
13 
One-particle inclusive transverse 

single-spin asymmetries 

One of the most interesting and challenging issues at the moment concerns 
the question of asymmetries involving either an initial transversely polar­
ized hadron, in which case we consider the analysing power AN of the 
reaction, or the production of a transversely polarized final state hadron 
in an unpolarized collision, in which case we consider the polarizing power 
P of the reaction. 

The problem is that the lowest-order QCD partonic cross-sections yield 
AN = P = 0, whereas experimentally there is a mass of data showing 
large asymmetries or large polarizations, both in elastic and semi-inclusive 
reactions. 

The treatment of elastic reactions is very different from that of the 
semi-inclusive case, requiring consideration of hadronic wave functions 
rather than parton densities. We shall therefore deal with the elastic case 
separately in Chapter 14. 

The most dramatic examples in the one-particle inclusive case are the 
transverse asymmetries AN in proton-proton and in antiproton-proton 
collisions (ppi ~ n±x and pip~ n±X) and the hyperon polarization in 
pp, p + nucleus and K p ~ hyperon +X. 

Broadly speaking the effects have the following characteristics. 

(1) They increase linearly with pr out to pr ~ 2-2.5 GeV jc (see Figs. 13.1, 
13.2) though there is a hint of a flattening out beyond py ~ 1 GeV jc 
in the lower energy data (see Fig. 13.3). 

(2) They increase linearly with Feynman XF (xF > 0) out to the maximum 
xj¥ax ~ 0.9 (see Figs. 13.4 and 13.5). 

(3) They seem to be roughly energy-independent (see Fig. 13.2). 
(4) There are interesting dependences on the charge and strangeness of 

the final state hadron (see Fig. 13.6) and upon the correlation between 
the quark contents of the initial and produced hadrons. 
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Fig. 13.1 Analysing power AN vs. PT measured at FERMILAB for 200 
GeV/c polarized antiprotons in the reaction pip---+ n±x. (From Bravar 
et al., 1996.) 
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Fig. 13.2 The average A polarizations vs. PT measured at FERMILAB 
for 800 GeV jc protons in the reaction pBe---+ AX (from Ramberg et al., 
1994). Also shown are the 400 GeV jc data of Lundberg et al., 1989. 
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Fig. 13.3 The A polarization vs. PT in bins of XF measured at FERMI­
LAB for 400 GeV jc protons in the reaction pBe--+ AX. (From Lundberg 
et al., 1989.) 

13.1 Theoretical approaches 

If one takes the same approach theoretically as was done for the asym­
metries discussed in the previous chapter, i.e. a simple parton approach 
refined by QCD corrections with a perturbative QCD amplitude for the 
hard scattering, one can generate transverse asymmetries only by going 
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Fig. 13.4 Analysing power AN vs. XF measured at FERMILAB for 200 
GeV jc polarized protons in the reaction pip---+ n±X: o, n+; o, n-. (From 
Adams et al., 1991b.) 
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Fig. 13.5 The A polarization for py ;::::: 0.96 GeV jc vs. XF measured at 
CERN for the reaction pp---+ AX at JS = 62 GeV (solid circles) (from 
Smith et al., 1987). Also shown (open circles) are the FERMILAB data 
at JS = 27 GeV of Lundberg et al., 1989. 
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Fig. 13.6 Polarization of various hyperons produced by 400 Ge V / c 
protons at FERMILAB at fixed Lab angle of 5 mrad. (From Heller, 
1981.) 

Fig. 13.7. Feynman diagram for quark-quark scattering amplitude at 
order rt;. 

beyond the Born approximation in the partonic amplitude. Thus at one­
loop level, as shown for example in Fig. 13.7 for qq --+ qq, one finds a 
non-zero value for aN, the partonic analogue of AN, but it is exceedingly 
small, much too small to explain the data and moreover is proportional 
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to the quark mass. It has the typical form 

GN = <ts )/(()*). (13.1.1) 

This is similar to the problem of gz(x) in polarized deep inelastic 
scattering (see Section 11.4) and really signals the failure of the model 
to produce the asymmetry. In our discussion of g1,2(x) we followed the 
traditional approach using the hadronic and partonic tensors W.uv and W,uv; 
however, we could have treated the asymmetries in terms of cross-section 
asymmetries in the eq ---4 eq partonic collision and would have found that 
the partonic asymmetry is zero for transverse polarization of the quark 
in the transversely polarized nucleon. Put another way, (13.1.1) indicates 
that the asymmetry is not a leading twist effect. Most interestingly, we 
shall see that the field-theoretic mechanism needed to discuss gz(x) also 
provides a mechanism for a non-zero aN. 

There are two diverse attitudes to the above situation. One point of 
view is that PT is simply too small to justify the use of perturbative 
QCD, so one should try to construct phenomenological models for the 
non-perturbative aspects of the problem. We shall briefly examine this 
approach in Section 13.5. The alternative, which we shall follow, is to 
remain within the framework of the standard QCD-parton model but 
either to adopt a more sophisticated approach to the non-perturbative 
elements, i.e. the parton densities and the process of parton fragmentation 
(Sections 13.2, 13.3), or to generalize the partonic reactions beyond the 
usual 2 ---4 2 Born amplitudes (Section 13.4). 

Before discussing this it is important to note a major distinction between 
semi-inclusive lepton-hadron deep inelastic scattering and one particle 
inclusive hadron-hadron scattering, concerning the measurement of the 
analysing power AN of the reaction. 

In a hadron-hadron collision ABi ---4 CX, with OZ along the collision 
axis in the CM, we know from Sections 5.4 and 5.8 that the differential 
cross-section depends upon the azimuthal angle </> of C, measured with 
respect to the quantization plane containing OZ and the transverse spin 
polarization 'Pr. AN can then be measured either by studying the azi­
muthal dependence with fixed 'Pr or by studying the asymmetry when 'Pr 
is reversed. The key point is that for an unpolarized collision there cannot 
be any dependence on an azimuthal angle about OZ - there simply is no 
physically defined plane from which to measure the angle. 

The latter is not true for a reaction like ep ---4 e'CX. Even with unpolar­
ized initial particles there can, in principle, be an azimuthal dependence 
about the 'y'-proton CM collision axis, since in this frame p(e) and p(e') 
define a plane from which the angle can be measured. This cannot occur 
in the simple parton model, where partons are collinear with the momenta 
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of their parent hadrons and partons fragment collinearly into hadrons. 
But it can happen, for example, if one allows partons to have an intrin­
sic Pr (Cahn, 1978). The azimuthal dependence arises in the following 
way. Consider the partonic electron-quark reaction eq(p) ~ e' q'(p') in the 
'y'-proton CM, where y has momentum q along OZ. Since p' = p + q 
we have that p'r = PT· Moreover the Mandelstam variables s, t, u of the 
partonic reaction depend upon ¢, the azimuthal angle of Pr, and hence 
the cross-section depends on the azimuthal angle of the final parton and 
therefore of C. Such azimuthal dependence is indeed seen experimentally 
(Arneodo et al., 1987) and implies that AN can only be measured by 
measuring an asymmetry under reversal of 'Pr. 

One final general comment is necessary. All the mechanisms we shall 
discuss are able to produce asymmetries that increase with transverse 
momentum, but they are able to do this only out to values:::::; 1-2 GeV jc. 
Beyond this the asymmetries decrease and eventually vanish. If, therefore, 
the experimental asymmetries continue to grow with Pr we shall find 
ourselves in a critical state of ignorance. 

13.2 Standard QCD-parton model with soft-physics asymmetries 

In this section we discuss a standard parton-model approach, with the 
hard scattering controlled by a 2 ~ 2 partonic reaction but with allowance 
for transverse momentum of the partons. It will be seen that a transverse 
single-spin asymmetry could arise from possible asymmetries in the soft­
physics aspects, i.e. in the parton number densities and fragmentation 
functions. 

Consider the reaction 

( 13.2.1) 

where the momentum of A lies along OZ in the CM of the reaction; A is 
polarized transversely with spin along (j) or opposite U) to OY. 

Let us consider the cross-section for ( 13.2.1) in the spirit of the simplified 
analysis in Section 12.1. Since B is unpolarized here, it plays a passive role 
in the spin dependence, so we show only the role played by the partons 
in A and C. Then symbolically 

d(Ji,.,., fi&tD('Pc) + JJ&tD(-'Pc) (13.2.2) 

where fi, JJ are the number densities of quarks with polarization j or t 
in A, &j, &1 are the lowest order cross-sections for the partonic reaction 

(ai orat)+b~c+d (13.2.3) 

and ±'Pc is the spin-polarization vector of parton c produced in the 
reaction (13.2.3) when the polarization vector of a is 'Pa = ±e(y)· D('Pc) is 
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the fragmentation function for 

c(Pc) ~ C +X. 

Now since aN = 0 in lowest order, we have that 

Therefore ( 13.2.1) can be written 

dcr i "' ~ (!J +II) & [D(Pc) + D(-'Pc)] 

+ ~ (!J -II) & [D(Pc)- D(- 'Pc)] 

= Ii & D + ~ (Llr f)& f...D(Pc) 
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(13.2.4) 

(13.2.5) 

where Ii is simply the number density inside Ai, D is the unpolarized 
fragmentation function 

D = ~ [D(Pc) + D(-Pc)], 
the difference Llr I is given by 

Llri =I{- II 
and 

f...D(Pc) = D(Pc) - D(-'Pc). 

Similarly 

dat "'It&D- ~(Llr )I&f...D(Pc). 

In relation to the spin asymmetry we then have 

LlNdcr = dcri- dat ~ (f...Nf)&D + (Llrf)&f...D(Pc) 

where 

and the asymmetry is defined as 

dcr i- dcrt 
AN= dcri + dcrt 

(13.2.6) 

(13.2.7) 

(13.2.8) 

(13.2.9) 

(13.2.10) 

(13.2.11) 

Now the problem is that the expression (13.2.9) vanishes in the usual 
parton model, where the momentum of a parton is taken as collinear 
with the momentum of its parent hadron! Thus the total number of 
partons with momentum fraction x cannot depend on the polarization of 
the parent hadron, so that f...N I = 0, and the total number of hadrons 
with momentum zpc cannot depend upon the polarization of c, so that 
f...D(Pc) = 0. 
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It has been suggested, however, that with the inclusion of intrinsic 
parton transverse momentum these differences of number densities could 
be non-zero. 

Thus Sivers (1990, 1991) proposed, for a hadron A that is transversely 
polarized, 

A . _ A 1 A 'PA. (PA X kaT) 
fa (PA, PA,Xa,kaT)- fa (xa,kaT) + 2/j.Nfa (xa,kaT) I k I 

PAX aT 
(13.2.12) 

where kaT is transverse to PA· 
However, if we are permitted to regard f1 as describing the independent 

physical reaction 

(13.2.13) 

then the asymmetry in the decay distribution implied by (13.2.12) is 
impossible, as can be seen by looking at the reaction in the CM of a and 
X. Collins (1993) has given a more subtle argument against the Sivers 
effect. Using the field-theoretic formalism of Section 11.9, 'll.N f can be 
related to a nucleon matrix element of certain operators and is shown to 
vanish as a consequence of parity invariance and time-reversal invariance. 
But this argument relies on an absence of final state interactions and is 
thus analogous to treating (13.2.13) as an independent physical reaction, 
which is an essential element of the factorization of the reaction into 
universal soft and hard parts. 

Despite these arguments, some authors have postulated a non-zero 
Sivers mechanism (Anselmino, Boglione, Murgia, 1995; Ratcliffe, 1998) 
on the grounds that the parton model totally ignores the question of the 
need to neutralize colour and to compensate for fractional charge and 
baryon number. So there must indeed be final state interactions, negating 
the anti-Sivers argument, but they must be fairly negligible otherwise the 
parton model would not work at all. In the papers quoted above there is 
no attempt to define the dynamics causing the final state interactions, so 
there is no reason to believe that a treatment relevant to one particular 
reaction is also relevant to any other process. 

It turns out, in fact, that by extending the scope of the partonic reactions 
one can produce effective initial and final state interactions at the partonic 
level in a well-defined and factorizable dynamical way, as will be explained 
in Section 13.4. Thus we shall not discuss the Sivers mechanism any further. 

Collins (1993) argued that, contrary to what happens in the Sivers case, 
the time-reversal argument does not forbid a non-zero 'll.D(Pc) when kT 
is taken into account. He thus postulates, for the fragmentation process 

(13.2.14) 
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where kcr is perpendicular to Pc, 

1 Pc X kcr 
D(pc,'Pc; zpc + kcr) = D(z, kcr) + 2AD(z, kcr )'Pc · I k I (13.2.15) 

Pc X CT 

so that AD('Pc) i= 0. 
Since the Collins mechanism relies on detection of the produced hadron 

C, it will not be operative in jet production. Suggestions on the use of 
various reactions to try to sort out what mechanisms are at work are given 
in Anselmino, Leader and Murgia (1997) and in Boros, Liang, Meng and 
Rittel (1998). 

How large are the asymmetries expected to be? If PT is the magnitude 
of the transverse component of Pc and (kr) is a measure of the magnitude 
of the intrinsic kr, we would expect effects of the order of (kr) IPT· This 
is, of course, a higher-twist effect at large PT· 

Let us now consider the detailed expression for the asymmetry due to 
the Collins effect. For concreteness we shall consider the reaction 

pi+p-+n+X (13.2.16) 

at large PT· 

13.3 Collins mechanism for single-spin asymmetry 

We consider the asymmetry arising from the second term in (13.2.9). The 
CM frame for the reaction pip --+ nX is chosen so that the reaction takes 
place in the XZ-plane, with the polarized proton, A, moving along OZ. 
We consider pions whose momentum lies in the positive XZ -quadrant. 
The pion momentum is specified by Pnr(= Pnx) and Xp = 2Pnz/ .JS. 

The polarization direction j is defined to be along 0 Y. The partons from 
the polarized proton have momentum XaP and those from the unpolarized 
proton have momentum, -xbp, where pis the CM momentum of A. 

Since intrinsic partonic kr effects are small we have taken them to be 
zero except where they are essential, i.e. in the fragmentation process. 

Let quark c be produced at polar angles 8*, </>* in the partonic CM. 
The components of the polarization vector of c, with respect to the axes 
Xc. Yc. Zc in the helicity frame of c reached from the partonic CM (see 
Fig. 13.8), can be obtained from (5.6.20) together with (5.6.1), bearing in 
mind that the analysing power of the partonic reaction is zero. When the 
polarization vector of a is 

'Pa = e(y) (13.3.1) 
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Fig. 13.8 Helicity frame for quark c reached from the parton CM in the 
reaction ab ~ cd. 

one has 

:!J>c da('Pa)ab->cd = (J_ d&) (XOIXO) sin¢* 
Xc did¢* 2n di 

(13.3.2) 

:!J>c da('Pa)ab->cd = (J_ d&) (YOIYO) cos¢*. 
Yc did¢* 2n di 

(13.3.3) 

For all the relevant partonic processes one finds that 

(XOIXO) = (YOIYO) = dNN(8*) (13.3.4) 

and also that da('Pa)/did¢* is independent of ¢*. Hence (13.3.2) and 
(13.3.3) become 

:!J>~c = dNN(e*) sin¢* 

:!J>~c = dNN(e*)cos¢*. 

(13.3.5) 

(13.3.6) 

From Fig. 13.8 one can read off the components of 'Pc with respect to the 
partonic CM axes: 

:!!>~ = dNN(e*) [(cose* -l)cos¢* sin¢*] 

:!J>~ = dNN(8*) [cos 8* sin2 cjJ* + Cos2 c/J*] 

:!J>~ = -dNN(8*) sin 8* sin cjJ*. 

(13.3.7) 

(13.3.8) 

(13.3.9) 
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In fact one can see that 'Pc is just the vector 

'Pc = dNN(e*) [~(e*)e(yJ], 

where ~(8*) is the rotation about Pa x Pc which takes Pa into Pc· 
The expressions for dNN(8*) are given in Table 13.1. 
We can write eqns (13.3.7)-(13.3.9) as 

where the unit vector e is given by 

(13.3.10) 

(13.3.11) 

e = ( (cos e· - 1) cos <P. sin <P.' cos e· sin2 <P. + cos2 <P.' - sine· sin <P.) 
(13.3.12) 

Let 

(13.3.13) 

and En be the momentum and energy of the produced n in the CM of 
the reaction. With our choice of axes, PnT lies along OX. Its momentum 
in the partonic CM is then 

where 

Table 13.1. Partonic spin-transfer parameters 

Reaction 

qq'- qq' 
qq- q'q' 

qq- q'q' 

qG--+qG 
qG--+qG 

"2 + "2 + ("2 + t2)t2 - y2l s u s fi1 s 3u 

"2 + "2 + ("2 + t2)i:- 2"21 s u u 32 u 33 

(13.3.14) 

(13.3.15) 
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Now by the definition of PnT we can write 

P~ = ZPc + knT 

where 

knT · Pc = 0 

so that 

Pc · P~ 
Z=--

Pc 

and 

k • (" • )" nT = Pn - Pc · Pn Pc· 

Further, for the vector product needed in (13.2.15), 

Pc X knT = Pc X P~ 

(13.3.16) 

(13.3.17) 

(13.3.18) 

(13.3.19) 

(13.3.20) 

so that iiD(1'c) defined in (13.2.8) becomes, upon usmg (13.3.11) and 
(13.2.15), 

- " • e · (Pc X p~) 
!!Dn(1'c) = !!Dn(Z,knr )dNN(e ) I *I 

Pc X Pn · 
(13.3.21) 

Finally the cross-section difference (13.2.9) becomes 

En (d:~i - ~~t) = L J dxhfb(Xb) J dxa!!rfa(Xa) E~ 
Pn Pn a,b,c,d 

x j dcose· [ ~~:;;~] dNN(e*) 

X J d¢* !!Dn(z, knr) e. (Pc X p:) (13.3.22) 
2n PciPc X Pnl 

where z and knr are given via (13.3.18) and (13.3.19), p~ by (13.3.14) and 
(13.3.15) and e by (13.3.12). 

As suggested by Artru, Czyzewski and Yabuki (1997), we can get some 
feeling for the size of the effect if we note that at large Xp the dominant 
contribution comes from u and d quarks, for n+ and n- respectively, and 
that the partonic scattering occurs predominantly at small e•. In that 
case dNN(8*) ~ 1, Pc is approximately along OZ, knr ~ PnT = Pnre, and 
e ~ e(y)· The approximate asymmetry is then 

!!ru(x) _ 
An+N ~ u(x) !!Dn(Z,PnT) (13.3.23) 

!!rd(x) _ 
An-N~ d(x) !!Dn(Z,pnT) (13.3.24) 
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where we have used isospin invariance for the fragmentation. Here x and 
z are the most probable values of x and z subject to x z ~ xp. Equations 
(13.3.23) and (13.3.24) are essentially upper bounds to the magnitude of 
the asymmetry, since the angular integrations will dilute the effect. 

From Fig. 13.4 one sees that An±N ~ ±0.4 for xp ~ 0.8. Thus to 
produce the measured asymmetries entirely via the Collins mechanism 
requires firstly that 

~ru(x) 
u(x) ~ 

~rd(x) 

d(x) · 
(13.3.25) 

Given that for the longitudinal polarized-parton densities the measured 
values of ~u(x)ju(x) and ~d(x)/d(x) are in agreement with the sign, but 
not the magnitude, predicted using SU(6) wave functions for the nucleon, 
it is not unreasonable to expect to find the negative sign in (13.3.25), which 
follows from SU(6), while finding that the magnitudes violate the SU(6) 
result 

~rd(x) 1 ~ru(x) 
d(x) = -2 u(x) · 

(13.3.26) 

Secondly, one requires 

I~D ( )I 0.4 
n z,pnr :<:min {l~ru(x)/u(x)l, l~rd(x)/d(x)l} (13.3.27) 

Artru, Czyzewski and Yabuki (1997) parametrized ~Dn, using a model 
based on the Lund string and the simple anzatz 

~ru(x) - -~rd(x) - f!j> n 

u(x) - d(x) - maxX (13.3.28) 

and found a best fit to the Xp-dependence of the data with 9max = 1, n = 2. 
The factorized form F(z)G(kr) involved is not compatible, however, with 
LEP DELPHI collaboration data (Abreu et al., 1995a, b). This treatment 
is, of course, very approximate and recently Anselmino, Boglione, Hansson 
and Murgia (2000) have adopted a more systematic approach, with ~Dn 
parametrized as follows: 

~D ( k ) = N (kr(z)) rx(1- z)P 
1t z, T M z ' (13.3.29) 

where the mean (kr(z)) is z-dependent and taken from the data of Abreu 
et al. (1995a, b) and N, et:, fJ are parameters to be fitted. For the transversely 
polarized quark densities it is assumed that ~rd(x)jd(x) and ~ru(x)ju(x) 
are both independent of x, with the SU(6) value 

~ru(x) 2 
--c--:--- = . (13.3.30) 

u(x) 3 
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The excellent fit to the data produces the surprising result 

11rd(x) = -1.33 11ru(x)_ 
d(x) u(x) 

(13.3.31) 

Now recall that, in the region where it is measured, 11d(x) is negative 
so that the very large value 11rd(x)jd(x);::::: -8/9 implied by (13.3.31) and 
(13.3.32) will violate the Soffer bound (11.9.18) over a significant range of 
x. In addition the positivity condition IL1Dn I :::;; 2Dn is violated at large z. 
Thus the above treatment is inconsistent and must be disregarded. 

An attempt at a consistent treatment by Boglione and Leader (2000) has 
led to some very surprising conclusions. The parametrizations of 11ru(x), 
11rd(x) and 11Dn(z, kr) are constructed so that both the Soffer bound and 
the positivity bound are automatically respected. However, in almost all 
parametrizations of 11d(x) obtained from fitting polarized DIS data, 11d(x) 
is negative for all x. As a consequence the Soffer bound 

IL1rd(x)l :::;; ~ [d(x) + 11d(x)] (13.3.32) 

is highly restrictive. This leads to a conflict with the demand that IL1rd(x)l 
be large in the region of large x, which is imposed by the fact that the 
n± asymmetries are big, and of roughly equal magnitude, for large xp. As 

0.6 ....................... ·-.---·-r·····-··················T············---1····························· 

0.4 

• ! 
--0.2 

--0.4 
! I 

-0.6 L....--~---''--....L..-----L----1 
0 0.2 0.4 0.6 0.8 

Xp 

Fig. 13.9 The single-spin asymmetry AN for pion production in pIp ....... 
nX as a function of xp when using the GS polarized parton densities. 
The failure of the theory to fit the data can be seen. Solid line, n+; 
broken line n°; broken and dotted line n-. (Courtesy of M. Boglione.) 
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-0.2 

-0.4 
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XF 

Fig. 13.10 The single-spin asymmetry AN for pion production in the 
process pT p ----+ nX as a function of xp, obtained by using the BBS 
polarized parton densities in the Soffer bound. Solid line, n+; broken 
line, n°; broken and dotted line, n-. (Courtesy of M. Boglione.) 

an example, in Fig. 13.9 we show the very poor fit to the data when the 
GS polarized densities, due to Gehrmann and Stirling (1996), are used: 
XboF = 25! This raises an intriguing question. In (11.8.4) we pointed out 
that perturbative QCD arguments suggest that 

~~~~) ~ 1 as x ~ 1 (13.3.33) 

For the d quark this would imply that L1d(x) has to change sign and 
become positive at large x, thereby rendering the Soffer bound much less 
restrictive. In fact a more precise version of (13.3.33) is 

L1q(x) = [ 1- c(1- x)2] q(x) as x ~ 1 (13.3.34) 

where c is a positive constant. This is the origin of the fact that (13.3.33) 
is almost never imposed on L1q(x) when fitting data on polarized DIS, 
the point being that (13.3.34) is inconsistent with the evolution equations. 
In truth, however, one should not use the evolution equations near the 
exclusive region x = 1, so there is not really a contradiction. There are two 
fits to the polarized DIS data in the literature that do respect (13.3.34). 
The first, the BBS, due to Brodsky, Burkhardt and Schmidt (1995), is 
somewhat incomplete since Q2-evolution was not used. The second, the 
(LSS)BBS, due to Leader, Sidorov and Stamenov (1998), uses the BBS 
parametrization but includes evolution. There is a dramatic improvement 
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398 13 Transverse single-spin asymmetries 

to the fits to the n asymmetry data when these polarized densities are 
used, as seen in Figs. 13.10 and 13.11, which have XboF-values 1.45 and 
2.41 respectively. 

Note, however, that it does not seem possible to fit the asymmetry data 
at the largest values of Xp, indicating that the Collins mechanism alone is 
probably unable to explain all the n asymmetry data. 

13.4 Beyond the standard QCD parton model 

Consider once again, for concreteness, the reaction v1PB ~ nX. Recall 
that the asymmetries are largest at large Xp and that these n± are produced 
mainly from u and d quarks, respectively, having large values of Xa in 
the polarized proton and colliding with partons in the unpolarized proton 
with small values of Xb. We thus simplify by considering only valence 
quarks in v1 and gluons and antiquarks in PB· To explain the approach 
we shall limit ourselves to one flavour of quark in v1 and of gluon in PB· 

The cross-section is proportional to the quantity W defined graphically 
in Fig. 13.12, where we do not show the fragmentation of the final 
quark q(p) into the pion. All final state particles, including the gluon but 
excluding q(p), are summed over. In this diagram the soft physics is in 

-0.2 

-0.4 

-0.6~~~--~~--~~~L-~~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Xp 

Fig. 13.11 The single-spin asymmetry AN for pion production in the 
process pip--+ nX as a function of xp, determined by the fit using the 
(LSS)BBS polarized parton densities in the Soffer bound. Solid line, n+; 
broken line, n°; broken and dotted line, n-. (Courtesy of M. Boglione.) 

https://doi.org/10.1017/9781009402040.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.013


13.4 Beyond the standard QCD parton model 

PB G' 
2 

W= I (2n)4 84(pf- pi) 
X,X',G' 

pt 
A X 

q(p) 

Fig. 13.12 Graphical definition of W for pip ~ nX in the standard 
QCD-parton model. f.1 is a Lorentz index, i a spinor index. 
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the amplitudes for p 1 and p B to split into partons, and the Gq ~ G' q 
amplitude describes a hard process and is calculated in lowest-order 
perturbative QCD, i.e. using just the Born terms. Since the treatment of 
the unpolarized proton PB is conventional, let us, to simplify the discussion, 
remove it and thus effectively consider 

P1+G~n+X 
and, to simplify even further, just consider one of the possible hard 
scattering Born terms, i.e. take 

W = L IMql2(2n)4b(Pf- pi) ( 13.4.1) 
X,G' 

where Mq is shown in Fig. 13.13. 
As in Section 11.5 the result for W can be written as a Feynman 

diagram with a cut propagator, in this case a gluon propagator, as shown 
in Fig. 13.14, with a similar structure to (11.5.14). Recall that the Collins 
mechanism for a transverse spin asymmetry came from the fragmentation 

G' 

q(p) 
X 

Fig. 13.13. Simplified version for Mq for the reaction piG ~ nX. The 
cross on the fermion line indicates that there is no propagator for the 
quark of momentum k. 
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W= 

Fig. 13.14. Field-theoretic diagram corresponding to (13.4.1); i,j are 
spinor indices. 

of q(p) into a pion with non-zero transverse momentum. Our diagram 
really corresponds to 

pi + G ---+ jet + X (13.4.2) 

so the Collins mechanism is inoperative. Also, if time reversal is an exact 
symmetry then the Siver's mechanism that places the asymmetry in the 
spin-dependent quark density is absent and, as stressed earlier, we are 
unable to produce an asymmetry. To remedy this, and for several other 
reasons as well, Efremov and Teryaev (1984), following ideas of Ellis, 
Furmanski and Petronzio (1983), introduced a correlated quark-gluon 
density function, which, as we shall see, does yield an asymmetry. 

Consider the soft amplitude for a proton to produce a quark, a gluon 
of colour a and index f1 and some other set of particles X. To simplify 
the analysis pretend that X is fixed. The amplitude A~~ is a Dirac spinor 
(see Section 11.5), and is shown graphically in Fig. 13.15, where as usual 
there are no propagators for partons. Conventionally, if the quark has 
momentum k1 the gluon is given momentum k2- k1. Combining the 

X 

Fig. 13.15 The amplitude for a proton to produce a quark, a gluon and 
some set of particles X. 
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G' 

q(p) 

Fig. 13.16. A possible Feynman diagram for piG ~jet+ X, utilizing 
AqG· 

amplitudes from Figs. 13.13 and 13.16 we now have 

401 

W = L IMq + MqGI 2(2n)4c5(pr- pi). (13.4.3) 
X,G' 

Now, 1Mql2 can be shown to correspond to twist 2 and IMqGI 2 to twist 4, so 
for a large effect at moderately large Pr we must produce the asymmetry 
from the twist-3 interference term 

I = (MqGM; + MqM;G)(2n)4c5 4(Pf- pi) 

= MqGM;(2n)4 c5 4(PJ- Pi)+ c.c. (13.4.4) 

Firstly, for there to be interference at all the states X in Figs. 13.13 
and 13.16 must be identical, which will only be possible if the colour 
indices, which we have ignored thus far, are such that the quark-gluon 
pair transforms under a colour transformation like a quark. It should be 

I= + c.c. 

Fig. 13.17 Field-theoretic interpretation of the interference term m 
(13.4.4) (c.c. means complex conjugate; i,j are spinor indices). 
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clear that this will emerge automatically from the colour structure of the 
hard diagram. 

Secondly, a non-zero interference term requires Mq and MqG to be 
relatively real. Achieving this is the non-trivial step, as we shall see. As 
usual (13.4.3) and (13.4.4) can be given an interpretation as Feynman 
diagrams with a cut propagator. The interference term I then corresponds 
to the diagram shown in Fig. 13.17 plus its complex conjugate. Non-zero 
I then requires the Feynman amplitude to be real. The new soft function 
<I>~a is a 4 x 4 matrix in Dirac spinor space and can be shown, analogously 
to ( 11.5.17), to be given by 

<I>la'?l(A- k k . p ::/) = J d4 Y d4 z eik1 ·z ei(krkJ)·y 
lfJJ ' 1, 2, ' (2n)4(2n)4 

x (P, Yl\f7(0)A~(y)\fl(z )IP, ::/) (13.4.5) 

where A~(y) is the usual gluon field operator of colour a and where we 
have now attached colour labels l, m to the quark fields, since at this point 
a careful treatment of the colour structure is essential. 

To this end we redraw in Fig. 13.18 the hard part of the Feynman 
diagram with all colour labels displayed. The colour factor is 

C -'\"bdd cf asl = ~ tsrtrntnmtml abc· (13.4.6) 
d 

Carrying out the sum over d produces a Kronecker delta r5rm, so that 

Casl oc (tbnsz!abc 

= ~ f abc [tb, tc]sl 

i d 
= 2fabcfbcdtsl 

3i a 
= ltsl· (13.4.7) 

Fig. 13.18 The hard part of the Feynman diagram of Fig. 13.17 with all 
colour labels (a, b, c, d for gluons, l, m, n, r, s for quarks) shown. 
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13.4 Beyond the standard QCD parton model 403 

Since this is the colour structure that will always occur it is convenient 
to absorb the t~1 into the soft amplitude, and, by convention, for reasons 
that will appear clear later, a factor of the strong coupling g. Thus the 
operator structure in (13.4.5) becomes 

(13.4.8) 
a 

where, A,u is the matrix 

(13.4.9) 
a 

and 'Pi is now a column vector in colour space. 
Hence one utilizes the colour-singlet correlator 

<P,u (k k . p !/') = j d4y d4z eikpei(k2-kd·y 
Aij 1, 2, ' (2n)4 (2n)4 

x (P,Y'I'I'J(O)gA.U(y)'l';(z)IP,Y'). (13.4.10) 

Now the crucial point is that time-reversal invariance does not prohibit 
<P~ from having Y' r-dependent terms of the form 

ibvrowxf3y Y' aPf3ny f + b Ag.u fys (13.4.11) 

where bv and b A are real scalar functions and where n,u is the null vector 
fixing the gauge A.Un,u = 0; see ( 11.5.24 ). Then, recalling that there is 
one y-matrix at each vertex and in each fermion propagator (as usual, 
neglecting quark-mass terms), one sees that the hard part of Fig. 13.17 
contains a product of seven y-matrices. When the trace analogous to 
(11.5.14) is taken using <PA, the bv term in (13.4.11) will involve a trace 
of eighty-matrices, which will be real, whereas the bA term involves eight 
y-matrices and also y5 and will be imaginary. In consequence the traces 
over the terms in (13.4.11) produce a result proportional to i. 

Next we count the factors of i coming from quark-gluon vertices and 
all non-cut propagators, both quark and gluon. There are seven of them, 
so that they yield a factor of i. 

In total, then, we have a product of three factors i, from colour, from 
vertices and from the trace with the soft amplitude. Thus, contrary to our 
hope, the relevant spin-dependent part of the Feynman diagram in Fig. 
13.17 appears to be imaginary. 

However, in the loop integrations over k1, k2 (and k' when the upper 
gluon is attached to a hadron) we encounter the point where the gluon 
propagator on the left, carrying momentum k2- k1 + k', is on shell, i.e. 
where (k2 -k1 +k')2 = 0. As can be understood from eqn (11.5.12), this will 
give a term -inb [(k2 - k1 + k')2 J, which just provides the last i necessary 
to render the amplitude real! 
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404 13 Transverse single-spin asymmetries 

Finally, then, we have a mechanism for producing a single-transverse­
spin asymmetry that respects all the fundamental discrete symmetries of 
QCD. The asymmetry is calculated from the Feynman diagram of Fig. 
13.17, in which, in the propagator for the gluon carrying momentum 
k2- k1 + k', one makes the replacement 

( 13.4.12) 

The final result takes a form analogous to (11.5.14): 

I= j dak1d4k2 Tr [<I>~S11 (k1,k2)] + c.c., (13.4.13) 

where S11 is the short-distance amplitude with the modification (13.4.12) 
and a factor gt~1 removed. 

The detailed analysis is exceedingly complicated (Qiu and Sterman, 
1999) and the above pedagogical treatment aims only at presenting the 
essential ideas. 

In a more careful treatment the following points should be noted. 

(1) The above discussion focussed on the pole in the gluon propagator 
and is referred to as the gluonic pole mechanism. 

(2) There are other diagrams involving <l>~ that contribute to the asymme­
try. An example is shown in Fig 13.19. In this case the extra factor i is 
produced via the pole in the fermion propagator carrying momentum 
k1 + k', i.e. at (k1 + k')2 = 0. This is referred to as the fermionic pole 
mechanism and has been studied by Efremov, Korotkiyan and Teryaev 
(1995), by Teryaev (1995) and by Korotkiyan and Teryaev (1995). 

(3) There is an unresolved dispute in the literature whether the gluon 
or fermion pole is expected to be the dominant mechanism. The 
kinematics are such that in the gluon pole case the gluon field in the 
proton corresponds to a static, constant, field. In the fermion pole case 
one has the somewhat strange concept of a static, constant, fermion 

k' 

+ c.c. 

Fig. 13.19. Alternate type of interference term involving <I> A. 
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13.4 Beyond the standard QCD parton model 405 

field. A complete treatment, including both mechanisms, has not, to 
our knowledge, been carried out for the reaction pip ~ nX, but we 
shall give below the result for the simpler process pip~ yX. 

( 4) The above discussion involving 4-vectors ki 2 is, as in the discussion of 
Section 11.5, too general and is not yet in p~rton-model form. One still 
has to make the leading collinear approximation k1 = x1P, k2 = x2P 
in the hard amplitude and then carry out the integration J dk-d2kr 
for both k1 and k2 in the soft amplitude. Thereby one comes finally to 
the standard form of correlator 

involving operators on the light-cone. (recall that n2 = 0). 
(5) Since we are studying a twist-3 contribution we must, for consistency, 

include the non-leading twist-3 terms coming from the standard parton 
diagram Fig. 11.7. These arise when one goes beyond the collinear 
approximation k = xP inside the hard amplitude S in the hadron­
hadron analogue of (11.5.14). The inclusion of transverse momentum 
involves making a Taylor expansion of S(k) about the point kll = xPJl: 

(13.4.15) 

and the term (kll- xPil)<I>ij can be transformed, via partial integration, 
into a matrix element involving 81l'P(z). The beautiful, and perhaps 
unsurprising, result is that this term can be combined with <I>~ to 
produce a new correlator 

<I_>Jl (k k . p !/) = j d4y d4z eikrz ei(kz-k!)·y 
D;j 1, 2, ' (2n)4 (2n)4 

X (P, !/I'Pj(O)Dil(y)'l'i(z)IP, !/) (13.4.16) 

where 

-+ [ O'Pj(Z) l Dll(y)'Pi(z) = i~ + gAil(y)'Pi(z) (13.4.17) 

(the arrows indicate that the operator acts only to the right) is similar 
to the standard covariant derivative that appears in the QCD equation 
of motion 

[,b(z)- mq] 'P(z) = 0. (13.4.18) 
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Finally, after making the collinear approximation in the twist-3 part 
involving A.U, the correlator involved becomes 

This is a very interesting approach and, although the basic idea is 
not new, it is only now that detailed calculations are beginning to be 
performed. It may well be that in combination with the Collins mechanism 
one can obtain a fit to all the data on the n asymmetry. However, it 
is clearly essential to study asymmetries in reactions where the Collins 
mechanism is inoperative, e.g. in hard y or jet production, in order to 
learn more about the gluonic and fermionic pole mechanisms. 

The reaction P1PB ~ yX is the only case, to our knowledge, where 
the entire contribution of gluonic and fermionic poles has been taken 
into account (Qiu and Sterman, 1992) and the structure of their result is 
instructive. 

Let the photon emerge with momentum Py and energy Ey. Then 

where G1 and F1 are the contributions of flavour f from gluonic (G) and 
fermionic (F) poles respectively, n.U is given in (11.5.24) and s, t, u are the 
Mandelstam variables involved in the partonic process 

A 

t = Xat (13.4.21) 

In terms of quark-gluon correlators T and hard scattering terms H one 
has for the gluonic pole: 

G (1)( ) (V)( ) f = HG Xa,Xb,Py TG Xa,Xa 

(2) [ (V) 8 (V) ] + HG (X a, Xb, Py) T G (xa, X a) - X a ax aT G (xa, X a) (13.4.22) 

where 

(13.4.23) 
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and 

(13.4.24) 

The soft quark-gluon correlator T~V) is real and is given by 

(V) p y J dAd~ -;. ~ TG = nf.levrxpynrxpA!I'T ~e1 x(pA;!I'ri'I'(O)pGilv(~n)'I'(A.n)lpA;!I'r) 

(13.4.25) 

where Gf.lv is the gluon field-strength tensor. For the fermionic pole one 
has 

(13.4.26) 

where T~V) is real, T~A) pure imaginary. Here 

H(l) = __!__ (~ - !) 
D 24 S t (13.4.27) 

and the correlators are 

Qiu and Sterman (1999) argue that the correlators in the fermionic pole 
case are essentially the overlap of states in one of which the quark has 
momentum xp and in the other of which all this momentum is carried 
by the gluon, so that the overlap should be small. In the gluonic pole 
case, on the contrary, in both states the quark carries momentum xp, so 
that the overlap might be expected to be larger. For this reason Qiu and 
Sterman expect the gluonic pole mechanism to dominate. Further, they 
suggest that typically rtl(x, x) will vanish like (1 - x)P as x ~ 1 with 
f3 > 0, in which case the term x(8/8x)TJ(x,x) in (13.4.22) will dominate 
at large x. (In their treatment of pip ~ nX mentioned earlier, Qiu and 
Sterman keep just this term.) 

In conclusion to this section, we note that the theoretical developments 
are fascinating, but it will be a mammoth task to sort out the mechanisms 
and learn experimentally about the various correlators. 
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13.5 Phenomenological models 

It is a historical fact that we have known ever since 1976 that hyperons, 
and in particular As, are produced in a highly polarized state in the high 
energy collision of unpolarized hadrons (Bunce et al., 1976). A sample of 
the data was shown in Figs. 13.2, 13.3, 13.5 and 13.6. The general features 
were summarized at the beginning of Chapter 13. 

In this section we shall briefly describe some of the phenomenological 
attempts to explain the hyperon data. None is really convincing, firstly 
because they are really semiclassical models, secondly because, while en­
joying some success, they cannot account for all the main features of the 
data. 

Concerning the semiclassical aspect there is an important point that 
should be noted. If, as is conventional, one works with helicity amplitudes, 
the asymmetry or polarization is always of the form 

A OC Im ( 4>ftip4>non-flip) (13.5.1) 

where the 4> are helicity amplitudes involving either helicity-flip or no 
helicity-flip. Thus one requires a model for the amplitudes and their phases, 
a concept beyond classical physics. 

To evade this dilemma one can work in a basis where the spin states 
are transverse, see Section 11.9 and one then finds that (13.5.1) is replaced 
by 

(13.5.2) 

where f are amplitudes involving either flip or non-flip of the transverse 
spin. In this formalism one can make a probabilistic model for the moduli 
squared of the amplitudes; however, such a theory can never be totally 
satisfactory because there will be in general other spin-dependent variables 
that do involve interference between the transverse spin amplitudes, and 
these will then be outside the scope of the model. 

At the time of writing there seems to be some hope of attacking the 
matter in a more fundamental way, using an analogue of the Collins 
mechanism, discussed in Section 13.4, in which an unpolarized quark can 
fragment into a polarized hadron if Pr is non-zero. However, it would 
be premature to comment on this approach, so we shall outline some of 
the phenomenological methods used over the past two-and-a-half decades. 
Our presentation owes much to the review of Soffer (1999). 

In very broad terms the following features, specific to the hyperon 
polarization, require explanation: 

fJjJ A "' fJjJ B- "' fJjJ so 

fJjJ L+ "' fJjJ L- "' - fJjJ A 

(13.5.3) 

(13.5.4) 
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(13.5.5) 

yet 

(13.5.6) 

All our considerations will be directed at the beam fragmentation region 
where most of the data lie. 

13.5.1 The Lund model 

Consider pp ~ AX, in which the A has transverse momentum py. The 
hadrons are assumed to have simple SU(6) three-quark wave functions. 
Thus the A consists of an isosinglet (ud) diquark with spin S = 0 and a 
strange quark, which carries the spin of the A. The reaction is visualized 
as follows (Andersson, Gustafson and Ingelman, 1979; Andersson et al., 
1983). A suitable ud diquark from the proton moves forward, stretching 
the confining colour field, which ultimately 'snaps', producing an ss pair 
in a process that conserves angular momentum locally (see Fig. 13.20). 

The momenta of the s and s are chosen to allow the s to combine with 
the essentially forward-going ud to produce a A with PT as indicated. 
In this configuration the ss pair has orbital angular momentum along 
p x PA· To compensate for this, the spins s and s must be along -(p x PA). 
Consequently the A emerges with polarization along -(p x PA), as is found 
experimentally. 

For the production of ~0, the SU(6) wave function is built up from a 
ud diquark with S = 1. The two spin states of the ~0 , referred to an axis 
along p x pL, are 

proton 

p 

I~)= v111; -~)-VI 10; ~) 
1- ~)=/flO;-~)- Y11-1;~) 

s 

J s (ud)s = o 

ks 

(13.5.7) 

Fig. 13.20. Schematic diagram of the breaking of a Lund string to 
produce an ss pair. 
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and since the ss configuration that produces the required PT has an s with 
spin projection 1/2 one sees easily that 

r!Jr,o = -(1)r?JA. (13.5.8) 

A similar result holds for ~+. 
There seems to be only one measurement of r!Jr,o and it is in agreement 

with the sign in (13.5.8). As seen in Fig. 13.6, the sign of r!Jr.+ is also in 
agreement with (13.5.8), but not the magnitude. 

However, the mechanism for ~- production must be quite different, 
since the string-breaking must provide a ds pair. Nonetheless, r!Jr.- is 
much like r!Jr,+. It is equally unclear why g- and 8° have the same 
polarization as the A. 

Finally, the vanishing of the polarizations for A and 8° seems intuitive 
since the entire particle has to be created via the string-breaking. But then 
the significant polarizations of the :t- and the g+ are a mystery. 

In short, while the model has some success it in no way provides an 
adequate quantitative description of the data. 

13.5.2 The Thomas precession model 

This very clever semiclassical model, due to De Grand and Miettinen 
(1981), utilizes the Thomas precession to argue in favour of a higher 
probability for particular states of polarization. 

Here it is assumed that au quark from the beam proton of momentum 
p is wrenched off in the collision, leaving a fast forward-moving S = 0 
ud diquark with momentum roughly ~p and various low-momentum sea 
partons; one of these, an s, is then attracted towards and binds with the ud 
to form the A. The s quark is assumed to have transverse momentum py. It 
is further assumed that the force that drags it towards the forward-moving 
ud diquark arises from a Lorentz scalar potential. 

The process by which the s and the ud come together is viewed in a 
hybrid fashion. Firstly, one pictures the classical orbits involved to argue 
that the orbital angular momentum L of thesis opposite top x PA· Next, 
one visualizes the interaction between the spinless ud and the spin-1/2 s 
in quantum mechanical terms involving a scalar attractive potential V(r). 
As explained in subsection 2.2.8 the Thomas precession induces a rotation 
of the spin vector, given by (2.2.33), and this is equivalent to an L · S 
coupling, so that the effective attractive potential becomes 

1 (1dV) Veff = V(r)-~2 2 2 --d L · S 
m5 c r r 

(13.5.9) 

where ms is the strange-quark mass. Now, since -(1/r)dV jdr is negative, 
I Veff I will be largest if L · S is positive. Hence the binding takes place 
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preferentially when S is parallel to L, i.e. opposite to the normal to the 
scattering plane n = p x PA· Thus the As are produced preferentially with 
spin opposite to n, i.e. are negatively polarized as required. The model 
also predicts that I&> AI oc PT as is seen experimentally. 

An interesting prediction arises in the case of K-p ~AX for the A in 
the K- fragmentation region. Now the s quark is initially in the K- and 
moving too fast, so must decelerate to form the A. The Thomas precession 
is now reversed and S along n is favoured. Indeed the A polarization is 
found to be positive in this reaction, though its magnitude is twice as large 
as in pp ~ AX and this is not explained by the model. 

Nor can the model explain the differing behaviours of the various 
antihyperons; see (13.5.5) and (13.5.6). 

13.5.3 Concluding remarks 

For access to the detailed literature and for a description of some other 
phenomenological models the reader is referred to Soffer (1999). 

In summary, it has to be admitted that there is still, after 25 years 
of experiment and some decades of QCD, no coherent theory of the 
hyperon polarization data. Moreover the richness of the experimental 
data is continually growing, and none of the models can explain the 
beautiful discovery by the E704 experiment of Fermilab (Bravar et al., 
1995; 1997) that the analysing power AN and the spin-transfer parameter 
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Fig. 13.21 Fermilab E704 data on A polarization Po (triangles), analysing 
power AN (squares) and spin-transfer parameter DNN (circles), each given 
as a percentage, for pp ~AX at 200 GeV jc. (Courtesy of A. Penzo.) 
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DNN are both large and growing with PT in pp----+ AX at 200 GeV jc (see 
Fig. 13.21). 

This whole area of high energy physics remains an open challenge to 
the theory of strong interactions. 
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