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Abstract

This research studies the robustness of permanence and the continuous dependence of
the stationary distribution on the parameters for a stochastic predator–prey model with
Beddington–DeAngelis functional response. We show that if the model is extinct (resp.
permanent) for a parameter, it is still extinct (resp. permanent) in a neighbourhood of
this parameter. In the case of extinction, the Lyapunov exponent of predator quantity
is negative and the prey quantity converges almost to the saturated situation, where the
predator is absent at an exponential rate. Under the condition of permanence, the unique
stationary distribution converges weakly to the degenerate measure concentrated at the
unique limit cycle or at the globally asymptotic equilibrium when the diffusion term
tends to 0.
Keywords: Extinction; robust permanence; stationary distribution; limit cycle
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1. Introduction

Predator–prey relations refer to the relationship between two species where one species is
the hunted food source for the other. This relationship plays an important role in the evolution
of ecosystems, existing not only in the simplest life forms on Earth like single-celled organ-
isms, but also in complex animal communities. The earliest mathematical model describing
this relationship belongs to Lotka [20] and Volterra [28]. Since then, it has become an inter-
esting topic in mathematical biology [8, 17, 24]. In order to describe the predator feeding
rate with increasing prey density and quantify the energy transfer across trophic levels, the
functional response is added into the standard Lotka–Voltarra equation to make it more real-
istic. Depending on the characteristics of specific environments, several types of functional
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Stochastic predator-prey models 1011

responses have been chosen. The Holling Type II functional response (with the most com-
mon form as [14]), where the rate of prey consumption by a predator rises as the prey density
increases, but eventually levels off at a plateau (or asymptote) at which the rate of consump-
tion remains constant regardless of the increase in prey density, is introduced in [12]. Similarly,
Type III responses are sigmoidal and characterized by a low-density refuge from predation, a
mid-density peak in per capita mortality, and then declining mortality owing to predator sati-
ation [23]. Independently, [2, 4] proposed a functional response which is similar to Holling
Type II, but containing an extra term describing mutual interference by predators. It became
the most common type of functional response and is well documented in empirical studies.

Let α= (r,K,m, β, γ, a, b, c) be the vector of parameters, whose components are appro-
priate positive constants. Then a deterministic predator–prey model with the Beddington–
DeAngelis functional response has the form⎧⎪⎪⎨⎪⎪⎩

dxα(t) =
(

rxα(t)

(
1 − xα(t)

K

)
− mxα(t)yα(t)

a + byα(t) + cxα(t)

)
dt,

dyα(t) = yα(t)

(
−γ + βmxα(t)

a + byα(t) + cxα(t)

)
dt,

(1.1)

where xα(t) is the prey population and yα(t) is the predator population at time t (see also [29]
and references therein).

It is well known that the quadrants of the plane R
2+ = {(x, y) : x ≥ 0, y ≥ 0} and its inte-

rior R
2,o
+ = {(x, y) : x> 0, y> 0} are invariant with respect to (1.1). We denote by �φα(t) =

(xα(t), yα(t)) the unique solution of (1.1) with initial value φ = (x, y) ∈R
2+. Let

f (φ, α) =
(

rx

(
1 − x

K

)
− mxy

a + by + cx
; − γ y + βmxy

a + by + cx

)�
.

Consider the Lyapunov function V(φ, α) = βx + y. It can be seen that

V̇(φ, α) = Vφ(φ, α)f (φ, α) = βrx

(
1 − x

K

)
− γ y ≤ β(r + γ )2K

4r
− γV(φ, α).

From this inequality, it is easy to prove that the set

R(α) :=
{

(x, y) ∈R
2+ : βx + y ≤ β(r + γ )2K

4rγ

}
is also an attractive set with respect to (1.1).

For any vector parameter α= (r,K,m, β, γ, a, b, c) ∈R
8+, construct the threshold value

λα = −γ + βmK

a + Kc
. (1.2)

When λα > 0, the system in (1.1) has three non-negative equilibria: (0, 0), (K, 0), and(
x∗
α, y∗

α

)
. The long-term behaviour of the model in (1.1) has been classified (see [13, 30], for

example) by using the threshold value λα as follows.

Lemma 1.1. ([30].) Let λα be a threshold value that is defined by (1.2).

(i) If λα ≤ 0 then the boundary equilibrium point (K, 0) is globally asymptotically
stable.
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(ii) If λα > 0 and

b ≥ min

{
c

β
,

m2β2 − c2γ 2

γβ(mβ − cγ ) + mrβ2

}
then the positive equilibrium point φ∗

α = (x∗
α, y∗

α) of the system in (1.1) is globally
asymptotically stable.

(iii) If λα > 0 and

b<min

{
c

β
,

m2β2 − c2γ 2

γβ(mβ − cγ ) + mrβ2

}
then the positive equilibrium point φ∗

α = (
x∗
α, y∗

α

)
is unstable, and there is an exactly

stable limit cycle �α .

Furthermore, by the clarity of the positive equilibrium point formula and [9, Theorem 1.2,
p. 356], we have the following lemma.

Lemma 1.2 Let α= (r,K,m, β, γ, a, b, c) be the parameters of (1.1) such that λα > 0.

(i) On the set

b ≥ min

{
c

β
,

m2β2 − c2γ 2

γβ(mβ − cγ ) + mrβ2

}
,

the mapping α→ (
x∗
α, y∗

α

)
is continuous.

(ii) On

b<min

{
c

β
,

m2β2 − c2γ 2

γβ(mβ − cγ ) + mrβ2

}
,

the mapping α→ �α is continuous in Hausdorff distance.

Let K ⊂R
8+ be a compact set, and write R(K) = ∪α∈KR(α). It is clear that R(K) is a

compact set. Since f has continuous partial derivatives ∇φ f and ∇αf , these derivatives are
uniformly bounded on R(K) ×K. As a consequence, there exists a positive constant L1 such
that

‖f (φ1, α1) − f (φ2, α2)‖ ≤ L1(‖φ1 − φ2| + ‖α1 − α2‖), φ1, φ2 ∈R(K), α1, α2 ∈K.

From this inequality, for T > 0 and for any φ ∈R(K), α1, α2 ∈K, we have

sup
0≤t≤T

∥∥�φα1
(t) −�φα2

(t)
∥∥= sup

0≤t≤T

∥∥∥∥ ∫ t

0

[
f
(
�φα1

(s), α1
)− f

(
�φα2

(s), α2
)]

ds

∥∥∥∥
≤
∫ T

0

∥∥f
(
�φα1

(s), α1
)− f

(
�φα2

(s), α2
)∥∥ ds

≤ L1T‖α1 − α2‖ + L1

∫ T

0
sup

0≤s≤t

∥∥�φα1
(s) −�φα2

(s)
∥∥ dt.

Applying the Gronwall inequality, we obtain

sup
0≤t≤T

∥∥�φα1
(t) −�φα2

(t)
∥∥≤ L1T‖α1 − α2‖eL1T for all φ ∈R(K), α1, α2 ∈K. (1.3)

We now discuss the evolution of the predator–prey model in (1.1) in a random environment,
in which some parameters are perturbed by noise (see [7, 15, 16, 22, 25, 27). Currently, an
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Stochastic predator-prey models 1013

important way to model the influence of environmental fluctuations in biological systems is to
assume that white noise affects the growth rates. This assumption is reasonable and practicable
since there are many small factors involved in the evolution of systems. Hence, the noise must
follow a Gaussian distribution by the central limit theorem. Thus, in a random environment,
when the parameters r, γ are perturbed, they become r + σ1Ḃ1, γ ↪→ γ − σ2Ḃ2, where B1 and
B2 are two independent Brownian motions. Therefore, (1.1) subjected to environmental white
noise can be rewritten as

⎧⎪⎪⎨⎪⎪⎩
dxα,σ (t) =

(
rxα,σ (t)

(
1 − xα,σ (t)

K

)
− mxα,σ (t)yα,σ (t)

a + byα,σ (t) + cxα,σ (t)

)
dt + σ1xα,σ (t) dB1(t),

dyα,σ (t) = yα,σ (t)

(
−γ + βmxα,σ (t)

a + byα,σ (t) + cxα,σ (t)

)
dt + σ2yα,σ (t) dB2(t),

(1.4)

where σ = (σ1, σ2). The existence of a stationary distribution and the stochastic bifurcation for
(1.4) was considered in [30], where it was proved that there is a critical point b∗(σ1; σ2) which
depends on σ1 and σ2 such that the system in (1.4) undergoes a stochastic Hopf bifurcation at
b∗(σ1; σ2). The shape of the stationary distribution for the system in (1.4) changes from crater-
like to peak-like. However, the conditions imposed on the parameters are rather strict; hence,
some of the results in [30] need careful discussion. In [7], a threshold was constructed between
distinction and permanence (also the threshold of the existence of a stationary distribution) for
the system in (1.4). The extinction and permanence have been considered in a more generalized
context in [3, 10, 11] by studying the stochastic permanence of Markov processes via Lyapunov
exponents (expected per capita growth rate) and Lyapunov functions. Specifically, they applied
these results to give the permanence condition of the stochastic Kolmogorov equations. Also,
in [3, 10, 11, 26] the authors have shown that in the case of stochastic persistence there exists
a unique invariant probability π∗ such that the transition probability P(t, x, ·) of the solution
(1.4) converges in total variation norm to π∗ with an exponential rate. Robust permanence was
considered in [26] under the name of δ-perturbation for a system with compact state spaces;
[11] studied the robustness of discrete systems for stochastic ecological communities.

The results obtained in [3, 10, 11, 26] are very strong and it is easy to see that some of
the results in [7] can be obtained by careful calculations. However, in these works, the authors
have mainly dealt with conditions ensuring the permanence of (1.4) but have not focused on
studying the robustness of the system.

This paper continues to study this model by considering the robustness of permanence and
the continuous dependence of the stationary distribution of (1.4) on the data if it exists. This is
important in all mathematical models because in practice, observations do not perfectly reflect
biological reality, which causes the threshold estimates to be mere approximations. Precisely,
we prove that if the model is extinct (resp. permanent) for a parameter, it is still extinct (resp.
permanent) in a neighbourhood of this parameter. In the case of extinction, the Lyapunov expo-
nent of predator quantity is negative and the prey quantity converges almost to the saturated
situation, where the predator is absent. Further, if λα0 > 0 and α→ α0, σ → 0, the stationary
distribution μα,σ of (1.4) will converge weakly to the degenerate distribution concentrated on
the critical point

(
x∗
α0
, y∗
α0

)
or on the limit cycle �α0 of the system in (1.1). Thus, if the model

without noise has a critical point
(
x∗
α0
, y∗
α0

)
or a limit cycle �α0 with parameter α0, then when

the intensity of the noise is small, the long-term population density is almost concentrated at
any neighbourhood of

(
x∗
α0
, y∗
α0

)
or of the limit cycle �α0 for any parameter close to α0. This
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is an important conclusion as the small-noise asymptotics are very relevant in mathematical
biology.

The paper is organized as follows. The next section discusses the main results. In section 3,
we provide an example to illustrate that when (α, σ ) → (α0, 0), the stationary distribution
μα,σ weakly converges to the degenerate distribution concentrated on (x∗

α0
, y∗
α0

) or on the limit
cycle �α0 .

2. Main result

Let (
,F , P) be a complete probability space and let B1(t) and B2(t) be two mutually
independent Brownian motions. It is well known that both R

2+ and R
2,o
+
(
the interior of R2+

)
are invariant to (1.4), i.e. for any initial value φ = (x(0), y(0)) ∈R

2+
(
resp. in R

2,◦
+
)
, there exists

a unique global solution to (1.4) that remains in R
2+
(
resp. ∈R

2,◦
+
)

almost surely [30]. Denote

by �φα,σ (t) = (xα,σ (t), yα,σ (t)) the unique solution of (1.4) with initial value φ ∈R
2+. For α=

(r,K,m, β, γ, a, b, c) and δ > 0, let

Uδ(α) = {
α′ = (r′,K′,m′, β ′, γ ′, a′, b′, c′) ∈R

8+ : ‖α′ − α‖ ≤ δ}
and Vδ(φ0) = {

φ ∈R
2+ : ‖φ − φ0‖ ≤ δ} be the balls with radius δ > 0 and center α (resp. φ0).

Write Rδ(α) =⋃
α′∈Uδ(α) R(α′). For any R> 0, write BR = {φ = (x, y) ∈R

2+ : ‖φ‖ ≤ R}. Let

C2
(
R

2,R+
)

be the family of all non-negative functions V(φ) on R
2 which are twice continu-

ously differentiable in φ. For V ∈ C2
(
R

2,R+
)
, define the differential operator LV associated

with (1.4) as

LV(φ) = Vφ(φ)f (φ, α) + 1
2 trace

[
g�(φ, σ )Vφφ(φ)g(φ, σ )

]
,

where Vφ(φ) and Vφφ(φ) are the gradient and Hessian of V( · ), and g is the diffusion coefficient
of (1.4) given by

g(φ, σ ) =
(
σ1x 0

0 σ2y

)
.

By virtue of the symmetry of Brownian motions, in the following we are interested only in
σ1 ≥ 0, σ2 ≥ 0.

Lemma 2.1 Let K ⊂R
8,o
+ be a compact set and σ > 0. Then, for any 0 ≤ p ≤ 2γ∗/σ 2,

E
(
V
(
�φα,σ (t)

))≤ e−H1tV(φ) + H2

H1
for all α ∈K, ‖σ‖ ≤ σ , t ≥ 0, (2.1)

where

H1 = (1 + p)

2

(
γ∗ − pσ 2

2

)
, H2 = sup

α∈K,‖σ‖≤σ
sup
φ∈R2+

{LV(φ) + H1V(φ)},

γ∗ = inf{β ∧ γ : (r,K,m, β, γ, a, b, c) ∈K}, and V(φ) = (βx + y)1+p. As a consequence,

sup
{
E
∥∥�φα,σ (t)

∥∥1+p : α ∈K, ‖σ‖ ≤ σ , t ≥ 0
}
<∞. (2.2)
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Proof. The differential operator LV(φ) associated with (1.4) is given by

LV(φ) = (1 + p)(βx + y)p
(
βrx

(
1 − x

K

)
− γ y

)
+ p(1 + p)

2
(βx + y)p−1(β2σ 2

1 x2+ σ 2
2 y2)

≤ (1 + p)

(
−γ + p‖σ‖2

2

)
(βx + y)1+p + βr(1 + p)(βx + y)px

(
γ + r

r
− x

K

)
≤ (1 + p)

(
−γ∗ + pσ 2

2

)
(βx + y)1+p + βr(1 + p)(βx + y)px

(
γ + r

r
− x

K

)
≤ H2 − H1V(φ),

where

H1 = 1 + p

2

(
γ∗ − pσ 2

2

)
, H2 = sup

α∈K,‖σ‖≤σ
sup
φ∈R2+

{LV(φ) + H1V(φ)}<∞.

Thus, LV(φ) ≤ H2 − H1V(φ). By a standard argument as in [5, Lemma 2.3], it follows that

E
(
eH1tV

(
�φα,σ (t)

))≤ V(φ) + H2(eH1t − 1)

H1
.

Thus, E
(
V
(
�
φ
α,σ (t)

))≤ e−H1tV(φ) + H2/H1, i.e. we get (2.1).

By using the inequality ‖φ‖1+p ≤ max
{
1, γ−(1+p)∗

}
V(φ) and (2.1), we have

sup
{
E‖�φα,σ (t)‖1+p : α ∈K, ‖σ‖ ≤ σ , t ≥ 0

}
<∞.

�

When the predator is absent, the evolution of the prey follows the stochastic logistic
equation on the boundary,

dϕα,σ (t) = rϕα,σ (t)

(
1 − ϕα,σ (t)

K

)
dt + σ1ϕα,σ (t) dB1(t). (2.3)

Denote by ϕα,σ (t) the solution of (2.3). By the comparison theorem, it can be seen that
xα,σ (t) ≤ ϕα,σ (t) for all t ≥ 0 almost surely (a.s.), provided that xα,σ (0) = ϕα,σ (0)> 0 and
yα,σ (0) ≥ 0.

Lemma 2.2 Let (xα,σ (t), yα,σ (t)) be a solution of (1.4) and ϕα,σ (t) a solution of (2.3).

(i) If r<σ 2
1 /2 then the system is exponentially ruined in the sense that the Lyapunov

exponents of ϕα,σ ( · ), xα,σ ( · ) and yα,σ ( · ) are negative.

(ii) In the case r − σ 2
1 /2> 0, (2.3) has a unique stationary distribution να,σ with the density

pα,σ (x) = Cx
(

2r/σ 2
1

)
−2e−

(
2r/σ 2

1 K
)

x, x ≥ 0. Further, να,σ weakly converges to δK( · ) as
σ1 → 0, where δK( · ) is the Dirac measure with mass at K.

Proof. It is easy to verify that with the initial condition ϕα,σ (0) = x0 > 0, (2.3) has the unique
solution

ϕα,σ (t) = x0 exp
{(

r − σ 2
1 /2

)
t + σB1(t)

}
K + rx0

∫ t
0 exp

{(
r − σ 2

1 /2
)
s + σB1(s)

}
ds

(2.4)

(see [18], for example).
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Therefore, by the law of iterated logarithm, we see that if r − σ 2
1 /2< 0 then

lim
t→∞

ln ϕα,σ (t)

t
= r − σ 2

1

2
< 0.

Using this estimate and the comparison theorem gets

lim sup
t→∞

ln xα,σ (t)

t
≤ lim

t→∞
ln ϕα,σ (t)

t
= r − σ 2

1

2
< 0.

On the other hand, from the second equation in (1.4),

ln yα,σ (t)

t
= ln yα,σ (0)

t
− γ − σ 2

2

2
+ 1

t

∫ t

0

βmxα,σ (s)

a + byα,σ (s) + cxα,σ (s)
ds + σ2B2(t)

t
. (2.5)

By using the strong law of large numbers and (2.5), we have

lim sup
t→∞

ln yα,σ (t)

t
= −γ − σ 2

2

2
< 0,

which proves item (i).
Consider now the Fokker–Planck equation with respect to (2.3),

∂pα,σ (x, t)

∂t
= −∂[rx(1 − x/K)pα,σ (x, t)]

∂x
+ σ 2

1

2

∂2[x2pα,σ (x)]

∂x2
.

It is easy to see that for r − σ 2
1 /2> 0 this has a unique positive integrable solution pα,σ (x) =

Cx2r/σ 2
1 −2e−(2r/σ 2

1 K)x, x ≥ 0, which is a stationary density of (2.3), where C is the normalizing
constant defined by

C = 1

�
((

2r/σ 2
1

)− 1
)( 2r

σ 2
1 K

)(2r/σ 2
1 )−1

and �( · ) is the Gamma function. This means that (2.3) has a stationary distribution whose
density is a Gamma distribution �

((
2r/σ 2

1

)− 1, 2r/σ 2
1 K
)
. By direct calculation we have

lim
σ→0

E(ϕα,σ (t)) = lim
σ1→0

[
K − Kσ 2

1

2r

]
= K,

lim
σ1→0

Var(ϕα,σ (t)) = lim
σ1→0

[
K2σ 4

1

4r2

(
2r

σ 2
1

− 1

)]
= 0.

These equalities imply that the process ϕα,σ (t) converges to K in L2 as σ1 → 0, which proves
item (ii). �

By Lemma 2.2(i), from now on we are only interested in the case r>σ 2
1 /2. For any α ∈R

8,o
+

and σ ≥ 0 we define a threshold

λα,σ = −γ − σ 2
2

2
+
∫ ∞

0

mβx

a + cx
pα,σ (x) dx.

We note that when σ = 0 we have λα,0 = λα as defined by (1.2).
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Lemma 2.3 The mapping (α, σ ) → λα,σ is continuous on the domain

D := {
α= (r,K,m, β, γ, a, b, c) : α ∈R

8+, r>σ 2
1 /2, σ1 ≥ 0

}
.

Proof. The integrability of the function x
(

2r/σ 2
1

)
−2e−

(
2r/σ 2

1 K
)

x, x ≥ 0, depends on the two
singular points 0 and ∞. For α0 = (r0,K0,m0, β0, γ0, a0, b0, c0) ∈D and σ0 with σ0,1 > 0,
we can find a sufficiently small η > 0 such that the function

h
(
x
)=

⎧⎨⎩x
((

2r0−η
)
/
(
σ 2

0,1+η
))

−2e−
((

2r0−η
)
/
(
σ 2

0,1K0+η
))

x for 0< x< 1,

x
((

2r0+η
)
/
(
σ 2

0,1−η
))

−2e−
((

2r0−η
)
/
(
σ 2

0,1K0+η
))

x for 1 ≤ x.

is integrable on R+. Further, for all α to be close to α0 and σ to be close to σ0, we have
pα,σ (x) ≤ h(x) for all x ∈R+. As the function mβx/(a + cx) is bounded, we can use the
Lebesgue dominated convergence theorem to get limα→α0,σ→σ0 λα,σ0 = λα,σ0 .

The case σ0 = 0 follows from Lemma 2.2(ii). �

Theorem 2.1 If λα,σ < 0 then yα,σ (t) has the Lyapunov exponent λα,σ and xα,σ (t) − ϕα,σ (t)
converges almost surely to 0 as t → ∞ at an exponential rate.

Proof. Since the function h(u) = u/(A + u) is increasing in u> 0, it follows from (2.5) and
the comparison theorem that

ln yα,σ (t)

t
= ln yα,σ (0)

t
− γ − σ 2

2

2
+ 1

t

∫ t

0

βmxα,σ (s)

a + byα,σ (s) + cxα,σ (s)
ds + σ2B2(t)

t

≤ ln yα,σ (0)

t
− γ − σ 2

2

2
+ 1

t

∫ t

0

βmϕα,σ (s)

a + cϕα,σ (s)
ds + σ2B2(t)

t
.

Letting t → ∞ and applying the law of large numbers to the process ϕα,σ , we obtain

lim sup
t→∞

ln yα,σ (t)

t
≤ −γ − σ 2

2

2
+
∫ ∞

0

βmx

a + cx
pα,σ (x) dx = λα,σ . (2.6)

We now prove that the process xα,σ (t) − ϕα,σ (t) converges almost surely to 0 by estimating
the rate of convergence ϕα,σ (t) − xα,σ (t) when t → ∞. Using Itô’s formula, we get

ln xα,σ (t) = ln x0 +
∫ t

0

(
r

(
1 − xα,σ (s)

K

)
− myα,σ (s)

a + byα,σ (s) + cxα,σ (s)
− σ 2

1

2

)
ds + σ1B1(t),

ln ϕα,σ (t) = ln ϕα,σ (0) +
∫ t

0

(
r

(
1 − ϕα,σ (s)

K

)
− σ 2

1

2

)
ds + σ1B1(t).

From these and the inequalities

my

a + by + cx
≤ my

a
for all x, y> 0, xα,σ (t) ≤ ϕα,σ (t), t ≥ 0,
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we have

0 ≤ lim sup
t→∞

ln ϕα,σ (t) − ln xα,σ (t)

t

≤ lim sup
t→∞

1

t

∫ t

0

(
r

K
(xα,σ (s) − ϕα,σ (s)) + m

a
yα,σ (s)

)
ds

≤ m

a
lim sup

t→∞
1

t

∫ t

0
yα,σ (s) ds = 0. (2.7)

From (2.4), it is easy to see that limt→∞ (ln ϕα,σ (t))/t = 0 a.s. Combining this with (2.7),
we obtain limt→∞ (ln xα,σ (t))/t = 0 a.s. Hence, from (2.6),

lim sup
t→∞

ln yα,σ (t) − ln xα,σ (t)

t
≤ λα,σ < 0. (2.8)

Otherwise,

d

(
1

xα,σ (t)

)
=
(
σ 2

1 − r

xα,σ (t)
+ r

K
+ myα,σ (t)

xα,σ (t)(a + byα,σ (t) + cxα,σ (t))

)
dt − σ1

xα,σ (t)
dB1(t),

d

(
1

ϕα,σ (t)

)
=
(
σ 2

1 − r

ϕα,σ (t)
+ r

K

)
dt − σ1

ϕα,σ (t)
dB1(t).

Put

z(t) = 1

xα,σ (t)
− 1

ϕα,σ (t)
.

We see that z(t) ≥ 0 for all t ≥ 0, and

dz(t) =
((
σ 2

1 − r
)
z(t) + myα,σ (t)

xα,σ (t)(a + byα,σ (t) + cxα,σ (t))

)
dt − σ1z(t) dB1(t).

In view of the variation of constants formula [21, Theorem 3.1, p .96], this yields

z(t) = c1�(t)
∫ t

0
�−1(s)

myα,σ (s)

xα,σ (s)(a + byα,σ (s) + cxα,σ (s))
ds, (2.9)

where �(t) = e(σ 2
1 /2−r)t−σ1B1(t). It is easy to see that

lim
t→∞

ln�(t)

t
= σ 2

1

2
− r. (2.10)

Let 0<λ<max
{(

r − σ 2
1

)
/2,−λα,σ

}
be arbitrary, and choose ε > 0 such that 0<λ+

3ε <max
{
r − σ 2

1 /2,−λα,σ
}
. From (2.10), there are two positive random variables η1, η2 such

that

η1e
(
σ 2

1 /2−r−ε
)

t ≤�(t) ≤ η2e
(
σ 2

1 /2−r+ε
)

t for all t ≥ 0 a.s. (2.11)

Further, it follows from (2.8) that there exists a positive random variable η3 that satisfies

yα,σ (t)

xα,σ (t)
≤ η3e(λα,σ+ε)t for all t ≥ 0 a.s. (2.12)
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Combining (2.9), (2.11), and (2.12), we get

eλtz(t) ≤ c1mη2η3

aη1
e
(
λ+σ 2

1 /2−r+ε
)

t
∫ t

0
e
(

r−σ 2
1 /2+λα,σ+2ε

)
s ds.

Thus,

0 ≤ lim
t→∞ eλtz(t) ≤ c1mη2η3

aη1
(
r − σ 2

1 /2 + λα,σ + 2ε
) lim

t→∞
(
e(λα,σ+λ+3ε)t − e(λ+σ 2

1 /2−r+ε)t)= 0.

As a result,

lim
t→∞ eλtz(t) = lim

t→∞ eλt
(

1

xα,σ (t)
− 1

ϕα,σ (t)

)
= 0. (2.13)

Since limt→∞ (ln ϕα,σ (t))/t = 0, limt→∞ e−λt/2ϕ2
α,σ (t) = 0. Using (2.13) we get

lim
t→∞ eλt/2(ϕα,σ (t) − xα,σ (t)) = lim

t→∞ eλt/2ϕα,σ (t)xα,σ (t)

(
1

xα,σ (t)
− 1

ϕα,σ (t)

)
= lim

t→∞ e−λt/2ϕα,σ (t)xα,σ (t)eλt
(

1

xα,σ (t)
− 1

ϕα,σ (t)

)
= 0.

This means that xα,σ (t) − ϕα,σ (t) converges almost surely to 0 as t → ∞ at an exponential
rate.

We now turn to the estimate of the Lyapunov exponent of yα,σ . From (2.5) we get

ln yα,σ (t)

t
= ln yα,σ (0)

t
− γ − σ 2

2

2
+ 1

t

∫ t

0

βmxα,σ (s)

a + byα,σ (s) + cxα,σ (s)
ds + σ2B2(t)

t

= ln yα,σ (0)

t
− γ − σ 2

2

2
+ 1

t

∫ t

0

βmϕα,σ (s)

a + cϕα,σ (s)
ds + σ2B2(t)

t

+ 1

t

∫ t

0
βm

(
xα,σ (s)

a + byα,σ (s) + cxα,σ (s)
− ϕα,σ (s)

a + cϕα,σ (s)

)
ds.

Since limt→∞ (xα,σ (t) − ϕα,σ (t)) = 0 and limt→∞ yα,σ (t) = 0, it is easy to see that

lim
t→∞

1

t

∫ t

0
βm

(
xα,σ (s)

a + byα,σ (s) + cxα,σ (s)
− ϕα,σ (s)

a + cϕα,σ (s)

)
ds = 0.

Thus,

lim
t→∞

ln yα,σ (t)

t
= lim

t→∞

(
ln yα,σ (0)

t
− γ − σ 2

2

2
+ 1

t

∫ t

0

βmϕα,σ (s)

a + cϕα,σ (s)
ds + σ2B2(t)

t

)
= λα,σ ,

which completes the proof. �

The following lemma is similar to one in [6].

Lemma 2.4 For T, ς > 0 and α0 ∈R
8,o
+ , there exists a number κ and δ such that, for all α ∈

Uδ(α0) and 0< ‖σ‖< κ ,

P
{∥∥�φα,σ (t) −�φα0

(t)
∥∥≥ ς for some t ∈ [0, T]

}
< exp

{
− κ

‖σ‖2

}
, φ ∈Rδ(α0). (2.14)
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Proof. Let 0< δ ≤ ς/2L1TeL1T . From (1.3) we have

sup
0≤t≤T

∥∥�φα(t) −�φα0
(t)
∥∥≤ ς

2
for all α ∈ Uδ(α0), φ ∈Rδ(α0). (2.15)

Let R> 0 be large enough that Rδ(α0) ⊂ BR, and let hR( · ) be a twice-differentiable function
such that, for 0 ≤ hR ≤ 1,

hR(φ) =
{

1 if ‖φ‖ ≤ R,

0 if ‖φ‖> R + 1.

Put

fh(φ, α) = h(φ)f (φ, α) =
(

h(φ)f (1)(φ, α)

h(φ)f (2)(φ, α)

)
,

gh(φ) = h(x, y)g(x, y) = h(x, y)

(
σ1x 0

0 σ2y

)
.

It can be seen that fh(φ, α) is a Lipschitz function, i.e. there exists M> 0 such that

‖fh(φ1, α) − fh(φ2, α)‖ ≤ M‖φ2 − φ1‖ for all α ∈ Uδ(α0), φ1, φ2 ∈R
2+. (2.16)

If we choose M ≥ 2R2 we also have∥∥gh(φ)g�
h (φ)

∥∥≤ M‖σ‖2 for all φ ∈R
2+. (2.17)

Let �̃φα,σ (t) be the solution starting at φ ∈Rδ(α0) of the equation

d�̃(t) = fh
(
�̃(t), α

)
dt + gh

(
�̃(t)

)
dB(t),

where B(t) = (B1(t), B2(t))�. Define the stopping time τφR = inf
{
t ≥ 0 :

∥∥�φα,σ (t)
∥∥≥ R

}
.

It is easy to see that �̃φα,σ (t) =�
φ
α,σ (t) up to time τφR . Since the state space Rδ(α0) of (1.1)

is contained in BR, the solution �φα( · ) of (1.1) is also the solution of the equation d�(t) =
fh(�(t), α) dt, t ≥ 0, with initial value φ ∈Rδ(α0). For all t ∈ [0, T], using Itô’s formula we
have ∥∥�̃φα,σ (t) −�φα(t)

∥∥2 = 2
∫ t

0

(
�̃φα,σ (s) −�φα(s)

)�(
fh(�̃φα,σ (s), α) − fh

(
�φα(s), α

))
ds

+
∫ t

0
h
(
�̃φα,σ (s)

)
trace

(
gh
(
�̃φα,σ (s)

)
g�

h

(
�̃φα,σ (s)

))
ds

+ 2
∫ t

0

(
�̃φα,σ (s) −�φα(s)

)�
gh
(
�̃φα,σ (s)

)
dB(t).

By the exponential martingale inequality, for T, ς > 0 there exists a number κ = κ(T, ς )
such that P(
̃) ≥ 1 − exp

{− κ/‖σ‖2
}
, where


̃=
{

sup
t∈[0,T]

[ ∫ t

0

(
�̃φα,σ (s) −�φα(s)

)�
gh
(
�̃φα,σ (s)

)
dB(t)

− 1

2‖σ‖2

∫ t

0

(
�̃φα,σ (s) −�φα(s)

)�
gh
(
�̃φα,σ (s)

)
g�

h

(
�̃φα,σ (s)

)(
�̃φα,σ (s) −�φα(s)

)
ds

]
: κ, φ ∈Rδ(α0)

}
.
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From (2.16) and (2.17), this implies that, for all ω ∈ 
̃,∥∥�̃φα,σ (t) −�φα(t)
∥∥2 ≤ 2

∫ t

0

∥∥�̃φα,σ (s) −�φα(s)
∥∥∥∥fh(�̃φα,σ (s), α) − fh

(
�φα(s), α

)∥∥ ds

+
∫ t

0
h
(
�̃φα,σ (s)

)
trace

(
gh
(
�̃φα,σ (s)

)
g�

h

(
�̃φα,σ (s)

))
ds

+ 1∥∥σ∥∥2

∫ t

0

∥∥�̃φα,σ (s) −�φα(s)
∥∥2∥∥gh

(
�̃φα,σ (s)

)
g�

h

(
�̃φα,σ (s)

)∥∥ ds

+ 2
∫ t

0
κ ds

≤ 3M
∫ t

0

∥∥�̃φα,σ (s) −�φα(s)
∥∥2 ds + (M

∥∥σ∥∥2 + 2κ)T .

For all t ∈ [0, T], an application of the Gronwall–Belmann inequality implies that∥∥�̃φα,σ (t) −�φα(t)
∥∥≤

√
(M‖σ‖2 + 2κ)T exp{3MT}

in the set 
̃. Choosing κ sufficiently small that (Mκ2 + 2κ)T exp{3MT} ≤ ς2/4 implies that∥∥�̃φα,σ (t) −�φα(t)
∥∥≤ ς

2
for all α ∈ Uδ(α0), 0< ‖σ‖< κ, ω ∈ 
̃. (2.18)

From (2.18), (2.15), and the triangle inequality, we have ‖�̃φα,σ (t) −�
φ
α0 (t)‖ ≤ ς for all

α ∈ Uδ(α0), t ∈ [0, T], ω ∈ 
̃. It also follows from this inequality that when ω ∈ 
̃ we have
τR > T , which implies that

P
{∥∥�φα,σ (t) −�φα0

(t)
∥∥<ς for all t ∈ [0, T]

}≥ P(
1) ≥ 1 − exp

{
κ

‖σ‖2

}
holds for all 0< ‖σ‖< κ and α ∈ Uδ(α0). This completes the proof. �

Theorem 2.2 Let α0 = (r0,K0,m0, β0, γ0, a0, b0, c0) be a vector of parameters of the system
in (1.1) such that λα0 > 0 and

b0 <min

{
c0

β0
,

m2
0β

2
0 − c2

0γ
2
0

γ0β0(m0β0 − c0γ0) + m0r0β
2
0

}
.

Then, there exist δ1 > 0 and σ > 0 such that, for all α ∈ Uδ1 (α0) and 0< ‖σ‖ ≤ σ , the

Markov process�φα,σ (t) = (xα,σ (t), yα,σ (t)) has a unique stationary distribution μα,σ . Further,
μα,σ is concentrated on R

2,◦
+ and has a density with respect to the Lebesgue measure. Also, for

any open set V containing �α0 we have

lim
(α,σ )→(α0,0)

μα,σ (V) = 1, (2.19)

where �α0 is the limit cycle of the system in (1.1) corresponding to the parameter α0.

Proof. Since

λα0 = −γ0 + Km0β0

a0 + Kc0
> 0, b0 <min

{
c0

β0
,

m2
0β

2
0 − c2

0γ
2
0

γ0β0(m0β0 − c0γ0) + m0r0β
2
0

}
,
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we can use Lemma 2.3 to find δ1 > 0 and σ such that

λα,σ = −γ − σ 2
2

2
+
∫ ∞

0

mβx

a + cx
pα,σ (x) dx> 0, b<min

{
c

β
,

m2β2 − c2γ 2

γβ(mβ − cγ ) + mrβ2

}
hold for all α ∈ Uδ1 (α0) and 0 ≤ ‖σ‖ ≤ σ . By virtue of [7, Theorem 2.3, p. 192], the Markov
process�φα,σ (t) = (xα,σ (t), yα,σ (t)) has a unique stationary distribution μα,σ with support R2,◦.
Further, by [1, 19], the stationary distribution μα,σ has a density with respect to the Lebesgue
measure on R

2,◦ by the non-degenerate property of g(φ).
On the other hand, it follows from (2.2) that for any ε > 0 there exists R = R(ε) such that

μα,σ (BR) ≥ 1 − ε for every α ∈ Uδ1 (α0) and 0 ≤ ‖σ‖ ≤ σ .
By the assumption of Theorem 2.2, it can be seen from Lemma 1.1(ii) that φ∗

α0
is a source

point, i.e. two eigenvalues of the matrix Df
(
φ∗
α0
, α0

)
have positive real parts. Therefore,

the Lyapunov equation Df
(
φ∗
α0
, α0

)�
P + PDf

(
φ∗
α0
, α0

)= I has a positive definite solution P.
Since Df (φ, α) is continuous in φ, α, there exist positive constants 0< δ2 < δ1, 0< δ3, and c
such that

V̇(φ, α) = Vφ(φ, α)f (φ, α)> c‖φ − φ∗
α‖,

trace
(
g�(φ)Pg(φ)

)≥ c‖σ‖2

for all φ ∈ Vδ3

(
φ∗
α0

)
, α ∈ Uδ2 (α0), where V(φ, α) = (φ − φ∗

α)�P(φ − φ∗
α). Hence,

LV(φ, α) = Vφ(φ, α)f (φ, α) + trace
(
g�(φ)Pg(φ)

)≥ c‖σ‖2

for all φ ∈ Vδ3

(
φ∗
α0

)
, α ∈ Uδ2 (α0).

Writing S = Vδ3/2
(
φ∗
α0

)
and Z = Vδ3

(
φ∗
α0

)
, we now prove that lim(α,σ )→(α0,0) μα,σ (S) = 0.

First, we note from (2.14) that there is T∗ such that if φ ∈ BR \ S then �φα(t) ∈ BR \Z for all
t ≥ T∗. Further, for any T > 0 we have

μα,σ (S) =
∫
R

2+
Pα,σ (T, φ, S)μα,σ (dφ)

=
∫

BR\S
Pα,σ (T, φ, S)μα,σ (dφ) +

∫
S

Pα,σ (T, φ, S)μα,σ (dφ) +
∫

Bc
R

Pα,σ (T, φ, S)μα,σ (dφ),

where Pα,σ (T, φ, ·) = P
(
�
φ
α,σ (T) ∈ ·) is the transition probability of the Markov process�φα,σ .

It is clear that ∫
Bc

R

Pα,σ (T, φ, S)μα,σ (dφ) ≤μα,σ
(
Bc

R

)≤ ε.

For φ ∈ S, let τφα,σ be the exit time of �φα,σ ( · ) from Z , i.e. τφα,σ = inf
{
t ≥ 0 :�φα,σ (t) �∈Z}.

By Itô’s formula, we have

θ ≥EV
(
�φα,σ

(
τφα,σ ∧ t

))− V(φ) =E

∫ τ
φ
α,σ∧t

0
LV
(
�φα,σ (s)

)
ds

≥ c‖σ‖2
E
[
τφα,σ ∧ t

]≥ c‖σ‖2tP
(
τφα,σ ≥ t

)
, t ≥ 0,
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where θ = sup
{
V(φ, α) : φ ∈Z, α ∈ Uδ2 (α0)

}
. Choosing

Tσ = max

{
2θ

c‖σ‖2
, T∗

}
means that P

(
τ
φ
α,σ ≥ Tσ

)≤ 1
2 for all φ ∈ S, α ∈ Uδ2 (α0). Thus,

Pα,σ
(
Tσ , φ, S

)= P
(
�φ(Tσ ) ∈ S

)
= P

(
�φ(Tσ ) ∈ S, τφα,σ ≥ Tσ

)+ P
(
�φ(Tσ ) ∈ S, τφα,σ < Tσ

)
≤ 1

2
+ P

(
�φ(Tσ ) ∈ S, τφα,σ < Tσ

)
. (2.20)

By using the strong Markov property of the solution, we get

P
(
�φ(Tσ ) ∈ S, τφα,σ < Tσ

)=
∫ Tσ

0

[ ∫
∂Z

P
{
�ψα,σ (Tσ − t) ∈ S

}
P
{
�φα,σ (t) ∈ dψ

}]
P
{
τφα,σ ∈ dt

}
.

Note that when ψ ∈ ∂Z we have �ψα (Tσ − t) �∈Z for all t ≥ 0. Therefore, by Lemma 2.4
with ς = δ3/2 we can find σ > κ > 0 and 0< δ4 ≤ δ2 such that P

(
�
ψ
α,σ (Tσ − t) ∈ S

)≤ exp
{−

κ/‖σ‖2
}

for 0 ≤ t ≤ Tσ , 0< ‖σ‖< κ , and α ∈ Uδ4 (α0). Hence,

P
{
�φ(Tσ ) ∈ S, τφα,σ < Tσ

}≤ Tσ exp

{
− κ

‖σ‖2

}
, α ∈ Uδ4 (α0), 0< ‖σ‖< κ . (2.21)

Combining (2.20) and (2.21), we get∫
S

P(Tσ , φ, S)μα,σ (dφ) ≤ 1

2
μα,σ (S) + Tσ exp

{
− κ

‖σ‖2

}
, α ∈ Uδ4 (α0), 0< ‖σ‖< κ .

On the other hand, when φ ∈ BR \ S we see that �φα(Tσ ) �∈Z . Therefore, using (2.14) again
we get ∫

BR\S
P(Tσ , φ, S)μα,σ (dφ)< exp

{
− κ

‖σ‖2

}
, α ∈ Uδ4 (α0), 0< ‖σ‖< κ .

Summing up, we have

μα,σ (S) ≤ 1

2
μα,σ (S) + (Tσ + 1) exp

{
− κ

‖σ‖2

}
+ ε, α ∈ Uδ4 (α0), 0< ‖σ‖< κ .

Noting that lim(α,σ )→(α0,0) (Tσ + 1) exp
{− κ/‖σ‖2

}= 0, we can pass the limit to get

lim sup
(α,σ )→(α0,0)

μα,σ (S) ≤ 1

2
lim sup

(α,σ )→(α0,0)
μα,σ (S) + ε.

Since ε > 0 is arbitrary, lim sup(α,σ )→(α0,0) μα,σ (S) = 0.
We now prove (2.19). Let V be an open set containing �α0 . It suffices to show that, for

any compact set B intersecting neither V nor S, we have lim(α,σ )→(α0,0) μα,σ (B) = 0. Let 3d =
dist

(
∂V, �α0

)
and Vd

(
�α0

)= {
x : dist

(
x, �α0

)
< d

}
. From Lemma 1.2(ii), there exists 0< δ5 <
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δ4 such that �α ⊂ Vd(�α0 ) for all α ∈ Uδ5 (α0). It is clear that dist(B, Vd(�α0 ))> 2d. Let ε >
0 and R = R(ε)> 0 be such that S, B ⊂ BR and μα,σ

(
Bc

R

)≤ ε. Since �α0 is asymptotically
stable, we can find an open neighbourhood U of �α0 such that U ⊂ Vd(�α0 ) and if φ ∈ U then

�
φ
α0 (t) ∈ Vd(�α0 ) for all t ≥ 0. Further, the simple property of the limit cycle �α0 implies that

limt→∞ dist(�φα0 (t), �α0 ) = 0 for all φ �∈ S. This means that, for every φ ∈ BR \ S, there exists

a Tφ such that �φα0 (t) ∈ U for all t ≥ Tφ .
By the continuity of solutions on the initial condition, there exists δφ > 0 such that�z

α0
(t) ∈

U for all z ∈ Vδφ (φ) and t> Tφ . Since BR \ S is compact, there are φ1, φ2, . . . , φn such that

BR \ S ⊂ ∪n
k=1Vδφk

(φk). Let T = max
{
Tφ1 , Tφ2 , . . . , Tφn

}
. It can be seen that �φα0 (T) ∈ U ⊂

Vd(�α0 ) for all φ ∈ BR \ S. Similar to the above, we have

μα,σ (B) =
∫

BR\S
Pα,σ (T, φ, B)μα,σ (dφ) +

∫
S

Pα,σ (T, φ, B)μα,σ (dφ)

+
∫

Bc
R

Pα,σ (T, φ, B)μα,σ (dφ)

≤
∫

BR\S
Pα,σ (T, φ, B)μα,σ (dφ) +μα,σ (S) +μα,σ

(
Bc

R

)
≤
∫

BR\S
Pα,σ (T, φ, B)μα,σ (dφ) +μα,σ (S) + ε.

Using Lemma 2.4 again with ς = d, we can find δ6 < δ5 and κ1 such that

P
{∥∥�φα,σ (T) −�φα(T)

∥∥≥ ς}≤ exp

{
− κ1

‖σ‖2

}
, α ∈ Uδ6 (α0), φ ∈ BR \ S, 0< ‖σ‖< κ1.

This inequality implies that

P
{∥∥�φα,σ (T) ∈ V}≥ 1 − exp

{
− κ1

‖σ‖2

}
, α ∈ Uδ6 (α0), φ ∈ BR \ S, 0< ‖σ‖< κ1.

Since B ∩ V = ∅, Pα,σ (T, φ, B) = P
{∥∥�φα,σ (T) ∈ B

}≤ exp
{− κ1/‖σ‖2

}
for all α ∈

Uδ6 (α0), φ ∈ BR \ S, 0< ‖σ‖< κ1. Hence,

μα,σ (B) ≤ exp

{
− κ1

‖σ‖2

}
+μα,σ (S) + ε,

and thus

lim sup
(α,σ )→(α0,0)

μα,σ (B) ≤ lim
(α,σ )→(α0,0)

(
exp

{
− κ

‖σ‖2

}
+μα,σ (S) + ε

)
= ε.

Since ε is arbitrary, lim sup(α,σ )→(α0,0) μα,σ (B) = 0, which completes the proof. �

Corollary 2.1 Suppose that all assumptions of Theorem 2.2 hold. If H is a continuous and
bounded function defined on R

2+, then

lim
(α,σ )→(α0,0)

∫
R

2+
H(x) dμα,σ (x) = 1

T∗

∫ T∗

0
H(�φα0

(t)) dt,

where φ is any point on �α0 and T∗ is the period of the limit cycle, i.e. �φα0 (t + T∗) =�
φ
α0 (t).

https://doi.org/10.1017/jpr.2023.98 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.98


Stochastic predator-prey models 1025

Proof. Let �̂α,σ ( · ) be the stationary solution of (1.4), whose distribution is μα,σ . We can
see that ∫

R
2+

H(φ) dμα,σ (φ) =EH
(
�̂α,σ (t)

)
, for all t ≥ 0.

In particular, ∫
R

2+
H(φ) dμα,σ (φ) = 1

T∗

∫ T∗

0
H
(
�̂α,σ (t)

)
dt,

where T∗ is the period of the cycle. Since the measure μα,σ ( · ) becomes concentrated on the
cycle �α0 as (α, σ ) approaches (α0, 0) and H is a bounded continuous function, we obtain

lim
(α,σ )→(α0,0)

∫
R

2+
H(φ) dμα,σ (φ) = 1

T∗

∫ T∗

0
H
(
�φα0

(t)
)

dt,

where φ is any point on the limit cycle �α0 . This completes the proof. �

Theorem 2.3 Let α0 = (r0,K0,m0, β0, γ0, a0, b0, c0) be a vector of parameters of the system
in (1.1) such that λα0 > 0 and

b0 ≥ min

{
c0

β0
,

m2
0β

2
0 − c2

0γ
2
0

γ0β0(m0β0 − c0γ0) + m0r0β
2
0

}
.

Then, there exist δ > 0 and σ > 0 such that, for all α ∈ Uδ(α0) and 0<σ ≤ σ , the pro-
cess (xα,σ (t), yα,σ (t)) has a stationary distribution μα,σ concentrated on R

2,◦
+ . Further, for any

open set V containing the positive equilibrium point φ∗
α0

= (x∗
α0
, y∗
α0

) of the system in (1.1),
lim(α,σ )→(α0,0) μα,σ (V) = 1.

Proof. The proof is quite similar to that of Theorem 2.1, so we omit it here. �

3. Numerical example

Consider (1.1) having the parameter α0 with r0 = 1, K0 = 5, m0 = 9, a0 = 1.75, b0 = 1,
c0 = 1, γ0 = 0.6, and β0 = 0.5. Direct calculation shows that λα = 2.7582> 0 and a posi-
tive equilibrium (x∗, y∗) = (0.3, 0.233) with Df (x∗, y∗) has two eigenvalues, 0.0016 ± 0.66i.
Further,

b0 ≤ min

{
c0

β0
,

m2
0β

2
0 − c2

0γ
2
0

γ0β0(m0β0 − c0γ0) + m0r0β
2
0

}
.

Thus, this system has a limit cycle �0, as shown in figure 1, starting from the point
(0.67, 0.25). Let V be an ε-neighbourhood of �0 with ε= 0.01. For ‖σ‖ ≤ 1, we have λα,σ > 0.
This means that (1.4) has a unique stationary distribution μα,σ .

We estimate the probability μα,σ (V) as σ → 0. To simplify the simulation, we fix all the
other parameters, except for the variation of a, and list the results in table 1. The simulation
phase pictures of the solution (1.4) are presented in figures 1 and 2.

4. Discussion

Robustness plays a very important role in studying mathematical models in biology and
other fields since it ensures the output and forecasts are consistently accurate even if one or
more of the input variables or assumptions vary. In fact, we know that the parametric model
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TABLE 1. Simulation results for numerical example.

σ (0.5, 0.5) (0.1, 0.1) (0.01, 0.01) (0.001, 0.001)
a 1.8000 1.7500 1.7200 1.7100
λα,σ 2.3975 2.7200 2.7450 2.7500
μα,σ (V) 0.1575 0.3380 0.7001 0.8960

FIGURE 1. Left: Limit cycle �0 of (1.1). Centre: A sample path of (1.4) when a = 1.78, σ = 0.5. Right:
A sample path of (1.4) when a = 1.75, σ = 0.1.

FIGURE 2. Left: A sample path of (1.4) when a = 1.2, σ = 0.01. Right: A sample path of (1.4) when
a = 1.71, σ = 0.001.

is not quite true, and therefore we require that the distribution of the estimator changes only
slightly if the distribution of the observations is slightly altered from that of the strict parametric
model with certain parameter values. In this paper we have proved that the predator–prey model
perturbed by white noise with Beddington–DeAngelis functional response (1.4) is robustly
permanent and the stationary distribution depends (in weak topology) continuously on the data
if it exists. The fact that the long-term population density concentrated at any neighbourhood
of
(
x∗
α0
, y∗
α0

)
or of �α0 when the parameter α approaches α0 is significant in practical problems

since it allows us to know that the long-term behaviour of the population is very close to the
evolution of the corresponding deterministic system.
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