of p). In (13) we have at most ν terms of each order k (instead of one term of each order in
the case of Taylor expansions), and this only introduces an extra factor depending on ν into the
asymptotic δΩ(µ2) in (14). 2

We now proceed as in § 1.3.1 taking f1 = x and f2 = y. In a similar manner, we can cover
∆p ∩ R2 by Hε polydiscs Dk of polyradius H−ε/2, and for each Dk we find an algebraic
hypersurface Hk of degree d = O(1/ε) such that (Dk ∩ X)(Q, H) ⊂ Hk. Thus, we see that
(∆p ∩ X)(Q, H) is contained in a union of Hε algebraic hypersurfaces of degree d. Since X is
compact it may be covered by finitely many of the polydiscs ∆p, and we finally see that X(Q, H)
is contained in a union of O(Hε) algebraic hypersurfaces of degree d.
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The main advantage of this approach becomes apparent when we consider families of

curves. Namely, unlike in the case of analytic parametrizations, the argument above can be

made uniform over analytic families. To illustrate this consider again the family of hyperbolas

Xε := (−1, 1)2 ∩{x2− y2 = ε}. The unit polydisc around the origin ∆0 is a ‘good neighborhood’

in the sense above, uniformly for every ε. Indeed, Weierstrass division with respect to y2−x2 +ε

is possible regardless of the value of ε and the norms of the division remain bounded even as

ε → 0. A systematic application of Weierstrass division allows one to generalize this example to

an arbitrary family.

The purpose of this paper is to pursue this complex-analytic perspective. In § 2 we define

the notion of a decomposition datum (see Definition 4) generalizing the ‘good neighborhoods’ ∆p

above for complex analytic sets of arbitrary dimension. We then prove in Theorem 3 that one can

always cover (a compact piece of) a complex analytic set by finitely many such polydiscs, and

that this can be done uniformly over analytic families (with a compact parameter space). In § 3

we show that in each such polydisc the rational points of height H can be described in analogy

with the Bombieri–Pila method of § 1.3.1. In § 4 we prove a result analogous to the Pila–Wilkie

theorem for complex analytic sets of arbitrary dimension (and their projections) by induction

over dimension, in analogy with the Pila–Wilkie method of § 1.3.2. Finally in § 5 we show that

any bounded subanalytic set can be complexified in an appropriate sense, and deduce Theorem 1

from the its complex-analytic version Theorem 4. The key technical tool for this reduction is

a quantifier-elimination result of Denef and van den Dries [DvdD88].

2. Uniform decomposition in analytic families

2.1 Weierstrass division with norm estimates

If Z is a subset of a complex manifold Ω we denote by O(Z) the ring of germs of holomorphic

functions in a neighborhood of Z. If Z is relatively compact in Ω we denote by ‖·‖Z the maximum

norm on O(Z̄). We denote by OΩ the structure sheaf of Ω, and if X ⊂ Ω is an analytic subset

we denote by IX ⊂ OΩ its ideal sheaf and by IX,p the germ of IX at p. Finally, for an ideal sheaf

I ⊂ OΩ we denote by V (I) the analytic set that it defines.

We say that a germ f ∈ C{z1, . . . , zn, w} is regular of order d in w if f(0, w) = f1(w) ·wd with

f1(0) 6= 0. For two polydiscs ∆v ⊂ C and ∆h ⊂ Cn, we say that ∆ := ∆h ×∆v is a Weierstrass

polydisc for f if f(z, w) has exactly d roots in ∆v for any fixed z ∈ ∆̄h. In particular, ∆ is

a Weierstrass polydisc for any sufficiently small ∆v and sufficiently smaller ∆h.

Lemma 3. Let f be regular of order d in w, and ∆ := ∆h ×∆v a sufficiently small Weierstrass

polydisc for f . Then:

(1) the map

π : {f = 0} ∩∆ → Cn, π(z, w) = z (15)

is finite;

(2) there exists a constant C such that any g ∈ O(∆̄) can be decomposed in the form

g = qf +
d−1∑
k=0

gjw
j , gj = gj(z) (16)

with ‖gj‖∆, ‖q‖∆ 6 C · ‖g‖∆.

2177

https://doi.org/10.1112/S0010437X17007333 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007333


G. Binyamini and D. Novikov

Proof. Since ∆ is taken to be sufficiently small we may assume without loss of generality that f
is a Weierstrass polynomial of order d in w. Then the first statement is classical and the second
is the extended Weierstrass preparation theorem in [GR09, II.D. Theorem 1]. 2

2.2 Decomposition data
We denote by z a fixed system of affine coordinates on Cn. We say that x is a standard coordinate
system on Cn if it is obtained from z by an affine unitary transformation. Given x, we say that
(∆,∆′) is a pair of polydiscs if ∆⊂∆′ are two polydiscs with the same center in the x coordinates.

For a co-ideal M ⊂ Nn and k ∈ N we denote by

M6k := {α ∈M : |α| 6 k} (17)

and by HM(k) := #M6k its Hilbert–Samuel function. The function HM(k) is eventually a
polynomial in k, and we denote its degree by dimM.

If (X, p) is the germ of an analytic set in Cn, then there exists a co-ideal M with dimM =
dimX such that every F ∈ Op can be decomposed as

F =
∑
α∈M

cαz
α +Q, Q ∈ Op, (18)

where Q vanishes identically on X. For instance, one may choose M to be the complement of the
diagram of initial exponents of IX,p, in which case the claim above is a consequence of Hironaka
division. The following definition generalizes this notion from the context of germs to the context
of a fixed polydisc.

Definition 4. Let X ⊂ Cn be a locally analytic subset, x a standard coordinate system, (∆,∆′)
a pair of polydiscs centered at the x-origin, and M ⊂ Nn a co-ideal. We say that X admits
decomposition with respect to the decomposition datum

D := (x,∆,∆′,M) (19)

if there exists a constant denoted by ‖D‖ such that for every holomorphic function F ∈ O(∆̄′)
there is a decomposition

F =
∑
α∈M

cαx
α +Q, Q ∈ O(∆̄), (20)

where Q vanishes identically on X ∩∆ and

‖cαxα‖∆ 6 ‖D‖ · ‖F‖∆′ for all α ∈M. (21)

We define the dimension of the decomposition datum denoted by dimD to be dimM.

Since HM(k) is eventually a polynomial of degree dimM, the function HM(k)−HM(k − 1)
counting monomials of degree k in M is eventually a polynomial of degree dimM−1. If dimM> 1
we denote by e(D) the minimal constant satisfying

HM(k)−HM(k − 1) 6 e(D) · L(dimM, k) for all k ∈ N, (22)

where L(n, k) :=
(
n+k−1
n−1

)
denotes the dimension of the space of monomials of degree k in n

variables. In the case dimD = 0 the co-ideal M is finite and we denote by e(D) its size.

Example 5. Suppose X admits decomposition with respect to the decomposition datum D, and
dimD = 0. Then N = #(X ∩∆) is finite and satisfies N 6 e(D). Indeed, by (20) any polynomial
on Cn can be interpolated on X ∩ ∆ by the e(D) monomials of M. Since the linear space of
polynomials restricted to X ∩∆ has dimension N , it follows that N 6 e(D).
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2.3 Decomposition data for analytic families
If X ⊂ Cn is a locally analytic subset and k ∈ N, we denote by X6k the union of the components
of X that have dimension k or less. Note that X6k is locally analytic as well.

Let Ω ⊂ Cn be an open subset and Λ a complex analytic space. We denote by πΩ, πΛ the
projections from Ω×Λ to Ω,Λ, respectively. For X ⊂ Ω×Λ and λ ∈ Λ we denote the λ-fiber of
X by

Xλ ⊂ Ω, Xλ := {p ∈ Ω : (p, λ) ∈ X}. (23)

The following theorem is our main result on uniform decomposition in families. It says roughly
that if one considers a compact piece of an analytic family X, then each fiber Xλ at every point p
admits decomposition with respect to some decomposition datum D with dimD = dimXλ, with
the size of the polydisc ∆ bounded from below and ‖D‖, e(D) bounded from above uniformly
over the (compact) family.

Theorem 3. Let X ⊂ Ω × Λ be an analytic subset, K b Ω × Λ a compact subset and k ∈ N.
There exists a positive radius r > 0 and constants CD, CH > 0 with the following property. For
any (p, λ) ∈ K there exists a decomposition datum D such that:

(1) ∆ = ∆′ is centered at p, and Br(p) ⊂ ∆ ⊂ Ω;

(2) dimMi 6 k, ‖D‖ 6 CD and e(D) 6 CH ;

(3) (Xλ)6k admits decomposition with respect to D.

We first consider the problem of constructing decomposition data of dimension k for fibers of
a family X, under the assumption that all fibers of X have dimension bounded by k. This basic
case essentially reduces to Hironaka division. For completeness, we give a proof using Weierstrass
division.

Lemma 6. Let X ⊂ Ω×Λ be an analytic subset, k ∈ N and suppose dimXλ 6 k for every λ ∈ Λ.
Then for any p ∈ Ω and compact KΛ b Λ a there exists a finite collection of decomposition data
{Di} such that:

(1) ∆i = ∆′i is centered at p and contained in Ω;

(2) dimMi 6 k;

(3) for every λ ∈ KΛ the fiber Xλ admits decomposition with respect to some Di.

Proof. Let z be a standard coordinate system centered at p. We proceed by induction on n. If
n = k, then the claim holds with any choice of x, M = Nn, and ∆ = ∆′ any polydisc contained
in Ω. The expansion (20) is given by the usual Taylor expansion for F around the origin with
Q ≡ 0. The inequality (21) is given by the Cauchy estimates.

Suppose n > k. By compactness it will suffice to prove the claim in a neighborhood of each
λ ∈ KΛ. Fix λ0 ∈ KΛ. Since dimXλ0 < n there exists G ∈ IX,p such that G|λ=λ0 6≡ 0. By a
unitary change of the z-coordinates, we may suppose that G is regular with respect to zn, of
some order d. Then by Lemma 3 the map

πn : V (G) → Cn−1 × Λ̃, πn(z1, . . . , zn, λ) = (z1, . . . , zn−1, λ) (24)

is finite when restricted to an appropriate polydisc D = Dz × Dλ, where Dz = Dh × Dv and
Dh, Dλ are chosen to be sufficiently smaller than Dv. Then Y := πn(X∩D) is analytic in Dh×Dλ

by the proper mapping theorem.
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Let Kλ0 ⊂ Dλ be some compact neighborhood of λ0. Since πn : X → Y is finite we have
dimYλ 6 dimXλ 6 k for λ ∈ Kλ0 . Apply the inductive hypothesis with Y for X, Kλ0 for KΛ

and Dh for Ω to obtain a finite collection of decomposition data {D̂i}. We let

xi := (x̂i, zn), (25)

∆i = ∆′i := ∆̂i ×Dv, (26)

Mi := M̂i × {0, . . . , d− 1}. (27)

Note that since ∆̂i ⊂ Dh and Dλ are chosen to be sufficiently smaller than Dv, Lemma 3 applies
with the polydisc ∆i ×Dλ. Applying the lemma to F (x, λ) ≡ F (x) we obtain a decomposition

F =
d−1∑
j=0

zjnFj +QG, Fj = Fj(z1, . . . , zn−1, λ) (28)

with ‖Fj‖∆i×Dλ = Oλ0(‖F‖∆i).

By construction, Yλ admits decomposition with respect to some D̂i. Hence, we may
decompose the functions Fj(·) ≡ Fj(·, λ) as

Fj =
∑
α∈M̂i

cj,αx̂
α
i +Qj , Qj ∈ O(∆̂i), (29)

where:

(1) M̂i ⊂ Nn−1 is a co-ideal and dim M̂i 6 k;

(2) Qj vanishes identically on Yλ ∩ ∆̂i;

(3) we have
‖cj,αx̂αi ‖∆̂i

= Oλ0(‖Fj‖∆̂i
) = Oλ0(‖F‖∆i). (30)

Plugging (29) into (28) we obtain the decomposition (20). 2

To observe the principal limitation of Lemma 6 consider the family X := {λ1x = λ2} ⊂
Cx × C2. The fiber X(0,0) is one-dimensional while every other fiber is zero-dimensional. We
would like to produce decomposition data of dimension zero for the fibers away from the origin,
with constants remaining uniformly bounded as we approach the origin. However, Lemma 6 only
guarantees the existence of decomposition data of dimension one. The following proposition
eliminates this limitation, producing for each fiber a decomposition datum of the correct
dimension. The idea of the proof is to use blowing up to avoid the jump in the dimension
of the fiber. For instance, the reader may observe that in the preceding example, after blowing
up the origin {λ1 = λ2 = 0} the strict transform X̃ has only zero-dimensional fibers.

Proposition 7. Let X ⊂ Ω × Λ be an analytic subset and k ∈ N. Then for any p ∈ Ω and
compact KΛ b Λ, there exists a finite collection of decomposition data {Di} such that:

(1) ∆i = ∆′i is centered at p and contained in Ω;

(2) dimMi 6 k;

(3) for every λ ∈ KΛ the set (Xλ)6k admits decomposition with respect to some Di.

Proof. Let m := dim Λ and d := max{dimXλ : λ ∈KΛ}. We proceed by induction on (m, d) with
the lexicographic order. By compactness it will suffice to prove the claim in a neighborhood of
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each λ ∈ KΛ. Fix λ0 ∈ KΛ. Without loss of generality we may replace X by its germ at (p, λ0)
and Λ,KΛ by their germs at λ0. For a sufficiently small germ we have (by semicontinuity of the
dimension) d = dimXλ0 . If d 6 k, then the claim follows by Lemma 6, so we assume d > k.

We may assume without loss of generality that Λ is smooth. Indeed, otherwise let σ : M → Λ
be a desingularization [Hir64a, Hir64b] of Λ and X̃ := X ×Λ M . Note that this does not change
the pair (m, d). Every fiber of X is a fiber of X̃, and it suffices to prove the claim for the compact
set σ−1(KΛ).

We may also assume without loss of generality that dimX < m + d. Indeed, if X has a
component X ′ of dimension m+d, then the fibers X ′λ must have pure dimension d so (X ′λ)6k = ∅.
Thus, it is enough to prove the claim for the union of the components of X that have dimension
strictly smaller than m+ d.

Since d = dimXλ0 there exists an affine linear projection πd : Cn → Cd such that

π = πd × πΛ : (X, (p, λ0)) → (Cd × Λ, (0, λ0)) (31)

is finite. Hence, Y = π(X) is the germ of an analytic subset at (0, λ0). In particular, dimY =
dimX < m+ d so Y 6= Cd × Λ. Then there exists a non-zero G ∈ IY,(0,λ0). Write

G =
∑
α

cα(λ)wα, (w, λ) ∈ Cd × Λ (32)

and let I be the ideal generated by {cα} in OΛ,λ0 . Then the set C := V (I) ⊂ Λ is an analytic
space of dimension strictly smaller than m, and the claim follows for any λ ∈ C by induction
on m. It remains to construct suitable decomposition data for any λ 6∈ C.

Let η : Λ̃ → Λ denote the blowing up of I and X ′ := X ×Λ Λ̃. Let

X̃ := Clo[X ′\(Cn × η−1(C))] (33)

be the strict transform of X (where Clo denotes analytic closure). For any λ ∈ Λ\C, the fiber
Xλ is also a fiber of X̃. Thus, it will suffice to prove the claim for the family X̃ and the compact
set η−1(KΛ). Let λ̃ ∈ Λ̃ and we will show that dim X̃λ̃ < d, and the claim thus follows by
induction on d.

By definition of the blow-up η, the ideal IOΛ̃,λ̃ is principal, hence generated by some cα. Thus,

we may write (id×η)∗G = cαG̃ where G̃ ∈ OCd×Λ̃,(0,λ̃) does not vanish identically on Cd × {λ̃}.
Since I = 〈cα〉 near λ̃, the strict transform satisfies X̃ ⊂ V ((πd × id)∗G̃) and, thus, πd(X̃λ̃) ⊂
Cd∩{G̃ = 0}. The map πd|X̃λ̃ is finite, being the restriction of a finite map πd|Xλ for some λ ∈ Λ,

and we conclude that dim X̃λ̃ < d as claimed. 2

Finally, we finish the proof of Theorem 3.

Proof of Theorem 3. By compactness there exists a ball B ⊂ Cn such that p+B ⊂ Ω for every
(p, λ) ∈ K. Let Λ′ = Ω× Λ and KΛ′ = K. Define

X ′ ⊂ B × Λ′, X ′ := {(q, (p, λ)) : q + p ∈ Xλ}. (34)

By definition, X ′(p,λ) = (−p) + Xλ in B. Apply Proposition 7 to X ′,KΛ′ with the point q = 0

to obtain a finite collection of decomposition data {Di} with dimDi 6 k. Let CD, CH be the
minimum among the corresponding parameters ‖Di‖, e(Di) and choose some r > 0 such that
Br(0) ⊂ ∆i for every i.

Now let (p, λ) ∈ K. By Proposition 7, (X ′(p,λ))
6k admits decomposition with respect to some

Di. Define D as the p-translate of Di, i.e. ∆ = p+∆i and x = p+xi. Then (Xλ)6k = (p+X ′(p,λ))
6k

admits decomposition with respect to D as claimed. 2
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3. Interpolation determinants and rational points

Let A ⊂ Cn be a ball or polydisc around a point p ∈ Cn and δ > 0. We let Aδ denote the

δ−1-rescaling of A around p, i.e. Aδ := p+ δ−1(A− p).
Let X ⊂ Cn be an analytic subset and D a decomposition datum for X, and set m := dimM.

We suppose D is a polydisc in the x coordinates, centered at p and Dδ ⊂ ∆.

3.1 Norm estimates

In the following ‖ · ‖ denotes ‖ · ‖D and ‖ · ‖δ denotes ‖ · ‖Dδ . We remark that ‖xα‖ = ‖xα‖δδ|α|.

Proposition 8. Let f ∈ O(∆̄′) and denote M := ‖f‖∆′ . For every k ∈ N we have

f =
∑

α∈M<k

mα(f) +Rk(f) +Q, (35)

where Q ∈ O(∆̄) vanishes on X ∩∆ and

mα(f) = cαx
α, Rk(f) =

∑
M3|α|>k

cαx
α. (36)

Moreover,

‖mα(f)‖ 6 ‖D‖Mδ|α|, ‖Rk(f)‖ 6 ‖D‖e(D)L(m, k)

(1− δ)m
Mδk. (37)

Proof. The decomposition (35) is just (20). Then (21) gives

‖mα(f)‖ = ‖mα(f)‖δδ|α| 6 ‖mα(f)‖∆δ|α| 6 ‖D‖Mδ|α|, (38)

where we used that fact that Dδ ⊂ ∆ in the middle inequality. Then

‖Rk(f)‖ 6
∑

M3|α|>k

‖D‖Mδ|α| 6 ‖D‖Me(D)
∞∑
j=0

L(m, j + k)δj+k

6 ‖D‖e(D)ML(m, k)δk
∞∑
j=0

L(m, j)δj =
‖D‖e(D)L(m, k)

(1− δ)m
Mδk. (39)

2

3.2 Interpolation determinants

Let f := (f1, . . . , fµ) be a collection of functions and p := (p1, . . . , pµ) a collection of points. We

define the interpolation determinant

∆(f ,p) := det(fi(pj))16i,j6µ. (40)

In the asymptotic notation ∼m, Om,Ωm in the following we use the subscript m to indicate

that the implied constants depend only on m. The following lemma and its proof are direct

analogs of the interpolation determinant estimates of [BP89]. We remark that in this paper we

will not make explicit use of the estimates for the constants C,E in terms of ‖D‖, e(D).
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Lemma 9. Assume m > 0. Suppose fi ∈ O(∆̄′) with ‖fi‖∆′ 6M and pi ∈ D∩X for i = 1, . . . , µ.
Assume δ < 1/2. Then

|∆(f ,p)| 6 (Cµ3M)µ · δE·µ1+1/m
, (41)

where

C = Om(‖D‖e(D)1/m), (42)

E = Ωm(e(D)−1/m). (43)

Proof. We set

k := max

{
j :

j∑
l=0

e(D)L(m, l) < µ

}
. (44)

Since
∑j

l=0 L(m, l) = L(m+ 1, j) is a polynomial of degree m we have k ∼m (µ/e(D))1/m.
We consider the expansions (35) for each fi with k as above,

fi =
∑

α∈M<k

mα(fi) +Rk(fi) +Qi. (45)

We note that Qi vanishes identically on X ∩∆ and, in particular, at every pj . By the definition
of k, the number of remaining terms in (45) does not exceed µ. We expand ∆(f ,p) by linearity
with respect to each column. We thus obtain a sum of at most µµ interpolation determinants ∆I

where each fi is replaced by either a monomial term mα(fi) or a residue term Rk(fi). By (37)
we have for i = 1, . . . , µ and for every α ∈M<k,

‖mα(fi)‖ 6 C0δ
|α|

‖Rk(fi)‖ 6 C0δ
k where C0 :=

‖D‖e(D)L(m, k)

(1− δ)m
M. (46)

We remark that these are estimates for the maximum norm in D and, in particular, they bound
the absolute value of mα(fi), Rk(fi) at every point pj .

Note that if the same index α is repeated in two different columns of ∆I , then these columns
are linearly dependent and ∆I ≡ 0. Thus, for every non-zero ∆I we can have at most

HM(j)−HM(j − 1) 6 e(D)L(m, j) (47)

monomial terms of order |α| = j. We now expand ∆I by the Laplace expansion. By definition of
k and by (46) we conclude that for each ∆I we have

|∆I | 6 µ!Cµ0 δ
S , S(m, k) :=

k∑
l=0

e(D)L(m, l) · l. (48)

Since L(m, l) · l is a polynomial of degree m in l, we conclude that S(m, k) ∼m e(D)km+1.
Plugging in k ∼m (µ/e(D))1/m we have

C0 = Om(‖D‖e(D)1/mµ1−1/mM), (49)

S(m, k) ∼m e(D)−1/mµ1+1/m. (50)

Summing over the (at most) µµ determinants ∆I we obtain (41). 2
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3.3 Polynomial interpolation determinants

Let d ∈ N and fix an integer m < ` 6 n. Let µ denote the dimension of the space of polynomials

of degree at most d in ` variables, µ = L(`+1, d). Let f := (f1, . . . , f`) be a collection of functions

and p := (p1, . . . , pµ) a collection of points. We define the polynomial interpolation determinant

of degree d to be

∆d(f ,p) := ∆(g,p), g = (fα : α ∈ N`, |α| 6 d). (51)

Note that ∆d(f ,p) = 0 if and only if there exists a polynomial of degree at most d in ` variables

vanishing at the points f(p1), . . . , f(pµ).

Lemma 10. Let H ∈ N and suppose that

H(fi(pj)) 6 H, i = 1, . . . , `, j = 1, . . . , µ. (52)

Then ∆d(f ,p) either vanishes or satisfies

|∆d(f ,p)| > H−`µd. (53)

Proof. Let Qi,j denote the denominator of fi(pj) for i = 1, . . . , ` and j = 1, . . . , µ. By assumption

Qi,j 6 H. The row corresponding to pj in ∆d(f ,p) consists of rational numbers with common

denominator dividing Qj :=
∏
iQ

d
i,j . Factoring out Qj from each row we obtain a matrix with

integer entries, whose determinant is either vanishing or at least one in absolute value. In the

non-vanishing case we have

|∆d(f ,p)| >
µ∏
j=1

Q−1
j > H−`µd. (54)

2

Comparing Lemmas 9 and 10 we obtain the following.

Proposition 11. Let M,H > 2, and suppose fi ∈ O(∆̄′) with ‖fi‖∆′ 6 M . Assume δ < 1/2.

Let

Y = f(X ∩D) ⊂ C`. (55)

There exist a constant C1 > 0 depending only on ` such that if

−log δ > C1
d−1 log(‖D‖e(D)) + logM + logH

(d`−m/e(D))1/m
, (56)

then Y (Q, H) is contained in an algebraic hypersurface of degree at most d in C`. The same

conclusion holds for m = 0 if instead of (56) we assume d > e(D).

Proof. We consider first the case m = 0. In this case according to Example 5 the number of

points in X ∩∆ is bounded by e(D). In particular, this bounds the number of points in Y , and

all the more in Y (Q, H). Thus, the claim holds with any d > e(D).

Now assume m > 0 and suppose toward contradiction that Y (Q, H) is not contained in an

algebraic hypersurface of degree at most d in C`. Then by standard linear algebra it follows

that there exist p = (p1, . . . , pµ) with p1, . . . , pµ ∈ X ∩ D such that {f(pj) : j = 1, . . . , µ} is

2184

https://doi.org/10.1112/S0010437X17007333 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007333


The Pila–Wilkie theorem for subanalytic families

a subset of Y (Q, H) and does not lie on the zero locus of a non-zero polynomial of degree d.
Then |∆d(f ,p)| 6= 0, and from Lemmas 10 and 9 we have

H−`µd 6 |∆d(f ,p)| 6 (Cµ3Md)µ · δE·µ1+1/m
. (57)

Takings logarithms and using µ ∼` d` we have

(d`/e(D))1/m log δ > −Ω`(log ‖D‖+m−1 log e(D) + 3` log d+ d logM + `d logH). (58)

Noting that
log d

d`/m
= O`(1) (59)

and collecting all asymptotic constants into C1 we arrive at a contradiction with (56). 2

Corollary 12. Let ` = m+ 1 and suppose fi ∈ O(∆̄′) with ‖fi‖∆′ 6M . Let

Y = f(X ∩D) ⊂ Cm+1. (60)

For every ε > 0 there exist two positive constants

d = d(m, ε, e(D)), (61)

C = C(m, ε, e(D), ‖D‖,M) (62)

such that if δ 6 CH−ε, then Y (Q, H) is contained in an algebraic hypersurface of degree at most
d in Cm+1.

Proof. By Proposition 11 for m > 0 it is enough to choose

ε >
C1

(d/e(D))1/m
, (63)

−logC >
C1d

−1 log(‖D‖e(D)M)

(d/e(D))1/m
, (64)

and for m = 0 it is enough to choose d = e(D) and, e.g., C = 1. 2

Pursuing a different asymptotic direction for the parameters we also obtain the following
corollary.

Corollary 13. Suppose m > 0 and fi ∈ O(∆̄′) with ‖fi‖∆′ 6M . Let

Y = f(X ∩D) ⊂ C`. (65)

There exists a constant
C = C(`, e(D), ‖D‖,M) (66)

such that if δ < C, then there exists an algebraic hypersurface of degree at most (logH)m/(`−m)

in C` containing Y (Q, H).

Proof. Choosing d = (logH)m/(`−m) in Proposition 11 we see that the right-hand side of (56) is
majorated by a constant depending only on `, e(D), ‖D‖,M . 2

We are now ready to finish the proof of Theorem 2.
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Proof of Theorem 2. By Theorem 3 applied to the family K and the dimension k, there exists
a positive radius r > 0 and constants CD, CH > 0 with the following property. For any
v = (x, y) ∈ K there exists a decomposition datum Dv such that:

(1) ∆v = ∆′v is centered at x, and Br(x) ⊂ ∆v;

(2) dimMi 6 k, ‖D‖v 6 CD and e(Dv) 6 CH ;

(3) Xy admits decomposition with respect to D.

Set Dv := ∆
2/C
v , where C is the constant given in Corollary 13 with ` = m and f given

by the standard coordinates on Cm (note that C depends on CD, CH but not on v). Then by
Corollary 13 we see that (Xy ∩ Dv)(Q, H) is contained in an algebraic hypersurface of degree
(logH)k/(m−k). It now remains to cover K by some finite number C(K) of the discs Dv and
apply the above to each of them. 2

4. Exploring rational points in admissible projections

We begin with a definition.

Definition 14. Let X ⊂ Cm and W ⊂ Cm be two sets. We define

X(W ) := {w ∈W : Ww ⊂ X} (67)

to be the set of points of W such that X contains the germ of W around w, i.e. such that w has
a neighborhood Uw ⊂ Cm such that W ∩ Uw ⊂ X.

If A ⊂ Cn we denote by AR := A ∩ Rn. We remark that

(A(W ))R ⊂ (AR)(WR). (68)

We will consider Definition 14 in two cases: for X ⊂ Cm locally analytic and W ⊂ Cm an algebraic
variety, and for X ⊂ Rm subanalytic and W ⊂ Rm a semi-algebraic set.

Our principal motivation for Definition 14 is the following direct consequence (cf. Theorem 6).

Lemma 15. Let S ⊂ Rm be a connected positive-dimensional semialgebraic set and A ⊂ Rm.
Then A(S) ⊂ Aalg.

We record some simple consequences.

Lemma 16. Let A,B,W ⊂ Cm. Then

A(W ) ∪B(W ) ⊂ (A ∪B)(W ). (69)

If A ⊂ B is relatively open, then

B(W ) ∩A = A(W ). (70)

4.1 Projections from admissible graphs
Let Ωz ⊂ Cm,Ωw ⊂ Cn be domains and set Ω := Ωz × Ωw ⊂ Cm+n. Let Λ be an analytic space.
We denote by πz, πw, πΛ the projections from Ω × Λ to Ωz,Ωw,Λ, respectively. We denote by
π : Ω× Λ → Ωz × Λ the projection π = πz × πΛ.

Let U ⊂ Ωz × Λ be an open subset and ψ : U → Ωw a function, and denote its graph by

Γψ := {(z, w, λ) ∈ Ω× Λ : ψ(z, λ) = w}. (71)

We denote by ψ̃ : U → Γψ the map (z, λ) → (z, ψ(z, λ), λ).

Definition 17. We say that ψ : U → Ωw is admissible if Γ = Γψ is relatively compact in Ω×Λ,
and if there exists an analytic subsetXΓ⊂Ω×Λ which agrees with Γ over U , i.e.XΓ ∩π−1(U) = Γ.
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4.2 Rational points on admissible projections

For the remainder of this section we fix an admissible φ : U → Ωw. Our main result in this

section is the following theorem.

Theorem 4. Let X ⊂ Ω× Λ be an analytic family. Set

Y := π(X ∩ Γ) ⊂ Ωz × Λ. (72)

Let ε > 0. There exist constants d = d(Γ, ε) and N = N(Γ, ε) with the following property. For

any λ ∈ Λ and any H ∈ N there exist at most NHε many irreducible algebraic varieties Vα ⊂ Cm
with deg Vα 6 d such that

Yλ(Q, H) ⊂
⋃
α

Yλ(Vα). (73)

We begin the proof of Theorem 4 with the following proposition.

Proposition 18. Let X ⊂ Ω× Λ be an analytic family and set

Y := π(X ∩ Γ) ⊂ Ωz × Λ. (74)

Let W ⊂ Cm be an irreducible algebraic variety.

Let ε > 0. There exist constants d= d(Γ, ε,degW ) andN =N(Γ, ε,degW ) with the following

property. For any λ ∈ Λ and any H ∈ N there exist NHε hypersurfaces Hα ⊂ Cm with degHα 6 d

such that W 6⊂ Hα and

(Yλ ∩W )(Q, H) ⊂ Yλ(W ) ∪
⋃
α

Hα. (75)

Proof. Since the statement involves only the intersection X∩Γ we may without loss of generality

replace X by X ∩XΓ, and assume that X ∩ π−1(U) ⊂ Γ.

Set k := dimW . Let C denote the projective (hence, compact) Chow variety (see [GKZ94,

Ch. 4]) parametrizing all effective algebraic cycles of dimension k and degree equal to degW . We

denote by RV ∈ C the point corresponding to a cycle V . Then the following family is analytic,

X ′ ⊂ Ω× (Λ× C), X ′ = {(z, w, λ,RV ) : (z, w, λ) ∈ X, z ∈ suppV }. (76)

Clearly,

X ′(λ,RW ) = Xλ ∩ (W × Ωw). (77)

We apply Theorem 3 to X ′ with the compact set Γ̄ × C and consider the conclusion for points

of the form (p, λ,RW ) for (p, λ) ∈ Γ̄. We conclude that there exist r, CD, CH > 0 depending only

on Γ,degW such that for any (p, λ) ∈ Γ̄ there exists a decomposition datum D satisfying:

(1) ∆ = ∆′ is centered at p, and Br(p) ⊂ ∆ ⊂ Ω;

(2) dimMi < k, ‖D‖ 6 CD and e(D) 6 CH ;

(3) the set

Zλ = (Xλ ∩ (W × Ωw))<k (78)

admits decomposition with respect to D.
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Fix λ ∈ Λ, let q ∈ Yλ ∩W , and suppose q 6∈ SingW and q 6∈ Yλ(W ). Then the germ of W
at q is smooth k-dimensional and not contained in Yλ. Equivalently, its image ψ̃(W × {λ}) ⊂ Γ
is the germ of a smooth k-dimensional analytic set at ψ̃(q, λ) that is not contained in Xλ. Since
we assume X ⊂ Γ in a neighborhood of ψ̃(q, λ), we conclude that the dimension of

Xλ ∩ (W × Ωw) = Xλ ∩ Γλ ∩ (W × Ωw) = Xλ ∩ ψ̃(W × {λ}) (79)

at ψ̃(q, λ) is strictly smaller than k, i.e. (q, ψ(q, λ)) ∈ Zλ and, thus, q ∈ π(Zλ). In conclusion,

Yλ ∩W ⊂ Yλ(W ) ∪ SingW ∪ π(Zλ). (80)

Fix a hypersurface H0 ⊂ Cm containing SingW and not containing W . It is clear that one
can choose H0 of some degree d0 depending only on degW .

Since dimW = k, one can choose a subset of k coordinates on Cm, say f = (z1, . . . , zk), such
that f : W → Ck is dominant. In particular, no non-zero polynomial in the coordinates f vanishes
on W . Since Γ̄ is compact, the coordinates f are certainly bounded (in absolute value) in the
r-neighborhood of Γ̄ by some number M . Fix some ε′ > 0 whose value will be determined later,
and let

d = d(m, ε′, CH), (81)

C = C(m, ε′, CH , CD,M) (82)

be the two constants of Corollary 12.
Let δ = CH−ε

′
. Let p ∈ (Γ̄)λ and denote Dp = Dδr(p) ⊂ Ω. We apply Corollary 12 to f and

the set Zλ and conclude that there exists a polynomial Pp(f) of degree at most d such that

(πz(Dp ∩ Zλ))(Q, H) ⊂ {Pp = 0}. (83)

We let Hp := {Pp = 0} ⊂ Cm.
Finally, it remains to cover the compact set (Γ̄)λ by the polydiscs {Dp : p ∈ S} for some

finite set S ⊂ (Γ̄)λ and take

{Hα} = {H0} ∪ {Hp : p ∈ S}. (84)

Then (80) and the choice of H0, Hp gives

(Yλ ∩W )(Q, H) ⊂ Yλ(W ) ∪
⋃
α

Hα (85)

as claimed.
Since each Dp has radius at least CrH−ε

′
and Γ̄ is compact, it is easy to see that one

can choose a covering of size at most NHε′(n+m), where N = N(Cr,Γ, ε′). Finally taking ε′ =
ε/(n+m) we obtain the statement of the proposition. 2

The following lemma gives an inductive proof of Theorem 4, which is obtained for the case
W = Cm.

Lemma 19. Let X ⊂ Ω× Λ be an analytic family and set

Y := π(X ∩ Γ) ⊂ Ωz × Λ. (86)

Let W ⊂ Cn be an irreducible algebraic variety.
Let ε > 0. There exist constants d= d(Γ, ε,degW ) andN =N(Γ, ε,degW ) with the following

property. For any λ ∈ Λ and any H ∈ N, there exist at most NHε many irreducible algebraic
varieties Vα ⊂ Cm with deg Vα 6 d such that

(Yλ ∩W )(Q, H) ⊂
⋃
α

Yλ(Vα). (87)
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Proof. We proceed by induction on dimW . Apply Proposition 18 to obtain a family of at most
N ′Hε/2 hypersurfaces {Hα′} ⊂ Cm of degree d′. Let {Wα} denote the union over α′ of the sets
of irreducible components of W ∩Hα′ . Then

#{Wα} 6 d′N ′Hε/2, dimWα = dimW − 1, degWα 6 d′ · degW (88)

and
(Yλ ∩W )(Q, H) ⊂ Yλ(W ) ∪

⋃
α

Wα. (89)

Apply the inductive hypothesis to each Wα to obtain collections Wα,β, of size at most N ′′Hε/2

for each α, such that

(Yλ ∩Wα)(Q, H) ⊂
⋃
β

Wα,β. (90)

Finally, we take {Vα} to be the union of the sets {W} and {Wα,β}. The size of {Vα} is bounded
by 1 + d′N ′N ′′Hε as claimed and (87) is satisfied by (89) and (90). 2

5. Subanalytic sets and LD
an

Let I = [−1, 1]. For m > 0 we let R{X1, . . . , Xm} denote the ring of power series converging in
a neighborhood of Im. To each f ∈ R{X1, . . . , Xm} we naturally associate the map f : Im → R.

We recall the language LDan of [DvdD88]. The language includes a countable set of variables
{X1, X2, . . .}, a relation symbol <, a binary operation symbol D, and an m-ary operation
symbol f for every f ∈ R{X1, . . . , Xm} satisfying f(Im) ⊂ I. We view I as an LDan-structure
by interpreting < and f in the obvious way and interpreting D as restricted division, namely

D(x, y) =

{
x/y, |x| 6 |y| and y 6= 0,

0, otherwise.
(91)

We denote by Lan the language obtained from LDan by omitting D.
For every LDan-term t(X1, . . . , Xm) we have an associated map t : Im → I that we denote by

x → t(x). If t is an Lan-term, then this map is real analytic in Im.
For an LDan-formula φ(X1, . . . , Xm) we write φ(Im) for the set of points x ∈ Im satisfying φ.

If A ⊂ Im we write φ(A) := φ(Im) ∩A. We will use the following key result of [DvdD88].

Theorem 5. I has elimination of quantifiers in LDan. As a consequence, a set A ⊂ Im is
subanalytic in Rm if and only if it is defined by a quantifier-free formula φ of LDan.

5.1 Admissible formulas

Let U ⊂
◦
Im be an open subset. We define the notion of an LDan-term admissible in U by recursion

as follows: a variable Xj is always admissible in U ; a term f(t1, . . . , tm) is admissible in U if and
only if the terms t1, . . . , tm are admissible in U ; and a term D(t1, t2) is admissible in U if t1, t2
are admissible in U and if

|t1(x)| 6 |t2(x)| and t2(x) 6= 0 (92)

for every x ∈ U . An easy induction gives the following.

Lemma 20. If t is admissible in U then the map t : U → I is real analytic.
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We will say that an LDan-formula φ is admissible in U if all terms appearing in φ are admissible
in U . Here and below, when speaking about ‘terms appearing in φ’ we consider not only the
top-level terms appearing in the relations, but also every sub-term appearing in the construction
tree of each term. The following proposition shows that when considering definable subsets of I
one can essentially reduce to admissible formulas.

Proposition 21. Let U ⊂
◦
Im be an open subset and φ(X1, . . . , Xm) a quantifier-free LDan-

formula. There exist open subsets U1, . . . , Uk ⊂ U and quantifier-free LDan-formulas φ1, . . . , φk
such that φj is admissible in Uj and

φ(U) =
k⋃
j=1

φj(Uj). (93)

Proof. We prove the claim by induction on the number N of U -inadmissible terms in φ. Clearly,
if this number is zero we are done. Otherwise, let t be some minimal U -inadmissible term in φ,
i.e. such that all sub-terms appearing in t are U -admissible. Express φ in the form

φ(X1, . . . , Xm) = φ′(X1, . . . , Xm, t) (94)

for a quantifier-free LDan-formula φ′ of m + 1 free variables. By the definition of admissibility it
is clear that t = D(t1, t2), and by minimality t1, t2 are admissible in U . We let

φ1 ≡ φ, U1 = {x ∈ U : |t1(x)| < |t2(x)|} (95)

and

φ2 = (|t1| = |t2|) ∧ (t2 6= 0) ∧ φ′(X1, . . . , Xm, 1), (96)

φ3 = (|t1| > |t2| ∨ (t2 = 0)) ∧ φ′(X1, . . . , Xm, 0), (97)

with U2 = U3 = U . Note that for readability we use the absolute value as a shorthand above, but
it is clear that the relations can be expressed in terms of the unary minus operation corresponding
to the function − : I → I, x → (−x).

Since t1, t2 are admissible in U they define real analytic (in particular, continuous) functions
there, and the relation defining U1 is indeed open. Moreover, in U1 the term t is admissible
by definition and, hence, the number of U1-inadmissible terms in φ1 is strictly smaller than N .
Similarly, the new relations introduced in φ2 (respectively, φ3) are admissible in U , and since
the inadmissible t is replaced by the admissible term 1 (respectively, 0) the number of U2

(respectively, U3) inadmissible terms is strictly smaller than N . It is an easy exercise to check
that

φ(U) =
3⋃
j=1

φj(Uj). (98)

The proof is now concluded by applying the inductive hypothesis to each pair φj , Uj for j = 1,
2, 3. 2

5.2 Basic formulas and equations
We say that φ is a basic D-formula if it has the form( k∧

j=1

tj(X1, . . . , Xm) = 0

)
∧
( k′∧
j=1

sj(X1, . . . , Xm) > 0

)
, (99)

where tj , sj are LDan-terms. It is easy to check the following.

2190

https://doi.org/10.1112/S0010437X17007333 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007333


The Pila–Wilkie theorem for subanalytic families

Lemma 22. Every quantifier-free LDan-formula φ is equivalent in the structure I to a finite
disjunction of basic formulas. If φ is U -admissible, then so are the basic formulas in the
disjunction.

We say that φ is a basic D-equation if k′ = 0, i.e. if it involves only equalities. If φ is a basic
D-formula, we denote by φ̃ the basic D-equation obtained by removing all inequalities.

Let φ be a U -admissible basic D-formula for some U ⊂ Im. Then φ̃ is U -admissible as well.
Moreover, since all the terms sj evaluate to continuous functions in U , the strict inequalities of
φ are open in U and we have the following.

Lemma 23. Suppose φ is U -admissible basic D-formula. Then φ(U) is relatively open in φ̃(U).

The set defined by an admissible D-equation can be described in terms of admissible
projections in the sense of § 4.1.

Proposition 24. Let U ⊂
◦
Im+l and φ be a U -admissible D-equation,

φ = (t1 = 0) ∧ · · · ∧ (tk = 0). (100)

In the notation of § 4.1, there exist:

(1) complex domains

Ωz ⊂ Cm, Ωw ⊂ CN , Λ ⊂ Cl (101)

with N ∈ N and Im+l ⊂ Ωz × Λ;

(2) an open complex neighborhood U ⊂ UC ⊂ Ωz × Λ;

(3) an analytic map ψ : UC → Ωw;

(4) an analytic set X ⊂ Ω× Λ;

such that ψ is admissible and Y := π(X ∩ Γψ) satisfies YR = φ(U).

Proof. Let {s1, . . . , sN} denote all terms of the type sj = D(sj,1, sj,2) appearing in φ. For
notational convenience we write X = X1, . . . , Xm+n and W = W1, . . . ,WN for variables on
Rn+m and RN .

For every term t(X) appearing in φ we define an Lan term t′(X,W ) by recursion as follows:
if t is a variable, then t′ := t; if t = f(t1, . . . , tk), then t′ = f(t′1, . . . , t

′
k); finally, if t = sj , then

t′ = Wj . As Lan-terms, every term t′ corresponds to a real-analytic function t′ : Im+N+n
→ I.

We let Ωz×Ωw×Λ denote some complex neighborhood of Im+N+n to which every term t′ admits
analytic continuation.

By Lemma 20, all terms appearing in φ evaluate to real analytic maps from U to I. We define
a map ψ : U → Ωw by

ψ(x) = (s1(x), . . . , sN (x)). (102)

We note that ψ(U) ⊂ IN and, by definition of U -admissibility, all the terms sj,2 evaluate to
non-vanishing functions on U . Let Uw be a relatively compact neighborhood of IN in Ωw. Then
there exists a relatively compact open neighborhood UC ⊂ Ωz × Λ of U such that:

(1) (UC)R = U and ψ(UC) ⊂ Uw;

(2) all terms appearing in φ admit analytic continuation to UC;

(3) all the terms sj,2 evaluate to non-vanishing maps on UC.
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Henceforth, we view UC as the domain of ψ. The graph Γ = Γψ is relatively compact in Ω×Λ,
being contained in the product of the relatively compact sets UC ⊂ Ωz × Λ and Uw ⊂ Ωw.

By construction of t′ it is clear that

t(z, λ) = t′(z, ψ(z, λ), λ) for (t, λ) ∈ UC. (103)

We define the analytic subset XΓ ⊂ Ω× Λ by

XΓ = {s′j,2Wj = s′j,1 : j = 1, . . . , N}. (104)

It is easy to check by induction that XΓ agrees with Γ over UC (using (103) and the fact that
sj,2 evaluate to non-vanishing maps on UC).

Finally, we define X ⊂ Ω× Λ by

X = {t′1 = · · · = t′k = 0} (105)

and set Y := π(X ∩ Γ) ⊂ Ωz × Λ. Then (103) at the points of U = (UC)R gives YR = φ(U). 2

5.3 Estimate for subanalytic sets
To state the general form of our main result we introduce the notion of complexity of a semi-
algebraic set. We say that a semialgebraic set S ⊂ Rm has complexity (m, s, d) if it defined by a
semialgebraic formula involving s different relations Pj > 0 or Pj = 0, where the polynomials Pj
have degrees bounded by d.

Theorem 6. Let A ⊂ Rm+n be a bounded subanalytic set and ε > 0. There exist constants
d = d(A, ε) and N = N(A, ε) with the following property. For any y ∈ In and any H ∈ N,
there exist at most NHε many smooth connected semialgebraic sets Sα ⊂ Cm with complexity
(m, d, d) such that

Ay(Q, H) ⊂
⋃
α

Ay(Sα). (106)

Proof. Rescaling A by a sufficiently large integer, Ã := (1/M)A we may assume that Ã ⊂
◦
In+m.

This clearly does not affect the heights of points by more than a constant factor, and it will
suffice to prove the claim for Ã and then rescale the varieties Ṽα back to Vα := MVα. We thus

assume without loss of generality that A ⊂
◦
In+m.

By Theorem 5 we may write A = φ(
◦
Im+n) for some quantifier-free LDan-formula φ. By

Proposition 21 and Lemma 22 we may write

A =

k⋃
j=1

nj⋃
i=1

φji(Uj), (107)

where φji is a Uj-admissible basic D-formula. By the first part of Lemma 16 it is clear that it
will suffice to prove the claim with A replaced by each φij(Uj). We thus assume without loss of
generality that φ is already a U -admissible basic D-formula and prove the claim for A = φ(U).

Recall that φ̃ is a U -admissible D-equation. We write B = φ̃(
◦
Im+n). Applying Proposition 24

to φ̃ and using Theorem 4 we construct a locally analytic set Y ⊂ Cm+n such that YR = B, and
for any y ∈ In there exist at most N ′Hε many irreducible algebraic varieties Vα ⊂ Cm with
deg Vα 6 d′ such that

Yy(Q, H) ⊂
⋃
α

Yy(Vα) (108)
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with d,N as in Theorem 4. By (68) and YR = B we have

By(Q, H) ⊂
⋃
α

By(Vα), Vα = (Vα)R. (109)

Finally, we recall that A is relatively open in B by Lemma 23. Then the same is true for the
fiber Ay ⊂ By, and

Ay(Q, H) ⊂ Ay ∩ (By(Q, H)) ⊂ Ay ∩
⋃
α

By(Vα) =
⋃
α

(Ay ∩By(Vα))

=
⋃
α

Ay(Vα) (110)

where the last equality is given by the second part of Lemma 16.
If we write each real-algebraic variety Vα as a union of smooth connected strata Vα =

⋃
j Sα,j ,

then we have
Ay(Q, H) ⊂

⋃
α

A(Vα) ⊂
⋃
α,j

A(Sα,j). (111)

It remains to note that since deg Vα 6 d′, the number and complexity of the strata Sα,j is bounded
by some number d depending only on d′. This follows from general uniformity properties in the
algebraic category, and, in fact, one may derive explicit (and polynomial in d′) estimates for d
(for details see [BN17, Proposition 37]). Taking N = N ′d finishes the proof. 2

We can now finish the proof of Theorem 1.

Proof of Theorem 1. By Theorem 6, for any y ∈ In and any H ∈ N there exist at most NHε

many smooth connected semialgebraic sets Sα ⊂ Cm such that

Ay(Q, H) ⊂
⋃
α

Ay(Sα). (112)

By Lemma 15, for any positive dimensional Sα we have A(Sα) ⊂ Aalg
y . Thus #Atrans

y (Q, H) is
bounded by the number of zero-dimensional strata, i.e. by NHε. 2
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