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Diffusion-driven flows in a nonlinear stratified
fluid layer
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Diffusion-driven flow is a boundary layer flow arising from the interplay of gravity
and diffusion in density-stratified fluids when a gravitational field is non-parallel to
an impermeable solid boundary. This study investigates diffusion-driven flow within a
nonlinearly density-stratified fluid confined between two tilted parallel walls. We introduce
an asymptotic expansion inspired by the centre manifold theory, where quantities are
expanded in terms of derivatives of the cross-sectional averaged stratified scalar (such
as salinity or temperature). This technique provides accurate approximations for velocity,
density and pressure fields. Furthermore, we derive an evolution equation describing the
cross-sectional averaged stratified scalar. This equation takes the form of the traditional
diffusion equation but replaces the constant diffusion coefficient with a positive-definite
function dependent on the solution’s derivative. Numerical simulations validate the
accuracy of our approximations. Our investigation of the effective equation reveals that
the density profile depends on a non-dimensional parameter denoted as γ representing the
flow strength. In the large γ limit, the system is approximated by a diffusion process with
an augmented diffusion coefficient of 1 + cot2 θ , where θ signifies the inclination angle
of the channel domain. This parameter regime is where diffusion-driven flow exhibits
its strongest mixing ability. Conversely, in the small γ regime, the density field behaves
like pure diffusion with distorted isopycnals. Lastly, we show that the classical thin film
equation aligns with the results obtained using the proposed expansion in the small γ

regime but fails to accurately describe the dynamics of the density field for large γ .

Key words: dispersion, lubrication theory, stratified flows

1. Introduction

The density of a fluid is influenced by several factors, including temperature, the
concentration of solute and pressure profiles. Typically, these factors lead to a non-uniform
distribution of density in the fluid. Density stratified fluids are commonly found in various
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L. Ding

natural environments, such as lakes, oceans, the Earth’s atmosphere, making them a
subject of great interest in numerous research endeavours (Linden 1979; Cenedese &
Adduce 2008; Magnaudet & Mercier 2020; Camassa et al. 2022; More & Ardekani 2023).
In the context of density-stratified fluids, achieving hydrostatic equilibrium is contingent
upon aligning the density gradients with the direction of gravitational force. In scenarios
involving impermeable boundaries and the modelling of diffusive stratified scalars, a
no-flux boundary condition applies, demanding that the density gradient be orthogonal
to the boundary’s normal vector. If the boundary’s normal vector is perpendicular to the
gravitational direction, the no-flux condition prevents the density gradient from aligning
with gravity, thus disrupting hydrostatic equilibrium. The disruption of hydrostatic
equilibrium results in the emergence of a boundary layer flow, a phenomenon termed
diffusion-driven flow in the field of physics (Phillips 1970; Wunsch 1970), or mountain and
valley (katabatic or anabatic) winds (Prandtl, Oswatitsch & Wieghardt 1942; Oerlemans
& Grisogono 2002) in meteorology.

The phenomenon of diffusion-driven flow has garnered significant attention across
various fields. First, in the context of oceanography, the presence of salt in seawater leads
to density stratification. The continental shelf has a gentle slope extending from the coast to
the deeper waters of the ocean. The sloping boundaries induce a mean upwelling velocity
along the boundaries to satisfy the no-flux condition. This upwelling flow plays a crucial
role in facilitating the vertical exchange of oceanic properties (see, for example, Phillips
1970; Wunsch 1970; Dell & Pratt 2015; Holmes, de Lavergne & McDougall 2019; Drake,
Ferrari & Callies 2020). Second, fluids confined within long, narrow fissures can also
exhibit density stratification. This stratification can result from non-uniform concentration
distributions of stratified scalars or vertical temperature gradients. For example, Earth’s
geothermal gradient induces convective flows that lead to significant solute dispersion
on geological time scales (Woods & Linz 1992; Shaughnessy & Van Gilder 1995; Heitz,
Peacock & Stocker 2005). Third, when a wedge-shaped object is immersed in a stratified
fluid, the resulting diffusion-driven flow can propel the object forward (Allshouse,
Barad & Peacock 2010; Mercier et al. 2014). The flows generated by such immersed
wedge-shaped objects have been further investigated in various contexts (Chashechkin
& Mitkin 2004; Zagumennyi & Dimitrieva 2016; Chashechkin 2018; Dimitrieva 2019;
Levitsky, Dimitrieva & Chashechkin 2019). Fourth, diffusion-driven flow is one of the
mechanisms that induce particle attraction and self-assembly in stratified fluids (Camassa
et al. 2019; Thomas & Camassa 2023). Fifth, it has been demonstrated that this type of
flow can be employed to measure the molecular diffusivity of stratified scalars (Allshouse
2010). Sixth, flows induced by the presence of insulating sloping boundaries play an
important role in the layer formation in double-diffusive systems (Linden & Weber
1977).

Despite the significant findings in this field, there are two points that have not been
adequately addressed in the existing literature. First, most existing theories primarily
pertain to linearly stratified fluids, and there is a scarcity of theoretical investigations
into diffusion-driven flow in nonlinearly stratified fluids. Nonlinearly stratified fluids are
more prevalent in various natural environments, making theoretical analysis in this context
highly applicable. Second, there can exist two different type of scalars in the fluid: the
stratified scalar and the passive scalar. The stratified scalar causes non-uniform density
distributions in the fluid and drives diffusion-driven flow. In contrast, the passive scalar
represents the concentration of a different solute (in some cases, the temperature field)
that does not contribute to density variation but is instead passively advected by the
fluid flow. It is well-established that fluid flow enhances solute mixing in the fluid (Lin,
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Diffusion-driven flows in a nonlinear stratified fluid layer

Thiffeault & Doering 2011; Thiffeault 2012; Aref et al. 2017). Many studies focus on
how diffusion-driven flow enhances the dispersion of a passive scalar (Woods & Linz
1992; Ding & McLaughlin 2023) and the corresponding analysis for the stratified scalar
is rare. Experiments, such as the one documented in Ding (2022), illustrate that the
dispersion of the stratified scalar in a tilting capillary pipe exhibits a higher dispersion
rate compared with a vertically oriented pipe. This qualitative demonstration highlights
the role of diffusion-driven enhancement at microscales. At diffusion time scales, the
concentration of a diffusing passive scalar under the advection of shear flows can be
described by an effective diffusion equation with an effective diffusion coefficient (Taylor
1953; Aris 1956). Consequently, it is of interest to establish the evolution equation for the
concentration of the stratified scalar. This would enable us to quantitatively describe how
diffusion-driven flow enhances the spreading rate of the stratified scalar.

To address these research gaps, this paper delves into the study of an incompressible
viscous density stratified fluid layer confined between two infinite parallel walls.
Investigating this fundamental domain geometry can enhance our comprehension of more
intricate shapes found in real-world scenarios, such as rock fissures and capillary pipes.
Furthermore, it provides a versatile framework for comprehending fluid dynamics within
confined spaces, which holds substantial practical significance.

Our primary objectives are to derive approximations for the velocity field and density
field and to determine the equation governing the dynamics of the fluid density field
at diffusion time scales. One conventional approach, such as thin film approximation,
involves introducing a small parameter and utilizing power series expansions for all
relevant quantities with respect to this parameter. However, we demonstrate that results
obtained through thin film approximation are only valid within specific parameter ranges
and do not provide uniformly accurate approximations across all parameters. To obtain an
approximation that accurately describes density dynamics across a wider parameter range,
we adopt an alternative expansion method inspired by centre manifold theory (Mercer &
Roberts 1990; Roberts 1996; Ding & McLaughlin 2022a). In this alternative approach,
we assume that the density field varies slowly in the longitudinal direction of the channel.
Then all quantities are represented in terms of derivatives of the averaged stratified scalar.
This innovative approach enhances our ability to achieve accuracy in a broader range of
flow scenarios.

This paper is organized as follows. In § 2, we formulate the governing equations for
diffusion-driven flow and outline the procedure for non-dimensionalization. Section 3
introduces an asymptotic expansion technique for the velocity, density and pressure fields.
Using this approach, we derive the leading-order approximation for the velocity field
and establish the evolution equation for the cross-sectional averaged stratified scalar,
referred to as the effective equation in subsequent sections. In § 3.3, we conduct numerical
simulations of the full governing equations to demonstrate the validity of the asymptotic
approximations. Section 4 delves deeper into the properties of the effective equation,
providing a more comprehensive understanding of its behaviour in various scenarios.
Section 5 documents the results obtained using the thin film approximation and compares
them with the expansion proposed in § 3. Finally, in § 6, we summarize our findings and
explore potential avenues for future research.

2. Governing equation and non-dimensionalization

This section summarizes the mathematical formulation of the problem and documents the
non-dimensionalization procedure for the governing equation.
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Figure 1. This schematic illustrates the set-up for the diffusion-driven flow problem. Tilted impermeable
boundaries induce the diffusion-driven flow, while there is no flow in the vertically oriented channel (θ = π/2).
Pure molecular diffusion governs the scalar distribution in the latter case. As depicted in (a), at t = 0, the
concentration profiles are approximately the same in both channels. However, as time progresses, the dispersion
of the scalar becomes more pronounced in the tilted channel compared with the vertically oriented one. In
addition, the flow strength decreases as the density gradient decreases.

2.1. Governing equation
Figure 1 sketches two coordinate systems for a tilted parallel-plate channel domain with
an inclination angle θ relative to the horizontal plane, which satisfies 0 ≤ θ ≤ π/2. In this
set-up, the x3-direction is parallel to the direction of gravity. Here Ω = {y3|y3 ∈ [0, H]} is
the cross-section of the channel, where H is the distance between plates. The longitudinal
direction of the channel is denoted as the y1-direction, with y1 ∈ [−L, L], where L may be
either infinite or a finite number that is significantly larger than H. The relation between
the laboratory frame coordinates (x1, x2, x3) and the coordinates ( y1, y2, y3) is[

y1
y3

]
=
[

cos θ sin θ

− sin θ cos θ

] [
x1
x3

]
, y2 = x2. (2.1)

In the ( y1, y2, y3) coordinate system, gravity acts along the direction (− sin θ, 0, − cos θ).
Experimental methods described in Allshouse (2010) and Heitz et al. (2005) provide
feasible set-ups for this study. Another promising experimental configuration involves
using temperature-stratified liquid gallium (Braunsfurth et al. 1997).

We consider a scalar c responsible for fluid density stratification, referred to as the
stratified scalar in the subsequent context, such as temperature or solute concentration.
The density is assumed to be a specified function of the stratified scalar. For example,
Abaid et al. (2004) obtained the formula for the density of a sodium chloride solution
as ρ = 0.9971 + 0.00065S + 0.000322(25 − T) g cm−3, where salinity S is measured
in parts per thousand and temperature T is in degrees Celsius. In cases with a
broader range of salinity, the relationship may exhibit nonlinearity. Hall (1924), through
empirical data fitting, established ρ = 0.997071 + 0.00070109S + 1.3268 × 10−7S2 +
3.535 × 10−10S3 g cm−3 for sodium chloride solutions at 25 ◦C. The theoretical method
presented in this work can be easily extended to cases with variable fluid viscosity.
However, for simplicity, we assume the fluid dynamic viscosity is constant throughout
the paper.

The stratified scalar c and the fluid flow u = (u1, u2, u3) in the x = (x1, x2, x3) direction
satisfy the incompressible Navier–Stokes equation,

ρ(c)(∂tui + u · ∇ui) = μ�ui − ∂xip − ρ(c)gδi3, ui|x∈∂Ω = 0, i = 1, 2, 3,

∇ · u = 0, ∂tc + u · ∇c = κ�c, ∂nc|x∈∂Ω = 0, c|t=0 = cI(x),

}
(2.2)
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Diffusion-driven flows in a nonlinear stratified fluid layer

where n is the outward normal vector of the boundary, δij is the Kronecker delta, g (cm s−2)
is the acceleration of gravity, ρ (g cm−3) is the density, μ (g cm−1 s−1) is the dynamic
viscosity, p (g cm−1 s−2) is the pressure and κ (cm2 s−1) is the molecular diffusivity of
the stratified scalar.

It is convenient to consider the problem in the ( y1, y2, y3) coordinate system. We denote
vi as the velocity component along the yi-direction. Since the initial condition and the
boundary condition are independent of y2, (2.2) reduces to a two-dimensional problem

ρ(∂tv1 + v1∂y1v1 + v3∂y3v1) = μ�v1 − ∂y1p − sin θgρ,

ρ(∂tv3 + v1∂y1v3 + v3∂y3v3) = μ�v3 − ∂y3p − cos θgρ,

∂tc + v · ∇c = κ�c, ∇ · v = 0, v|y∈∂Ω = 0, ∂nc|y∈∂Ω = 0.

⎫⎬
⎭ (2.3)

In this study, we assume the initial density profile is a stable density stratification, where
the density decreases monotonically as the height increases, namely, ∂y1ρ(c̄I) ≤ 0. For
convenience, we use the overline to represent the cross-sectional average of a quantity and
use the tilde to represent the fluctuation, for example, cI( y1) = ∫ 1

0 cI( y1, y3) dy3.

2.2. Non-dimensionalization
As the flow is driven by molecular diffusion, we select the diffusion time scale as the
characteristic time, H2/κ . Specifically, it refers to the time it takes for solute molecules
to diffuse across the cross-sectional area of the channel domain. Utilizing the following
change of variables for non-dimensionalization:

ρ0ρ
′ = ρ, c0c′ = c,

H2

κ
t′ = t, Hy′ = y, Uv′ = v,

μU
H

p′ = p, (2.4)

then (2.3) becomes

ρ′
(

Uκ

H2 ∂t′v
′
1 + U2

H
v′

1∂y′
1
v′

1 + U2

H
v′

3∂y′
3
v′

1

)
= μU

H2ρ0
Δy′v′

1 − μU
H2ρ0

∂y′
1
p′ − sin θgρ′,

ρ′
(

Uκ

H2 ∂t′v
′
3 + U2

H
v′

1∂y′
1
v′

3 + U2

H
v′

3∂y′
3
v′

3

)
= μU

H2ρ0
Δy′v′

3 − μU
H2ρ0

∂y′
3
p′ − cos θgρ′,

c0κ

H2 ∂t′c′ + Uc0

H
v′ · ∇y′c′ = κc0

H2 Δy′c′,
c0

H
∂n′c′|y′∈∂Ω ′ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

We can drop the primes without confusion and obtain the non-dimensionalized version

ρ

(
1
Sc

∂tv1 + Rev1∂y1v1 + Rev3∂y3v1

)
= �v1 − ∂y1p − Re Riρ sin θ,

ρ

(
1
Sc

∂tv3 + Rev1∂y1v3 + Rev3∂y3v3

)
= �v3 − ∂y3p − Re Riρ cos θ,

∂tc + Pev · ∇c = �c,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6)

where the non-dimensional parameters are Péclet number Pe = UH/κ , Reynolds number
Re = ρ0HU/μ, Richardson number Ri = gH/U2 and Schmidt number Sc = μ/ρ0κ =
Pe/Re. If the scalar field is the temperature field, then κ is the thermal diffusivity and
Pr = μ/ρ0κ = Pe/Re is the Prandtl number.

We proceed by examining a combination of experimental physical parameters, which
can provide us with the order of magnitude of the non-dimensional parameters and assist
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L. Ding

in our perturbation analysis. The previous experiments primarily focused on diffusion
in linearly stratified fluids. It is feasible to adapt these set-ups for experiments involving
nonlinearly stratified fluids, making the parameters therein useful as reference points. For
instance, in Camassa et al. (2019), a linear density stratification of the fluid was achieved
using sodium chloride. The relevant physical parameters in this context are as follows: g =
980 cm s−2, μ0 = 0.008903 g (cm s)−1, κ = 1.5 × 10−5 cm2 s−1 (Vitagliano & Lyons
1956), ρ0 = 0.9971 g cm−3, the vertical density gradient ∂x3ρ is a constant 0.007 g cm−4.
The scaling relation for the characteristic velocity and the physical parameters varies
depending on the boundary geometries. For a linear stratified fluid, the characteristic
velocity and characteristic boundary layer thickness of steady diffusion-driven flow in a
parallel-plate channel can be calculated using the formula from (Phillips 1970; Heitz et al.
2005) as follows:

U = 2κ cot(θ)

(
g sin(θ)∂x3ρ

4κμ

)1/4

, Hb =
(

g sin(θ)∂x3ρ

4κμ

)−1/4

. (2.7a,b)

Using these formulae, we obtain the values U = 0.00164684 cm s−1, Hb = 0.0182167 cm
for θ = π/4. When the gap thickness between two walls is H = 0.1 cm, this leads to the
following non-dimensional parameters:

Re = 0.0184512, Pe = 10.9799, Sc = 595.076, Re Ri = 666613. (2.8a–d)
It is evident that the Reynolds number is small, indicating that viscous effects dominate
the flow, and the gravity term is significant in the governing equation.

Last, with the above parameters and c0 = 1 mol kg−1, the relation between ρ and c can
be expressed as

ρ(c) = 1 + 0.0410921c + 0.000454464c2 + 0.000070761c3. (2.9)

3. Asymptotic analysis and numerical simulation

In this section, our goal is to derive approximations for the velocity and density fields and
validate them through numerical simulations.

The hydrostatic body force terms in the governing equation contribute only to the
hydrostatic pressure field. Since they do not influence the velocity and stratified scalar
field, we can absorb them into a modified pressure. For convenience, we define p = p0 + p̃,
where

p0 = −Re Ri
(

sin θ

∫ y1

0
ρ(c̄( y1)) dy1 + cos θ

(
y3 − 1

2

)
ρ(c̄)

)
,

∂y1p0 = −Re Ri
(

sin θρ(c̄) + cos θ

(
y3 − 1

2

)
∂y1ρ(c̄)

)
, ∂y3p0 = −Re Ri cos θρ(c̄).

⎫⎪⎪⎬
⎪⎪⎭

(3.1)
Then the governing equation (2.6) becomes

ρ

(
1
Sc

∂tv1 + Rev1∂y1v1 + Rev3∂y3v1

)

= �v1 − ∂y1 p̃ − Re Ri
(

sin θ(ρ − ρ(c̄)) − cos θ

(
y3 − 1

2

)
∂y1ρ(c̄)

)
,

ρ

(
1
Sc

∂tv3 + Rev1∂y1v3 + Rev3∂y3v3

)
= �v3 − ∂y3 p̃ − Re Ri cos θ(ρ − ρ(c̄)),

∂tc + Pe(v1∂y1c + v3∂y3c) = �c, ∂y1v1 + ∂y3v3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.2)
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Diffusion-driven flows in a nonlinear stratified fluid layer

3.1. Expansions for slow varying density profile
To address the scenario where the longitudinal length scale of the channel domain
significantly exceeds the transverse length scale, our objective is to develop a simplified
model that relies solely on the longitudinal variable of the channel domain. To achieve
this, we adopt the following ansatz for the velocity and density:

v1( y1, y3, t) = v1,0( y3, t, c̄) + v1,1( y3, t, ∂y1 c̄)∂y1 c̄ + v1,2( y3, t, ∂y1 c̄, ∂2
y1

c̄)∂2
y1

c̄ + · · · ,

v3( y1, y3, t) = v3,0( y3, t, c̄) + v3,1( y3, t, ∂y1 c̄)∂y1 c̄ + v3,2(y3, t, ∂y1 c̄, ∂2
y1

c̄)∂2
y1

c̄ + · · · ,

c( y1, y3, t) = c̄( y1, t) + c1( y3, t, ∂y1 c̄)∂y1 c̄ + c2(y3, t, ∂y1 c̄, ∂2
y1

c̄)∂2
y1

c̄ + · · · ,

p( y1, y3, t) = p0( y1, y3, t) + p1( y3, t, ∂y1 c̄)∂y1 c̄ + p2(y3, t, ∂y1 c̄, ∂2
y1

c̄)∂2
y1

c̄ + · · · .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)

In this expansion, vi,1, c1, p1 are functions of ∂y1 c̄. Here vj,2, c2, p2 are functions of ∂y1 c̄
and ∂2

y1
c̄. The jth term in the expansion is contingent on the derivative of c̄ up to the

jth order. By definition, ∂y1 c̄ is independent of y3 and is solely a function of y1 and t. For
the specific problem we investigate here, both vi,j and ci are functions of y3 and t, while
their dependence on y1 is captured through ∂y1 c̄. In more general cases, such as the domain
with non-flat boundary, vi,j and ci may depend on y1.

In our analysis, we consider the derivative of the averaged stratified scalar, ∂n
y1

c̄, as a
small parameter within the framework of standard asymptotic calculations. Additionally,
we assume that higher-order derivatives exhibit smaller magnitudes compared with
lower-order derivatives. This assumption is reasonable for systems where diffusion
dominates.

To provide an intuitive justification, we assume that flow effects are negligible, and
diffusion is the dominant process in the system. Under these conditions, the scalar field
exhibits a self-similarity solution represented as c̄ = 1

2 erfc(y1/2
√

t), where erfc(z) =
(2/

√
π)
∫∞

z e−t2 dt. The derivatives of this solution are as follows:

∂y1 c̄ = − e−y2
1/4t

2
√

π
√

t
, ∂2

y1
c̄ = −y1 e−y2

1/4t

4
√

πt3/2 ,

∂n
y1

c̄ = − 1√
π

(
− 1

2
√

t

)n

Hn−1

(
y1

2
√

t

)
e−(y1/2

√
t)2

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

where Hn is the Hermite polynomial of degree n. In general, as t approaches infinity, we
have ∂n

y1
c̄ = O(t−n+1/2). Consequently, as t → ∞, we observe the hierarchy c̄ 	 ∂y1 c̄ 	

∂2
y1

c̄ 	 · · · . Due to the orthogonality of the Hermite polynomial, ∂n
y1

c̄ forms a good basis
for approximating the function. In addition, it is important to note that in the presence
of a diffusion-driven flow, as we will demonstrate in the following sections, the scaling
relationship can differ. For instance, in some parameter limit, the self-similarity variable in
the solution can be y1t−1/4 for finite t. However, in this case, the derivatives of the averaged
density still tend to be zero, and the higher-order derivatives become much smaller than
the lower-order derivatives as t → ∞.

The similar form of expansion (3.3) has found applications in various fields, including
the modelling of chromatograph and reactors (Balakotaiah, Chang & Smith 1995), thin
film fluid flows (Van Dyke 1987; Roberts 1996; Roberts & Li 2006) and shear dispersion
of passive scalars (Gill 1967; Mercer & Roberts 1990; Young & Jones 1991; Ding &
McLaughlin 2022a). A more rigorous foundation for this expansion can be established
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L. Ding

through centre manifold theory (Carr 1979; Roberts 1988, 2014, 2015; Aulbach & Wanner
1996, 1999). For in-depth discussions on constructing centre manifolds, we refer interested
readers to the cited literature, and we will not delve into the details here.

Another possible asymptotic expansion approach is a power series expansion involving
a small parameter, denoted as ε, such as c = ∑∞

i=0 ciε
i. This approach is commonly used

in multiscale analysis (Kondic 2003; Pavliotis & Stuart 2008; Wu & Chen 2014; Ding
2023). In this context, we highlight two advantages of the ansatz provided by (3.3) over
the classical power series expansion for the specific problem addressed in this study.

First, in the classical ansatz, the coefficients remain independent of the small parameter
ε. The quantity is expanded as a linear combination of ε powers. In contrast, in (3.3),
the coefficients depend on small quantities, namely, the derivatives of the averaged scalar
field. This nonlinear dependency enables us to achieve a more accurate approximation
using fewer terms.

Second, when applying the standard multiscale analysis method to this problem, the
results depend on the scaling relation between parameters. In the thin film limit, as we
will discuss in § 5, the scalar field can be approximated as c = c0( y1, t) + εc2( y1, y3, t),
where c0 is the solution to a diffusion equation with a diffusivity of unity. In this scaling
relation, the diffusion process is dominant, and the diffusion-driven flow does not have a
first-order contribution. For cases where the diffusion-driven flow significantly enhances
the dispersion of the stratified agent, an asymptotic analysis using a different scaling
relation for physical parameters become necessary. In some cases, selecting the most
appropriate characteristic parameter can be challenging. Additionally, since certain scales
in the problem are time-dependent, the choice of scale may lead to time-dependent small
parameters, which can complicate the development of a model that is uniformly valid
across a wide range of parameter regimes.

In § 5, we will provide detailed explanations of the thin film approximation and discuss
the differences between these two approaches.

3.2. Leading-order term in asymptotic expansion
The expansion (3.3) suggests that the deviation of the stratified scalar from its
cross-sectional average is small. Consequently, this motivates us to examine the evolution
equation for the cross-sectional averaged stratified scalar c̄. Taking the cross-sectional
average on both sides of the advection–diffusion equation (3.2) and utilizing the
incompressibility condition and non-flux boundary condition yields

∂tc̄ + Pe∂y1v1c = ∂2
y1

c̄. (3.5)

Therefore, to obtain the leading-order approximation for the cross-sectional averaged
stratified scalar, we need to compute v1,0, v1,1 and c1 in the expansion (3.3).

There are some observations that can simplify the calculation of asymptotic expansion.
Since the flow is induced via the density gradient, the fluid flow vanishes as ∂y1 c̄ vanishes.
Therefore, v1,0 = v3,0 = 0. Substituting the expansion (3.3) into the continuity equation
and noticing that ∂y1(v1,1∂y1 c̄) = O(∂2

y1
c̄), we obtain

∂y1v1,0 + ∂y3v3,1 = 0. (3.6)

Then to satisfy the no-slip boundary condition, v3,1 must be zero.
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Diffusion-driven flows in a nonlinear stratified fluid layer

Collecting the terms that are comparable to ∂y1 c̄ yields the following equation:

1
Sc

ρ(c̄)∂tv1,1 = ∂2
y3

v1,1 − Re Ri∂cρ(c̄)
(

c1 sin θ − cos θ

(
y3 − 1

2

))
,

∂tc1 + Pev1,1∂y1 c̄ = ∂2
y3

c1, ∂y3c1|y3=0,1 = 0, v1,1|y3=0,1 = 0.

⎫⎬
⎭ (3.7)

Previous studies (Kistovich & Chashechkin 1993; Ding & McLaughlin 2023) have
uncovered fascinating dynamics in the time-dependent solution, particularly during short
time scales when the initial velocity field is zero. However, these transient dynamics
decay exponentially, and the solution converges to a steady-state either at the diffusion
time scale or the viscosity time scale, depending on which of the two is larger. In many
cases, the diffusion time scale significantly exceeds or is comparable to the viscosity
time scale. For instance, in solute–liquid systems, the diffusivity of the solute molecule
typically falls within the range of 10−5 cm2 s−1, while the kinematic viscosity of the
liquid is around 10−2 cm2 s−1, resulting in a Schmidt number (Sc) of 103. In the case of
temperature-stratified systems, the thermal diffusivity typically registers at approximately
10−3 cm2 s−1, with Pr = 10. In both cases, the diffusion time scale is much larger than
the viscosity time scale. Therefore, given our specific interest in approximations at the
diffusion time scale and to streamline our analysis without compromising accuracy, our
primary focus will be on the steady-state solution of the aforementioned equation. By
neglecting the time derivatives in (3.7), we arrive at the following non-homogeneous linear
system for analysis:

0 = ∂2
y3

v1,1 − Re Ri∂cρ(c̄)(sin θc1 − cos θ( y3 − 1
2)), v1,1|y3=0,1 = 0,

Pev1,1∂y1 c̄ = ∂2
y3

c1, ∂y3c1|y3=0,1 = 0.

}
(3.8)

Differencing the above equation twice with respect to y3 yields

0 = ∂4
y3

v1,1 − Re Ri sin θ∂cρ∂2
y3

c1, Pe∂y1 c̄∂2
y3

v1,1 = ∂4
y3

c1,

∂3
y3

v1,1|y3=0,1 = −Re Ri∂cρ(c̄) cos θ.

}
(3.9)

Then we can decouple the scalar field and velocity as

0 = ∂4
y3

v1,1 − Re Pe Ri sin θ∂y1ρ(c̄)v1,1, v1,1|y3=0,1 = 0,

∂3
y3

v1,1|y3=0,1 = −Re Ri∂cρ(c̄) cos θ,

∂4
y3

c1 = Re Pe Ri∂y1ρ(c̄)(sin θc1 − cos θ( y3 − 1
2)),

∂y3c1|y3=0,1 = 0, ∂2
y2

c1|y3=0,1 = 0,

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

where we have used ∂y1ρ(c̄) = ∂cρ(c̄)∂y1 c̄ to simplify the equation. We can solve the
equation and express v1,1, c1 in terms of ∂y1 c̄ as follows:

v1,1 = 2γ cot(θ)

Pe∂y1 c̄
sin(γ y3) sinh(γ (1 − y3)) − sin(γ (1 − y3)) sinh(γ y3)

sin(γ ) + sinh(γ )
,

c1 = cot θ
(

y3 − 1
2

− cos(γ (1 − y3)) cosh(γ y3) − cos(γ y3) cosh(γ (1 − y3))

γ (sin(γ ) + sinh(γ ))

)
,

⎫⎪⎪⎬
⎪⎪⎭

(3.11)

where γ = (1/
√

2)(−Re Pe Ri sin θ∂y1ρ(c̄))1/4. Recall our assumption of the stable
density stratification, ∂y1ρ(c̄) ≤ 0, which implies that γ is a real non-negative number. In
the case of linear density stratification, the equation above aligns with the steady solution
previously presented in Phillips (1970) and Heitz et al. (2005).
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Figure 2. (a) Normalized leading-order approximation of the longitudinal velocity v1,1∂y1ρ(c̄)/γ for various
parameter γ . (b) Here c1 for different γ .

As depicted in figure 2, both the normalized velocity v1γ
−1 ≈ v1,1∂y1 c̄γ −1 and c1 are

tightly confined within a narrow region near the boundary, especially when γ is large.
The velocity is positive near y3 = 0 indicating a upwelling flow near the upward facing
boundary. Notably, the normalized velocity exhibits nearly uniform magnitude across
different values of γ . Thus, γ −1 serves as an effective indicator of the boundary layer’s
thickness, and γ can be considered the characteristic velocity of the system. Moreover,
the functions illustrated in figure 2 display an inherent odd symmetry about y3 = 1

2 . This
symmetry suggests that the leading-order approximations for both the velocity and density
fields also possess odd symmetry with respect to y3 = 1

2 . As a result, their cross-sectional
averages inherently amount to zero.

As ∂y1 c̄ → 0, we have

v1,1 = −Re Riy3( y3 − 1)(2y3 − 1) cos(θ)∂cρ

12

− Pe Re2Ri2y3(2( y3(2y3 − 7) + 7)y4
3 − 7y3 + 3) sin(2θ)∂y1ρ∂cρ

40 320
+ O((∂y1 c̄)2),

(3.12)

and

c1 = Pe Re Ri(1 − 2y3
3(3y3(2y3 − 5) + 10)) cos(θ)∂y1ρ

1440
+ O((∂y1 c̄)2). (3.13)

Therefore v1,1 ∼ O(1), but c1 ∼ O(∂y1 c̄). The leading-order approximation of the
longitudinal velocity and the density field are given by v1 ∼ v1,1∂y1 c̄ = O(∂y1 c̄) and
c ∼ c1∂y1 c̄ = O((∂y1 c̄)2), which confirms the ansatz of the asymptotic expansion (3.3).

Substituting the expansion of the velocity field and scalar field to (3.5) and noticing that
v̄1,1 = 0, the leading-order approximation reads

∂tc̄ + Pe∂y1(v1,1c1(∂y1 c̄)2) = ∂2
y1

c̄. (3.14)

Computing the average yields

v1,1c1 = − cot2(θ)

Pe∂y1 c̄

(
sin(γ ) sinh(γ )

(sin(γ ) + sinh(γ ))2 + 5(cos(γ ) − cosh(γ ))

2γ (sin(γ ) + sinh(γ ))
+ 1

)
. (3.15)
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Diffusion-driven flows in a nonlinear stratified fluid layer

The effective equation (3.14) for the averaged stratified scalar becomes

∂tc̄ = ∂y1(κeff ∂y1 c̄),

κeff = 1 + cot2(θ)

(
sin(γ ) sinh(γ )

(sin(γ ) + sinh(γ ))2 + 5(cos(γ ) − cosh(γ ))

2γ (sin(γ ) + sinh(γ ))
+ 1

)
.

⎫⎬
⎭ (3.16)

This equation can be considered as an generalization of the diffusion equation with the
constant diffusion coefficient replaced by a positive-definite function that depends on the
derivative of the solution. This equation belongs to the family of equations that takes the
form ∂tw = f (∂xw)∂2

x w, which occurs in the nonlinear theory of flows in porous media
and also governs the motion of a nonlinear viscoplastic medium (see p. 342 in Polyanin &
Zaitsev (2012)).

To complete the leading-order approximation for the whole system, we next consider
the approximation for the transverse velocity and pressure. Once the leading-order
approximation the longitudinal velocity is known, we can calculate the transverse velocity
via the continuity equation. Substituting the expansion (3.3) into the continuity equation
and collecting the terms that are comparable to ∂2

y1
c̄ yields

∂y1(v1,1∂y1 c̄) + ∂y3v3,2∂
2
y1

c̄ = 0. (3.17)

Using no-slip boundary condition and the fact that v̄1,1 = 0 yields the expression

v3,2 = −

∫ y3

0
∂y1(v1,1∂y1 c̄) dy3

∂2
y1

c̄

= cot(θ)γ

2Pe(sin(γ ) + sinh(γ ))2∂y1ρ
(sin(γ (1 − y)) sinh(γ y)( y sin(γ )

+ ( y − 1) sinh(γ )) − sin(γ y) sinh(γ (1 − y))(( y − 1) sin(γ ) + y sinh(γ ))).

(3.18)

In the limit ∂y1 c̄ → 0, we have

v3,2 = 1
24

Re Ri( y3 − 1)2y2
3 cos(θ)

+ Pe Re2Ri2y2
3(y3 − 1)2(3y4

3 − 6y3
3 − y2

3 + 4y3 + 9) sin(2θ)∂y1 ρ̄

120 960

+ O((∂y1 c̄)2). (3.19)

Therefore, v3 ∼ v3,2∂
2
y1

c̄ = O(∂2
y1

c̄), consistent with the assumption regarding the order of
magnitude in the expansion given by (3.3).

The p1 in the expansion of pressure provided in (3.3) satisfies

− ∂y3p1 − Re Ri cos θc1∂cρ(c̄) = 0. (3.20)
The solution is

p1 = − cot(θ) cos(θ)RiRe∂cρ

(
1
12

+ 1
2
( y − 1)y

+ sin(γ − γ y) cosh(γ y) − cos(γ − γ y) sinh(γ y) − cos(γ y) sinh(γ − γ y) + sin(γ y) cosh(γ − γ y)
2γ 2(sin(γ ) + sinh(γ ))

)
.

(3.21)
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In the limit ∂y1 c̄ → 0, we have

p1 = cos2 θPe Re2Ri2(28y6
3 − 84y5

3 + 70y4
3 − 14y3 + 3)∂y1ρ∂cρ

20 160
+ O((∂y1 c̄)2). (3.22)

So far, we have derived the leading-order approximation for the entire system.
The numerical simulations in the next section demonstrate that the leading-order
approximation has decent accuracy in many scenarios. However, in cases of highly
nonlinear scalar distribution, or where the density depends highly nonlinearly on the
stratified scalar, higher-order terms are required to achieve desirable accuracy. Similar
cases can be found in the previous literature. For example, Grayer et al. (2021) studied a
stably stratified square cavity subjected to horizontal oscillations, which despite not being
purely diffusion-driven, showed that approximations become less regular as viscosity
decreases and how higher-order terms are needed.

3.3. Numerical simulation
In this subsection, we perform simulations of the full governing equation (2.6) to
demonstrate both the accuracy and validity of our asymptotic approximation and the
effective equation (3.16). The details of the numerical methods are documented in the
Appendix. The computational domain is defined as {( y1, y3)|y1 ∈ [−5, 5], y3 ∈ [0, 1]}.
The no-slip boundary condition is imposed for the velocity field, the no-flux boundary
condition is imposed for the stratified scalar. The density and stratified scalar relation (2.9)
is used for all test cases in this section.

In the first numerical simulation, the initial condition is

cI = 1
2

erfc( y1) − e−x2

√
π

cos θ

(
y3 − 1

2

)
, v1 = v3 = 0, (3.23a,b)

and the dimensionless parameters are

Re = 1, Ri Re = 12 500, Pe = 40, Sc = 1, θ = π

4
. (3.24a–e)

The stratified scalar and velocity at t = 0.04 are depicted in figures 3(a i) and 3(b i),
respectively. Since density gradient is large around y1 = 0, the flow is also localized in
that regime. Figures 3(a iii) and 3(b iii) display the density field and velocity field obtained
by the simulation at t = 2. As time increases, the density field becomes smoother and a
large fluid circulation is formed in this whole domain.

To proceed, we simulate the effective equation (3.16) with the same parameters
(3.24a–e) for the comparison with the simulation of the governing equation (2.6).
Figure 4(a) offers a comprehensive comparison. Here, we superimpose the solution of
the effective equation with the cross-sectional averaged stratified scalar obtained through
simulation of the complete governing equation (2.6) at the time instance t = 2. The
remarkable alignment between these curves serves to underscore the accuracy of the
effective equation as an adept approximation for the full system. Additionally, we include
the solution corresponding to the pure diffusion equation (representing the case in the
absence of fluid flow) within the same visual representation. Notably, the contrast between
the pure diffusion solution and the effective equation’s solution demonstrates a visible
enhancement of fluid mixing through diffusion-driven flow.

Shifting our attention to figure 4(b), we delve into the temporal dynamics of the relative
difference between the effective equation’s solution and the full system’s solution. At the
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Figure 3. In (a), we display the density field at three time instances: t = 0.04 (i), t = 0.1 (ii) and t = 2 (iii).
Panel (b) shows a pseudocolour plot illustrating the magnitude of the velocity field at the same time points. The
initial condition and dimensionless parameter are provided in (3.23a,b) and (3.24a–e), respectively.
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Figure 4. In (a), we present the solution of the effective equation (3.16) (represented by the red solid curve), the
cross-sectional averaged stratified scalar derived from simulating the complete governing equation (illustrated
by the blue dashed curve) and the solution to the diffusion equation (depicted by the black dotted curve) at the
time instant t = 2 with parameters in (3.24a–e). In (b), we showcase the temporal evolution of the relative
difference between the solution of the effective equation and the cross-sectional averaged stratified scalar
obtained through the full simulation. This relative difference is defined as the maximum deviation between
the functions across the domain divided by the maximum value of the averaged stratified scalar obtained from
the full simulation.

inception (t = 0), this disparity is nil, attributed to identical initial conditions. During the
initial stages, the relative difference magnifies as the system has yet to transition into the
regime well-captured by the effective equation. Nevertheless, even during this phase, the
maximum relative difference remains at approximately 0.0056. As the system approaches
an asymptotic state, which occurs after the diffusion time scale (t = 1), the relative
difference diminishes, stabilizing at around 0.001 until the simulation’s culmination.
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Figure 5. Comparison of the simulations with the initial condition in (3.23a,b), dimensionless parameter in
(3.24a–e) and different Sc = 1, 10, 100: (a) difference in c̄; (b) difference in scalar fields; (c) difference in
velocity fields. The red curve depicts the relative difference between the solution for Sc = 1 and the solution
for Sc = 10. The blue curve depicts the relative difference between the solution for Sc = 1 and the solution for
Sc = 100.

It is worth noting that due to the assumption of the asymptotic analysis, the effective
equation is valid for small density gradient ∂y1 c̄ � 1. In this numerical test case, we have
maxy1,t ∂y1 c̄ = 1/

√
π ≈ 0.56419, indicating that the parameter regime for the effective

equation to reach a good approximation is larger than previously thought.
When deriving the effective equation in the previous section, we neglected the time

derivative in (3.7). To verify the validity of this assumption, we conducted simulations
with the same initial condition as in (3.23a,b) and parameters in (3.24a–e), but with
different values of Sc = 10, 100. Figure 5 presents the relative differences in the scalar
field, averaged scalar field, and velocity field between the solution for Sc = 10, 100 and
the solution for Sc = 1. The relative differences for all three quantities are large at the
early stage but quickly decreases as time increases. At the diffusion time scale, the relative
difference in scalar field is around 10−4 and the relative difference in velocity field is
around 10−2, which approach the maximum accuracy achievable with the numerical
scheme and resolution used in the simulation. This observation suggest that the value of
Sc does not have a significant impact on the scalar field and velocity field at the diffusion
time scale, justifying the neglect of the time derivative in (3.7) for Sc ≥ 1.

To demonstrate the validity of the effective equation across a wide range of parameters,
we conducted a simulation with the same initial condition (3.23a,b) and a different set of
non-dimensional parameters,

Re = 0.1, Ri Re = 100 000, Pe = 100, Sc = 1, θ = π

4
. (3.25a–e)

The velocity field results are presented in figure 6(a) and figure 6(b i). Comparing
figure 3 with figure 6, we make three observations: first, as Ri increases, the velocity
field exhibits more intricate structures during the initial stages. A distinctive ‘S’ shape
curve forms in the pseudocolour plot of the velocity field around t = 0.08 and persists
in subsequent time instants. Second, the flow is more confined near the boundary, which
is consistent with the observation we made from figure 2. Third, at t = 1, figure 3(b)
illustrates that the velocity field is antisymmetric with respect to y3 = 1

2 . However, in
figure 6(b), at t = 1, the velocity field is not antisymmetric with respect to y3 = 1

2 near
the two ends of the domain y1 = ±5.
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Figure 6. In (a), a pseudocolour plot illustrates the magnitude of the velocity field with parameters in (3.25a–e)
at three time instances: t = 0.03 (i), t = 0.04 (ii) and t = 0.08 (iii). In (b), the subpanel (i) displays the velocity
field at t = 1; (ii) showcases the velocity field approximation at t = 1, calculated using (3.11) and (3.19); (iii)
depicts the relative approximation error of the speed.

Figure 6(b ii,iii) depict the approximation of the velocity field and the corresponding
relative error at t = 1. While the error remains relatively small within the interior
of the domain, it increases notably near the corners and becomes significantly large
in the narrow regions adjacent to the left- and right-hand boundaries, with the layer
thickness approximately 0.05. This discrepancy stems from two main reasons. First, the
leading-order approximation of velocity exhibits antisymmetry across the entire domain,
whereas the actual velocity field does not possess this property. Second, the asymptotic
approximation outlined in the previous section holds true for an infinite domain. However,
in a confined domain, the no-slip boundary condition for the velocity field at the end
of the domain (y3 = ±5) is required but was not enforced during the derivation of the
asymptotic approximation. While the no-flux boundary condition for the stratified scalar
ensures a longitudinal velocity component of zero, the transverse velocity could deviate
from zero where it should be, resulting in a significant error near the boundary. Achieving
a more uniform approximation over the domain necessitates incorporating boundary layer
corrections near the boundary into the velocity approximation.

One might assume that the substantial error in velocity approximation near the left-
and right-hand ends of the domain could significantly compromise the accuracy of other
approximations. However, as depicted in figure 7(a), the solution of the effective equation
perfectly overlaps with the averaged scalar field obtained from the full simulation. This
alignment is further confirmed in figure 7(b), illustrating the temporal dynamics of the
relative difference, which remains small throughout the entire time interval. We believe
this is due to two possible reasons: first, the error in the velocity field approximation is
localized near the ends of the domain. Since the domain is long and narrow, the boundary
layer constitutes a relatively small portion of the overall domain, consequently having a
limited impact on the entire dynamic process. For a domain with comparable length scales
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Figure 7. In (a), we present the solution of the effective equation (3.16) (represented by the red solid
curve) with parameters in (3.25a–e), the cross-sectional averaged stratified scalar derived from simulating the
complete governing equation (illustrated by the blue dashed curve) and the solution to the diffusion equation
(depicted by the black dotted curve) at the time instant t = 1. Panel (b) showcases the temporal evolution of
the relative difference between the solution of the effective equation and the cross-sectional averaged stratified
scalar obtained through the full simulation.

in both directions, the error in the velocity field approximation may lead to a substantial
error in the scalar field approximation. Second, only the longitudinal component of the
velocity contributes to the scalar transport in the leading-order approximation. Therefore,
the error in the transverse component of velocity does not undermine the accuracy of the
effective equation.

Last, we consider a staircase-like profile as the initial condition, a feature commonly
encountered in certain oceanographic scenarios

cI = f ( y1) + ∂y1 f ( y1) cos θ

(
y3 − 1

2

)
, f ( y1) = erfc( y1 + 5

2 ) + erfc( y1 − 5
2 )

4
,

v1 = v3 = 0.

⎫⎬
⎭

(3.26)

The non-dimensional parameters are provided in (2.8a–d), and θ = π/4.
The velocity field results are depicted in figure 8. At the early phase (t = 0.01),

multiple convection cells emerge. The adjacent cells have differing orientations. These
cells swiftly amalgamate into two larger convection cells with the same anticlockwise
orientation, located where the initial profile exhibits significant gradients. As the density
distribution becomes smoother, around t = 0.2, the merging of the two convection cells
initiates. By t = 1, only a single convection cell remains. The velocity distribution closely
resembles that of simulations with differing initial conditions. Figure 8(b iii) illustrates the
disparity between the solutions of the effective equation and the cross-sectional averaged
stratified scalar obtained through the full simulation. The small relative difference again
demonstrates the validity of the effective equation.

4. Analysis of the effective equation

After confirming the accuracy of the effective equation (3.16) for the stratified scalar
through numerical simulations, this section delves deeper into its properties.
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Figure 8. A pseudocolour plot illustrates the magnitude of the velocity field with the initial condition (3.26)
and parameters in (2.8a–d) at different time instances. Subpanel (b iii) showcases the temporal evolution of
the relative difference between the solution of the effective equation and the cross-sectional averaged stratified
scalar obtained through the full simulation.

The behaviour of (3.16) is primarily governed by κeff . Its asymptotic expansions for
small and large values of γ are provided as follows:

κeff = 1 + cot2(θ)

((
1 − 5

2γ

)
+ (2γ + 5) sin(γ )+ 5 cos(γ )

γ eγ
+ O(e−2γ )

)
, γ → ∞,

κeff = 1 + cot2(θ)

(
γ 8

22680
− 2879γ 12

4086482400
+ O(γ 16)

)
, γ → 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

Figure 9 shows the graph of (κeff − 1)/cot2(θ) and its approximations as a function of γ .
By examining both the graph and the asymptotic approximations, we can conclude that for
γ ≥ 0:

1 ≤ κeff (γ ) < 1 + cot2(θ). (4.2)

For large values of γ , (3.16) becomes a diffusion equation with an enhanced diffusion
coefficient:

∂tc̄ = (1 + cot2 θ)∂2
y1

c̄. (4.3)

This resembles the scenario of a passive scalar governed by an advection–diffusion
equation with a prescribed velocity field. In the context of the channel domain and at
diffusion time scales, the advection–diffusion equation can be effectively simplified to a
diffusion equation with an enhanced effective diffusion coefficient (see Chatwin (1970),
Smith (1982), Young & Jones (1991), Ding et al. (2021) and Ding & McLaughlin (2022b)
for related work).

However, it is important to note that γ is not a constant – it depends on the density
gradient. Therefore, the diffusion equation (4.3) cannot provide a uniform approximation
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Figure 9. The red solid curve represents (κeff − 1)/cot2(θ) as a function of the non-dimensional parameter
γ = (1/

√
2)(−Re Pe Ri sin θ∂y1 ρ̄)1/4. For small values of γ , the corresponding approximation is γ 8/22 680,

which is depicted by the blue dashed curve. Conversely, for large values of γ , the corresponding approximation
is 1 − 5/2γ , illustrated by the black dotted curve.
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Figure 10. Panel (a) shows maxy1 γ as a function of time in the simulation with the parameters provided in
(3.25a–e). Panel (b) presents the solution of the effective equation (3.16) (represented by the red solid curve),
the solution of diffusion equation with diffusivity 1 + cot2(θ) (illustrated by the blue dashed curve) and the
solution to the diffusion equation with diffusivity 1 (depicted by the black dotted curve) at the time instant
t = 1. Panel (c) shows the corresponding curves at the time instant t = 5.

of the effective equation for all time instances. As time progresses, the stratified scalar
becomes more homogeneous across the domain. As the density gradient decreases, γ

decreases, and the approximation given by (4.3) becomes less accurate.
To illustrate this, we conducted simulations with the parameters provided in (3.25a–e)

as an example. Figure 10(a) shows the maximum value of γ across the domain as a
function of time. As we expect, it is a decreasing function. Figure 10(b) demonstrates
that the solution to the diffusion equation (4.3) reasonably approximates the solution to
the effective equation (3.16) initially. However, as time progresses and the density gradient
decreases, maxy1 γ also decreases. At t = 5, the difference between the solution of (4.3)
and that of (3.16) becomes more pronounced. This example also demonstrates that a single
diffusion equation is not enough to accurately describes the dynamics of the averaged
stratified scalar at all different time scale.

Equation (4.3) suggests that as the inclination angle approaches zero, the dispersion rate
may increase, possibly reaching infinity. It is crucial to emphasize that this conclusion
holds true only when other parameters are kept constant. It is worth noting that as the
inclination angle decreases, maintaining the same value of γ necessitates keeping the same
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Diffusion-driven flows in a nonlinear stratified fluid layer

density variation in the y1 direction, which in turn requires a larger density variation in
the x3 direction. Achieving such a condition in practical applications can pose significant
challenges.

Next, we consider the case with small γ . In this limit, the effective equation for the
stratified scalar (3.16) reduces to

∂tc̄ = ∂y1

((
1 +

(
Ri Pe Re cos(θ)

72
√

70
∂y1ρ(c̄)

)2
)

∂y1 c̄

)
. (4.4)

The closed form expression of the solution of this equation is not available. However, we
can obtain the solution in some limits for unbounded domain. When the nonlinear term
is much larger than the diffusion term, namely, (Ri Pe Re cos(θ)/72

√
70)∂y1ρ(c̄) 	 1, and

∂cρ is a constant, (4.4) can be approximated by

∂tc̄ = ∂y1(α
2(∂y1 c̄)3), α = Ri Pe Re cos(θ)∂cρ

72
√

70
. (4.5)

We can look for the self-similarity solution, c( y1, t) = f (ξ), where ξ = ty−1/4
1 . Equation

(4.5) becomes
f ′(ξ)(12α2f ′(ξ)f ′′(ξ) + ξ) = 0. (4.6)

The solution is

f (ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C2 + πC1α
√

3 ξ ≥ 2α
√

6C1,

C2 −

1
2
ξ
√

24α2c1 − ξ2 + 12α2c1 tan−1

(
ξ√

24α2c1 − ξ2

)

2
√

3
√

α
−2α

√
6C1 ≤ ξ ≤ 2α

√
6C1,

C2 − πc1α
√

3 ξ ≤ −2α
√

6C1,

(4.7)

where C1, C2 are the constants that can be defined by the boundary condition at infinity.
For the case c̄(∞) = 0 and c̄(−∞) = 1, we have C1 = 1/2

√
3πα, C2 = 1

2 . Notice that
the similarity variable for the pure diffusion equation is ξ = y1/

√
t. Therefore, t → ∞,

the neglected diffusion term in the above calculation becomes dominant eventually.
Last, we can represent γ in terms of the physical parameters as follows: γ =

(1/
√

2)((gH3ρ0/κμ) sin θ∂y1ρ(c̄))1/4. Therefore, smaller diffusivity, lower viscosity,
greater gravitational constant, larger gap thickness and higher density result in a larger
value of γ . We can calculate γ using the practical parameters provided in (2.8a–d).
If we set θ = π/4 and estimate the density gradient as ∂y1ρ(c̄) = sin θ∂x3ρ(c̄), we
obtain γ ≈ 8.94506 and κeff (γ ) ≈ 1.720605. With the same parameters and a smaller
inclination angle θ = π/10, we have γ ≈ 5.91333 and a larger effective diffusivity
κeff (γ ) ≈ 6.46129. In these cases, we cannot employ the approximate equations (4.3) and
(4.4). Instead, we must use the complete effective equation (3.16) to solve for the stratified
scalar.

4.1. Long time behaviour of the solution
As demonstrated in our previous examples, diffusion-driven flow enhances the mixing of
a stratified scalar at some time scales. One might expect the difference between the density
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Figure 11. (a) The blue dashed curve represents maxy1 γ and is associated with the left-hand y axis. The
red solid curve represents κeff (maxy1 γ ) − 1 and is associated with the right-hand y axis. (b) The relative
difference between the density profile with and without the fluid as a function of time. The parameters used in
the simulation are provided in (3.24a–e).

profile with and without the fluid to increase as time progresses or at least persist at long
times. However, intriguingly, this difference actually vanishes over extended periods.

To understand this, it is essential to recall an interesting observation that emerges when
considering different solutions to the same diffusion equation. Under some conditions,
these solutions converge to a self-similarity solution asymptotically at long times, as
discussed in Newman (1984). To illustrate this point, consider two solutions: f1 =
1
2 erfc(x/2

√
t) and f2 = 1

2 erfc(x/2
√

σ 2 + t), both satisfying the diffusion equation ∂tf =
∂2

x f . Although they begin with different initial conditions, the relative difference between
them diminishes as t → ∞:

f1 − f2
f1

= σ 2xt−3/2

2
√

π
+ O(t−2). (4.8)

The time scale for this convergence depends on the difference in the initial conditions and
can be multiple times the diffusion time scale.

This observation implies that even if diffusion-driven flow initially amplifies the
dispersion of the stratified agent, when the density gradient is sufficiently weak, the
governing equation for the stratified scalar approximates a diffusion equation with a
diffusivity of unity. While some disparity remains between the solution of the effective
equation and the solution of the pure diffusion equation, this difference diminishes over
longer time scales.

To confirm this conclusion, we solve the effective equation (3.16) with parameters
provided in (3.24a–e). In figure 11(a), we plot maxy1 γ and κeff (maxy1 γ ) − 1 as
functions of time, providing an estimation of the enhancement of dispersion induced by
diffusion-driven flow. We observe that the enhanced diffusivity decreases below 0.1 after
t > 20, which implies the effective equation is close to the pure diffusion equation after
that time. In figure 11(b), we display the relative difference between the density profiles
with and without flow. This difference initially increases, reaching its maximum around
t = 10, but subsequently decreases to 0.003 at t = 50.

This result demonstrates that in a confined domain with no-flux boundary condition, the
density profile in a system with the diffusion driven flow asymptotically converges to the
one without the flow at extremely large time scale.
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Diffusion-driven flows in a nonlinear stratified fluid layer

5. Comparison with the thin film approximation

As previously mentioned, we can employ the classical asymptotic expansion to analyse the
governing equation (2.6). In this section, we will utilize the thin film approximation and
subsequently compare the results with those obtained previously.

In the thin film approximation, we select distinct length scales in different directions for
the purpose of non-dimensionalization:

Ly′
1 = y1, Hy′

3 = y3, Viv
′
i = vi,

ρ0LνU
H2 p′ = p,

L2

κ
t′ = t, ρ0ρ

′ = ρ,

c0c′ = c, ε = V3

V1
= H

L
� 1, Re = V1H

ν
, Pe = V1H

κ
, Sc = μ

ρ0κ
, Ri = Hg

V2
1

.

⎫⎪⎪⎬
⎪⎪⎭ (5.1)

The non-dimensionalized governing equation becomes

ρ′
(

ε2

Sc
∂t′v

′
1 + εRe(v′

1∂y′
1
v′

1 + v′
3∂y′

3
v′

1)

)
= (ε2∂2

y′
1
v′

1 + ∂2
y′

3
v′

1) − ∂y′
1
p′ − Re Riρ′ sin θ,

ρ′
(

ε3

Sc
∂t′v

′
3 + ε2Re(v′

1∂y′
1
v′

3 + v′
3∂y′

3
v′

3)

)
= (ε3∂2

y′
1
v′

3 + ε∂2
y′

3
v′

3) − 1
ε
∂y′

3
p′ − Re Riρ′ cos θ,

ε2∂t′c′ + εPev′
1∂y′

1
c′ + εPev′

3∂y′
3
c′ = ε2∂2

y′
1
c′ + ∂2

y′
3
c′,

∂y′
1
v′

1 + ∂y′
3
v′

3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

Dropping primes and rearranging the equation results in

ρ

(
ε2

Sc
∂tv1 + εRe(v1∂y1v1 + v3∂y3v1)

)
= (ε2∂2

y1
v1 + ∂2

y3
v1) − ∂y1 p − Re Riρ sin θ,

ρ

(
ε4

Sc
∂tv3 + ε3Re(v1∂y1v3 + v3∂y3v3)

)
= ε2(ε2∂2

y1
v3 + ∂2

y3
v3) − ∂y3 p − εRe Riρ cos θ,

ε2∂tc + εPe(v1∂y1 c + v3∂y3 c) = ε2∂2
y1

c + ∂2
y3

c,
∂y1v1 + ∂y3v3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(5.3)

We consider the formal power series expansions for the velocity, stratified scalar and
pressure:

vi =
∞∑

k=0

vi,kε
k, c =

∞∑
k=0

ckε
k, p =

∞∑
k=0

pkε
k, ρ(c) =

∞∑
k=0

ρkε
k. (5.4a–d)

We have vi,k|y∈∂Ω = 0 from the no-slip boundary condition of the velocity field, and
∂nck|y∈∂Ω = 0 from the no-flux boundary condition of the stratified scalar. The coefficient
in the expansion of ρ can be calculated from ck and the Taylor expansion of ρ(c).

Substituting the expansion into the governing equation and collecting O(1) terms yield
the following equation:

0 = ∂2
y3

v1,0 − ∂y1p0 − Re Riρ0 sin θ, 0 = ∂y3p0, 0 = ∂2
y3

c0, ∂y1v1,0 + ∂y3v3,0 = 0.

(5.5)
There are two possible group of solutions,

v1,0 = v3,0 = 0, p0 = Re Ri sin θ

∫ y1

0
ρ0 dy1, (5.6a,b)
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and

v1,0 = Cy3( y3 − 1), v3,0 = 0, p0 = −2Cy1 + Re Ri sin θ

∫ y1

0
ρ0 dy1, (5.7a–c)

where C is a constant number and c0, ρ0 are independent of y3. The second solution
describes a flow generated by a constant pressure gradient, which does not represent
the correct physical problem. Therefore, we regard the first solution as the correct
leading-order approximation.

Collecting the terms that is comparable to O(ε) yields the following equation:

Reρ0(v1,0∂y1v1,0 + v3,0∂y3v1,0) = ∂2
y3

v1,1 − ∂y1p1 − Re Riρ1 sin θ,

0 = −∂y3p1 − Re Riρ0 cos θ, Pe(v1,0∂y1c0 + v3,0∂y3c0) = ∂2
y3

c1,

∂y1v1,1 + ∂y3v3,1 = 0.

⎫⎬
⎭ (5.8)

Using the conclusions (5.6a,b) reduces the above equation to

0 = ∂2
y3

v1,1 − ∂y1p1 − Re Riρ1 sin θ, 0 = −∂y3p1 − Re Riρ0 cos θ,

0 = ∂2
y3

c1, ∂y1v1,1 + ∂y3v3,1 = 0.

}
(5.9)

Similar to the equation for O(1) terms, the solution is not unique. To eliminate the solution
representing the pressure driven flow, we impose the condition p̄1 = 0. From the second
equation, we have

p1 = −(y3 − 1
2)Re Riρ0 cos θ. (5.10)

Since c1 is independent of y3, it follows that ρ1 = c1∂cρ(c0) is also independent of y3.
Averaging the first equation yields v̄1,1 = 0. Differentiating the first equation in (5.9) with
respect to y3 twice give us

0 = ∂4
y3

v1,1, v1,1|y=0,1 = 0, ∂3
y3

v1,1|y=0,1 = −Re Ri cos θ∂y1ρ0. (5.11a–c)

The solution is

v1,1 = −Re Ri cos θ∂y1ρ0
y3( y3 − 1)(2y3 − 1)

12
, (5.12)

which is consistent with the first term in (3.12). It is important to note that the definition
of v1,1 in (3.12) differs from the one presented here. To make a comparison, v1,1 in (3.12)
need to be multiplied with ∂y1 c̄.

From the third equation in (5.9), we conclude that c1 is independent of y3. Moreover,
after substituting the expression of v1,1 back to the first equation in (5.9), we obtain ρ1 = 0.
The continuity equation gives us the expression of v3,1, as follows:

v3,1 = −
∫ y3

0
∂y1v1,1 dy3 = Re Ri cos θ∂2

y1
ρ0

y2
3( y3 − 1)2

24
, (5.13)

which is consistent with the first term in (3.19).
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Diffusion-driven flows in a nonlinear stratified fluid layer

Collecting the terms that are comparable to O(ε2) yields the following equation:

ρ0

Sc
∂tv1,0 + Reρ0(v1,0∂y1v1,1 + v1,1∂y1v1,0 + v3,0∂y3v1,1 + v3,1∂y3v1,0)

+ Reρ1(v1,0∂y1v1,0 + v3,0∂y3v1,0) = (∂2
y1

v1,0 + ∂2
y3

v1,2) − ∂y1p2 − Re Riρ2 sin θ,

0 = ∂2
y3

v3,0 − ∂y3p2 − Re Riρ1 cos θ,

∂tc0 + Pe(v1,0∂y1c1 + v1,1∂y1c0 + v3,0∂y3c1 + v3,1∂y3c0) = ∂2
y1

c0 + ∂2
y3

c2,

∂y1v1,2 + ∂y3v3,2 = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.14)

Using the current conclusions for O(ε) terms, the above equation reduces to

0 = ∂2
y3

v1,2 − ∂y1p2 − Re Riρ2 sin θ, 0 = −∂y3p2 − Re Riρ1 cos θ,

∂tc0 + Pev1,1∂y1c0 = ∂2
y1

c0 + ∂2
y3

c2.

}
(5.15)

Notice that
∫ 1

0 v1,1 dy3 = 0 and c0 is independent of y3. Integrating on both sides of the
last equation in (5.15) with respect to y3 and using the no-flux boundary conditions yields
the evolution equation for c0: ∂tc0 = ∂2

y1
c0.

Now the last equation in (5.15) becomes Pev1,1∂y1c0 = ∂2
y3

c2 and implies

c2 = Pe Re Ri(1 − 2y3
3(10 + 3y3(2y3 − 5))) cos(θ)∂y1c0∂y1ρ0

1440
, (5.16)

which is consistent with the second term in (3.13). It is important to note that the definition
of c1 in § 3 differs from the one presented here.

The stratified scalar approximation is expressed as c = c0 + ε2c2 + O(ε3), which serves
as the solution to a pure diffusion equation augmented by a higher-order correction term.
The fact that c̄2 = 0 implies that as ε tends to zero, the diffusion-driven flow only distorts
the contour line of the stratified scalar without amplifying the dispersion of the stratified
scalar in the longitudinal direction of the channel.

So far, we have observed that the results obtained from the thin film approximation
are consistent with the results obtained in § 3 when the density gradient vanishes, i.e.
∂y1 ρ̄ → 0, or equivalently when γ → 0. Therefore, the thin film approximation presented
here may not accurately model systems where the diffusion-driven flow significantly
enhances dispersion, as is the case with the parameters provided in (3.25a–b), where the
corresponding γ = 9–15 and the flow make visible enhancement of the scalar dispersion
as shown in figure 10. For those parameter combinations, an asymptotic analysis using a
scaling relation that differs from the one presented in this section become necessary.

6. Conclusion and discussion

This paper explores the diffusion-driven flow in a tilted parallel-plate channel domain with
a nonlinear density stratification. By employing a novel asymptotic expansion provided
in (3.3), we derive leading-order approximations for the velocity field (3.11) and (3.19),
stratified scalar (3.11) and pressure field (3.21). Furthermore, we formulate an effective
equation (3.16) to describe the cross-sectional averaged stratified scalar, and its accuracy
is confirmed through numerical simulations of the governing equation (3.2).

The effective equation reveals that the dynamics of the stratified scalar depend on
the dimensionless parameter γ , defined as γ = (1/

√
2)(−Re Pe Ri sin θ∂y1ρ(c̄))1/4 =

(1/
√

2)((gL3ρ0/κμ) sin θ∂y1ρ(c̄))1/4. When γ is large, the system behaves akin to a
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diffusion equation with an enhanced diffusion coefficient of 1 + cot2 θ , where θ is the
inclination angle relative to the horizontal plane. This result reveals an upper bound
for the mixing capability of the diffusion-driven flow. Conversely, in the small γ limit,
the behaviour of the stratified scalar approximates a pure diffusion process, with the
diffusion-driven flow failing to amplify the dispersion of the stratified scalar significantly.
Additionally, we demonstrate that in a confined domain with no-flux boundary conditions,
the density profile in a system featuring diffusion-driven flow asymptotically converges to
the one without flow over long times, although this convergence occurs on a time scale
much larger than the diffusion time scale.

Moreover, we establish that the thin film approximation aligns with the results obtained
using the novel expansion when the diffusion-driven flow is weak. In such scenarios, the
stratified scalar can be modelled by a diffusion equation featuring molecular diffusivity,
and the diffusion-driven flow primarily distorts the scalar distribution without significantly
increasing longitudinal dispersion. Consequently, the thin film approximation falls short
in describing systems with relatively large density gradients, where diffusion-driven
flow markedly enhances dispersion. Importantly, we both numerically and theoretically
demonstrate that the proposed expansion effectively addresses these situations.

Future research directions encompass several avenues. First, the passive scalar transport
in the channel with non-flat boundaries has various practical applications (Chang &
Santiago 2023; Roggeveen, Stone & Kurzthaler 2023). Therefore, our aim is to develop
a reduced model of diffusion-driven flow in channels with rough boundaries, such as rock
fissures or microfluidic devices. When the amplitude and wavelength of the boundary
variation are small, the rough boundary with a no-slip boundary condition can be
approximated by a flat wall with an effective slip boundary condition obtained through
the multiscale method (Achdou, Pironneau & Valentin 1998; Carney & Engquist 2022). In
this scenario, the method presented in our work can be readily applied. Alternatively, when
the wavelength of the boundary variation is large, the asymptotic expansion presented
by Mercer & Roberts (1990) could offer a solution. Second, while this work primarily
focuses on analysing parallel plate domains, it is worth noting that the method proposed
herein is applicable to channels with arbitrary cross-sections. Concentrating on the parallel
plates domain stems from the availability of an exact solution for the auxiliary problem.
Investigating this fundamental geometry can augment our understanding of domains with
more complex shapes, such as tilted cylindrical cavities embedded in rocks (Sánchez,
Higuera & Medina 2005), or tilted square containers (Page 2011a,b; French 2017; Grayer
et al. 2020).
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Appendix. Numerical method

In this section, we document the numerical method used for solving the Navier–Stokes
equation (2.6) and the effective equation (3.16).

To solve the Navier–Stokes equation (2.6), we employ the projection algorithm. During
each iteration, we explicitly evaluate the advection term, while treating the viscosity term
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implicitly. This involves solving a Poisson equation while enforcing the no-slip boundary
condition. Subsequently, we solve the pressure Poisson equation, wherein adjustments
are made to the velocity field to ensure fulfilment of the incompressibility condition.
A comprehensive outline of the numerical scheme can be found in Hecht et al. (2005).
We employ a similar approach for the advection–diffusion equation. In each step, the
advection term is explicitly computed, whereas the diffusion term is treated implicitly,
necessitating the resolution of a Poisson equation with a no-flux boundary condition. The
time-stepping scheme used in this algorithm results in first-order accuracy in time. The
finite element method is used to discretize the system of equations, and we implement the
algorithm using the software FreeFEM++ (Hecht 2012).

The computational domain is defined as {( y1, y3) | y1 ∈ [−5, 5], y3 ∈ [0, 1]}. This
domain is discretized using a triangular mesh with nearly uniform mesh sizes across the
entire domain. In a typical simulation, the mesh consists of 17 594 vertices and 34 286
triangles. The simulation employs P1 elements, which correspond to linear functions
defined over the triangles.

To simulate the effective equation (3.16) for comparison with the simulation of the
governing equation (2.6), we employ the Fourier spectral method, as detailed in the
work by Ding & McLaughlin (2022a), which incorporates a third-order implicit–explicit
Runge–Kutta scheme proposed in Pareschi & Russo (2005). Specifically, we utilize the
explicit Runge–Kutta method for integrating the nonlinear terms, while the diffusion term
is handled using the implicit Runge–Kutta method. To ensure a meaningful comparison
between our simulations and those based on the complete governing equations, we specify
our computational domain as y1 ∈ [−5, 5]. Additionally, we enforce no-flux boundary
conditions at the endpoints of this interval to guarantee the conservation of mass. The
Fourier spectral method is particularly effective for periodic domains, but we encounter
no-flux boundary conditions in the y1-direction. To overcome this problem, we implement
an even extension, mirroring functions at x = 5, to establish periodic conditions on the
extended domain [−5, 15]. The Fourier expansion of the even-extended function yields
the cosine expansion of the original function. Each cosine function in the expansion has a
zero derivative at the endpoints (y1 = ±5), ensuring that the no-flux boundary condition
is satisfied on the original domain [−5, 5]. The original domain comprises 210 + 1 grid
points, while the extended domain encompasses 211 grid points. The typical grid size is
0.0098, and the typical time step size is 9.7561 × 10−5.
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