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Sets of Finite Perimeter and Functions
of Bounded Variation

This topic is well documented in many books, see [203, Section 4.5] and
[15, 189, 227, 297, 299, 397, 448]. The structure theory of sets of finite
perimeter is due to De Giorgi in the 1950s based on the earlier work of Cac-
cioppoli, see, in particular, [156]. English translations of many of De Giorgi’s
papers can be found in [157]. Maggi [299] follows rather closely De Giorgi’s
original ideas.

12.1 Sets of Finite Perimeter

What is the perimeter of an arbitrary Lebesgue measurable set E in Rn? Even
for open sets the right notion clearly is not theHn−1 measure of the topological
boundary ∂E. For example, if E is a countable union of balls Bi ⊂ B(0, 1)
with

∑

iHn−1(∂Bi) < ∞, the topological boundary could be almost anything,
in particular, B(0, 1) if the centres are dense, but a more reasonable notion of
perimeter would seem to be

∑

iHn−1(∂Bi). The Gauss–Green theorem gives a
hint about how to define a good general notion of perimeter. If E has a smooth
boundary, then for any compactly supported C1 vectorfield φ, φ ∈ C1

c (Rn),
∫

E
div φ =

∫

∂E
φ · nE dHn−1, (12.1)

where nE is the outer unit normal of E. Among φ with |φ| ≤ 1, the right-hand
side is maximized when φ = nE on ∂E and yields Hn−1(∂E). The left-hand
side is defined for all measurable sets E, so we can define

Definition 12.1 The perimeter of a Lebesgue measurable set E ⊂ Rn is

P(E) = sup

{∫

E
div φ : φ ∈ C1

c (Rn), |φ| ≤ 1

}

.
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108 Sets of Finite Perimeter and Functions of Bounded Variation

If P(E) < ∞, we say that E is a set of finite perimeter.

That E is a set of finite perimeter means that the characteristic function χE

is of bounded variation:

Definition 12.2 A Lebesgue integrable function u on Rn is of bounded vari-
ation, u ∈ BV(Rn), if

sup

{∫

u div φ : φ ∈ C1
c (Rn), |φ| ≤ 1

}

< ∞.

Then u ∈ BV(Rn) if and only if its distributional partial derivatives are fi-
nite Radon measures. That is, Du is a vector-valued Radon measure. We shall
discuss them a bit more in the next section.

It is easy to see that the perimeter is lower semicontinuous: if χEi → χE

in L1(Rn), then P(E) ≤ lim infi→∞ P(Ei). From this we see that if, as at the
beginning of this chapter, E is a countable union of balls Bi ⊂ B(0, 1) with
∑

iHn−1(∂Bi) < ∞, then E has finite perimeter. Moreover, so does B(0, 1) \ E.
By abstract arguments based on the Riesz representation theorem, we have

Theorem 12.3 Let E ⊂ Rn be a set of finite perimeter. There are μE ∈ M(Rn)
and a Borel function νE : Rn → Rn such that |νE(x)| = 1 for μE almost all
x ∈ Rn and

∫

E
div φ =

∫

φ · νE dμE for φ ∈ C1
c (Rn). (12.2)

Recalling (12.1), it is natural to call μE the generalized perimeter measure
of E and νE its generalized outer normal.

A fairly easy but important result is the compactness theorem:

Theorem 12.4 If E j ⊂ B(0, 1), j =, 1, 2, . . . are Lebesgue measurable with
sup j P(E j) < ∞, then there is a subsequence (E ji ) and a set E with finite
perimeter such that χE ji

→ χE in L1(Rn) and μE ji
→ μE weakly.

Definition 12.5 The reduced boundary ∂∗E of E is the set of points x ∈ spt μE

such that |νE(x)| = 1 and

lim
r→0

1
μE(B(x, r))

∫

B(x,r)
νE dμE (12.3)

exists and has norm 1.

It follows from the general theory of differentiation of measures that

μE(Rn \ ∂∗E) = 0. (12.4)
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12.1 Sets of Finite Perimeter 109

Formula (12.2) is a very general, but abstract, form of the Gauss–Green the-
orem. In order to make it more concrete, we should understand better what μE ,
νE and ∂∗E really are. This is included in De Giorgi’s structure theorem:

Theorem 12.6 Let E ⊂ Rn be a set of finite perimeter. Then ∂∗E is (n − 1)-
rectifiable, μE = Hn−1 ∂∗E, for Hn−1 almost all x ∈ ∂∗E the approximate
tangent (n − 1)-plane of ∂∗E is {y : (y − x) · νE(x) = 0}, and

∫

E
div φ =

∫

∂∗E
φ · νE dHn−1 for φ ∈ C1

c (Rn).

I say a few words about the main steps of the proof, which themselves are
of independent interest. First, there are the isoperimetric inequality

Ln(E)(n−1)/n � P(E) = μE(Rn) (12.5)

and the local isoperimetric inequality for every ball B ⊂ Rn,

min
{

Ln(B ∩ E)(n−1)/n,Ln(B \ E))(n−1)/n
}

� μE(B). (12.6)

These follow from, and are in fact equivalent to, Sobolev and Poincaré in-
equalities for BV functions, which in turn follow from the classical inequalities
and the fact that the smooth functions are dense in BV(Rn).

The isoperimetric inequalities lead to density estimates for the Lebesgue
measure and μE . The key for deriving these is the identity

∫

E∩B(x,r)
div φ =

∫

B(x,r)
φ · νE dμE +

∫

E∩∂B(x,r)
φ · ν dHn−1

for φ ∈ C1
c (Rn), where ν is the outward unit normal of B(x, r). This follows

applying (12.2) to a C1 approximation of the characteristic function of B(x, r).
Then we have

Lemma 12.7 There are positive constants c and C depending only on n such
that if x ∈ ∂∗E, then for all sufficiently small r > 0,

Ln(E ∩ B(x, r)) ≥ crn, Ln(B(x, r) \ E) ≥ crn,

crn−1 ≤ μE(B(x, r)) ≤ Crn−1.

These ingredients can be used to prove the blow-up theorem:

Theorem 12.8 Let x ∈ ∂∗E and H(x) = {y : y · νE(x) ≤ 0}. Then χr−1(E−x) →
χH(x) as r → 0 locally in L1(Rn).

To get this, one first uses compactness to show that some subsequence con-
verges to the characteristic function of a set F with locally finite perimeter
for which νF is constant μF almost everywhere. Moreover, the distributional
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110 Sets of Finite Perimeter and Functions of Bounded Variation

derivatives of χF vanish in directions orthogonal to νF , whereas the derivative
in the direction of νF is non-zero. From this it is not trivial but not very diffi-
cult either to show that F is a half-space. Moreover, it follows that νE(x) is the
approximate normal of E at x ∈ ∂∗E in the following sense:

lim
r→0

r−nLn ({y ∈ E ∩ B(x, r) : (y − x) · νE(x) > 0}) = 0, (12.7)

lim
r→0

r−nLn ({y ∈ B(x, r) \ E : (y − x) · νE(x) < 0}) = 0. (12.8)

From the blow-up theorem, one can proceed to show that {y : y · νE(x) =
0} is the approximate tangent plane of ∂∗E at x, from which the rectifiability
follows.

The essential boundary of E,

∂eE = {x : Θ∗n(E, x) > 0 and Θ∗n(Rn \ E, x) > 0} ,

gives a different view of the finite perimeter sets and the reduced boundary. We
have, see Theorems 4.5.6 and 4.5.11 in [203] and also [299, Theorem 16.2],

Theorem 12.9 If E ⊂ Rn is a set of finite perimeter, then ∂∗E ⊂ ∂eE and
Hn−1(∂eE \ ∂∗E) = 0.

Theorem 12.10 A measurable set E ⊂ Rn has finite perimeter if and only if
Hn−1(∂eE) < ∞.

Lahti [284] and Eriksson-Bique [188] gave different proofs and metric space
versions for the last theorem.

12.2 Plateau-Type Problems

Sets of finite perimeter give a convenient setting to define and study codimen-
sion one generalized minimal surfaces. Other settings will be discussed later.
The classical Plateau problem asks us to find and describe the surface with
minimal area among surfaces with a given boundary. Many variants of this, of-
ten of very general type, have been studied, and some of them will be discussed
later. Usually there are several non-trivial subproblems: what is surface, what
is area, what is boundary?

In the case of finite perimeter sets, boundary is not defined; instead, one
considers sets that agree with a given set outside a fixed set:

Definition 12.11 Let A ⊂ Rn and let E0, E ⊂ Rn be sets of finite perimeter.
We say that E is perimeter minimizing in A with boundary data E0 if E \ A =
E0\A and P(E) ≤ P(F) for all sets F of finite perimeter such that F\A = E0\A.
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12.3 Functions of Bounded Variation 111

The existence of perimeter-minimizing sets follows using the usual direct
method of calculus of variations: choose a minimizing sequence; P(Ei) →
inf{P(F) : F \ A = E0 \ A} and use compactness to select a converging subse-
quence, then the limit is a minimizer by lower semicontinuity:

Theorem 12.12 Let A ⊂ Rn be bounded and let E0 ⊂ Rn be a set of finite
perimeter. Then there exists a perimeter-minimizing set in A with boundary
data E0.

The real problem then is the regularity of the minimizers. We shall say some-
thing about this in Chapter 15.

Sets of finite perimeter can be used to model many other geometric varia-
tional problems too, see [299].

12.3 Functions of Bounded Variation

Above we already defined these. The book [15] contains a lot of detailed infor-
mation about them. Here I only discuss some properties related to rectifiability.

A function u ∈ L1(Rn) has an approximate limit a at x if

lim
r→0

r−n
∫

B(x,r)
|u(y) − a| dy.

The set S u where u does not have any approximate limit is called the ap-
proximate discontinuity set of u. At jump points, the nature of the disconti-
nuity is more specific: x is called an approximate jump point of u if there are
a, b ∈ R, a � b, and ν ∈ S n−1 such that

lim
r→0

r−n
∫

{y∈B(x,r) : (y−x)·ν>0}
|u(y)−a| dy = lim

r→0
r−n

∫

{y∈B(x,r) : (y−x)·ν<0}
|u(y)−b| dy = 0.

The set of approximate jump points is denoted by Ju. By [203] and [434], we
have, see [15, Theorem 3.78],

Theorem 12.13 If u ∈ BV(Rn), then S u is (n − 1)-rectifiable and Hn−1(S u \
Ju) = 0.

For the characteristic functions of sets of finite perimeter this follows from
Theorems 12.6 and 12.9 and from (12.7), (12.8). There is a coarea formula for
BV-functions which implies that for almost all t ∈ R the sets {x : u(x) > t} have
finite perimeter. Letting D be a countable dense set of such t, one can show that
up to Hn−1 measure zero S u is contained in ∪t∈D∂

∗{x : u(x) > t}, from which
the rectifiability of S u follows.
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112 Sets of Finite Perimeter and Functions of Bounded Variation

The book [15] contains much more about the structure of the derivative mea-
sure Du. First |Du| � Hn−1, where |Du| is the total variation measure of Du.
For u = χE this follows from Theorem 12.6 and after that for general u from
the coarea formula. Then, see the proof of [15, Proposition 3.92],

Theorem 12.14 If u ∈ BV(Rn), then Du {x : Θ∗n−1(|Du|, x) > 0} is (n − 1)-
rectifiable.

A vector-valued function u : Rn → R
k is in BV(Rn,Rk) if its coordinate

functions are of bounded variation. Then the derivative Du is a k × n matrix
valued measure. Let Dsu denote its singular part in the Lebesgue decompo-
sition. The following Alberti rank one theorem [2] has applications in many
areas:

Theorem 12.15 If u ∈ BV(Rn,Rk), then the Radon–Nikodym derivative
D(Dsu, |Dsu|)(x) has rank 1 for |Dsu| almost all x ∈ Rn.

Massaccesi and Vittone [315] have given a very simple and elegant proof
using sets of finite perimeter, and De Philippis and Rindler derived it as a
special case of their more general result in [175], see Section 15.5. But since
Alberti’s original proof gives a lot of information about the structure, also
related to rectifiability, of singular measures on Rn, we shall briefly discuss
it. As already indicated in Section 4.8, this is closely connected to the work of
Alberti, Csörnyei and Preiss, [3,4]. They describe in [3] how to prove Theorem
12.15 by their tangent field results.

Partially relying on the ideas of [315], Don, Massacessi and Vittone [180]
proved the rank one theorem in the Heisenberg group, and a larger class of
Carnot groups, and Antonelli, Brena and Pasqualetto [21] proved it in RCD
spaces.

To prove Theorem 12.15, Alberti studied tangential properties of general
measures. For μ ∈ M(Rn) and x ∈ Rn, let E(μ, x) be the set of vectors v ∈ Rn

such that for some real valued u ∈ BV(Rn),

lim
r→0

|Du − vμ|(B(x, r))
μ(B(x, r))

= 0.

Then E(μ, x) is a linear subspace of Rn. One can show that if μ = Hn−1 E,
where E isHn−1 measurable withHn−1(E) < ∞, then for μ almost all x ∈ Rn,
E(μ, x) = apTan(E, x)⊥ if E is (n−1)-rectifiable, and E(μ, x) = {0} if E is purely
(n − 1)-unrectifiable. For n = 2, E(μ, x) is closely related to the decomposition
bundle V(μ, x) of Alberti and Marchese [5], which we discussed in Section 4.8.

For v ∈ E(μ, x), v � 0, vμ is kind of tangential to a derivative at x of a
BV-function. The key to the proof of Theorem 12.15 is that for any singular
measure there is at most one direction for which this can happen:
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12.3 Functions of Bounded Variation 113

Theorem 12.16 If μ ∈ M(Rn) is singular, then the dimension of E(μ, x) is
either 0 or 1 for μ almost all x ∈ Rn.

The proof of this theorem requires most of the effort. Alberti proved it first
for n = 2 with a calculus-type argument. Then he used disintegration of μ with
two-dimensional slices.

If μ ∈ M(Rn) is any singular Borel measure, we can decompose by Theorem
12.16,

μ = μ1 + μ0 = μ B1 + μ B0, where Bi = {x : dim E(μ, x) = i}, i = 0, 1.
(12.9)

Alberti showed that dim E(μ, x) > 0 for μ almost all x ∈ Rn if and only if μ =
|Du| B for some u ∈ BV(Rn) and some Borel set B ⊂ Rn. So μ1 = |Du| B1

for some u ∈ BV(Rn) and μ0 is orthogonal Du for every u ∈ BV(Rn). From
this, it follows that for any singular measure μ and u ∈ BV(Rn,Rk), the rank of
the Radon–Nikodym derivative D(Du, μ)(x) is 0 or 1 for μ almost all x ∈ Rn.
Theorem 12.15 follows, applying this to μ = |Dsu|.

In the decomposition (12.9) μ1 has an Alberti representation (recall Defini-
tion 4.25 and (7.6)) μ1 =

∫

Hn−1 Et dt where each Et is (n − 1)-rectifiable.
A subclass SBV of BV, special functions of bounded variation, consists of

functions u ∈ BV(Rn) for which Du is a sum of an absolutely continuous and
a rectifiable measure, the latter being concentrated on Ju. That is, u ∈ S BV if
the so-called Cantor part of Du vanishes. SBV and its many applications are
extensively discussed in [15].

In [13], Ambrosio developed a theory of metric space-valued functions of
bounded variation. Let X be a locally compact metric space. A Borel function
u : Rn → X belongs to BV(Rn, X) if there is μ ∈ M(Rn) such that for every
1-Lipschitz function φ : X → R, φ ◦ u ∈ BV(Rn) with |D(φ ◦ u)|(A) ≤ μ(A) for
A ⊂ Rn. In particular, he proved an analogue of Theorem 12.13 in this setting.

Ambrosio, Coscia and Dal Maso investigated in [14] mappings u : Rn →
R

n of bounded deformation, BD(Rn), that is, Du + (Du)T is a matrix-valued
Radon measure. Clearly, BV implies BD. Among other things, they proved
the generalization of Theorem 12.14; the proof uses the Besicovitch–Federer
projection Theorem 4.17:

Theorem 12.17 If u ∈ BD(Rn), then Du {x : Θ∗n−1(|Du|, x) > 0} is (n − 1)-
rectifiable.

Various physically motivated PDE problems lead to functions of BV type
for which analogous rectifiability results have been proven, see [18, 165–167,
306, 307].
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114 Sets of Finite Perimeter and Functions of Bounded Variation

12.4 Perimeter in Heisenberg and Carnot Groups

The initial motivation of Franchi, Serapioni and Serra Cassano in [212] to
study rectifiability in Heisenberg groups was to develop De Giorgi’s theory
of sets of finite perimeter there. Recall the structure of the Heisenberg group
H

n and the notion of (m,H)-rectifiable sets from Chapter 8, with m = 2n+ 1 in
the codimension one case.

Denote by C1
c (Hn,HHn) the space of compactly supported continuous con-

tinuously Pansu differentiable functions with values in the horizontal sections
of Hn; φ(p) ∈ τp(H), where H = {(z, t) : t = 0} is the horizontal plane.
Now the perimeter is defined in terms of the Heisenberg divergence: divH φ =
∑n

j=1(Xjφ j + Yjφn+ j).

Definition 12.18 The Heisenberg perimeter of a Lebesgue measurable set
E ⊂ Hn is

PH(E) = sup

{∫

E
divH φ : φ ∈ C1

c (Hn,HHn), |φ| ≤ 1

}

.

If PH(E) < ∞, we say that E is a set of finite Heisenberg perimeter.

If PH(E) < ∞, we again have by the Riesz representation theorem that there
are μE ∈ M(Hn) and a Borel function νE : Hn → HHn such that |νE(p)| = 1 for
μE almost all p ∈ Hn and

∫

E
divH φ =

∫

φ · νE dμE for φ ∈ C1
c (Hn,HHn).

The reduced boundary ∂∗E with μE(Hn \ ∂∗E) = 0 can then be defined as in
the Euclidean case.

This much is true in general Carnot groups. Franchi, Serapioni and Serra
Cassano proved De Giorgi’s structure theorem first in Hn in [212] and then in
all step 2 Carnot groups in [213]. In particular, we have

Theorem 12.19 Let E ⊂ Hn be a set of finite Heisenberg perimeter. Then ∂∗E
is (2n + 1,H)-rectifiable.

The proof follows the same main lines as in the Euclidean case, but it is tech-
nically much harder. Again, the blow-ups at the points of the reduced boundary
converge to vertical subgroups. This statement is false in higher-order groups,
at least in the Engel group, which is of step 3, and the analogue of De Giorgi’s
theorem is not known. Ambrosio, Kleiner and Le Donne [19] proved a par-
tial result in general Carnot groups: some sequences of blow-ups converge to
vertical subgroups.

See the survey [396] of Serra Cassano for further comments and references.
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