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There are various combinatorial questions on rectangular arrays
consisting of points, numbers, fields or, in general, of symbols such as
chessboards, lattices, and graphs. Many such problems in enumerative
combinatorics come from other branches of science and technology like
physics, chemistry, computer sciences and engineering; for example the
following two very challenging problems from chemistry:

Problem 1: Dimer problem (Domino tiling)
In chemistry, a large molecule composed repeatedly from monomers as

a long chain is called a polymer and a dimer is composed of two monomers
(where: mono = 1, di = 2, poly = many and mer = part).

The problem of covering a region (e.g. a rectangular region, which is
the simplest 2-dimensional region) by dimers can be interpreted
geometrically as follows:

In how many ways can a rectangular region be covered by dominoes?
By ‘domino’ we mean a  rectangle composed of 2 unit squares, and by
‘covering’ we mean a cover with no gap and no overlap. The existence of at
least such a cover is equivalent to the existence of a rectangle of size
with positive integers  and  where  is even.
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In 1961, this problem was independently solved by H. N. V. Temperley
and M. E. Fisher [1], and by P. W. Kasteleyn [2], as the following counting
function:
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where  is the smallest integer not less than  (the ceiling function of ).⎡x⎤ x x

This formula shows, for instance, that a chessboard  can
be covered by 32 dominoes in exactly 12,988,816 ways.

(m = n = 8)

Problem 2: Polymer problem (self-avoiding walk)
To develop polymers, chemists design and study long chains of

monomers and relations of pairwise them. In 1953, the chemist P. Flory [3]
introduced problems concerning non-intersecting chains of polymers
suggesting problems in combinatorics as follows:

A self-avoiding walk is a path on a lattice that does not intersect itself,
and a self-avoiding polygon is a closed self-avoiding walk on a lattice.

Also, a self-avoiding walk passing through all the nodes of a lattice
region, e.g. through all the nodes of a rectangular lattice, is called a
spanning self-avoiding walk. Now, for a lattice of even size, any solution (a
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spanning one) to Problem 2 is a solution to Problem 1, but its converse is
not true in general.

Very little is known about self-avoiding walks; in particular, the number
of -step self-avoiding walks for a general positive integer  is unknown.
For more topics on this subject see [4].

n n

In spite of the very tough problems, Problem 1 and Problem 2, in this
Article we discuss some very much simpler matters in relation to self-
avoiding walks and self-avoiding polygons using equivalent notations and
terminology.

Let one person be walking on an  grid of fields, where  and
are positive integers. Without loss of generality, we consider a grid of
squares, in fact, the shape of the fields does not play any role, what matters
is the number of fields and relations between them. The person moves from
one field to an adjacent field along rows or columns, but never visits a field
twice, except when the starting and ending fields are the same. If the person
walks to all the fields, it is said that a spanning path (complete tour) has
been done; if the person comes ends up on the starting field, it is said that a
spanning circuit (complete loop) has been done. Such tours are clearly
possible in various ways; e.g. see Figures 1 and 2. Throughout this Article,
each path will be shown in a thicker line, and since all walks are restricted to
these rules, any corresponding path will be a (closed or open) simple broken
line that does not intersect itself. The length of a path is defined as the total
number of fields spanned. In an  grid of fields of any size (even or
odd total number of fields), there is always at least one spanning path (teeth-
like or a flat zigzag pattern) as shown in Figure 1; and also there is always at
least one spanning circuit (comb-like) for any even  as shown in Figure 2.
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FIGURE 1 FIGURE 2

One may wonder: if there are obstacles in the grid, i.e. blocked fields,
would a spanning path (or circuit) be possible to all the remaining fields?

From there one may ask the following questions:
Question 1: What is the minimum number of fields in an  grid with
odd sides that must be excluded to prevent the possibility of a spanning path
through the remaining felds?

m × n

Question 2: What is the minimum number of fields in an  grid, with
 odd, that must be excluded to make a spanning circuit possible through

the remaining fields?

m × n
m, n
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The purpose of this Article is to consider and to answer these questions
in the theorem below.

We observe (e.g. see the example in Figure 3) that in any circuit (where
we call the initial-terminal field the origin) any outbound step from the
origin is matched in the circuit by a corresponding inbound step heading
back to the origin (and conversely), therefore there must be in total an even
number of fields in a circuit. We will show this with a more rigorous
argument in the following proposition: 

FIGURE 3

Proposition: The length of a circuit on any grid is always even.

Proof: Consider the horizontal walks, and ignore vertical walks temporarily
(project the path on a horizontal axis), and let the origin point be the origin
of the axis, and assign to any walk (partial path) in the positive direction a
positive integer equal to the number of steps involved, and assign to any
walk (partial path) in the negative direction a negative integer equal to the
number of steps involved. We see that in any circuit we  will have a total of
zero (the algebraic sum of the outbound and inbound walks vanishes, or we
can also say that the sum (resultant) of vectors in a zero translation is zero);
in other words

w1 + w2 +  …  + wk = 0

where any  is the algebraic value of each partial walk. Hencew

| w1 | + | w2 | +  …  + | wk |
is an even positive integer.

A similar argument for vertical walks holds, therefore the total length of
any walk circuit is an even positive integer.
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Corollary: A path with odd length cannot be a circuit. In particular, any grid
of fields with odd size has no spanning circuit.

Theorem: Let  and  be any integers.m > 1 n > 1
(i) If  is odd, then the exclusion (or blockage) of even a single

correctly-selected field can prevent a spanning path. The number of
such preventative fields is exactly . Also, the exclusion of
even one proper field can cause a spanning circuit. The number of such
causing fields is exactly .

mn

1
2 (mn − 1)

1
2mn + 1

(ii) If  is even, then we must exclude at least two proper fields to
prevent a spanning path, and the number 2 is best. The number of ways

to choose two such avoiding fields is at least .

mn

mn
2 (mn − 2

2 )
Proof:
(i) When  is an odd integer:mn

In this case, we proceed with the proof by contradiction, and use the
‘checkerboard-trick’ (colouring the alternate fields in black and white in
chessboard fashion. Starting with a white field at the upper left corner) we
will have  black fields and  white fields, so that their
difference . Figure 4 shows an example for ).

1
2 (mn − 1) 1

2 (mn + 1)
	(B, W) = 	 = 1 (m, n) = (5,  7

FIGURE 4

Excluding just one arbitrary black field yields . Also, the person
always walks through a white field to an adjacent black field (or
conversely), and this means that in any walking path, the difference

	 = 2

	 =
⎧

⎩
⎨
⎪
⎪

0, only when the length of the path is even,

1, only when the length of the path is odd.

Therefore, if there were a complete tour, then ; a contradiction!
Clearly the number of such avoiding fields is exactly , which is
the total number of the black fields.

	 = 0
1
2 (mn − 1)

The exclusion of any white field makes a spanning circuit (complete
loop) on the total  grid, except the excluded field, means that the
person could have a complete tour (actually, a complete loop) from any
starting point. We can show this by induction on odd .

m × n

m × n
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We begin with the first step of the induction, using the minimal values
; see Figure 5a. Excluding the central field gives the circuit

shown in Figure 5b and excluding any one of the four corner fields can
provide one spanning circuit, e.g. excluding the upper left field gives the
spanning circuit shown in Figure 5c.

m = n = 3

a b c

FIGURE 5

Thus the first step of induction holds.
Now let at least one of the odd integers  and  be greater than 3.

Without loss of generality, say  (meaning ), so that the
excluded field is not in the lower  grid shown in grey in Figure 6.

m n
m > 3 m ≥ 5

2 × n
Then, by the induction assumption, there is a spanning circuit  in the

upper  grid (one excluded field), and clearly a spanning circuit
 in the lower  grid.

C1
(m − 2) × n

C2 2 × n
Obviously (at least) two adjacent fields in the lowest row of the

 grid (over the lower  grid) are a part of .(m − 2) × n 2 × n C1

m

n

m−2

FIGURE 6

Now, disconnecting the  between the two adjacent fields, and
disconnecting the  between the two adjacent fields just under them, and
connecting  and  in the corresponding fields as shown in Figure 7, we
achieve a spanning circuit  on the  grid (excluded in a field), where
any field is represented by a node.

C1
C2

C1 C2
C m × n
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C2

C1
C

FIGURE 7

Clearly the number of such causing fields is exactly , which
is the total number of the white fields.

1
2 (mn + 1)

This completes the proof by induction.

(ii) When  is an even integer:mn
In this case, at least one of  and  is even; without loss of generality,

we assume that  is even. There does always exist at least one spanning
circuit, for example one spanning comb-like circuit as shown in Figure 2
above. This means that excluding no field can avoid the existence of a
complete tour on the notched grid. Therefore at least two excluded fields are
needed to avoid a complete tour on the notched grid (consisting of
fields). In this case, exclusion of two fields of the same colour yields the
non-existence of a complete tour, since we will have  (according to the
above argument there is no path where  holds). Therefore to avoid a
complete tour, exclusion of at least two similarly-coloured fields is
necessary.

m n
n

mn − 2

	 = 2
	 = 2

The number of black (or white) fields is , and consequently the total
number of choices when avoiding two fields is at least

1
2mn

2 ( ) =
mn
2 (mn

2
− 1) ,

1
2mn

2

and this completes the proof of the Theorem.

Comments
(1) The case  with  or  was not considered above, since it

is trivial, because the cases for  are completely trivial,
and if  and  (or  and ), there exists no
spanning circuit, and there exists a spanning path only when the start
(also the end) point is chosen from the two ending fields. The exclusion
of any mid-fields causes the non-existence of a spanning path, and the
number of such avoiding fields is  (or ).

mn m = 1 n = 1
m, n ∈ {1,  2}

m ≥ 3 n = 1 m = 1 n ≥ 3

m − 2 n − 2
(2) The usefulness of a spanning circuit with respect to an open spanning

path is that the person can start walking from each field, but the start
field in any open spanning path must be one of the two ending fields. 

Exclusion of two fields with different colours for the case (ii) in the
Theorem does not have a definite outcome, sometimes it causes the
possibility of a complete tour and sometimes not; hence we conclude this
Article with the following problem for the reader:

https://doi.org/10.1017/mag.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.17


WALK ON A GRID 117

Problem
If  is an even positive integer, which excluded two fields give rise to

the non-existence of a complete tour?
mn

And for which fields is this not true?
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