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Abstract. Sedlár and Vigiani [18] have developed an approach to propositional epistemic
logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is
located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct
first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers
introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant
logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain
semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail
the relation between the demand that classical possible worlds have Tarskian truth conditions
and incompleteness results in quantified relevant logics.

§1. Introduction. This paper presents a framework for first-order epistemic logics
that combine classical and relevant first-order modal logics. Modular soundness and
completeness are proved for constant domain semantics, using non-general frames with
Mares–Goldblatt ([12]) truth conditions. This construction enables one to represent an
agent’s belief set as closed under relevant implication while the extensional connectives
remain completely classical: for the agent, non-modal sentences behave classically, but
the sentences in the scope of an epistemic operator need not behave classically. This
work builds on the work of Sedlár and Vigiani [18], in which relevant and classical
propositional modal logics are combined. Semantically, this combination identifies a
set of classical possible worlds, on which truth and validity are defined, inside a relevant
logic’s ternary relational model. Here I use and argue for a particular conception of a
classical possible world in the first-order setting, while detailing formal problems that
can arise on other approaches.

In [18] the representation of epistemic states using relevant logic and relevant
situations (parts of possible, possibly inconsistent worlds) have the following features:
(i) the situations modeling an agent’s belief states can be incomplete and inconsistent,
(ii) the agent’s beliefs are only closed under relevant consequence (or, in a neighborhood
generalization, relevant provable equivalence), (iii) an agent need not believe every
theorem (relevant or classical), and (iv) the logics permit a more nuanced and
fine-grained representation of an agent’s beliefs towards implications. The focus of
this paper is on first-order extensions of these logics and some of the additional
formal and philosophical problems that arise in these extensions; nevertheless, the
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794 NICHOLAS FERENZ

propositional fragment of the logics developed here include both fusion and left-
implication, permitting additional representations of agent’s epistemic attitudes.

Sedlár and Vigiani [18] further apply their framework to several problems of logical
omniscience. In many presentations of epistemic logics with a classical (two-valued,
Boolean) base, certain paradoxes of omniscience are unavoidable or require drastic
and sometimes philosophically questionable additions (at least, that is, when taken as
a whole). The main problems are that the standard approaches (i) take beliefs as sets
of classical possible worlds which entails that all classical theorems are believed by the
agent, and (ii) they require belief sets to be closed under classical logic. The former
leads to agents believing, for example, ‘p or not p’, for every p. The latter makes the
agents logically perfect, believing all and only the logical consequences of their beliefs.
While problem (i) is completely eliminated by the use of relevant situations, problem
(ii) is ameliorated by a restriction to closure under provable relevant implication.
While this does not solve the problem of logical omniscience as a whole, it is perhaps
more reasonable to suppose that an agent’s (perhaps implicit) beliefs are closed under
relevant implication (see, e.g., [2, 3, 18]).

The combination of classical and relevant first-order epistemic logics presented here
proceeds as in [18], by using two modalities. The first modality, �, is the epistemic
modality. Rather, it is a modal operator acting as a placeholder for an epistemic
modality. The present work does not assume it is a particular epistemic modality, but
rather aims are providing a general framework in which� can be used to model different
epistemic modalities (by adopting appropriate axioms/frame conditions). The second
modality,�L, is a formal tool used to bridge the relevant and classical sides of the logic.
In particular, �LA is taken to mean that A is a theorem of the underlying relevant
logic. Roughly, a formula is shown to be a theorem of an underlying relevant logic, and
then �L allows us to transfer this theorem into a classical setting.

The paper is divided as follows. Section 2 first introduces a semantic approach for
quantified (bi-)modal relevant logics. The approach is an application of the Mares–
Goldblatt (MG) style semantics, which was introduced for quantified relevant R in
[12]. Several authors have generalized the MG approach. The generalization used here
is that of Ferenz [6], which extends the MG semantics to a wide range of quantified and
quantified modal relevant logics. Then, in Section 3, a Hilbert-style axiomatization is
given (which is proved sound and complete in [6]).

In Section 4, we introduce MG-based models for first-order extensions of the work of
Sedlár and Vigiani [18], and give an axiomatization. In contrast to [18], we add fusion,
a left-implication, and an intensional truth constant to the propositional fragment
of the language. In [18], the implication and negation behave classically (i.e., truth-
functionally) at possible worlds. Similarly, we enforce this requirement on the new
propositional connectives, and consider particular ways of making the quantifiers
classical. Sections 5 and 6 respectively contain modular soundness and completeness
proofs for the systems developed. In Section 7, a particular classical behavior of
quantifiers is given closer inspection. The models developed in earlier sections lack
this property. We discuss both its philosophical motivation and the formal problems
encountered with its addition.

§2. First-order relevant modal logics. Here, we present the first-order relevant
modal logics which serve as a foundation for the remainder of the paper. The logics
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and semantics defined here are essentially those found in [5, 6], which combines and
furthers the Mares–Goldblatt interpretation of quantifiers (see, e.g., [8, 12]) and Seki’s
general frame semantics for regular relevant model logics (see, e.g., [20, 21]).1

For now, we simplify the matter at hand by presenting a constant domain semantics—
indeed, a single universal domain—with no existence predicates. Therefore the
quantifiers are to be considered possibilist, although the actualist, variable domain
semantics is obtainable, through the modifications detailed in [11]. An agent may
claim to have beliefs about possible situations with a different set of objects composing
it; that is, objects that either do not exist or have no counterparts in the agent’s world.
Nonetheless, we will sideline these kinds of philosophical issues for the time being.

The language of the first-order substructural epistemic logic QBM.C��L
, hereafter

just QBM.C, will be built up from a set of symbols that can be divided as follows:

1. a denumerable set of variables Var = {x0, x1, ... };
2. an at most denumerable signature S consisting of:

(a) a set of constant symbols ConS = {c0, c1, ... };
(b) a non-empty set of predicate symbols Pred S;

3. constant symbol t ;
4. binary operators ∧,∨,→, ◦,←;
5. unary operators ¬,�,�L;
6. quantifier symbol ∀, ∃.

Each n-ary predicate symbol will be written as Pnk (with identifying subscript k often
omitted), and the set of n-ary predicates shall be written as Predn ⊆ Pred S.

For a signature S, the set of terms of QBM.C is TermS

QBM.C = ConS ∪ Var, and �
(often with subscripts) will always denote a term. For the remainder of the paper, it is
often the case that a signature will implicitly be taken for granted, or stated explicitly.
Hereafter we will drop the “S” in notation.

Officially, we take the set of variables to be ordered, as in x1, ... , xn, ... . Then, given a
set of U of individuals, a variable assignment is a denumerable sequence of individuals,
f ∈ U� , such that the nth element in the sequence (written as fn) is the individual
assigned to the n-th variable xn. Given a variable assignment f, an x-variant of f differs
from f in at most the assignment to the variable x. The set of all x-variants of f will
be denoted xf. We will write f[j/n] (or f[j/xn]), with j ∈ U to denote the result of
changing the n-th element of f with the individual j.

Definition 2.1 (Language LQBM.C ). The basic first-order substructural language
LQBM.C , or well-formed formulas (hereby wff ) is defined in BNF as follows:

φ ::= Pn(�1, ... , �n)|t |¬φ|�φ|�Lφ|φ ∧ φ|φ ∨ φ|φ → φ|φ ◦ φ|φ ← φ|∀xφ|∃xφ.
In terms of binding strength, for the purposes of omitting parentheses, we assume

that unary connectives and quantifiers bind the strongest (and equally so). We assume
the left and right arrow bind weaker than fusion, which itself binds weaker than the
extensional conjunction and disjunction.

We shall write A[�/x] for the result of replacing every free occurrence of x in A with
the term �. Similarly, we will use A[�0/v0, ... , �n/vn] for the result of simultaneously
replacing v0 through vn with �0 through �n respectively. A variable is said to be bound

1 Both here and in Seki, the term regular is used as introduced in [19].
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in a formula A if it (i) is the instance x in a quantifier ∃x or ∀x, or (ii) is an instance
of x that occurs within the scope of either ∃x or ∀x. Non-bound variables are said to
be free. A term � is free for (or freely substitutable for) a variable x in A if � does not
become bound in the resulting formula A[�/x].

Note the inclusion of ← and ◦. This inclusion is not only formally interesting—e.g.,
see Section 4, where additional frame conditions for classical possible worlds must
be satisfied—but also enables additional expressive power in terms of formulating the
beliefs of an agent. With fusion, for example, we are able to represent the difference
between an agent merely believing (A → B) ∧ A (which does not imply B in BM),
and believing (A → B) ◦ A (which does imply B in BM) The latter is a type of
conjunction which “applies” modus ponens in this case. We can thus represent the
nuanced difference between believing a set of sentences in a simple way and believing
a set of sentences in way that implies belief of the relevant consequences of such a set.
One may come to believe that A ∧ B is true by believing each conjunct individually,
but yet one need not have additionally entertained combining these beliefs to obtain
their joint logical consequences. For left-implication, the case only arises when ◦ is not
commutative (otherwise ← is just →). With distinct left-implication, we can represent
(epistemic states regarding) implications corresponding to conjoining premises in
different orders. I emphasize again that the project here is a general framework:
for particular applications one needs to assume the right properties for both these
connectives, implication, and the epistemic modality.

The frames and models are defined as in [6], following Mares and Goldblatt’s
interpretation of quantifiers in the first-order extensions of the relevant logic R.

Definition 2.2 (Base First-Order Frames). A Base First-Order Frame is a tuple

F = 〈K,N,R, ∗, S�, S�L,U, Prop, PropFun〉,

where N ⊆ K �= ∅; R ⊆ K3; ∗ : K → K ; S� ⊆ K2; S�L ⊆ K2; U is a non-empty set
of individuals; and, defining the “upsets” as P (K)↑ = {X ∈ P (K) : ∀a, b,∈ K(a ∈
X & a ≤ b) ⇒ b ∈ X}, with a ≤ b =df ∃x ∈ N (Rxab) we have that Prop ⊆ P (K)↑,
PropFun ⊆ {φ : U� −→ Prop}, and the following conditions hold:

(c1) ≤ is reflexive and transitive.
(c2) N ∈ Prop.
(c3) Rabc, a′ ≤ a, b′ ≤ b & c ≤ c′ imply Ra′b′c′.
(c4) a ≤ b implies b∗ ≤ a∗.
(c5) S�bc and a ≤ b imply S�ac.
(c6) S�Lbc and a ≤ b imply S�Lac.
(c7) Prop is closed under ∩,∪,¬,�,�L,→, ◦,← where:

(a) ¬X = {a ∈ K : α∗ �∈ X}.
(b) �X = {a ∈ K : ∀b(S�)ab ⇒ b ∈ X}.
(c) �LX = {a ∈ K : ∀b(S�L)ab ⇒ b ∈ X}.
(d) X → Y = {a ∈ K : ∀b, c ∈ K(Rabc & b ∈ X ⇒ c ∈ Y )}.
(e) X ◦ Y = {a ∈ K : ∃b, c ∈ K(Rbca & b ∈ X & c ∈ Y )}.
(f) X ← Y = {a ∈ K : ∀b, c ∈ K(Rbac & b ∈ X ⇒ c ∈ Y )}.

(c8) φN ∈ Prop (where φNf = N , for every f ∈ U�).
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(c9) PropFun is closed under ∩,∪,¬,�,�L,→, ◦,← where for all f ∈ U� , every
φ,� ∈ PropFun:

(a) (⊕φ)f = ⊕(φf), for each ⊕ ∈ {¬,�,�L}.
(b) (φ ⊗ �)f = φf ⊗ �f, for each ⊗ ∈ {∩,∪,→, ◦,←}.

(c10) PropFun is closed under ∀n and ∃n, for every n ∈ �, where:
(a) (∀nφ)f =

�
g∈xnf

φg =
⋃
{X ∈ Prop | X ⊆

⋂
g∈xnf

φg}.

(b) (∃nφ)f =
⊔
g∈xnf

φg =
⋂
{X ∈ Prop |

⋃
g∈xnf

φg ⊆ X}.

A frame is called full when Prop is the set of every hereditary subset of K, and
PropFun contains every function from U� to Prop.

Definition 2.3 (Basic First-Order Pre-Models for QBM.C). A basic pre-model is a
tuple M = 〈F, |–|〉 such that F is a base first-order frame and |–| is a valuation function
that assigns:

1. an individual |c| ∈ U to each constant symbol c;
2. a function |Pn| : Un −→ P (K) to each n-ary predicate symbol Pn; and
3. a propositional function |A| : U� −→ P (K) to each formula A such that, when

A is atomic, for every f ∈ U� :2

|Pn�1, ... , �n|f = |Pn|(|�1|f, ... |�n|f).

Moreover, when A is not atomic (or t), the valuation is extended as follows, for
every f ∈ U� :

|¬A|f = ¬|A|f, |A → B|f = |A|f → |B|f,
|�A|f = �|A|f, |A ◦ B|f = |A|f ◦ |B|f,

|�LA|f = �L|A|f, |A ← B|f = |A|f ← |B|f,
|A ∧ B|f = |A|f ∩ |B|f, |∀xnA|f = ∀n|A|f,
|A ∨ B|f = |A|f ∪ |B|f, |∃xnA|f = ∃n|A|f,

|t |f = φNf(= N ).

Definition 2.4 (Basic First-Order Models for QBM.C). A basic model for QBM.C is
a basic pre-model for QBM.C that assigns elements of PropFun to each atomic formula,
including identity statements.

Although the valuation function is officially extended in terms of propositional
functions, we can define a relation � such that a,f � A exactly when a ∈ |A|f. See [6]
and [12] for a list with the conditions for each formula shape.

A formula is satisfied by a variable assignment f in a model M when N ⊆ |A|f. A
formula is valid in a model M when it is satisfied by every variable assignment in that
model; valid in a frame when it is valid in every model based on that frame; valid in a
class of frames when it is valid in every frame in that class.

Lemma 2.5 (Hereditary Lemma). For any formula A, if a ≤ b and a ∈ |A|f, then
b ∈ |A|f.

2 Here “|�|f” is defined to be fn when � is the variable xn , and |c| when � is constant
symbol c.

https://doi.org/10.1017/S1755020323000096 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000096


798 NICHOLAS FERENZ

The proof of this lemma is a standard induction on the complexity of formulas, the
interesting cases being negation, and the modalities. Negation is given by condition
(c4), and modalities by (c5) and (c6).

Lemma 2.6. For any formula A, if f, g ∈ U� agree on each free variable of A, then
|A|f = |A|g.

Lemma 2.7 (Semantic entailment). In a basic model, a formula A → B is satisfied by
a variable assignment f iff |A|f ⊆ |B|f.

The proof of this lemma is as usual, using the hereditary lemma.

§3. Axiomatization.

Definition 3.8. We write a formula with a variable superscript to indicate that the
variable does not occur free in the formula—e.g., x does not occur free in Ax . We use
� as a separator for rules of proof: A0, ... ,An � B should be understood to mean “if
A0, ... ,An are all theorems, then so is B”.

The following axiom schemes and rules schemes generate the logic QBM.C:

(ID) A → A.
(∧E) A ∧ B → A.
(∧E) A ∧ B → B.
(∨I) A → A∨ B.
(∨I) B → A ∨ B.
(∧I) ((A → B) ∧ (A → C)) → (A → (B ∧ C)).
(∨E) ((A → C) ∧ (B → C)) → ((A ∨ B) → C).
(∧-∨) A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C).
(DM1) ¬(A ∧ B) ↔ (¬A ∨ ¬B).
(DM2) ¬(A ∨ B) ↔ (¬A ∧ ¬B).
(�∧) (�A ∧�B) → �(A ∧ B).
(�L∧) (�L A ∧�L B) → �L(A ∧ B).
(∀E) ∀xA → A[�/x], where � is free for x in A.
(∃I) A[�/x] → ∃xA, where � is free for x in A.

(MP) A,A → B � B.
(ADJ) A,B � A ∧ B.
(Affix) A → B, C → D � (B → C) → (A → D).
(RCont) A → B � ¬B → ¬A.
(R�M) A → B � �A → �B.
(R�LM) A → B � �LA → �LB.
(R∀I) Ax → B � Ax → ∀xB.
(R∃E) A → Bx � ∃xA → Bx .
(R◦) A → (B → C) �� (A ◦ B) → C.
(R←) A → (B → C) �� B → (C ← A).
(Rt) t → A �� A.

Lemma 3.9. The following are theorems and derivable/admissible rules of QBM.C:

(1) ∀x(Ax → B) → (Ax → ∀xB).
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(2) ∀x(A → Bx) → (∃xA → Bx).
(RGC1) Ax → B[c/x] � Ax → ∀xB.
(RGC2) A[c/x] � ∀xA.

For (1), the proof is left to the reader, and uses fusion. Similarly, (2) follows by
using left arrow and existential introduction. (RGC1) and (RGC2) follow from similar
arguments to those in [12].

Proposition 3.10. The following are theorems of QB.C (defined below), but not
theorems of QBM.C:

(Dual1) ¬∀x¬A ↔ ∃xA, (Dual3) ¬∀xA ↔ ∃x¬A,
(Dual2) ¬∃x¬A ↔ ∀xA, (Dual4) ¬∃xA ↔ ∀x¬A.

Theorem 3.11. The logic QBM.C is sound and complete with respect to the class of all
basic frames.

Proof. The logic QBM.C is the logic QB.C of [6], but with multiple “Box” modalities,
the left-implication, and a weaker negation. However, the proofs of [6] can easily be
modified to handle these differences.

3.1. Extensions. An important class of extensions of the base logic add extensional
confinement axioms. In the presence of a weak negation without double negation
equivalence, the following axioms are not equivalent:

(EC1) ∀x(A ∨ Bx) → ∀xA ∨ Bx .
(EC2) Ax ∧ ∃xB → ∃x(Ax ∧ B).

However, once we add double negation introduction and elimination, they are
interderivable in any logic extending QBM.C. These axioms are required to capture a
certain classicality of the quantifiers. Furthermore, these axioms are the reasons for
employing admissible propositional functions [8, 12].

Definition 3.12. The logic BMQ.C is the base logic QBM.C+ (EC1) + (EC2).

The next lemma can be stated in a more fine-grained manner, separating (EC1) from
(EC2), and vice versa, but we state it coarsely as follows.

Lemma 3.13. BMQ.C is sound and complete with respect to the class of all QBM.C-
models that satisfy (cEC1) and (cEC2), where the latter as defined as follows: For every
φ ∈ PropFun, X,Y ∈ Prop, n ∈ �, and f ∈ U� .

(cEC1) X – Y ⊆
⋂

j∈U
φ(f[j/n]) only if X – Y ⊆ (∀nφ)f.

(cEC2)
⋃

j∈U
φ(f[j/n]) ⊆ X ∪ Y only if |∃nφ|f ⊆ X ∪ Y.

Although QBM.C and BMQ.C are our foundational logics, we will define a number
of common propositional relevant logics and their extensions in the relevant logic
literature using the following list of axioms and rules:

(DNE) A ↔ ¬¬A.
(Cont) (A → B) → (¬B → ¬A).
(RCM) A → ¬A � ¬A.
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(B) (A → B) → ((C → A) → (C → B)).
(B′) (A → B) → ((B → C) → (A → C)).
(W) (A → (A → B)) → (A → B).
(C) (A → (B → C)) → (B → (A → C)).

The relevant logic BM (or rather BM with ◦,←, t) is defined (in the appropriate
non-modal propositional language) as QBM.C, but without the axioms and rules
containing modalities and quantifiers. Some non-modal propositional extensions of
BM (with ◦,←, t) are captured by the following list:

1. B = BM + (DNE).
2. DW = B + (Cont).
3. T = DW + (RCM) + (B) + (B′) + (W).
4. R = T + (C).

Where L is a propositional extension of the relevant logic B, QL.C and LQ.C denote
the extensions of QBM.C and BMQ.C, respectively, by the same additional axiom and
rule schemes.

The modal logic C denotes the least regular modal logic, over some propositional
logic. Namely, the result of adding (�∧) and (R�M). The extensions in the modal
fragment of a regular modal logic are defined using the following, where �A =df
¬�¬A:3

(K�) �(A → B) → (�A → �B).
(RN) A � �A.
(BD) �(A ∨ B) → (�A ∨�B).
(DB) (�A ∧�B) → �(A ∧ B).
(T) �A → A.
(4) �A → ��A.

A more complete list (in the background of relevant logics) can be found in several
places, including [20, 21]. It is assumed that the reader is familiar with the naming
conventions for modal logics extending K, so we only offer the following list:

1. K = C + (K�) + (RN).
2. S4 = K + (T) + (4).

Note, importantly, that here we use these names only to refer to the set of modal axiom
schemes, and not to a full propositional modal logic. That is, the name only refers
to the set of axiom schemes with modal operators in their shape. For example, (BD)
and (DB) are theorems of the K-ish extension of classical logic, but not of the K-ish
extension of relevant logics.

Quantified and modal logics are obtained by taking a quantified relevant logic L

and extending it with a set of modal axiom schemes. Where M is the name of a set of
modal axiom schemes, the logic L.M is the result of simply adding the modal axiom
schemes to the axiomatization of L. In many cases this axiomatization will lack (BD)
and (DB), making the modal fragment lack a certain “classicality”. The dot is removed

3 In general, it is somewhat common to assume that � and � are not necessarily dual in
relevant logics, in which case we would take the � as primitive. However, for our purposes
here it is sufficient to only take the defined � via negation.
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when, in the terms of [6], the logic becomes sufficiently classical, in that it has both the
duality of the modalities and (BD) and (DB) as theorem schemes.4

A final note on these axiomatizations is that they make essential use of ◦,←, and t .
There are quantified relevant logics where the addition these connectives does not result
in a conservative extension—e.g., see the logic QB– in [24] for a first-order relevant
logic which is not conservatively extended by either ◦ or ←.

§4. Epistemic models with worlds.

Definition 4.14. A bounded frame is a frame where there are elements 0, 1 ∈ K such
that for each α, � ∈ K and S ∈ {S�, S�L}:

1. 0 ≤ α ≤ 1.
2. 1∗ = 0 and 0∗ = 1.
3. S00.
4. S1α ⇒ α = 1.
5. R010.
6. R1α� ⇒ (α = 0 or � = 1).
7. R111.
8. Rα�0 ⇒ (α = 0 or � = 0).
9. R100.
10. Rα1� ⇒ (α = 0 or � = 1).

A bounded (pre-)model is a (pre-)model based on a bounded frame where 1 ∈ |p|f and
0 �∈ |p|f, for very atomic sentence p, including |t |f, for every f ∈ U� .

Lemma 4.15. In a bounded model M, for every formula A and every f ∈ U� :

1. 1 ∈ |A|f.
2. 0 �∈ |A|f.

Proof. The proof adapts [18], which is by induction on the structural complexity of
A.5 Base cases, including t , are given by definition, and most cases can be obtained
by straightforward adaptations of the arguments of Sedlár and Vigiani. Thus, we will
demonstrate the case for ◦, ←, and ∀xn, and leave ∃xn to the reader.

For the case A = B ◦ C, we have that 1 ∈ |B ◦ C|f iff ∃b, c ∈ K(Rbc1 and b ∈
|B|f and c ∈ |C|f). By 4.14(7), that is R111, the result follows by the induction
hypothesis. Therefore 1 ∈ |B ◦ C|f, as required. Next, for reductio, suppose that
0 ∈ |B ◦ C|f. Then ∃b, c ∈ K(Rbc0 and b ∈ |B|f and c ∈ |C|f). Then by 4.14(8),
b = 0 or c = 0. But then either 0 ∈ |B|f or 0 ∈ |C|f. Either way contradicts the
induction hypothesis.

For the case A = B ← C, we have that 1 ∈ |B ← C|f iff ∀b, c ∈ K(Rb1c and
b ∈ |B|f imply c ∈ |C|f). Take any b, c such that Rb1c and b ∈ |B|f. By 4.14(10),

4 Naming conventions for quantified modal relevant logics have not been simple. A likely
reason for the multitude of decorations and permutations is that many authors have aimed
for generality rather than singling out particular logics.

5 Note that (1) actually follows directly from Prop being a set of ≤-upsets, condition 4.14(1),
and Prop’s closure under the various operations. The corresponding conditions in the
previous definition, however, are satisfied by the canonical model, and will therefore be
kept.
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either b = 0 or c = 1. By the induction hypothesis, the former is impossible. The latter,
with the induction hypothesis, entails 1 = c ∈ |C|f), as required. Next, for reductio,
suppose that 0 ∈ |B ← C|f. This is iff ∀b, c ∈ K(Rb0c and b ∈ |B|f imply c ∈ |C|f).
By 4.14(9), R100, and furthermore 1 ∈ |B|f by the induction hypothesis. Therefore
0 ∈ |C|f, which contradicts the induction hypothesis.

The last case shown is A = ∀xnB. We have that 1 ∈ |∀xnB|f iff 1 ∈
�
g∈xf |A|g. The

latter is an element of Prop by construction, and is thus an upwardly closed set which
contains 1, as required. We have that 0 �∈ |∀xnB|f iff 0 �∈

�
g∈xf |A|g. By the induction

hypothesis, for every g ∈ xf, 0 �∈ |A|g, so 0 �∈
⋂
g∈xf |A|g. So there is no X ∈ Prop

where 0 ∈ X ⊆
⋂
g∈xf |A|g, as required.

A possible world is a point in the model where the intensional connectives behave
classically: that is, extensionally. Sedlár [17] and Sedlár and Vigiani [18] define worlds
such that the negation and implication of the relevant fragment are truth-functional
at a world. We will do the same by ensuring that the left-implication and fusion are
also classical. However, for the first-order machinery, there are many choices to make
in terms of “classicality”.

First, it is likely that a world should satisfy (EC1) and (EC2), as these axioms are
decidedly classical. After that, we have options. Should we enforce the Tarskian truth
condition, which can be succinctly paraphrased by

⋂
i∈I
Xi =

�
i∈I
Xi and

⋃
i∈I
Xi =

⊔
i∈I
Xi?

If we do, then worlds must be �-complete: that is, a world-variable assignment pair
cannot satisfy all instances of a universally quantified formula ∀xA without also
satisfying ∀xA itself. Indeed, we suppose (and might even go as far as to claim) that
there is good reason to believe that a robust possible world is �-complete. However,
issues of completeness lie in the direction of �-complete possible worlds. So for the
time being we do not assume this strong condition on possible worlds. The reader
may look forward to Section 7, where this issue is highlighted, and where we develop
the relation to Fine’s incompleteness results for constant domain (non-general frame)
RQ.6

Note that (EC1) and (EC2) are not sufficient to get a fully classical behavior of the
quantifiers. For example, some formulas needed for prenex normal form are invalid.
[14] shows the following “lemons” are (and should be) invalid in any first-order relevant
logic worth its weight in salt:

(∃PN1) (p → ∃xAx) → ∃x(p → Ax).
(∃PN2) (∀xAx → p) → ∃x(Ax → p).

These formulas could be upgraded to axiom schemes, nonetheless invalid, simply by
replacing ‘p’ with Bx uniformly. The remainder of the usual formulas required for
prenex normal form are valid, including ∀x(p → Fx) ↔ (p → ∀xFx) [14, p. 279].

6 There is a lot of precedent towards Tarskian (here, �-complete) worlds. Nonetheless, there
is also some precedent against them. Driven by (the interpretation of) the separation of
the Barcan formulas from contracting and expanding domains as in [8], it could be argued
that the non-Tarskian approach (using

�
,
⊔

) finds more coherence with certain intuitions
and practices concerning modal reasoning. Indeed, we don’t often have epistemic access to
“that’s all” clauses discussed below in Section 7.
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Definition 4.16. Let M be a bounded model. An element w ∈ N is a possible world
if it satisfies conditions (1)–(9) below. For every s, t,∈ K , and for every φ ∈ PropFun,
X,Y ∈ Prop, n ∈ �, and f ∈ U� :

1. w∗ = w.
2. Rwww.
3. Rwst ⇒ (s = 0 or w ≤ t).
4. Rwst ⇒ (t = 1 or s ≤ w).
5. Rstw ⇒ ((s ≤ w & t ≤ w) or s = 0 or t = 0).
6. Rswt ⇒ (s = 0 or w ≤ t).
7. Rswt ⇒ (t = 1 or s ≤ w).
8. If X – Y ⊆

⋂
j∈U
φ(f[j/n]) and w ∈ X – Y , then w ∈ (∀nφ)f.

9. If
⋃
j∈U
φ(f[j/n]) ⊆ X ∪ Y and w �∈ X ∪ Y , then w �∈ (∃nφ)f.

Note that the possible worlds are all logically normal points with respect to the
underlying relevant (subclassical) logic. This holds in the canonical model, but a word
or two is in order. At a world the conditional is made truth-functional, and there is no
way to falsify (using two truth values) a truth functional conditional corresponding to
a relevant conditional, provided the relevant logic is a sublogic of classical logic. Thus,
the worlds should make true at least all of the conditional theorems of the relevant
logic. And so, by extension, all worlds should be logically normal points in the frame.

Definition 4.17. A W-frame is a structure F = 〈F,W 〉 where F is a bounded frame
satisfying (cEC1) and (cEC2),W ⊆ N is a set of base possible worlds, and the following
conditions are satisfied:

1. (∀w ∈W )(∀u ∈ K)(S�Lwu ⇒ u ∈ N ).
2. (∀k ∈ N )(∃w ∈W )S�Lws .

Definition 4.18. A W-(pre-)model based on W-frame F is defined as in Definition 4.14.
Moreover, satisfaction and validity are defined as follows:

1. A formulaA is satisfied by variable assignmentf in a W-modelM iffW ⊆ |A|f.
2. A formula A is valid in a W-model M iff it is satisfied by every f ∈ U� .
3. A formula A is valid in a class of W-frames iff it is valid in each W-model based

on a W-frame in the class.

Lemma 4.19. �LA → B is valid in W-model M iff, for every f ∈ U� , |A|f ⊆ |B|f.

Proof. The proof is similar to that of Sedlár and Vigiani, except for our use of N in
Definition 4.17.

Suppose that �LA → B is valid in W-model M. Further suppose for reductio
that |A|f �⊆ |B|f, for some f ∈ U� . By semantic entailment, f does not satisfy
A → B, which means that there is some α ∈ N such that α �∈ |A → B|f. But, by
Definition 4.17, there is a world w such that S�Lwα, which entails that α �∈ |�L(A →
B|f), which contradicts our starting point.

For the right-to-left direction, suppose that |A|f ⊆ |B|f for every f ∈ U� . By
semantic entailment, A → B is satisfied by every variable assignment. Then for each
α ∈ N , α ∈ |A → B|f. For any world w, suppose that S�Lw� . Then � ∈ N , by
Definition 4.17. As this is the case for every world, we have that �LA → B is valid in
the model.
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Lemma 4.20. For any world w in any W-model M:

1. w ∈ |¬A|f iff w �∈ |A|f.
2. w ∈ |A → B|f iff w �∈ |A|f or w ∈ |B|f.
3. w ∈ |A ◦ B|f iff w ∈ |A|f and w ∈ |B|f.
4. w ∈ |A ← B|f iff w �∈ |B|f or w ∈ |A|f.
5. w ∈ |t |f.
6. w ∈ |∀xA|f iff w ∈ |¬∃x¬A|f.
7. w ∈ |∃xA|f iff w ∈ |¬∀x¬A|f.
8. w ∈ |∀xn(Axn ∨ B) → (Axn ∨ ∀xB)|f (and therefore it also satisfies (EC2)).
9. (a) w ∈ |(p → ∃xAx) → ∃x(p → Ax)|f.

(b) w ∈ |(∀xAx → p) → ∃x(Ax → p)|f.

Proof. For (1) and (2), the reader is referred to [18].
For (3), suppose thatw ∈ |A ◦ B|f. Then ∃b, c ∈ K(Rbcw) & b ∈ |A|f & c ∈ |B|f.

By Lemma 4.15, b and c are not 0. Thus, by applying 4.16(5), we get b, c ≤ w, and
therefore that w ∈ |A|f and w ∈ |B|f, as required. For the other direction, Rwww is
sufficient for the result.

For (4), the left-to-right direction follows byRwww. For the other direction, assume
that w �∈ |A ← B|f. Then there are b, c ∈ K such that Rbwc, b ∈ |B|f and c �∈ |A|f.
By Lemma 4.15, b �= 0 and c �= 1. Thus, by applying 4.16(5), b ≤ w ≤ c. But then
both w ∈ |B|f and w �∈ |A|f, as required, on pains of contradiction.

By definition of worlds we haveW ⊆ N , so (5) follows straightforwardly.
(6) and (7) will follow from the ∗ properties at each world. (As soon as you add

double negation, you regain the quantifier dualities.)
For (8) the proof is as in [12], and some of the details are included here. By (2), (8)

can be demonstrated by showing that, for every world w, either w �∈ |∀xn(Axn ∨ B)|f
orw ∈ |Axn ∨ ∀xnB|f, for every f. Assume thatw �∈ |Axn ∨ ∀xnB|f. Thenw �∈ |Axn |f
andw �∈ |∀xnB|f. For reductio, further assume thatw ∈ |∀xn(Axn ∨ B)|f. Then,w ∈⋂
g∈xnf |(A

xn ∨ B)|g. By the reasoning in [12], there is an X ∈ Prop such that w ∈ X
and w ∈ X – |A|f and X – |A|f ⊆

⋂
g∈xnf |B|f. But by 4.16(8), w ∈ (∀n|B|)f =

|∀xnB|f, a contradiction.
For (9), by (2), both cases reduce to the distribution of a universal over conjunction

into a single conjunct (where the other conjunct has no free occurrences of the variable
in question).

Unlike in [18], our inclusion of N and requirement that N is “seen in full by W”
means that we do not need to consider variants of the usual frame conditions for
extensions. In Table 1, we have provided a small list of axioms and rules together with
their corresponding frame conditions. (That is, a modular frame-correspondence in
the background of QBM.C.) The conditions were shortened by adopting the following
conventions of notation:

R2abcd =df ∃x(Rabx & Rxcd ).

S2
�ab =df ∃x(S�ax & S�xb).

Ra(Rbc)d =df ∃x(Raxd & Rbcx).

S�ab =df S�a∗b∗.
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Table 1. Frame correspondence for extensions.

Names Axioms Condition

(DNE) ¬¬A ↔ A a∗∗ = a
(Cont) (A → B) → (¬B → ¬A) Rabc ⇒ Rac∗b∗
(RCM) A → ¬A � ¬A Raa∗a
(B) (A → B) → ((C → A) → (C → B)) R2abcd ⇒ Ra(Rbc)d
(B′) (A → B) → ((B → C) → (A → C)) R2abcd ⇒ Rb(Rac)d
(W) (A → (A → B)) → (A → B) Rabc ⇒ R2abbc
(C) (A → (B → C)) → (B → (A → C)) Rabcd ⇒ Racbd
(K�) �(A → B) → (�A → �B) Rbcf & S�fd ⇒

∃b′, c′(S�bb′ & S�cc′ & Rb′c′d )
(RN) A � �A b ∈ N & S�bc ⇒ c ∈ N
(BD) �(A ∨ B) → (�A ∨�B) S�ab ⇒ ∃c ≤ b(S�ac & S�ac)
(DB) (�A ∧�B) → �(A ∧ B) S�ab ⇒ ∃c ≤ b(S�ac & S�ac)
(T�) �A → A S�aa
(4�) �A → ��A S2

�ab ⇒ S�ab
(PEM) A ∨ ¬A a ∈ N ⇒ a∗ ≤ a
(M) A → (A → A) Rabc ⇒ (a ≤ c ∨ b ≤ c)
(RER) A � (A → B) → B ∃x(x ∈ N & Raxa)

Note that � is always assumed here to be the negation-dual of � by being a notational
variant. This is even despite the absence of double negation introduction/elimination.7

The conditions for (BD) and (DB) are drawn directly from [6], which is a generalization
of the condition given by Mares and Meyer [13].

For some further extensions, the reader is directed to [5, 6] for the quantified modal
setting, [16] for the proportional relevant setting, and [20, 21] for propositional modal
relevant setting.

Lemma 4.21. For every L-formula A, if there is an L-model M in which A is not valid,
then there is a CL-model M′ in which �LA is not valid.

Proof. The proof is as in [18]. Here we add states 0, 1 and world w to the model M,
and show the resulting model is a W -model in which �LA is not valid.

Suppose we have an L-model M based on the frame

F = 〈K ′, N ′, R′, ∗′, S ′
�, S

′
�L
,U, Prop′, PropFun′〉

which invalidates A. Construct the new model as follows. First, define the W -frame F
as follows:

1. W =W ′ ∪ {1, 0, w}.
2. N = N ′ ∪ {1, w}.

7 That is to say, by definition we can derive �A ↔ ¬�¬A; however, we may not also have
�A ↔ ¬�¬A(= ¬¬�¬¬A). Semantically, this means that S�a∗b∗ need not imply S�ab.
With (DNE), we can use one accessibility relation. Without (DNE), the S� relation is the
S� restricted to ∗-points.
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3. R = R′ ∪ {(w,w,w), (1, 1, 1), (1, 0, 0)}
∪{(w, a, 1)|a ∈W } ∪ {(w, 0, a)|∀a ∈W }
∪{(0, a, b), (a, 0, b), (a, b, 1)|a, b ∈W }.8

4. ∗ = ∗′ ∪ {(w,w), (0, 1), (1, 0)}.
5. S� = S ′

� ∪ {(w,w), (a, 1), (0, b)|a, b ∈W }.
6. S�L = S ′

�L
∪ {(w,w), (a, 1), (0, b)|a, b ∈W } ∪ {(w, a)|a ∈ N}.

7. U = U .
8. For eachX ′ ∈ Prop′, ifN ′ ⊆ X ′, addX = X ′ ∪ {1, w} toProp, and ifN ′ �⊆ X ′,

add X = X ′ ∪ {1} to Prop.
Given a X ′ ∈ Prop′, let h(X ′) be the corresponding X ∈ Prop.

9. For each φ′ ∈ PropFun′, add the propositional function φ defined by, for all
f ∈ U� , φf = h(φ′f).

First we show that this frame is an L-frame, then that it is a bounded frame, then
that it is a W -frame.

As defined, (c1), (c2), (c4), (c5), (c6), and (c8) are straightforward. For (c3), adding
(0, a, b), (a, 0, b), (a, b, 1) ensures the tonicity w.r.t. 1 and 0, and indirectly for w, for
which 0 ≤ w ≤ 1 and w ≤ w are the only relevant orderings.

For (c7), first note that every element of Prop is an upset. We show only the case
for X → Y , as the rest are similar. Suppose that X,Y ∈ Prop. We show that X →
Y = h((X → Y )′). Suppose that N ′ ⊆ (X → Y )′. (The other case is similar.) Then
h((X → Y )′) = (X → Y )′ ∪ {1, w}. For each a ∈W ′, a ∈ (X → Y )′ iff a ∈ X → Y .
The right-to-left direction is straightforward. For the left-to-right, assume that a �∈
X → Y . Then there is b, c ∈W (Rabc & b ∈ X & c �∈ Y ). If b, c ∈W ′, then a �∈
(X → Y )′, as required. If at least one of b, c ∈ {1, 0, w}, then we know b �= 0, c �= 1.
If b = 1, then by the tonicity conditions, we obtain the desired result. If b = w, then
by the definition of the model, c = 1, a contradiction. If c = 0, the result follows by
tonicity. If c = w, then by definition b = 1, a contradiction.

Thus let’s focus on 1 andw. It suffices to show thatw, 1 ∈ X → Y—i.e., that ∀b, c ∈
W ((Rabc & b ∈ X ) ⇒ c ∈ Y ), for a = 1 and a = w. Note that the only R additions
with 1 in the first place are (1,1,1), (1,0,b), and (1,b,1). In each case, (R1bc &b ∈
X ) ⇒ c ∈ Y ), as required. Now consider w. We added (w,w,w), (w, a, 1), (w, 0, a) to
obtain R, as these also imply that (Rwbc &b ∈ X ) ⇒ c ∈ Y ), again because 1 is in
every element of Prop and 0 is in no elements of Prop.

For (c9), we may apply similar arguments, relying on (c7). It is straightforward to
show that ∀nφf = h(∀nφ′f), from which the (c10) follows.

To show that this is a bounded frame, we need to show (1)–(10) of Definition 4.14.
(1)–(5), (7), and (9) are straightforward. We show only (8). Suppose that Rab0. We
only added (1,0,0), (0, a, 0), and (a,0,0), and in each case (8) is satisfied.

To show that this is a W -frame, we must show that w is a possible world (satisfying
(1)–(9) of Definition 4.16), and that conditions (1) and (2) of Definition 4.17.

To show w ∈ N is a possible world, (1) and (2) are trivial. Of (3)–(7), we only show
(6). Suppose thatRawt. We only added (w,w,w), (w,w, 1), (0, w, a), and (a,w, 1) and
in each case the consequent of (6) is satisfied. Of (8) and (9), we only show (8). Suppose

8 Adding the set {(w,w,w), (1, 1, 1), (1, 0, 0)} to the ternary relation ensures that ≤ is reflexive
on all points, and adding each (w, a, 1) and (w, 0, a) ensures that ≤ ordering for the new
points is adequate.
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that w ∈ X – Y ⊆
⋂
j∈U
φ(f[j/n]). For w ∈ X – Y , we have that w ∈ X and N ′ ⊆ X ′,

but w �∈ Y and soN ′ �⊆ Y ′. Now, if w ∈
⋂
j∈U
φ(f[j/n]), then w ∈ φ(f[j/n]), for each

j ∈ U , which means that N ′ ⊆ φ′(f[j/n]). This entails that
⋂
j∈U
φ′(f[j/n]) must be

as large as the admissible proposition N ′. Thus, (∀nφ)′f either is just N ′ or contains
it properly. By definition, (∀nφ)f must include w, as required.

For (1) and (2) of Definition 4.17, it is easy to see the construction ensures their
satisfaction: w relates to all and only the elements of N.

Thus we have indeed constructed a W -frame. To extend this frame to a model, let the
valuation function |–| assign to constants the same objects as in the L-model. For n-ary
predicates, lets |Pn|(u1, ... , un) = h(|Pn|M(u1, ... , un)). That is, add 1 to the truth set
of each atomic formula’s truth set, and also add w if the truth set originally contained
N. This model is a bounded model: 1 is in every truth set and 0 is in none of the truth
sets.

What remains to be shown is that invalidity of A in M implies the invalidity of �LA
is the constructed W -model. We show this in two steps: first, we show that, for every
a ∈W ′, a ∈ |A|Mf iff a ∈ |A|f. Then we use this to show the desired result.

We show that for every a ∈W ′, a ∈ |A|Mf iff a ∈ |A|f, for every f ∈ U� by
induction on the complexity of A. If A is atomic, either it is either of the form t , in
which case the result follows trivially, or Pn(�1, ... , �n). For the latter case, the only
disagreement in the models, by definition, is for the elements outsideW ′, and so the
base cases are covered.

For the inductive cases, we demonstrate only a few.
Suppose that A = B ◦ C. If a ∈W ′ is such that a ∈ |B ◦ C|Mf, then there are b, c ∈

W ′ such thatR′bca, b ∈ |B|Mf, and c ∈ |C|Mf. The points b and c bear these relations
and inclusions (in the new construction) by the inductive hypothesis, and so a ∈
|B ◦ C|f. For the converse, suppose that a ∈ |B ◦ C|f. It suffices to show that R′abc
for b, c ∈W ′ such that b ∈ |B|f, and c ∈ |C|f. The case to worry about is when we
know that, in the constructed model, Rbca, when b or c is one of w or 0 or 1. By
construction, this is the case only with the added (0,c,a), and (b, 0, a). In both cases,
0 �∈ X ∈ Prop, in which case a ∈ |B ◦ C|fmust be witnessed by a different pair, namely
a pair of elements inW ′, as required.

Suppose that A = ∀xnB. For every a ∈W ′:

a ∈ |∀xnB|Mf iff a ∈
�
g∈xf

|B|Mg DF

iff a ∈
�
g∈xf

|B|g Induction hyp.

iff a ∈ |∀xnB|f DF.

Note that these “iff” cannot be turned into “=”, as the second step would fail, as the
induction hypothesis only applies to elements ofW ′. However, the second step, using
the induction hypothesis, does hold here, because

�
g∈xf

|B|g is just
�
g∈xf

|B|Mg with an

extra element or two (of 1, w).
On to the desired result. Suppose that A is not valid in the L-model M. Then there

is some a ∈ N such that a �∈ |A|Mf for some f. In the constructed model, the last fact
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shown implies that a �∈ |A|f. Moreover, since S�Lwa, we have that �LA is not valid
in the constructed W -model.

4.1. Axiomatization. Before giving an axiomatization for the whole system, we
need to identify a single system for quantified classical logic. There are many routes
to go, and we elect for the route where we have a possibilist interpretation of the
quantifiers. Thus the following definition.

Definition 4.22. The classical first-order logic CQ is defined (with some redundancies)
by taking:

1. The theorems of classical propositional logic, in the first-order language LFO.9

2. The axioms (∀E ), (∃I ), (R◦), (R←), (Rt), (EC1), (EC2).
3. The rules (R∀I ), (R∃E ), (MP).

Remark 4.23. Note that the axiom forms of contraposition and double negation
elimination are available, so in LFO (Dual1)–(Dual4) are derivable.

Lemma 4.24. The following formulas are theorem-schemes and admissible rules of CQ.

(CQ) ∀x∀yA → ∀y∀xA.
(RGC1) Ax → B[c/x] � Ax → ∀xB.
(RGC2) A[c/x] � ∀xA.
(UG) A � ∀xA.
(VQ) Ax → ∀xAx .
(AI) ∀y(∀xA → A[y/x]).
(RTI) A � A[�/x], where � is free for x in A.
(EXT) All the theorems of Lemma 3.9.
(◦=) A ◦ B ↔ A ∧ B.
(←=) (A ← B) ↔ (B → A).
(t=) t ↔ (A ∨ ¬A).

Proof. Using (∀E) and (R∀I) we can derive any instance of (CQ). By rewriting a
proof replacing a constant symbol for the quantified variable and then applying the
appropriate generalization rule, we obtain (RGC1) and (RGC2). (UG), (VQ), (AI),
(RTI), and (EXT) are straightforward. The final three, (◦=), (←=), and (t=) show
the provable reductions of the connectives not usually taken as primitive in classical
logic.

It is straightforward to show, using the previous lemma, that the logic CQ is the logic
QK + (CQ) + (R∀I) from [8], but without the modal fragment. That is, by reducing the
language to exclude modal operators, and deleting the K axiom and necessitation rule.
(Note that our naming convention for the rules and axioms differs from Goldblatt’s.)

The presentation of CQ is a bit odd in that it is in a language that includes ◦,← and
t . However, these are definable in first-order classical logic, and such a presentation
does not affect the system as a whole.

Definition 4.25. Let L be an axiom system for a quantified modal relevant logic as given
in Section 3. The logic CL based on L is defined by:

9 In particular, use the implication connective “→” for the material conditional.
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1. The theorems of CQ, with (MP), (R∀I ), (R∃E ), written in the language LQBM.C.
2. For all axiom schemes A of L, and axiom scheme �LA.
3. For all rules A1, ...An � B of L, a rule �LA1, ...�LAn � �LB.
4. The bridge rule (BR): �L(A → B) � A → B.

The following lemma will be useful in the completeness proof below.

Lemma 4.26. The rule (RGC2)—A[c/x] � ∀xA—is derivable in any logic CL.

Proof. The proof has two steps. First, we note that the universal generalization rule
is derivable. This follow from the definition of inferential behaviour of t , and the rule
(∀E), in CL. Second, we rewrite the terms in a proof of A[c/x] to obtain a proof of
A[y/x], for a brand new y, which allows us to apply (∀E) for the desired result.

We now move on to showing that this axiom system is sound and complete with
respect to the W-models defined above. However, before moving on, let’s address a
worry that the reader may have at this point.

4.2. Believing t and believing theorems. You may notice that, �CL �t ⇒ �T , for
every theorem T of L. Thus, if one believes t then they believe all Ltheorems. As
noted above, however, �T is not a theorem of CL for each theorem T of L. Thus,
the constructed systems do not enforce omniscience with respect to the theorems of
the underlying relevant logic. Only agents who believe t will will believe every relevant
theorem. That being said, let’s briefly explain what it means to believe that t .

What does it mean to believe the intensional constant proposition t? In the ternary
relational models, t is essentially the intersection of all theorems (itself a theorem). In
effect, it is a finitely expressible proposition that acts as the infinite conjunction of all
theorems. To really be in a state of believing t , which it should be clear that no one
actually is in such a state, is exactly to believe all theorems. Thus,�t ⇒ �T is harmless.
Not because no one believes t , but that believing t is just believing all theorems. Thus,
one’s beliefs are not forced to contain all theorems (unless they already do).10

It may be highly plausible that we want to model agents who do in fact believe
certain subsets of theorems. For example, an agent might believe all theorems of the
form A ∨ ¬A. This can be modeled by restricting S�’s second argument place to only
include elements a satisfying a∗ ≤ a (including those outside N, if necessitation is
not also desired). An upshot of the approach here is that believing one subset of the
theorems need not imply believing every theorem. However, while relevant logics are
able to deny that every theorem implies every other theorem, some theorems do in fact
relevantly imply other theorems. In the cases where an agent (plausibly) believes a set
of theorems that imply another set of theorems, they must believe that other set of
theorems as well, in the systems constructed here. This is bad news as far as logical
omniscience is concerned, but again only falls under the requirement that beliefs are
closed under provable relevant implication.11

10 The author thanks an anonymous reviewer for suggesting that viewing t as the conjunction
of all theorems leads to a much better explanation, rather than emphasizing an intensional
nature of t .

11 Thanks again to an anonymous reviewer who pointed out that some sets of theorems (of
certain logics) are plausible for an agent to believe, and that this highlights some problems
concerning logical omniscience. While modeling an agent that believes all instances of A ∨
¬Adoes not collapse the model in such a way that the underlying relevant logic changes (other
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§5. Soundness.

Lemma 5.27 (Soundness of CL). For all L (containing QBM.C and extended by
axiom in Table 1), if �CL A, then �CL A.

Proof. Proof is by induction on the length of proofs. Two distinct base cases: (i)
where A is a theorem of CQ, A is valid by Lemma 4.20, and (ii) where A is an axiom
of L, �LA is valid in the class of W -frames, as worlds can only see points in N. For
axioms of extensions as in Table 1, the case is just as straightforward.

The inductive step shows that each rule of inference of CL preserves validity in
CL-frames. The cases of (MP), (BR), and the �L variants of the L-rules (MP), (ADJ),
(Affix), (RCont), (R�M), and (R�LM), can be given by arguments similar to those of
Sedlár and Vigiani. (Note that the presentation of the axiom systems here differs from
S&V’s presentation by the use of axiom schemes instead of universal substitution, so
some slight modifications of their arguments as a whole are required.) The cases for
the rules regarding fusion, t , and left arrow are covered again by Lemma 4.20. The
remaining cases to be shown are for (R∀I ), (R∃E), �L-(R∀I ), �L-(R∃E), and then
for extensions.

We will give the cases for the rules with the universal quantifier. Consider (R∀I ).
For any world w, suppose that, for every f ∈ U� , w ∈ |Ax → B|f. Then either w ∈
¬|Ax |f, or w ∈ |B|f. From the former, immediately w ∈ |Ax → ∀xB|f. From the
latter, since it holds for every f, w ∈

⋂
g∈xf |B|g, which using Lemma 4.20 entails that

w ∈ |Ax → ∀xB|f.
Consider the �L variant of (R∀I ). The proof is similar to that in [12]. Suppose that

�L(Ax → B) is valid in an arbitrary W-model. Then by Lemma 4.19, for every g ∈ U� ,
|Ax |g ⊆ |B|g. By Lemma 2.6, |Ax |f = |Ax |g, for an arbitrary f. In particular, we have
|Ax |f ⊆

�
g∈xf |B|g = |∀xB|f. Since f was arbitrary, we have |Ax |f ⊆ |∀xB|f for

each f, as so by Lemma 4.19 we have �L(Ax → ∀xB) is valid in the W -model. As the
model was arbitrary, the result follows.

For extensions with rule schemes from Table 1, the cases are straightforward, giving
the usual soundness arguments for these extensions in relevant logics, and following
the reasoning of the previous cases.

As in [18], it is provable that the �L operator encodes L, as in the following.

Theorem 5.28. For any L, �L A iff �CL �LA.

Proof. For the left-to-right direction, we use induction on the length of L-proofs of
a formula A. The base cases are the axioms of L, which is given by the axiomhood of
�LA in CL, as in (2) of Definition 4.25. The induction step is given straightforwardly
by (3) of Definition 4.25.

For the converse direction, suppose that ��L A. Then there is an L-model M such A
is not valid in M. By Lemma 4.21, there is a CL-model M′ such that �LA is not valid
in M′. By soundness, ��CL �LA.

than adding �(A ∨ ¬A) and its relevant consequences to the set of theorems). However, it
does restrict the graph of the S� relation, even to the point of restricting S� to worlds should
an agent believe all classical theorems (or a set of formulas that relevantly implies all classical
theorems).
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§6. Completeness.

6.1. Theories.

Definition 6.29 (Theories). Let L be a quantified modal logic that includes QBM.C,
and consider also the logic CL based on it. Where Γ and Δ as sets of L-formulas:

1. Γ �L Δ is defined to mean that there are some A1, ... ,An ∈ Γ and B1, ... ,Bm ∈ Δ
such that (A1 ∧ ··· ∧ An) � (B1 ∨ ··· ∨ Bm) is a theorem of L.

2. Γ �L A is shorthand for Γ �L {A}.
3. When Γ ��L Δ, we say the pair (Γ,Δ) is an L-independent pair.
4. A set of formulas Γ is an L-theory when, if Γ �L A, then A ∈ Γ.
5. A theory Γ is prime if and only if, if A ∨ B ∈ Γ, then either A ∈ Γ or B ∈ Γ.
6. A theory Γ is L-regular if and only if it contains every theorem of L.
7. A theory Γ is non-empty when Γ �= ∅, and non-trivial when Γ �= wff.
8. A theory Γ is maximally consistent when it is non-trivial and prime, whose proper

extensions are trivial.
9. A theory Γ is �-complete when it does not contain every instance of a universally

quantified formula without also containing the universally quantified formula.

Definition 6.30 (Relations on Theories). We define the following relations on L

theories: For L theories α, �, �:

1. R′α�� iff {A ◦ B : A ∈ α & B ∈ �} ⊆ �.
2. S ′

�α� iff {A : �A ∈ α} ⊆ � .
3. S ′

�L
α� iff {A : �LA ∈ α} ⊆ � .

Lemma 6.31 (Extensions and Pair-Extensions). Let L be a quantified modal relevant
logic extending QBM.C, and let Γ,Δ,Σ be sets of formula.

1. If (Γ,Δ) is an L-independent pair, then there is a prime L-theory Γ′ ⊇ Γ such that
(Γ′,Δ) is an L-independent pair.

2. If (Γ,Δ) is an L-independent pair and Γ ∪ Δ = wff, then Γ is prime.
3. If Σ is prime and R′ΓΔΣ, then there exist prime L-theories Γ′ ⊇ Γ and Δ′ ⊇ Δ

such that R′Γ′Δ′Σ.
4. If Σ is a prime L-theory and Γ and ΔL-theories, R′ΣΓΔ, and A �∈ Δ, then there is

a prime L-theories Γ′ ⊇ Γ and Δ′ ⊇ Δ such that R′ΣΓ′Δ′.
5. If Σ is prime and A → B �∈ Σ, then there exist prime theories Γ and Δ such that
R′ΣΓΔ where A ∈ Γ and B �∈ Δ.

Proof. For (i) note that the logic in question is pair extension acceptable (see, e.g., [15,
Sections 5.1–5.2 ] or [1, pp. 123–126]). The remainder of the proof, as for L-theories, is
also quite standard in the literature. Specifically, for first-order modal relevant logics,
see Ferenz [5, 6].

Note that some of the cases in the above lemma carry over to a logic CL, since CL

is also pair extension acceptable. However, in the proofs below only L-extensions are
required.

Corollary 6.32. IfA is not a theorem of (CL), then there is a regular primeCL-theory
Γ where A �∈ Γ.

Proof. Suppose that A is not a theorem of CL. Then (CL,A) is a CL-independent
pair, where CL is the set of theorems of CL. By the lemma above, since CL is an
L-theory, we obtain a regular prime CL-theory Γ which does not contain A.
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Lemma 6.33 (Squeezes). The following squeeze results hold.

1. Suppose that S ′
�ΓΔ (or S ′

�L
) and A �∈ Δ, for prime L-theory Γ and L-theory Δ.

Then there is a prime Δ′ such that S ′
�ΓΔ′ (or S ′

�L
ΓΔ′).

2. Suppose that Γ is a prime L-theory and �A �∈ Γ (or �LA �∈ Γ). Then there is a
prime L-theory Δ such that A �∈ Δ and S�ΓΔ (or S�LΓΔ).

Proof. The proof is quite standard in modal relevant logics. E.g., the arguments of
[21] straightforwardly apply.

As every CL-theory is also an L-theory, we have the following.

Corollary 6.34. Suppose that S ′
�ΓΔ (or S ′

�L
) and A �∈ Δ, for prime CL-theory Γ

and L-theory Δ. Then there is a prime Δ′ such that S ′
�ΓΔ′ (or S ′

�L
ΓΔ′).

6.2. Canonical Model.

Definition 6.35 (Canonical Model for CL). Given a logic CL based on the quantified
modal relevant logic L extending QBM.C, the canonical model is defined as follows:

MC = 〈KC, NC,W C, RC, ∗C, SC

�, S
C

�L
,UC, PropC, PropFunC〉,

where:

1. KC is the set of prime L-theories.
2. NC is the set of all regular prime L-theories.
3. W C is the set of all regular prime CL-theories.
4. RC is the relation R′ restricted to KC.
5. ∗C is given by a∗ = {A : ¬A �∈ a}.
6. SC

� is the relation S ′
� restricted to KC.

7. SC
�L

is the relation S ′
�L

restricted to KC.
8. UC is the infinite set of constants Con.
9. For every closed formula A, �A�C =df {a ∈ KC : A ∈ a}.
10. PropC =df {�A�C : A is a closed formula}.
11. Given an f ∈ U� , fn is a constant. For any formula A, let Af be the closed

formula that results from replacing every free occurrence of a variable xn with
the constant fn. That is, Af =df A[f0/x0, ... , fn/xn, ... ].

12. For each formula A, the function φA : U� −→ PropC is given by (φA)f =df�Af�C.
13. PropFunC is the set of all functions φA, for each formula A.
14. The canonical valuation function is given by:

(a) |c| = c.
(b) |Pn|(c1, ... cn) = �P(c1, ... cn)�C.
(c) The valuation is extended to all wff as before.

Lemma 6.36 (Underling quantified modal relevant structure). The structure

〈KC, NC, RC, ∗C, SC

�, S
C

�L
,UC, PropC, PropFunC〉

is an L-frame, in the sense of [6], with two box-like modalities. In particular, the following
facts are established:

1. ≤=⊆.
2. ⊗φA = φ⊗A ( for ⊗ ∈ {¬,�,�L}).
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3. φA ⊗ φB = φA⊗B( for ⊗ ∈ {∧,∨,→, ◦,←}).
4. ∀nφA = φ∀xnA; ∃nφA = φ∃xnA.
5. For closed ∀xA and ∃xA:

(a) �∀xA�C =
�
c∈con

�A[c/x]�C, and

(b) �∃xA�C =
⊔
c∈con

�A[c/x]�C.

6. And (consequently) that (c1)–(c10) of Definition 2.2 hold.

The proof is an in [6], and will be omitted here.

Lemma 6.37. The canonical frame is a bounded frame, in the sense of Definition 4.14.

Proof. The empty theory and the full theory, which we will call 0 and 1 respectively,
are both in the canonical frame. By Lemma 6.36(1), 0 ≤ α ≤ 1. Using the arguments
of Sedlár and Vigiani we may show (2)–(6), and the arguments for (7)–(10) are
straightforwardly similar to (5)–(6) and left to the reader.

Lemma 6.38. Each w ∈W C is a world, in the sense of Definition 4.16.

Proof. Items (1)–(4) can be given by Sedlár and Vigiani’s arguments, and (5)–(7)
are similar. Of the remaining cases, we show the case for (8), which is a modified and
shortened version of the arguments of [12, theorem 10.3], but with the restriction to
w ∈W C.

Assume that w ∈ X – Y ⊆
⋂
j∈U
φ(f[j/n]), for some w ∈W C. Y ∈ Prop, so

Y = �A�C for a closed A; and φ = φB for some formula (possible open) B. We thus
have, for every c ∈ con,

w ∈ X – �A�C ⊆ φB(f[c/n])

and so (since A is closed)

X ⊆ �A ∪ Bf[c/n]�C = �(A ∨ B)f\n[c/xn]�C,
where Af\n = A[f0/x0, ... f(n – 1)/x(n–1), xn/xn, f(n + 1)/x(n+1), ... ], and conse-
quently Af\n[c/xn] = Af[c/n] as well as ∀xn(Af\n) = (∀xnA)f . Since this entails that
(A ∨ B)f\n[c/xn] ∈ w, for each c ∈ con, by Lemma 6.36(v).(a) we have that ∀xn((A ∨
B)f\n) ∈ w. By extensional confinement, sincew ∈W C, we have A ∨ ∀xn(Bf\n) ∈ w.

Since w �∈ �A�C, ∀xn(Bf\n) ∈ w, and by an earlier equality we have (∀xnB)f ∈ w,
and thus w ∈ (∀nφB)f, as required.

Lemma 6.39. The canonical model satisfies:

1. (∀w ∈W )(∀u ∈ K)(S�Lwu ⇒ u ∈ N ).
2. (∀k ∈ N )(∃w ∈W )S�Lws .

Proof. For (1), suppose for some w ∈W C that S�Lwu for some u ∈ KC. Then for
every L-theorem A, �LA ∈ w, and so then A ∈ u, making u a regular L-theory, and
so a member of N, as required.

For (2), suppose that α ∈ N . (Suppose also that α �= 1, in which case the result
trivially follows.) We are required to find a worldw ∈W C such that, if �LA ∈ w, then
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A ∈ α. Let Γ = {A :�CL A}, which is clearly a non-empty, nontrivial CL-theory, and
thus an L-regular theory. Further let Δ = {�LA : A �∈ α}. Δ is non-empty, since α is
non-trivial.

It follows that (Γ,Δ) is a CL-independent pair. Here we use the reasoning of Sedlár
and Vigiani. If it were not a pair, then �CL �LA1 ∨ ··· ∨�LAn. But then �CL �L(A1 ∨
··· ∨ An), which by Theorem 5.28 entails that �L (A1 ∨ ··· ∨ An). And so since α is
prime and regular, one of A1, ...An is in α, which gives the required contradiction.

Finally, by applying the extension Lemma 6.31(i), we obtain an prime, non-trivial
maximally consistent L-theory, indeed CL-theory, Γ′ ∈W C such that SC

�L
Γ′α, as

required.

Lemma 6.40. For any extensions obtained using Table 1, the appropriate conditions
are satisfied by the canonical model.

The proof of this lemma is standard and omitted.
Therefore the canonical frame is indeed a W -frame. What’s left to show is that it

is also a W -model and that truth is membership. Mares and Goldblatt’s arguments
establish the following lemma.

Lemma 6.41 (Atomic Propositional Functions). For every n-ary predicate symbol P,
every f ∈ U� , and every set of terms �1, ... �n:

1. P(�1, ... �n)f = P(|�1|f, ... , |�n|f).
2. |P(�1, ... �n)| = φP(�1,...�n).

The above lemma ensures that all atomic formulas are mapped to members of
PropFunC, and then Lemma 6.36 extends this fact to all formulas. Thus the canonical
model is a model.

Lemma 6.42 (Truth Lemma). For any formulaA, |A| = φA. This is, for everyf ∈ U� ,
|A|f = �Af�C, which is a ∈ |A|f iff Af ∈ a.

The proof of the truth lemma is by induction on the structural complexity of a
formula. The arguments of [6] and [12] can be employed, using the facts established in
Lemma 6.36.

We thus have both that the canonical model is a model, and that truth is membership.
Consequently, we obtain the following.

Theorem 6.43 (Completeness for CL and extensions). For any CL based on an L

obtained from QBM.C (and Table 1), we have �CL implies �CL.

Proof. Suppose that �CL A. Then every regular prime CL-theory contains Af , for
eachf ∈ U� . For every free variable in A, replace it with a new constant not in A. This
formula belongs to every regular prime CL-theory, and is therefore a CL-theorem by
Corollary 6.32. Repeated but finite applications of (RGC2) (see Lemma 4.26) followed
by repeated but finite applications of the axiom (∀E), will produce a proof of A.

§7. Worlds and �-completeness. In a canonical model, an �-complete situation
or world is such that, if it contains every instance Af of ∀xnA, then it also contains
∀xnA. We also use the phrase �-complete to describe points in any model such that,
for a ∈ K , if a ∈ |A|f for every f, then a ∈ |∀xnA|f, for every formula A and every
variable assignment f. For simplicity, in all cases we will use the phrase�-completeness
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as it is used in the canonical model. This is despite most models not having enough
constant symbols for the substitutional view; however, the general idea is the same.

A Russellian and philosophical distinction between �-complete and �-incomplete
situations is that the �-complete situations have the extra information concerning
what all the objects in the domain are. That is, it has a “that’s all”-clause. Now,
one philosophical intuition one might profess is that robust possible worlds decide
everything, but what exactly is meant by this? We discuss two possibilities here. First,
one can mean that worlds decide anything and everything, including those “meta”
properties such as that’s-all clauses. The second is that worlds decide every formula
expressible in a language. At present, the author believes that neither of these views are
correct (and for more than just a rejection of metaphysical intuitions on such things
as possible worlds). The first seems to overload worlds with more than we may have
reason to suppose. A stronger version of the first, which we shall explore a little here—
and which the author also believes is incorrect—is that worlds decide every that’s-all
clause. The second view appears to limit possible worlds to what we can express in
a particular language, which may appeal to certain Ersatzist interpretations. While I
am sympathetic to such linguistically based approaches to possible worlds, it doesn’t
appear that the language of the logics presented here entail some consequences for
�-completeness. In fact, this second view can be seen to be present in the models
constructed above, every formula is decided in every world. In short: the first is an ad-
hoc delimitation of worlds, and the second is an ad-hoc limitation on possible worlds.
Thus, for the remainder of this section, let’s consider the modification of the first view,
and some formal troubles that arise.

In the completeness proof, for Lemma 6.39, in showing that every member of N has a
world that can see it, we encounter an interesting problem in logics with the addition of
the Barcan formula (for the �L operator). The L-regular theory α is not necessarily�-
complete as defined. Now, suppose that Af[j/xn ] ∈ α, for every j ∈ Con, but ∀xnAf �∈
α. Then Δ, as defined in the lemma, contains�L∀xnAf but never�LAf[j/n]. So Γ can be
extended by every instance �LAf[j/xn ]. Then, if Γ′ is �-complete, then ∀xn�LA ∈ Γ′.
Finally, from the Barcan formula we obtain a contradiction.

Having seen that part of the problem is that the theory α is not �-complete (and
not a possible world, in general), one might respond: “While I have some intuition that
robust possible worlds ought to be �-complete, I either have no intuition regarding
situations one way or the other. That is, it appears to do no philosophical harm to
the motivations for �-complete worlds to require all (L-normal) situations to also be
�-complete. Indeed, there may be some intuition that the so-called ‘logically normal’
points be �-complete, for that is just part of what ‘logically-normal’ means.”

First, I wish to stave off the argument that logical normality entails �-completeness
in this setting. The so-called logically normal worlds are just the worlds where the logical
operators behave according to logic. That is, these points make every theorem true. In
other words, similar to the second view above, these points are normal with respect to
the behavior of formulas, and not their meta properties such as �-completeness.

Having prevented a certain misunderstanding, I now turn to the difficulties in
carrying out the task of making all situations �-complete. Then I will investigate
the possibility of making only the situations in N �-complete.

If we make every situation �-complete, and thus require the Tarskian truth
conditions for quantified formulas, then (even after adding the Barcan formula) the
defined axiom systems will be incomplete for non-general frame semantics for sufficiently
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strong logics.12 Fine [7] has shown that Tarskian truth conditions plus non-general
frames entails incompleteness for strong relevant logics including R, E, T, and others.
Thus, requiring all points to be �-complete should not be done in conjunction with
giving up general frames. However, I conjecture the following:

Conjunction 1: We can obtain completeness for logics with�-complete
points, Tarskian truth conditions, the Barcan Formulas, and general
frames.

This conjecture is suggested by some results of [8] and [9]. A couple of first-order
modal classical logics are shown to be complete w.r.t. the MG semantics (and in
one case with variable domain MG semantics). There logics are also known to be
incomplete w.r.t. non-general frame, semantics with a Tarskian truth condition. The
results in question, however, show completeness for general frame, Tarskian models.
That is, for completeness for these logics, general frames are sufficient.

This conjecture remains to be proved or disproved. Moreover, (we have given)
no particular philosophical explanation to settle the more interpretive questions
corresponding to this conjecture.

§8. Concluding remarks. Herein we have constructed first-order epistemic logics
based on the propositional epistemic logics of [18]. In addition, we have proven
modular soundness and completeness results, and further explored some key formal
and philosophical difficulties. The systems defined here, as in [18], avoid some but
not all of the problems of logical omniscience; beliefs are still closed under relevant
implication. This problem may be further ameliorated by switching to neighbourhood-
based semantics, so far as closing beliefs under relevant bi-implication improves
matters.

On the first-order side of things, in addition to the �-completeness, there are
also the questions of constructing models with variable domains, identity, epistemic
constructions such as being familiar with (or knowing) an object, and so forth. Variable
domains should be constructible, following [11], by adding an existence predicate,
adding a domain function that determines a subdomain of U for each situation,
modifying the truth condition of a quantified formula, and appropriately replacing
certain first-order axioms.

Identity, however, is not as straightforward. Traditional approaches to identity in
relevant logics leads to irrelevant logics—i.e., the validity of implications such as p →
x = x. Several MG-based approaches to identity in relevant logics have been recently
developed, such as in [4] (based on Kremer’s relevant indiscernibility interpretation of
identity [10]) and [22]. These are starting points for identity adding identity to the
epistemic logics here.

It might be supposed that being familiar with an object in some respect is a
precondition for knowing that the object has or lacks certain properties. A logic of
familiarity is developed, e.g., in [23]. Developing the constructions of this paper to
include predicate(s) for familiarity would allow us to further deal with forms of logical

12 The reader is reminded that the Tarskian truth conditions are the generalized intersections
and unions of instances.
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omniscience. For an agent to know that P(�), we could require the agent to be familiar
with the object �.

The present paper thus serves as a starting point for several philosophical and formal
projects in epistemic logic.
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