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Discrete group actions on 3-manifolds and
embeddable Cayley complexes
Agelos Georgakopoulos and George Kontogeorgiou
Abstract. We prove that a group Γ admits a discrete, topological (equivalently, smooth) action on
some simply connected 3-manifold if and only if Γ has a Cayley complex embeddable—with certain
natural restrictions—in one of the following four 3-manifolds: (i) S3 , (ii)R3 , (iii) S2 ×R, and (iv) the
complement of a tame Cantor set in S

3 . The fact that these are the only simply connected 3-manifolds
that allow such actions is a consequence of the Thurston–Perelman geometrization theorem.

1 Introduction

It is a classical fact that a finite group admits a faithful action on S
2 if and only if it has

a planar Cayley graph [6]. This paper proves an analogous statement for actions on
3-manifolds, by finite or infinite groups. We prove (Theorem 1.5 below) that a group Γ
admits a discrete topological action on some simply connected 3-manifold if and only
if Γ has a Cayley complex embeddable —with certain natural restrictions—in one of
the following four 3-manifolds: (i) S3, (ii) R3, (iii) S2 ×R, and (iv) the complement of
a tame Cantor set in S

3. Which of these four cases occurs is determined by the number
of ends of Γ [28], and the fact that these are the only simply connected 3-manifolds
admitting such actions (Theorem 1.1) is interesting per se. By a discrete action, here
we mean a faithful, properly discontinuous, cocompact action. All our manifolds and
actions are topological, but they can be smoothed by a classical result of Bing and
Moise [7, 37] and a recent result of Pardon [39, 40] (see Theorem A.1). The 1-ended
case of our result is related to Cannon’s conjecture (Section 1.3).

A homeomorphic image C of the Cantor set in S
3 is called tame, if it is contained

in a piecewise linear arc. It is known that if C′ is another tame Cantor set in S
3, then

S
3 − C is homeomorphic to S

3 − C′; see [44] and references therein. A topological
space homeomorphic to S

3 − C will be called a Cantor 3-sphere. Its importance is
established by the following result:

Theorem 1.1 Let M be a connected, simply connected, topological 3-manifold. Suppose
M admits a properly discontinuous, cocompact action by homeomorphisms. Then M is
homeomorphic to one of the following four spaces:

(i) S3, (ii) R3, (iii) S2 ×R, or (iv) the Cantor 3-sphere.
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2 A. Georgakopoulos and G. Kontogeorgiou

The special case of Theorem 1.1 when the action is smooth and free became well
known to experts in the aftermath of the Thurston–Perelman geometrization theo-
rem [41, 42, 45]. A proof for the general case, assembled from ingredients provided by
others, can be found in the Appendix.

Theorem 1.1 can be thought of as a generalization of the Poincaré conjecture to open
3-manifolds, since the case where M is acted upon by the trivial group implies it.

Like our other results below, it adds to the many purely topological statements that
have been obtained via geometrization in the aftermath of Perelman’s work.

One could be tempted to try to avoid using the geometrization theorem by drop-
ping the simple-connectedness condition and instead assuming that M is a subspace
of S3. However, Freedman & Skora [19] constructed a properly discontinuous, cocom-
pact action of the free group of rank 2 by homeomorphisms on S

3 −W where W is
homeomorphic to a Cantor set. They remark that S3 −W is not simply connected, and
in particular W is not tame. This shows that the simple connectedness assumption in
Theorem 1.1 cannot be relaxed.

1.1 Finite group actions on S
2 and S

3

The following is a classical theorem, essentially going back to a 1896 paper of
Maschke [33]; for modern references, see, e.g., [6, Theorem 1.16.] and [23].

Theorem 1.2 (Folklore) A finite group admits a faithful action (by homeomorphisms
or isometries) on S

2 if and only if it has a planar Cayley graph.

The finite case of our result is a 3-dimensional version of Theorem 1.2, replacing
S

2 by S
3. We will prove that a finite group Γ admits a faithful—topological, smooth,

or isometric—action on S
3, if and only if it has a Cayley complex X that embeds

topologically in S
3 so that the canonical action Γ ↷ X maps each chamber boundary

to a chamber boundary. Before clarifying the details, we recall that this class of groups
is now well-understood:

Theorem 1.3 A finite group admits a faithful action by homeomorphisms/smooth
maps/isometries on S

3 if and only if it is isomorphic to a subgroup of the orthogonal
group O(4).

Indeed, using the geometrization theorem, Dinkelbach and Leeb [17] showed that
every finite smooth action on S

3 is conjugate to an isometric action. Pardon [40]
complemented this by proving that every topological action on S

3 is the uniform limit
of smooth actions. Since any isometry of S3 extends to an element of O(4), these two
facts combined establish that the finite groups admitting faithful, topological actions
on S

3 coincide, up to isomorphism, with the finite subgroups of O(4), as anticipated
by Zimmermann [48]. This forms a quite rich family of groups, described explicitly
in [15]. Theorem 1.3 is the culmination of a long effort, the history of which is surveyed,
e.g., in [16, 18, 27, 47]. In contrast, the groups of Theorem 1.2 were described by
Maschke in 1986: they are just the finite cyclic and dihedral groups, and 8 sporadic
ones [33, Figures 1–10], [25].

For an analogue of Theorem 1.2 for actions on S
3, Cayley graphs are unlikely to

suffice: every finite graph embeds in S
3. As we will see, the key is to consider Cayley
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Discrete group actions on 3-manifolds and embeddable Cayley complexes 3

complexes instead. Define a generalized Cayley complex of a group Γ to be a simply
connected 2-dimensional cell-complex X, such that there is an action of Γ on X that is
regular on the 0-skeleton X0. This generalizes the standard notion of Cayley complex,
in that we allow the action to fix 1-cells and 2-cells.

Any embedding ϕ of a 2-dimensional cell-complex X into S
3—more generally,

into an orientable 3-manifold—induces a cyclic ordering σe of the 2-cells containing
a given 1-cell e of X, e.g., by considering the clockwise cyclic order in which these
2-cells intersect a disc locally perpendicular to e. This family of cyclic orderings
σ(ϕ) ∶= {σe}e∈X1 will be called a planar rotation system, defined more carefully in
Section 2.6. Importantly, σ(ϕ) contains all the information needed to determine
which sets of 2-cells of X bound a chamber of ϕ(X); these sets will be called
prechambers. Given a cellular group action Γ ↷ X, e.g., when X is a Cayley complex of
Γ, we say that σ(ϕ) is Γ-invariant if Γ ↷ X preserves σ(ϕ) (see Section 2.7 for details).

Our 3-dimensional analogue of Theorem 1.2 is the equivalence of items (i) and
(iii) of

Theorem 1.4 For a finite group Γ, the following are equivalent:
(i) Γ is one of the groups of Theorem 1.3;

(ii) Γ admits a generalized Cayley complex X with a Γ-invariant planar rotation system;
(iii) Γ admits a generalized Cayley complex X with an embedding ϕ ∶ X → S

3 with
Γ-invariant planar rotation system.

As an example, let Γ be the cartesian product of two finite cyclic groups Ck , C�, and
consider its generalized Cayley complex X with respect to the standard presentation
⟨a, b ∣ ak , b� , [ab]⟩. Thus, X is a quadrangulated torus T, united with 2-cells bounding
its essential cycles spanned by each one of the generators a, g. It is easy to see a
topological embedding of X in S

3, with all a-colored 2-cells inside T and all b-colored
2-cells outside it. Notice that the planar rotation system induced by this embedding
is Γ-invariant, as required by item (iii). The reader will be able to see a topological
action of Γ that preserves this embedding as postulated by (i). While the implication
(iii)→ (ii) is trivial, its converse (ii)→ (iii) says that we could have specified the planar
rotation system abstractly, as a combinatorial set of cyclic orderings, without mention
to a particular embedding. This implication makes use of the validity of the Poincaré
conjecture via a result of Carmesin [13] (Theorem 3.1 below). In Section 3, we observe
that Carmesin’s result fails in general for infinite 2-complexes but remains true for
Cayley complexes, a fact that relies on the geometrization theorem via Theorem 1.1.

1.2 Infinite discrete actions on open 3-manifolds

Our main theorem extends Theorem 1.4 to infinite groups and adds detailed informa-
tion on the interplay between the action of (i) and the embedding of (iii). We call the
four 3-manifolds featuring in Theorem 1.1 the special 3-manifolds. They also feature in
our main theorem:

Theorem 1.5 For a finitely generated group Γ, the following are equivalent:
(i) Γ admits a faithful, properly discontinuous, cocompact, topological action on a

simply connected 3-manifold;
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4 A. Georgakopoulos and G. Kontogeorgiou

(ii) Γ admits a generalized Cayley complex X with a Γ-invariant planar rotation system
with finite prechambers;

(iii) Γ admits a generalized Cayley complex X with an embedding ϕ ∶ X → S
3 such that

σ(ϕ) is Γ-invariant and has finite prechambers;
(iv) Γ admits a generalized Cayley complex X with an embedding ϕ into a special 3-

manifold M such that ϕ(X) is invariant under some faithful, properly discontinu-
ous, cocompact, topological action of Γ on M, which acts regularly on the vertices
of X. Moreover, ϕ(X) has finite prechambers.

A 2-dimensional statement analogous to Theorem 1.5, generalizing Theorem 1.2,
can be found in [23, Theorem 1.1]. It says that the infinite groups acting discretely on a
planar surface are exactly the Kleinian function groups. They also coincide with those
groups admitting a Cayley graph with invariant planar rotation system. Details can be
found in [10, 23, 30].

We saw examples of discrete actions on S
3 above. Groups acting discretely on R

3

include lattices in the Thurston geometries homeomorphic to R
3, such as euclidean

and hyperbolic crystalographic groups, and the discrete Heisenberg group. On the
contrary, Z4 cannot act discretely on R

3, by a theorem of Stallings saying that it is not
isomorphic to any subgroup of a 3-manifold group [8]. Groups acting discretely on
S

2 ×R include Z, and its cartesian product with any of the groups of Theorem 1.2. An
example of a group acting discretely on the Cantor 3-sphere is the free group Fr of
rank r ≥ 2. The universal cover of any closed 3-manifold with fundamental group Fr
provides an example, and such manifolds can be easily obtained using connect sums
of copies of S2 × S1.

Actions like those of Theorems 1.1 and 1.5 but with the manifold M being a—not
necessarily simply connected—subspace of S3 are a classical topic in the context of
convergence group actions on S

3, where we can let M be the domain of discontinuity;
see [29, 31] and the references therein. Some of our results, e.g., Theorem 5.2, apply to
the nonsimply connected case and therefore to such actions.

1.3 Relationship to Cannon’s conjecture

A famous conjecture of Cannon [12, Conjecture 5.1] postulates that if Γ is a Gromov-
hyperbolic group with hyperbolic boundary ∂Γ homeomorphic to S

2, then Γ admits a
properly discontinuous, cocompact action by isometries on H

3. A similar conjecture
of Martin & Skora [32] postulates that every action of a discrete convergence group
on S

2 extends to a convergence group action on the 3-dimensional ball. The lower-
dimensional version of this conjecture, i.e., with ∂Γ homeomorphic to S

1, is an
important theorem of Gabai [21, 22] and Casson & Jungreis [14]. The implication
(iii) →(i) of Theorem 1.5, restricted to 1-ended groups, provides the 3-dimensional
analogue of a fact that Gabai uses in his aforementioned proof. Specifically, Gabai uses
the action of Γ on its boundary S1 to obtain an 1-complex G embedded in the interior
D of S1 to which the action extends [21, Figure 1]. He then notices that if each face
of this embedding of G is compact—equivalently, if it is bounded by finitely many
edges of G—then the induced action of Γ on G extends to a discrete action of Γ on
D [21, p. 4]. This is the lower-dimensional analogue of the implication (iii) → (i) of
Theorem 1.5. It should be noted, however, that the difficult part of Gabai’s proof was
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to ensure that G has compact faces, and so the progress toward Cannon’s conjecture
that this remark makes is modest. Nevertheless, we have had to use the geometrization
theorem to make this step.

In the converse direction, Theorem 1.5 establishes that a suspected counterexample
Γ to Cannon’s conjecture can be proved to be one by checking that no Cayley complex
of Γ admits an invariant planar rotation system, or an embedding as in (iii).

1.4 Tightness of the conditions

We now discuss the tightness of the various conditions of Theorem 1.5. Item (iv)
provides the most detailed information about these groups, and it trivially implies
the other three (Section 6). The conditions in the other three items are necessary in
the sense that dropping any one of them would violate at least one of the equivalences.
To see that the condition of finite prechambers is necessary for the implications (ii),
(iii) → (iv), (i), consider the group Z

2. Its standard Cayley complex embeds in R
3

with invariant planar rotation system, but with two infinite prechambers, and it is
well-known that Z2 is not one of the groups of Theorem 1.5 [2, 20]. We do not have
an explicit example of a group with a Cayley complex that embeds in S

3 with finite
prechambers but only with noninvariant planar rotation system but expect that such
a group can be found using ideas of [23, Section 10].

Dropping some of our conditions in pairs can lead to interesting statements, some
of which are implicit in our proofs. A notable example is that the implication (i)
→ (iii) generalizes to group actions on nonsimply connected 3-manifolds, resulting
to embedded 2-complexes with an appropriate action by the same group; see Theo-
rem 5.2. Dropping the condition of finiteness of prechambers leads to an interesting
class of groups; see Section 6 for related open problems.

In items (i) and (iv) of Theorem 1.5, we can assume that the action is in addition
smooth.

This paper is structured as follows. Section 2 provides all the necessary definitions.
The implication (ii)→ (iv) of Theorem 1.5 is proved in Section 3. Since the implication
(iii) → (ii) is trivial, this also establishes the implication (iii) → (iv). The implication
(i)→ (iv) is proved in Section 5, while (iv) trivially implies the other three statements.
Section 6 puts the pieces together to conclude the proof of Theorem 1.5.

In Section 4, we provide a separate proof of the implication (iii)→ (i) of Theorem 1.4
avoiding the Poincaré conjecture. This allows us to prove the equivalence of items
(i) and (iii) of Theorem 1.4 without relying on Perelman’s work. This is not the
case for Theorem 1.5, where we do not see a way to avoid using the geometrization
theorem.

2 Definitions and preliminary results

2.1 Group actions

A 3-manifold is a topological space each point of which has a neighborhood homeo-
morphic to an open subset of R3.
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6 A. Georgakopoulos and G. Kontogeorgiou

A (topological) action Γ ↷ M of a group Γ on a topological space M is a homo-
morphism from Γ into the group of homeomorphisms of M. Given such an action,
the images of a point x ∈ M under Γ ↷ M form the orbit of x.

An action Γ ↷ M is faithful, if for every two distinct g , h ∈ Γ there exists an x ∈ M
such that gx ≠ hx; or equivalently, if for each g ≠ e ∈ Γ there exists an x ∈ M such that
gx ≠ x. It is free if gx ≠ hx for every g , h ∈ Γ and x ∈ M. It is transitive if for every x , y ∈
M there is g ∈ Γ with gx = y (we will only encounter transitive actions on discrete
spaces M). Finally, Γ ↷ M is regular if it is free and transitive.

An action Γ ↷ M is properly discontinuous, if for every compact subspace K of
M, the set {g ∈ Γ ∣ gK ∩ K ≠ ∅} is finite. It is cocompact, if the quotient space M/Γ
is compact. If M is locally compact, then an equivalent condition is that there is a
compact subset K of M such that⋃ ΓK = M.

2.2 Graphs

A (simple) graph G is a pair (V , E) of sets, where V is called the set of vertices, and E
is a set of two-element subsets of V, called the set of edges. We will write uv instead of
{u, v} to denote an edge. A multigraph is defined similarly, except that E is a multiset,
and it can have elements consisting of just one vertex.

We let V(G) denote the set of vertices of a graph G, and E(G) denote the set of
edges of G.

Every (multi-)graph G = (V , E) gives rise to a 1-complex, by letting V be the set
of 0-cells, and for each uv ∈ E introducing an arc with its endpoints identified with u
and v. Thus, we will sometimes interpret the word graph as a 1-complex. In particular,
when discussing embeddings of graphs we will mean topological embeddings of
1-complexes.

A generalized Cayley graph of a group Γ is a graph G endowed with an action
Γ ↷ G by isomorphisms which action is regular on V(G). This is analogous to our
definition of a generalized Cayley complex in the introduction. Again the differ-
ence to the standard notion of a Cayley graph is that we allow the action to fix
edges.

2.3 2-complexes

A 2-complex is a topological space X obtained as follows. We start with a 1-complex
X1 as defined above, called the 1-skeleton of X. We then introduce a set X2 of copies
of the closed unit disc D ⊆ R2, called the 2-cells or faces of X, and for each f ∈ X2 we
attach f to X1 via a map ϕ f ∶ S1 → X1, called the attachment map, where we think of
S

1 as the boundary of D. Attaching here means that we consider the quotient space
where each point x of S1 ⊂ f is identified with ϕ f (x). We let X0 ∶= V(X1) be the set
of vertices, or 0-cells, of X.

We say that X is regular, if ϕ f is a homeomorphism onto its image for every f ∈ X2.
We say that X is edge-regular, if each ϕ f is injective on 1-cells, that is, x ∈ X0 holds for
every point x ∈ X with more than one preimage under ϕ f .

For f ∈ X2, we write f = [x1 , . . . , xk] if x1 , . . . , xk is the cyclic sequence of vertices
appearing in the image of ϕ f .
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To each 2-cell f = [x1 , . . . , xk] ∈ X2, we associate two distinct directed 2-cells f1 , f2,
also denoted by ⟨x1 , . . . , xk⟩ and ⟨xk , . . . , x1⟩, respectively. Their reverses are defined
as f −1

1 ∶= f2 and f −1
2 ∶= f1.

If X is not regular, then it is always possible to produce a regular complex X′
homeomorphic to X using the barycentric subdivision defined as follows. For each
edge e = uv ∈ X1, we subdivide e by adding a new vertex m at its midpoint. For each
occurrence of e in a 2-cell f of X, we replace that occurrence by the pair um, mv or
vm, mu as appropriate. We then triangulate each 2-cell h = x1 , . . . , xk of the resulting
2-complex by adding a new vertex c in its interior, adding the edges cx1 , . . . , cxk to the
1-skeleton, and replacing h by the 2-cells [c, x1 , x2], [c, x2 , x3], . . . , [c, xk , x1].

Note that the barycentric subdivision X′ of X is a simplicial complex, in particular
a regular one, and its 1-skeleton is a simple graph. Here, a 2-complex X is simplicial,
if its 1-skeleton is a simple graph and each F ∈ X2 is of the form f = [x1 , x2 , x3] where
x1 , x2 , x3 are distinct vertices.

For each v ∈ X0, the link graph LX(v) is the graph on the neighborhood of v in X1

with uw ∈ E(LX(v)) if and only if u, v , w are consecutive in a 2-cell of X. Alternatively,
we can define LX(v) so that its vertices are the edges incident with v, and two edges
vu, vw are joined by an edge of LX(v) whenever u, v , w are consecutive in a 2-cell
of X. These two definitions yield isomorphic graphs when X1 is a simple graph, and
it is a matter of convenience to use the one or the other. In general, link graphs are
more naturally defined as multigraphs, as u, v , w may be consecutive in more than
one 2-cells of X.

2.4 Embeddings and Chambers

An embedding of a space X in a space Y is homeomorphism between X and a subspace
of Y.

For an embedding ϕ ∶ X → M of a 2-complex X into a 3-manifold M, we call each
connected component of M/ϕ(X) a chamber. The boundary ∂C of a chamber C is the
set of points x ∈ ϕ(X) in the closure of C that are not in the interior of C. Indeed, as C
is an open set, ∂C is disjoint from C. The following basic fact helps to further explain
the notion.

Proposition 2.1 ([24, Proposition 2.1]) Let ϕ ∶ X → S
3 be an embedding of a finite, 2-

complex X, such that every 0-cell and 1-cell of X is contained in a 2-cell. Then ∂C is a
union of 2-cells of X for every ϕ-chamber C.

2.5 Local flatness

We recall the standard notion of local flatness. An embedding ϕ ∶ S2 → M, where M
is a 3-manifold, is locally flat, if for each x ∈ ϕ(S2) there exists a neighborhood Ux of
x such that the topological pair (Ux , Ux ∩ ϕ(X)) is homeomorphic to (R3 ,R2), by
which we mean that there is a homeomorphism from Ux to R

3 mapping Ux ∩ ϕ(X)
to R

2 ⊂ R3. (A topological pair (X , A) consists of a topological space X and a subspace
A ⊆ X.)
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8 A. Georgakopoulos and G. Kontogeorgiou

We can extend the notion of local flatness to an embedding ϕ ∶ X → M of a 2-
complex X instead of S2: we say that ϕ is locally flat, if the restriction of ϕ to each
homeomorphic image of S2 in X is locally flat, as defined above.

2.6 Rotation systems

A rotation system of a graph G is a family (σv)v∈V(G) of cyclic orderings of the edges
incident with each vertex v ∈ V(G). Every embedding of G on an orientable surface
defines a rotation system, by taking σv to be the clockwise cyclic ordering in which the
edges incident to v appear in the embedding. The rotation system (σv)v∈V(G) is said
to be planar, if it can be defined by an embedding of G in the sphere S2.

Let X be an edge-regular 2-complex, and let
←→E (X) denote the set of directions of

its 1-cells, that is, the set of directed pairs ��⃗x y ∶= ⟨x , y⟩ such that x y ∈ X1. Thus, every 1-
cell gives rise to two elements of

←→E (X). A rotation system of X is a family (σe)e∈←→E (X)

of cyclic orderings σe of the 2-cells incident with each e = ��⃗x y ∈ ←→E (X), such that if
e′ = ��⃗yx, then σe′ is the reverse of σe . A rotation system (σe)e∈←→E (X) of X induces a
rotation system σ v at each of its link graphs LX(v) by restricting to the directions of 1-
cells emanating from v: for every u ∈ V(LX(v))we let σ v

u be the cyclic order obtained
from σ�⃗vu by replacing each 2-cell f appearing in the latter by the edge uw where w is
the unique neighbor u in V(LX(v)) such that w , v , u appear consecutively in f.

A rotation system of a regular 2-complex X is planar, if it induces a planar rotation
system on each of its link graphs. Note that once, we fix an orientation, every locally
flat embedding ϕ of X into S

3 or R3 defines a planar rotation system, by letting σe
be the cyclic order in which the images of the 2-cells incident with e appear in Ux ,
where x is any interior point of ϕ(e), and Ux is as in the definition of local flatness
(Section 2.5).

2.7 Invariant rotation systems

Suppose that a group Γ acts on a 2-complex X by a faithful action Γ ↷ X. Let Σ be the
set of all rotation systems σ = (σe)e∈←→E (X) on X as defined in the previous subsection.
Then we can let Γ act on Σ by elementwise multiplication as follows. Recall that σe is
formally a ternary “betweenness” relation on the set F(e) of 2-cells containing e for
every 1-cell e. For g ∈ Γ, we define the product g ⋅ σe ∶= {[ga, gb, gc] ∣ [a, b, c] ∈ σe},
which is a cyclic ordering on F(ge). This defines our action g ⋅ σ ∶= (g ⋅ σe)e∈E(X) of
Γ on Σ. We will say that σ is Γ-invariant, if g ⋅ σ coincides with σ up to a global change
of orientation. To make this more precise, let η ∶ Γ → Z2 be a homomorphism from Γ
to the groupZ2; we will use η to carry the information of which g ∈ Γ preserve/reverse
the orientation. We say that σ is invariant with respect to η, if

g ⋅ σe = (−1)η(g)σge ,(1)

holds for every e ∈ ←→E (X) and g ∈ Γ. We say that σ is Γ-invariant if it is invariant with
respect to some homomorphism η. Note that η is uniquely determined by σ if it exists.
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3 From invariant planar rotation systems to invariant Cayley
complex embeddings

The implication (ii) → (iii) of Theorem 1.4 is an immediate consequence of the
following result of Carmesin:

Theorem 3.1 ([13]) A finite, simply connected, simplicial 2-complex admits an embed-
ding ϕ in S

3 if and only if it admits a planar rotation system σ. Moreover, ϕ can be chosen
so that σ(ϕ) coincides with σ.1

Indeed, if X is a generalized Cayley complex of Γ, and σ a Γ-invariant planar
rotation system on X, then we can apply the barycentric subdivision to turn X into
a simplicial 2-complex X′, extend σ to X′ in the obvious way, and apply Theorem 3.1
to X′ to obtain an embedding of X′, which induces an embedding ϕ ∶ X → S

3 with
σ(ϕ) = σ .

Remark 1 If a locally finite 2-complex X admits an embedding ϕ in S
3 (or any 3-

dimensional submanifold of S3), then we may assume ϕ to be locally flat (as defined in
Section 2.5). Indeed, we can modify ϕ to make it piecewise-linear (PL) [34, Appendix
C], and it is easy to see that any PL embedding of X in S

3 is locally flat.

The implication (ii) → (iii) of Theorem 1.5 is more difficult, because Theorem 3.1
does not extend to infinite 2-complexes:

Theorem 3.2 There is a locally finite, simply connected, simplicial 2-complex which
admits a planar rotation system but does not admit an embedding in S

3.

Proof It is known that there is a contractible, hence simply connected, open 3-
manifold W which does not embed in any compact 3-manifold, let alone in S

3; see,
e.g. [26] and references therein. Let T be a triangulation of such a manifold W. It is easy
to see that if a simplicial complex X has a topological embedding into some oriented
3-dimensional manifold, then it has a planar rotation system [13]. Letting X be the
2-skeleton of T, we thus deduce that X has a planar rotation system, since it embeds
in W.

We may assume without loss of generality that there is no 3-cell C of T the
boundary ∂C of which separates W, because even if T does not have this property its
barycentric subdivision T ′ will, and we could have chosen T ′ instead of T. Thus, no ∂C
separates X.

Suppose now that X admits an embedding f in S
3. By Remark 1, we may assume

that f is locally flat. Then we can extend f into an embedding of W in S
3 as follows. For

every 3-cell C of T, we observe that ∂C ⊂ X is homeomorphic to S
2, hence it separates

S
3 into two components. One of these components A is disjoint from f (X), because

∂C does not separate X as mentioned above. Since f is locally flat, A is homeomorphic
to R

3 by the generalized Schoenflies theorem [11, 35]. Thus, we can embed C onto A.
Doing so for each 3-cell C of T, we obtain an embedding of W into S

3, contradicting
the choice of W. ∎

1The second statement is not stated explicitly in [13] but it is easily implied by the construction of
the embedding.
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10 A. Georgakopoulos and G. Kontogeorgiou

Despite the fact that Theorem 3.1 fails for infinite 2-complexes in general, it
does hold for Cayley-complexes, and proving it requires the Thurston–Perelman
geometrization theorem. This is the content of the following theorem.

Theorem 3.3 Let C be a finitely presented Cayley complex admitting an invariant
planar rotation system σ with finite prechambers. Then C admits an embedding ϕ into
S

3 such that σ(ϕ) coincides with σ.

Proof We follow the lines of the proof of Theorem 3.1 in [13], the main difference
being that we apply Theorem 1.1 instead of the Poincaré conjecture. This starts by
defining a 3-manifold M = T(C , σ), with 2-skeleton C as follows. The planar rotation
system σ induces a relation on the directed 2-cells of C, where two directed 2-cells f , f ′
are related via a directed 1-cell ��⃗uv, if f , f ′ appear consecutively is σ�⃗uv , and u appears
right before v in f and v appears right before u in f ′. The equivalence classes induced
by this relation are called pre-chambers. The intuition is that prechambers will coincide
with the boundaries of chambers of the embedding of C that we are constructing. It is
a good exercise to check that if T is a triangulation of S3, and T2 its 2-skeleton, then
the prechambers of T2 with respect to the rotation system that T2 naturally inherits
from its inclusion in S

3 are exactly the boundaries of the 3-cells of T.
For each prechamber S of C as above, we attach a solid surface Ŝ to C, so that the

attachment map—which is not always injective—maps the boundary of Ŝ onto S. This
completes the definition of M = T(C , σ), which Carmesin proves to be an oriented
topological 3-manifold [13, Lemma 4.5] (Carmesin works with finite C, but this proof
extends verbatim to the infinite case). He then observes that M is simply connected
if C is ([13, Lemma 4.6]); indeed, any loop in M can be homotoped to one in C by
the construction of M. Finally, Carmesin observes that when C is finite then M is
compact, hence homeomorphic to S

3 by the Poincaré conjecture! By construction, C
is embedded in M ≅ S3, and the rotation system of this embedding coincides with σ .

We now handle the case where C is infinite. Let us first assume that every precham-
ber of C with respect to σ is homeomorphic to a surface; we will consider the general
case later. Under this assumption, we claim that

the union of 2-cells in each pre-chamber S of C is homeomorphic to S
2 .(2)

When C is finite then this is not hard and has been observed in [24, Lemma 5.1.]:
it is proved there that if X is a finite, simply-connected, 2-complex, and ϕ ∶ X → S

3

an embedding, then for every chamber Y of ϕ such that ∂Y is a surface, we have
∂Y ≅ S2. (To see this, think of Y as a solid surface in S

3.) We can reduce (2) to
this finite setup as follows. Let C′ be a finite subcomplex of C containing S, and
contract each component of C − C′ into a vertex, to obtain the (finite) 2-complex C∗.
Notice that C∗ is simply connected, because for every simply connected space X, and
every path-connected subspace Y, the quotient X/Y is simply connected. Moreover,
σ induces a planar rotation system σ∗ on C∗ by restricting σ to the 1-cells that have
not been contracted. Clearly, S is a prechamber of C∗. Repeat the above construction
of M∗ = T(C∗ , σ∗), and recall that M∗ ≅ S3 by the Poincaré conjecture. We can now
apply the aforementioned result [24, Lemma 5.1.], using our assumption that S is a
surface, to deduce that S ≅ S2.
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Discrete group actions on 3-manifolds and embeddable Cayley complexes 11

Notice that the group Γ of C acts properly discontinuous and cocompactly on C.
We can use (2) to extend this action to M: since each prechamber S of C is a 2-sphere,
each of the solid surfaces Ŝ that we attached to C to obtain M is a 3-ball. Therefore,
using the fact that σ is invariant, it is easy to extend Γ ↷ C to M as any automorphism
of S2 ⊂ R3 extends to an automorphism of the 3-ball bounded by S

2.
Easily, the resulting action Γ ↷ C is still properly discontinuous and cocompact.

As above, M is simply connected because C is. Thus, M is homeomorphic to one of
the 3-manifolds of Theorem 1.1, each of which embeds in S

3. Again, since C embeds
in M with rotation system σ by construction, the statement follows.

It remains to consider the general case where some prechambers of C with respect
to σ may fail to be homeomorphic to a surface. In this case, we can still follow the
lines of the proof of (2) to conclude that Ŝ is still homeomorphic to an open 3-ball,
although its attachment map αS ∶ ∂Ŝ → S is noninjective. We then extend Γ ↷ C to
Γ ↷ M as above, noting that whenever Γ maps a prechamber S to a prechamber Q,
this induces a homeomorphism from α−1

S (S) to α−1
Q (Q), which can be extended to a

homeomorphism from the 3-ball Ŝ to the 3-ball Q̂. ∎

This establishes the implication (ii) → (iii) of Theorem 1.5. However, a closer
inspection of the last proof reveals that we can obtain the stronger implication (ii)
→ (iv) (of both Theorem 1.5 and Theorem 1.4):

Corollary 3.4 Let C be a finitely presented Cayley complex of a group Γ, admitting a Γ-
invariant planar rotation system σ with finite prechambers. Then C admits an embedding
ϕ ∶ C → M into a special 3-manifold M such that ϕ(C) is invariant under some properly
discontinuous, cocompact action Γ ↷ M.

Proof Define M = T(C , σ) as in the proof of Theorem 3.3. Notice that prechambers
are defined using σ , and so the action of Γ on C preserves prechambers. Moreover,
the action of Γ on C was extended there to an action on M by homeomorphisms. As
already observed, M is a special 3-manifold, and this action is properly discontinuous
and cocompact. ∎

4 From invariant Cayley complex embeddings to group actions

Since the implication (iii) → (ii) of Theorem 1.5 is trivial, the previous section also
establishes the implication (iii) → (iv) and hence (iii) → (i). The aim of this section
is to reprove the latter implication (iii) → (i) of Theorem 1.4 by a more elementary
method that avoids the Poincaré conjecture. (We do not have a proof of the analogous
implication of Theorem 1.5 avoiding the geometrization theorem.)

The purpose of this section is a proof of the following theorem without using the
Poincaré conjecture.

Theorem 4.1 Let Γ be a finite group, let X be a generalized Cayley complex of Γ, and
ϕ ∶ X → S

3 an embedding with Γ-invariant rotation system σ(ϕ). Then there is a faithful
topological action Γ ↷ S

3 fixing ϕ(X) as a set, and acting regularly on its vertices.

The idea is to reduce this to the following result of [24]. We say that a 2-complex
X is locally k-connected, if each of its link graphs is k-connected. Recall that a graph is
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12 A. Georgakopoulos and G. Kontogeorgiou

k-connected, if it has more than k vertices and remains connected after removing any
set of at most k − 1 vertices.

Theorem 4.2 ([24, Theorem 1.3]) Let Y be a finite, simply connected, locally 3-
connected 2-complex. Then, for every two locally flat embeddings χ, ψ ∶ Y → S

3, there
exists a homeomorphism α ∶ S3 → S

3 such that ψ = α ○ χ.
Moreover, we may assume that α is determined by its restriction to χ(Y).2

Every finite Cayley complex automatically satisfies the simple connectedness con-
dition, and it is locally 1-connected (Lemma 4.3), but it is not necessarily locally
3-connected. With the lemmas that follow we will be able to increase the local
connectedness of a complex X as in Theorem 4.1 by extending it to a supercomplex.
This supercomplex X′ will inherit the canonical action of Γ, and its rotation system will
still be Γ-invariant. This will allow us to apply Theorem 4.2 to X′ to prove Theorem 4.1.

We start with the following basic fact about finite Cayley complexes.

Lemma 4.3 Every finite generalized Cayley complex X is locally 1-connected, unless X
has fewer than 3 vertices.

This is well known (see, e.g., [13, Lemma 5.1]), but we provide a proof for complete-
ness:

Proof Recall that the 1-skeleton X1 of X is a generalized Cayley graph, and so X1 is
2-connected as it is finite. Thus, any two incident edges of X1 are contained in a cycle.

To prove that the link graph L = L(o) of the identity element o of X is connected,
pick two edges e , f of X incident with o. By the above remark, there is a cycle C in
X1 containing both e , f . Consider a van Kampen diagram K proving that C is null
homotopic in X using the 2-cells of X. Let Ko denote the set of 2-cells appearing in K
that contain o. These 2-cells yield an e–f path in L. Since e , f where arbitrary edges of
o, this proves that L, and hence every link graph of X, is connected. ∎

Next, we show how to increase the local connectivity of an embedded 2-complex
from 1 to 2 by passing to a supercomplex:

Lemma 4.4 Let X be a locally 1-connected 2-complex, and let ϕ ∶ X → S
3 be a locally

flat embedding. Then there is a locally 2-connected 2-complex X′ containing X as a
topological subspace, and a locally flat embedding ϕ′ ∶ X′ → S

3, such that ϕ′(X) =
ϕ(X).

Moreover, any action Γ ↷ X with respect to which σ(ϕ) is invariant extends to an
action Γ ↷ X′ with respect to which σ(ϕ′) is invariant.

Furthermore, π1(X′) ≅ π1(X).

Before giving the formal proof, let us explain the intuition by going one dimension
down. Recall that a plane graph is a 1-complex embedded in S

2 or R
2. Given a

2The second sentence is not explicitly stated in [24], but it is an immediate consequence of the
construction of α given there. Indeed, α is defined by extending ψ ○ χ−1 from χ(Y) to all of S3 as
follows. It is proved that every chamber of χ(Y) and ψ(Y) is bounded by a homeomorph of S2, and
the generalized Schoenflies theorem is then applied to map each chamber of χ to one of ψ. Thus, the
second sentence follows by always choosing the same outcome of the generalized Schoenflies theorem
for a given homeomorphism between two copies of S2 in S

3.
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Figure 1: A portion of a graph G (left half), and the corresponding part of G⊗ (right half).

connected plane graph G that has some cut-vertices, it is easy to extend G into a
plane supergraph G⊗ that is 2-connected by “fattening” it, i.e., adding new vertices
and edges near each face boundary; see Figure 1 and Definition 4.5 for details. To
prove Lemma 4.4, we will add new 2-cells to X to “fatten” it in such a way that the
effect on each of its link graphs will be the same as the above modification of G
into G⊗:

Definition 4.5 Let G be a finite, connected, plane graph. Let G′′ be a plane multigraph
obtained from G by adding two parallel edges e′ , e′′ to each edge e ∈ E(G), and
embedding them so that the circle e′ ∪ e′′ separates e from the rest of G. Then, for
each e of G′′ with end-vertices u, v, subdivide e into a path of length 3 by placing
two new vertices eu , ev inside e. Finally, for each vertex v of G′′, and each two edges
e , f incident with v that appear consecutively in the plane, add an edge between ev
and fv . We embed these edges in such a way that they form a circle separating v from
any other vertex of G. Let G⊗ denote the resulting plane graph; see Figure 1.

We remark that G is a topological minor of G⊗.

Lemma 4.6 Let G be a connected, plane graph. Then G⊗ is 2-connected.

Proof This is straightforward and boils down to checking that neither an original
vertex of G nor one of the new vertices can be a cut vertex of G⊗. ∎

Using this we can now prove Lemma 4.4.

Proof of Lemma 4.4 We may assume that X is regular, for otherwise we can work
with its barycentric subdivision, which preserves all assumptions we have made on X
as well as π1(X).

We begin the construction of X′ by “tripling” each 2-cell of X as follows. For every
f ∈ X2, we introduce two new 2-cells f − , f + with the same boundary and attaching
map as f, and embed f − , f + in S

3 locally flat and in such a way that their images bound
a 3-ball that contains f and is otherwise disjoint from X. Let X± be the resulting 2-
complex, and ϕ± ∶ X± → S

3 the resulting locally flat embedding.
Next, we modify X± into X′ by engulfing each 1-cell e ∈ X1 inside a copy of S2. To

make this more precise, we pick a locally flat homeomorph Se of S2 in S
3, such that

Se intersects X0 at the endpoints of e, it intersects each 2-cell f incident with e along
an arc, which we denote by fe , and Se is otherwise disjoint from X± and all other
Se′ , e′ ≠ e. It is easy to find such an Se inside a small neighborhood of e.

To turn the resulting subspace of S3 into a 2-complex, we declare fe to be an 1-cell
for every pair e , f as above, and we replace f by the two 2-cells into which fe dissects
it (one of which 2-cells will be further dissected by the other edges incident with f ).
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14 A. Georgakopoulos and G. Kontogeorgiou

Moreover, for every two 2-cells f , g that are consecutive in the rotation system of e, the
1-cells fe , ge cut a “slice” of Se , which we also declare to be a 2-cell of X′, and denote
it by s f e g . This completes the construction of X′, and the PL embedding ϕ′. As X is a
subspace of X′, we have ϕ′(X) = ϕ(X). Notice that X′ has the same vertex set as X,
and so to check that X′ is locally 2-connected we just need to consider the effect of the
newly added cells to each link graph LX(v), v ∈ X0. It is straightforward to check that
the new link graph LX′(v) coincides with LX(v)⊗ as in Definition 4.5 below. Thus, X′
is locally 2-connected by Lemma 4.6 below.

For the second statement, we first extend the action Γ ↷ X to X± as follows. For
every γ ∈ Γ and f ∈ X2, we let γ map the new 2-cells f − , f + bijectively to (γ f )− , (γ f )+.
There are two ways to do so, and we choose the unique option that retains the
invariance of the rotation system σ ∶= σ(ϕ), i.e. the choice that ensures that γσd =
(−1)η(γ)σγd for some, hence every, directed edge d incident with f, where η ∶ Γ → Z2
is a homomorphism as in (1), witnessing the fact that σ is invariant. This ensures that
the rotation system of ϕ± is invariant with respect to the resulting action Γ ↷ X±.
Extending further to Γ ↷ X′ is straightforward: we just let γ ∈ Γ map each s f e g to
s(γ f )(γe)(γ g).

Finally, it is easy to prove π1(X′) ≅ π1(X±) ≅ π1(X) by applying van Kampen’s
theorem whenever a new 2-cell is introduced, using the fact that every new 2-cell
forms a copy of S2 with existing 2-cells. ∎

Remark Lemma 4.6 would remain true if instead of tripling each edge we just
doubled it. The reason we triple is that in Lemma 4.4 we have to triple each 2-cell
in order to maintain the invariance of the action.

Next, we observe that we can increase the local connectivity further from 2 to 3,
using a construction of [24]. It was shown in [24, Section 6] how given a locally 2-
connected, simplicial, 2-complex X, and an embedding ϕ ∶ X → S

3, one can construct
a supercomplex fat(X) = fat(X , ϕ) with improved properties:

Lemma 4.7 ([24, Lemma 6.3]) Suppose that X is a locally 2-connected, simplicial, 2-
complex, and ϕ ∶ X → S

3 is a locally flat embedding. Then fat(X) is locally 3-connected.

Moreover, ϕ extends to a locally flat embedding ϕ′ ∶ fat(X) → S
3 ([24, Lemma 6.1]).

As the construction of fat(X) is canonical, any group action Γ ↷ X extends to an
action Γ ↷ fat(X). Finally, any loop in fat(X) is homotopic to a loop in X by the
construction, and so fat(X) is simply connected if X is.

We now have all the ingredients needed for the main result of this section:

Proof of Theorem 4.1 By Remark 1, we may assume without loss of generality that
ϕ is locally flat. By Lemma 4.3, X satisfies the conditions of Lemma 4.4, and we let
X′ be the locally 2-connected 2-complex provided by the latter, and ϕ′ ∶ X′ → S

3 the
corresponding locally flat embedding (the case where X has fewer than 3 vertices
is trivial). Since the rotation system of ϕ is Γ-invariant by assumption, the second
sentence of Lemma 4.4 yields an action Γ ↷ X′ with respect to which σ(ϕ′) is
Γ-invariant. By the third sentence of Lemma 4.4 X′ is simply connected since X is.
By applying a barycentric subdivision (twice) if needed, we may assume that X′ is in
addition a simplicial complex.

https://doi.org/10.4153/S0008414X24001081 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001081


Discrete group actions on 3-manifolds and embeddable Cayley complexes 15

Next, we consider Y ∶= fat(X′) = fat(X′ , ϕ′), which is locally 3-connected by
Lemma 4.7. By the remarks following Lemma 4.7, we also obtain a locally flat
embedding χ ∶ Y → S

3, and an extension Γ ↷ Y of the above action. Moreover, Y is
still simply connected.

We finish by applying Theorem 4.2 to Y, and pairs of embeddings of the form
χ, χ ○ a for each a ∈ Γ. To make this precise, we recall that Γ acts on χ(Y) ⊂ S3, and
we want to extend each a ∈ Γ into a homeomorphism ha ∶ S3 → S

3. We let ha be the
homeomorphism α obtained from Theorem 4.2 when applied to the two embeddings
χ and ψ ∶= χ ○ a of Y. In order for this map a ↦ ha to be an action on S

3, we need it
to be a homomorphism from Γ to Aut(S3). This will not be the case in general if we
let Theorem 4.2 output any ha satisfying ψ = ha ○ χ, because, for example, ha−1 may
differ from (ha)−1. But we can control the output of Theorem 4.2 by exploiting its
second statement. This ensures that g ↦ ha is a homomorphism from Γ to Aut(S3)
as desired, because restricting each ha to Y recovers the action of Γ on Y, which is a
homomorphism. (This idea is spelt out in more detail in [23, Lemma 5.6].)

Notice that ha ○ χ = ψ = χ ○ a, i.e., χ(Y), is invariant with respect to the action we
just defined. ∎

5 From group actions to invariant embedded generalized Cayley
complexes

In this section, we prove the implication (i) → (iv) of Theorem 1.5. An embedded 2-
complex in a 3-manifold M is a homeomorphic image of a 2-complex in M. Given
an action Γ ↷ M, we say that an embedded 2-complex X is Γ-invariant if Γ ↷ M
preserves X setwise.

Theorem 5.1 Let Γ be a finite group, and Γ ↷ S
3 a faithful action by homeomorphisms.

Then Γ admits an embedded, Γ-invariant, generalized Cayley complex.

In fact, we will prove the following more general statement, which yields a gener-
alization of the implication (i) → (iv) of Theorem 1.5. We say that a chamber C of an
embedded 2-complex Y ⊂ M is finitary, if ∂C is a finite subcomplex of Y.

Theorem 5.2 Let M be a 3-manifold, let Γ be a finitely generated group, and Γ ↷ M
a faithful, properly discontinuous, cocompact action by homeomorphisms. Then there
is a Γ-invariant embedded 2-complex Y ⊂ M with finitary chambers such that Γ acts
regularly on Y 0, and π1(Y) ≅ π1(M).

In particular, when M is simply connected, then Γ admits a Γ-invariant generalized
Cayley complex embedded in M.

Notice that the statement that Y has finitary chambers implies in particular that
the vertices of Y have no accumulation point in M.

Recall that a 2-complex C is a generalized Cayley complex of Γ if C is simply
connected and Γ admits an action on C that is regular on C0. We will construct
such a 2-complex embedded in M in two steps. In the first step, we construct an
embedded 2-complex X ⊂ M such that our action Γ ↷ M is regular on the chambers of
X (Lemma 5.3). In the second step, we perform local modifications on X to transform
regularity on the chambers into regularity of the action on the vertices.
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5.1 Step 1: Constructing an embedded 2-complex with a regular action on its
chambers

The following lemma performs the first step of our construction of a generalized
Cayley complex of Γ as mentioned above:

Lemma 5.3 Let M be a topological 3-manifold, and let Γ ↷ M be a faithful,
properly discontinuous, cocompact group action by homeomorphisms. Then there is
a Γ-invariant, embedded 2-complex X ⊂ M, such that π1(X) ≅ π1(M), and Γ acts
regularly on the chambers of X, each of which is finitary and homeomorphic to R

3.

For the proof of this, we will use the following basic fact:

Lemma 5.4 Let M be a topological 3-manifold, and let X ⊂ M be an embedded 2-
complex such that each chamber of X is homeomorphic to R

3, and it is bounded by a
finite subcomplex of X. Let f ∈ X2 be a 2-cell contained in the boundary of two distinct
chambers. Then π1(X) ≅ π1(X − f ).

Proof Let C1 , C2 denote the two chambers having f in their boundaries. We can
continuously deform f via the closure of C1 (or C2) onto a continuous image f ′ ⊂
∂C1 − f of a topological disc using the fact that C1 is homeomorphic to a ball in R

3,
and f ⊂ ∂C1 is homeomorphic to a disc. We can use f ′ to show that the circle ∂ f is
0-homotopic in X − f . Thus, we have π1(X) ≅ π1(X − f ) by van Kampen’s theorem
since f is simply connected. ∎

Proof of Lemma 5.3 We may assume without loss of generality that our action Γ ↷
M is smooth by Pardon’s theorem, A.1.

It is known that for every such action, the quotient space M/Γ—which is a
3-orbifold, but the reader will not need to know what this means—admits a triangula-
tion T [36, Proposition 1.2.1], which is adapted to the action in the sense that for each
simplex σ of T, the stabilizers under Γ of all preimages of points in σ are isomorphic
to each other. Since Γ ↷ M is cocompact, M/Γ is compact, and thus T is finite. Let
π ∶ M → M/Γ be the quotient projection. Its inverse π−1 lifts T to a triangulation T̃ of
M, as proved in [36, Lemma 1.2.2], which is Γ-invariant by construction. We think of
the 2-skeleton T̃2 of T̃ as an embedded 2-complex in M. It is straightforward to check
that the chambers of T̃ are exactly its 3-cells. It is easy to show that π1(T̃2) ≅ π1(M)
by applying van Kampen’s theorem to the 3-cells of T̃ .

Notice that the action Γ ↷ M is free on the 3-cells of T̃ and therefore on the
chambers of T̃2, because it is faithful. Indeed, if an element g of Γ fixed a 3-cell C
setwise, then g would have to fix C pointwise. This would force g to also fix the 3-cells
incident with C, hence all of M by its connectedness, implying that g can only be the
identity of Γ.

If the action is not transitive on the chambers of T̃2, then we can find a subcomplex
X of T̃2 which maintains the other desired properties and such that Γ acts transitively
on the chambers of X, by finding an appropriate fundamental domain of 3-cells of T̃2

and joining them into one chamber. To do so, we introduce the following notion.
Say that two chamber-boundaries C , D of a 2-complex H are adjacent, if their

boundaries share a 2-cell of H. Say that C , D are tight-connected, if there is a sequence
C1 , . . . Ck of chamber-boundaries such that C1 = C , Ck = D, and C i is adjacent to C i+1
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for every 1 ≤ i < k. A tight-component is a maximal tight-connected set of chamber-
boundaries of H. It is straightforward to check that

the boundaries of 3-cells of a triangulation of any connected 3-manifold
form a single tight-component.(3)

Let F be a maximal tight-connected set of boundaries of 3-cells of T̃2 that contains
at most one representative from each Γ-orbit of 3-cells of T̃ . The maximality of F,
combined with (3), easily implies that F contains a representative from each Γ-orbit of
3-cells, for otherwise we could add to F a 3-cell adjacent with one of its elements (this is
a well-known idea, appearing, e.g., in [5]). Thus, F contains exactly one representative
of each Γ-orbit of 3-cells, in other words, the action of Γ on the translates of F is regular.
Moreover, F is finite since Γ ↷ M is cocompact.

We claim that there is a set D of 2-cells of⋃ F such that⋃ F/D has only one chamber
C, and moreover C is homeomorphic to S

3. Indeed, we can construct D recursively as
follows. As long as ⋃ F has more than one chamber (each homeomorphic to R

3), we
can find two of them C1 , C2 sharing a 2-cell f by tight-connectedness. By removing f
we join C1 , C2 into one chamber, which is homeomorphic to R

3 since both C1 , C2 are.
(The boundary of the new chamber need not be homeomorphic to S

2, however.) It is
easy to see that the tight-connectedness of the chamber-boundaries of F is preserved.
Since F is finite, this recursion terminates leaving a single chamber, proving our claim.

Let X ⊂ M be the 2-complex obtained from T̃2 by removing a set D as above along
with all its Γ-translates. Then⋃ F is contained in one chamber of X, and it follows that
Γ acts regularly on the chambers of X.

By construction, each chamber of X is still homeomorphic to R
3 and finitary.

Notice that whenever we removed a 2-cell f of T̃2 we joined two chambers C1 , C2
into one, and so we did not change π1 by Lemma 5.4. Thus, π1(X) ≅ π1(T̃2), which
coincides with π1(M) as noticed above. ∎

5.2 Step 2: From regularity of the action on the chambers to regularity on the
vertices

Having constructed an embedded 2-complex X ⊂ M such that the action Γ ↷ M of
Theorem 5.1 or 5.2 is regular on the chambers of X, our aim now is to modify X
locally so that the action becomes regular on the vertices. Most of the work will go
into making the action free on the vertices, because having done so we will be able to
use the standard trick of contracting a fundamental domain to achieve transitivity.
To formulate this trick in our setup, given a graph G, and a subgroup Γ of the
automorphism group Aut(G) of G, we call a subgraph H ⊆ G a fundamental domain
for Γ, if H contains exactly one vertex from each Γ-orbit.

Lemma 5.5 (Babai’s Contraction Lemma [5]) Let G be a connected graph, and suppose
a group Γ ≤ Aut(G) acts freely on the vertex set V(G). Then there is a connected
subgraph D ⊂ G that is a fundamental domain for the action, and the graph G/D
obtained by contracting each Γ-image of D into a point is a generalized Cayley graph
of Γ. In particular, Γ acts transitively on V(G/D).

The graph we will later apply Lemma 5.5 to is the 1-skeleton of our 2-complex.
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Figure 2: An example F(X), when X is the cubic lattice (top left). Each link graph is an
octahedron (top right), and so each pineapple of F(X) is a truncated cuboctahedron (bottom
left). The pineapples are arranged as in the bottom right figure, which shows four of them in
the front.

Thus, it remains to transform the freeness of the action on the chambers arising
from Lemma 5.3 into freeness on the vertices. This is carried out by the following
result.

Theorem 5.6 Let M be a topological 3-manifold, and let Γ ↷ M be a properly dis-
continuous group action by homeomorphisms. Let X ⊂ M be a Γ-invariant, embedded
2-complex, such that π1(X) ≅ π1(M), the action of Γ on the chambers of X is regular,
and each chamber is finitary and homeomorphic to R

3. Then there is a Γ-invariant,
embedded 2-complex F(X) ⊂ M with finitary chambers, such that the action of Γ on
V(F(X)) is free, and π1(F(X)) ≅ π1(M).

Our formal definition of the complex F(X) that achieves this takes some time, but
the idea is rather simple: given a vertex x of X stabilized by Γ ↷ M, we notice that we
can pick a set Ox of nearby points inside the chambers incident with x such that the
action of Γ on Ox is regular, because Γ acts freely on the chambers. The idea is to blow
up each 2-cell, 1-cell, and 0-cell of X into a homeomorph of S2, in order to modify X
into a complex F(X) with vertex set ⋃x∈X0 Ox . An example is shown in Figure 2: if
X is the standard cubic lattice embedded in R

3 (top left), then a portion of F(X) is
displayed in the bottom right of the figure.

The reader will lose nothing by assuming that M = S3 and Γ is finite throughout
this section; this is enough for proving Theorem 1.4, and this assumption makes no
difference for any of the proofs in this section.

We now prepare for the formal definition of F(X). Given an embedded 2-complex
X ⊂ M, and a homeomorphic image S of S2 in M which is locally flat, we say that S is
adapted to X if
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(i) for every 1-cell e ∈ X1 the intersection S ∩ e is either a single point, or all of e, or
empty;

(ii) for every 2-cell f ∈ X2, the intersection S ∩ f is either an arc between two points
of the boundary of f (either 0-cells, or interior points of 1-cells) or empty, and

(iii) S separates M into two components.

If S is adapted to X, and A is one of the two components into which S separates M, then
we can obtain an embedded 2-complex XA from X by removing X ∩ A and adding S
to X; to make this more precise, we define the A-truncation of X to be the embedded
2-complex XA obtained as follows.

(i) For every 1-cell e ∈ X1 that intersects S at a point p, we declare p to be a 0-cell of
XA, we declare the subarc of e lying outside A to be a 1-cell of XA and discard the
subarc of e lying inside A.

(ii) For every 2-cell f ∈ X2 intersecting S along an arc P between two points x , y of
the boundary of f, we declare P to be a 1-cell of XA—its end-points x , y must be
0-cells of XA by i. Notice that f /(S ∪ A) is homeomorphic to a disc f ′, and we
declare f ′ to be a 2-cell of XA, discarding f.

(iii) The points p and arcs P as in i–iisubdivide S into topological discs, which we
declare to be 2-cells of XA.

(iv) For every cell C of X that does not intersect S, we keep C in XA if it lies outside
A, and discard it if it is contained in A.

We now construct the 2-complex F(X) featuring in Theorem 5.6 by a combination
of such truncations.

Definition 5.7 Given an embedded 2-complex X ⊂ M, we construct another embed-
ded 2-complex F(X) ⊂ M as follows.

(i) We blow each 2-cell f ∈ X2 up like a mango; that is, we replace f by two “parallel”
copies f ′ , f ′′ with the same boundary and attachment map, and embed f ′ , f ′′
into M so that one of the sides of the 2-sphere S f ∶= f ′ ∪ f ′′ contains f and is
otherwise disjoint from X. Moreover, we ensure that S f is locally flat, and disjoint
from g′ ∪ g′′ for every g ≠ f ∈ X2 except possibly for intersections along X1; in
other words, our mangos do not cross each other. Let X1 denote the resulting
2-complex. We call f ′ ∪ f ′′ the mango of f and imagine its side containing f as
one.

(ii) Next, we blow each 1-cell e ∈ X1
1 up like a banana. To define this formally, let Se

be a homeomorph of S2 in M such that the end-vertices of e lie on Se , one side
Ae of Se contains the interior of e and is otherwise disjoint from the 1-skeleton
of X1, and Se is adapted to X1 and locally flat. It is easy to find such Se , and to
ensure that they are pairwise disjoint except possibly at their vertices. We apply
the Ae-truncation of X1 for each e ∈ X1

1 to obtain a new embedded 2-complex
X2. We call Se the banana of e.

(iii) Finally, we blow each vertex v ∈ X0
2 = X0 up like a pineapple; that is, we pick

a homeomorph Sv of S2 in M, such that one side Av of Sv contains v but no
other vertices of X2, and Sv is adapted to X2 and locally flat. Moreover, we
choose the Sv , v ∈ X0

2 small enough that they are pairwise disjoint. We apply the
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Av-truncation of X2 for each v ∈ X0
2 to obtain the desired 2-complex F(X). We

call Sv the pineapple of v.

Remark 2 The 1-skeleton of the pineapple of v can be obtained from the link graph
of v by doubling each edge by a parallel one, and then blowing up each vertex of the
resulting plane graph into a cycle of vertices of degree 3.

Example When X is the cubic lattice in R
3, the link graph of each vertex is iso-

morphic to the 1-skeleton of the octahedron. Each pineapple of F(X) is a truncated
cuboctahedron. They are arranged as shown in Figure 2.

Remark 3 There is an alternative, more abstract, way to define F(X). A flag of X is a
4-tuple (c0 , c1 , c2 , c3)where c i is an i-cell of X, and c i is incident with c i−1 for 1 ≤ i ≤ 4,
with the convention that the 3-cells of X ⊂ M are its chambers. We can identify the
set of 0-cells of F(X) with the set of flags of X. We connect two flags with an 1-cell
of F(X) whenever they differ in exactly one coordinate. We can 4-color the 1-cells
of F(X) using the coordinate at which its end-vertices differ as a color. The 2-cells of
F(X) are bounded by the 2-colored cycles with respect to this coloring. Again Figure 2
can serve as an example. This definition generalizes in any dimension.

The letter F in our notation F(X) stands for “fruit,” but also for “flag.”

Using van Kampen’s theorem, it will be easy to deduce that F(X) preserves the
fundamental group of X:

Lemma 5.8 For F(X) as in Definition 5.7, we have π1(F(X)) ≅ π1(X).

Proof Notice that if we contract each pineapple Sv in the construction of F(X) to
a point, we obtain a 2-complex homeomorphic to X2. Thus, π1(F(X)) ≅ π1(X2) by
van Kampen’s theorem. Similarly, squeezing each banana Se in X2 back to an edge
with the same endpoints as e results into a 2-complex homeomorphic to X1, and so
π1(X2) ≅ π1(X1). Finally, squashing each mango S f of X1 onto a disc with the same
boundary as f results in a homeomorph of X, yielding π1(X1) ≅ π1(X). ∎

In order to be able to use F(X) to prove Theorem 5.6, we need to construct it more
carefully so that Γ ↷ M extends to an action on F(X). This would be easy if Γ acted
freely on X, but in general we need to take some care to ensure that the stabilizer
of each 2-cell, 1-cell, or 0-cell fixes the corresponding mango, banana, or pineapple,
respectively. We will be able to achieve this by choosing a chamber C of X and using
its closure C as a fundamental domain. More precisely, we will prove

Lemma 5.9 Let X and Γ be as in the statement of Theorem 5.6, let C be a chamber of
X, and let D be the subcomplex of X bounding C. Then there is a homeomorphic copy
F ⊂ M of F(D), such that Γ(F ∩ C) is homeomorphic to F(X).

Here, ΓA denotes the image of a set A ⊂ M under the action Γ ↷ M, and F(D) is
given by Definition 5.7.

Before proving Lemma 5.9, let us see how it implies Theorem 5.6.

Proof of Theorem 5.6 Given X as in the statement, we construct F(X) as in
Definition 5.7. By Lemma 5.8, F(X) is simply connected since X is. Easily, F(X) has
finitary chambers since X does.
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Figure 3: A topological 5-gon with a slice pattern. The E i are depicted in red (if color is shown),
and the Vi in blue.

Let D be the subcomplex of X bounding a chamber C of X. Then Lemma 5.9 yields
an embedded 2-complex F ⊂ M such that F′ ∶= Γ(F ∩ C) is homeomorphic to F(X).
Notice that F′ is Γ-invariant by definition.

It remains to check that the action of Γ on V(F′) is free. This is true because each
vertex of F′ lies in the interior of a chamber of X, and Γ acts freely on the chambers of
X by assumption. ∎

It remains to prove Lemma 5.9. To construct the desired copy F of F(D), we will
first design the intersection of F with each 2-cell of F(D). To do so, we need to
remember how the bananas and pineapples of F(X) intersect each 2-cell of X (the
mangos do not); these intersections are described in the following definition, but they
are easier to see in Figure 3.

A topological n-gon is a regular 2-complex P containing exactly one 2-cell f, and
such that P1 is homeomorphic to S

1 (and coincides with the boundary of f ).
Definition 5.10 Let P be a topological n-gon, with vertices v1 , . . . vn , and edges
v iv i+1(mod n). A slice pattern on P consists of two sets E ∶= {E1 , . . . , En} and V ∶=
{V1 , . . . , Vn} of arcs on P, such that (Figure 3)

(i) the end-points of E i are v i and v i+1(mod n);
(ii) the end-points of Vi are interior points of the edges v i−1(mod n)v i and

v iv i+1(mod n);
(iii)each E i and Vi meets the 1-skeleton of P at its end-points only;
(iv) the elements of E are pairwise disjoint, and so are the elements of V, and
(v) Vi is disjoint from E j unless j = i or j = i − 1(mod n).

An automorphism of a topological n-gon P is a homeomorphism of P mapping
each vertex to a vertex (and hence each edge to an edge). To prove Lemma 5.9, we will
apply the following lemma to each 2-cell of D; this helps us by pushing the difficulty
one dimension down.
Lemma 5.11 Let P be a topological n-gon, and h ∶ P → P an automorphism such that
h2 is the identity. Then there is a slice pattern (E,V) of P preserved by h. That is, h maps
each element of E to an element of E, and each element of V to an element of V.
Proof Notice that h must fix some arc A joining two boundary points of P and
exchange the two components into which A separates P. We can thus pick “half ” a
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slice pattern on the quotient polygon P/h and lift it back to P to obtain a slice pattern
of P. We have assumed here that h in not the identity, in which case the statement is
trivial. ∎

Proof of Lemma 5.9 Notice that although Γ ↷ M is free on the chambers of X, some
of the 2-cells of D may have a nontrivial stabilizer in Γ. However, for every such 2-
cell f ∈ D2, there is at most one nonidentity element h f of Γ fixing f, because f is in
the boundary of at most two chambers of X, and no nonidentity element of Γ fixes a
chamber. For the same reason, h f must be an involution. Applying Lemma 5.11 with
P = f we obtain a slice pattern (E,V) of f preserved by h f . Choosing such a slice
pattern for one representative f of each Γ-orbit of 2-cells of D, and translating it to
the other representatives via the action of Γ, we obtain a family (E f ,V f ) f ∈D2 of slice
patterns of all 2-cells of D, which family is compatible with our action Γ ↷ M, i.e.,
(E f ,V f ) = (Eg f ′ ,Vg f ′)whenever g f ′ = f for some f , f ′ ∈ D2 and some g ∈ Γ. Notice
that this implies that the set of Γ-translates of this family is Γ-invariant.

To find the desired copy F of F(D), we can start by picking the mangoes arbitrarily
as in (Definition 5.7 i). (The half-mango outside C will be irrelevant.) For each e ∈ D1,
pick the corresponding banana Se (Definition 5.7 ii) so that its intersection with each
2-cell of D is contained in one of the E f of the above family of slice patterns. Similarly,
for each v ∈ D0, pick the corresponding pineapple Sv (Definition 5.7 iii) so that its
intersection with each 2-cell of D is contained in one of the V f . This completes the
construction of F.

It remains to check that Γ(F ∩ C) is homeomorphic to F(X) as claimed. To see this,
notice that F ∩ C contains one half of each mango, a slice of each banana, and a sector
of each pineapple of F. Moreover, when acted upon by Γ, these portions combine well
to produce a homeomorph of F(X). Indeed, for any g , h ∈ Γ, the translates g(F ∩ C)
and h(F ∩ C) are disjoint except possibly at the boundaries of gC and hC, where they
meet along the Γ-invariant family of slice patterns chosen above. ∎

We are now ready to complete the main result of this section.

Proof of Theorems 5.1 and 5.2 Apply Lemma 5.3 to obtain an embedded 2-complex
X ⊂ M such that π1(X) ≅ π1(M) and X satisfies all the assumptions of Theorem 5.6.
Then apply Theorem 5.6 to this X, to turn it into an embedded 2-complex F(X) such
that the action of Γ on V(F(X)) is free.

Suppose that the action of Γ on V(F(X)) is not transitive. Let D ⊂ F(X)1 be a
connected fundamental domain for the action as provided by Lemma 5.5. Notice
that D is finite because Γ ↷ M is cocompact. Let T be a spanning tree of D, and
let U be an open neighborhood of T in M homeomorphic to R

3. Easily, we can
pick U small enough that its Γ-translates are pairwise disjoint. Contracting each
Γ-translate of U into a point, we obtain a manifold homeomorphic to M, still
acted upon by Γ, into which manifold the 2-complex Y ∶= F(X)/T is embedded
Γ-invariantly. These contractions preserve the property that all chambers are finitary.
By the choice of T, the action of Γ on V(Y) is regular. Moreover, π1(Y) ≅ π1(F(X)) ≅
π1(X) ≅ π1(M). In particular, when M is simply connected, then Y is a generalized
Cayley complex of Γ. ∎
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Notice that when M is simply connected in Theorem 5.2, then it is a special
3-manifold by Theorem 1.1. Thus, we have proved the implication (i) → (iv) of
Theorem 1.5 and its analogue for Theorem 1.4. In particular, we deduce the implication
(i) → (iii) of Theorem 1.4, and assuming, as we may, that the action of (i) is on S

2,
we avoid using Theorem 1.1. Combined with Section 4, we thus obtain a proof of the
equivalence of (i) and (iii) of Theorem 1.4 without using Perelman’s work.

Remark 4 Since X, and hence F(X), are regular 2-complexes by construction, the
2-complex Y that the above proof provides is edge-regular (as defined in Section 2.3).
We do not know if we can always obtain a regular Y in Theorems 5.1 and 5.2.

6 Concluding remarks

Our proofs of Theorems 1.4 and 1.5 are now complete. The implication (iv) → (i) is
trivial because every special 3-manifold is simply connected. The implications (iv) →
(iii) → (ii) are trivial because every special 3-manifold embeds in S

3. The implica-
tions (ii)→ (iv) and (i) → (iv) have been proved in Sections 3 and 5, respectively.

As mentioned in the introduction, there are groups admitting a Cayley complex
embeddable in R

3 with invariant planar rotation system, but only if we allow infinite
prechambers. Examples include Z2, and more generally any fundamental group of an
orientable closed surface [1].

Question 6.1 Which infinite groups admit a Cayley complex embeddable in R
3 with

invariant planar rotation system?

This class of groups contains the fundamental groups of closed 3-manifolds (as
proved by Theorem 1.4) and closed surfaces; more generally, it contains all Kleinian
function groups [23, Section 12]3. It is easy to see that it also contains groups of the
form F ×Z where F is free. It would be interesting to clarify the relationship between
the groups of Question 6.1 and the Kleinian groups.

Question 6.2 Is there a finite set X of 3-manifolds, such that each of the groups of
Question 6.1 admits a discrete action on an element of X?

This X should contain the three special open 3-manifolds of Theorem 1.1. It should
also contain R

2 × S1, because of Z2 and other surface groups. Moreover, X should
contain C ×R where C stands for the Cantor 2-sphere, i.e., S2 with a Cantor set
removed; we include C ×R to let groups of the form F ×Z act. These 5 manifolds
could suffice as far as we can tell.

One could enquire more generally about the class of groups admitting a Cayley
complex embeddable in R

3 with no further restrictions, though we do not expect
an easy alternative description. An example of such a group is the Baumslag–Solitar
group BS(1, 2). Its standard Cayley complex defined by ⟨a, b ∣ bab−1 = a2⟩ embeds
in the cartesian product of a binary tree and R, as well-known figures show. It
has been proved that BS(1, 2) cannot be mapped in a nondegenerate way into the

3This is not stated explicitly in [23], but the proof of Theorem 1.3 there constructs an embedding of
a Cayley complex in R

3.
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fundamental group of an orientable 3-manifold [43], and so it is not one of the groups
of Theorem 1.5.

Appendix: The universal covers of 3-manifolds and orbifolds

In this section, we provide a proof of Theorem 1.1. We emphasize that our only
contribution to this proof was to ask the experts about it and put the pieces together.

For our proof of Theorem 1.1, and also in Section 5, we make use of Pardon’s
theorem that topological actions on a 3-manifold can be smoothed:

Theorem A.1 ([39, 40]) Every properly discontinuous action of a finitely generated
group Γ on a 3-manifold M by homeomorphisms is the uniform limit of smooth actions
of Γ on M.

We will also need the following consequence of the Orbifold theorem of Boileau,
Leeb, & Porti:

Theorem A.2 ([9, Corollary 1.3]) Every compact connected 3-orbifold which does not
contain any bad 2-suborbifolds is the quotient of a compact 3-manifold by a finite group
action.

Proof of Theorem 1.1 Suppose first that M admits an action Γ ↷ M as above, which
is in addition free. Then Q ∶= M/Γ is a closed 3-manifold, and M is its universal cover
because it is simply connected. Moreover, Γ ≅ π1(Q).

We may assume without loss of generality that Q is orientable by replacing Γ
by its subgroup of orientation-preserving elements. Thus, Q is a closed, orientable,
connected, 3-manifold. The fact that such a Q has special universal cover is apparently
well-known to experts. We reproduce a proof by Ian Agol [3].

If π1(Q) is finite, then its universal cover M is homeomorphic to S
3 by the validity

of the Poincaré conjecture.
If π1(Q) is infinite and π2(Q) is trivial, then we claim that the universal cover

M is homeomorphic to R
3. Indeed, in this case, Q has a geometric decomposition

by the geometrization theorem [41, 42, 45]. If the decomposition is trivial, then Q
is modeled on one of the six Thurston geometries homeomorphic to R

3, and hence
the universal cover is R3. Otherwise, we apply the virtually Haken conjecture, proved
by Agol [4], which asserts that every compact, irreducible 3-manifold Q with infinite
π1(Q) is finitely covered by a Haken manifold Q′. The reader does not need to know
what a Haken manifold is, all we need is a result of Waldhausen proving that any Haken
manifold Q′ has universal cover homeomorphic to R

3 [46, Theorem 8.1]. Since Q′
covers Q, we deduce that M is homeomorphic to R

3 as claimed.
If π1(Q) is infinite and π2(Q) nontrivial, then it may be that Q is modeled on the

S
2 ×R geometry and Q is homeomorphic to RP3#RP3 or S2 × S1. In this case, the

number of ends of π1(Q), and M, is 2, and M is homeomorphic to S
2 ×R. Otherwise,

Q is a nontrivial connect sum by Papakyriakopoulos’ sphere theorem [38], and we
claim that the universal cover M is a Cantor 3-sphere. Indeed, the connect summands
have universal cover eitherS3, orS2 ×R, orR3 by the above discussion. When forming
connect sums, we remove open balls from each summand manifold and glue their
sphere boundaries together. The universal cover is obtained by gluing the universal
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covers of each summand punctured along balls, either finitely many in S
3 or infinitely

many in S
2 ×R or R

3. It is easy to see that such manifolds are built out of thrice
punctured spheres, and hence the universal cover can be decomposed into thrice
punctured spheres. It is not hard to see that such a manifold is homeomorphic to the
Cantor 3-sphere.

It remains to consider the case where the action Γ ↷ M is nonfree, which we will
be able to reduce to the free case. By Theorem A.1, we may assume that Γ ↷ M is
smooth. Thus, the quotient O ∶= M/Γ is endowed with the structure of an orbifold.
Theorem A.2 implies that O is finitely covered by a manifold M′. The universal cover
of M′ covers O, and so it coincides with M by the uniqueness of a simply connected
cover. Recall that π1(M′) acts on its universal cover M freely, properly discontinuous,
and cocompactly. We have reduced to the free case, and so we can deduce that M is
special in all cases. ∎
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