108.09 A visual proof that $b^e < e^b$ when b > e

In a recent visual proof ([1]), the author provided a visual proof of the inequality $\pi^e < e^{\pi}$. However, their visual proof can be used to show the more general inequality $b^e < e^b$, where e < b.

$$\ln b - 1 = \int_{e}^{b} \frac{dx}{x} < \frac{1}{e}(b - e) = \frac{b}{e} - 1$$

and so $b^{e} < e^{b}$.

Reference

- 1. Bikash Chakraborty, A visual proof that $\pi^e < e^{\pi}$, *Mathematical Intelligencer* **41** (2019) p. 60.
- 10.1017/mag.2024.26 © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

BIKASH CHAKRABORTY

ty Press Department of Mathematics, sociation Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700 118, India e-mail: bikashchakraborty.math@yahoo.com, bikash@rkmvccrahara.org

108.10 Proof without words: $\tan \frac{\pi}{12} = 2 - \sqrt{3}$, $\tan \frac{5\pi}{12} = 2 + \sqrt{3}$

The standard proof of $tan \frac{\pi}{12} = 2 - \sqrt{3}$ is to use the less well-known formula

$$\tan \alpha = \frac{-1 + \sqrt{1 + \tan^2 2\alpha}}{\tan 2\alpha}$$

for $\alpha = \frac{\pi}{12}$ and the well-known value $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$. Using only the last fact,

from the diagram the readers can readily see that

 $\tan \frac{5\pi}{12} = 2 + \sqrt{3}$ and $\tan \frac{\pi}{12} = \frac{1}{2 + \sqrt{3}} = 2 - \sqrt{3}.$

There is another PWW from Garcia Capitan Francisco Javier [1]. Paul Stephenson [2] and Nick Lord [3] have offered other demonstrations of the identity of $\tan \frac{\pi}{12} = 2 - \sqrt{3}$, for which Nick Lord gives four Proofs without words, with quite different ideas. For many useful principles and comments about Proofs without words, see [4].

References

- F. J. Garcia Capitan, Proof without Words: tangents 15 and 17 degrees, *Coll. Math. J.* 48:1 (2017) p. 35.
- P. Stephenson, Feedback: On what makes a good Proof without Words, Math. Gaz. 107 (March 2023) p. 165.
- 3. Nick Lord, Feedback, Math. Gaz. 107 (July 2023) p. 356.
- 4. G. Leversha, What makes a good Proof without Words, *Math. Gaz.* **105** (July 2021) pp. 271-281.

10.1017/mag.2024.27 © The Authors, 2024	MARTIN LUKAREVSKI
Published by Cambridge University Press	Department of Mathematics
on behalf of The Mathematical Association	and Statistics,
	University "Goce Delcev" - Stip,
	North Macedonia

e-mail: martin.lukarevski@ugd.edu.mk

108.11 Euler's limit—revisited

Let $e_n = (1 + \frac{1}{n})^n$ for $n \in \mathbb{N}$. It is well known that the sequence (e_n) is monotone increasing and bounded, hence it is convergent. The limit of this sequence is the famous Euler number e. Here we establish a generalisation of this limit.

Theorem: Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive real numbers such that $a_n \to +\infty$ and b_n satisfies the asymptotic formula $b_n \sim k \cdot a_n$, where k > 0. Then

$$\lim_{n \to \infty} \left(1 + \frac{1}{a_n} \right)^{b_n} = e^k$$