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Abstract 

Sulfadoxine-pyrimethamine (SP) is the standard of care for Plasmodium falciparum malaria 

chemoprevention among pregnant women, infants, and children. Developing alternative 

chemoprevention products and other prevention products, such as vaccines and monoclonal 

antibodies, requires significant investment. However, knowledge gaps surrounding the 

activity of SP and resistance puts these investments at risk. Therefore, we reviewed SP’s 

combined antimalarial action, including the individual antiplasmodial components, other 

antimicrobial effects, impact on malaria immunity development, and continued effectiveness 

in settings with high SP resistance. We created a roadmap of non-clinical and clinical 

evidence to better understand the effectiveness of SP for chemoprevention and inform the 

development of new prevention tools.   

 

Keywords: Sulfadoxine-pyrimethamine; resistance; mechanisms of action, malaria, 

prevention 

 

Introduction 

Malaria remains a global health priority. Despite the widespread use of insecticide treated 

nets, chemoprevention, and artemisinin-based combination therapy, the World Health 

Organization (WHO) estimated 249 million cases and 608 000 malaria-related deaths in 2022 

alone (World Health Organization, 2022a). Over 95% of this burden occurs in the African 

Region, with Plasmodium falciparum malaria being the most prevalent and severe. 

Sulfadoxine-pyrimethamine (SP) or SP combinations, such as SP-amodiaquine (SP-AQ), 

are the standard of care for malaria chemoprevention in Africa. SP is active against 

successive enzymes of the folate synthesis pathway that are essential for the synthesis of 
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parasite DNA and parasite replication in hepatocytes and red blood cells. SP is widely used 

for malaria chemoprevention due to its low cost (White et al., 2011), safety when given 

intermittently, and long protection window against malaria (Table 1). 

There are several high risk populations targeted for malaria chemoprevention strategies 

that are used for their cost-effectiveness and public health impact (White et al., 2011). In 

intermittent preventive treatment in pregnancy (IPTp), SP is given to pregnant women at 

scheduled intervals from their second trimester, regardless of whether they are infected with 

P. falciparum (World Health Organization, 2023). This approach reduces malaria incidence 

in pregnant women and their infants, and improves birth outcomes by reducing the risk of 

low birth weight and fetal anemia (Gutman et al., 2022). IPTp is not recommended in the first 

trimester due to safety concerns, although evidence from observational cohort studies 

suggests that concerns may be unfounded (Phillips-Howard et al., 1998; Mosha et al., 2014). 

In perennial malaria chemoprevention (PMC), SP is given to infants from three months 

of age in areas with year-round transmission, at intervals aligned with routine healthcare 

visits (World Health Organization, 2023). While uptake of this intervention has been limited 

to date, it is effective in reducing the incidence of clinical malaria, severe malaria, and 

anemia in its target population (Plowe, 2022). More recently, in 2023, the WHO 

recommended that PMC be given to children beyond 12 months of age and highlighted the 

need to evaluate effectiveness beyond 24 months (World Health Organization, 2023). 

SP is also used for seasonal malaria chemoprevention (SMC) in combination with a 

three-day course of AQ to protect children in regions with moderate-high malaria 

transmission. This intervention delivers SP-AQ to children at monthly cycles across the 

malaria season, protecting them against clinical disease and hospitalization during this high-

risk period (World Health Organization, 2023). SMC has been adopted by 17 countries in 

sub-Saharan Africa and is administered to almost 49 million children per cycle (World Health 
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Organization, 2022a). SMC mainly targets children between three months and five years old, 

but some countries have extended this to children under ten. SP-AQ is also used in some 

countries for chemoprevention in school-aged children between five and 15 years old. 

However, it is still uncertain whether children older than ten should be targeted by a 

chemoprevention program that uses SP-AQ, due to the risk of first trimester pregnancy 

among female recipients and the lack of safety data.  

(White et al., 2011)
2
(White et al., 2011)Additionally, recent WHO recommendations 

support new populations targeted for chemoprevention, such as in post-discharge malaria 

chemoprevention for four to six months to allow a child to fully recover from a severe anemia 

episode (World Health Organization, 2023). 

SP was originally approved in 1981 as a single dose antimalarial treatment in regions 

with chloroquine-resistant P. falciparum (Centers for Disease Control and Prevention, 1982). 

The use of SP for treatment has been discontinued in many countries, due to the presence of 

drug-resistant parasites that reduced its treatment efficacy (World Health Organization, 

2020). P. falciparum parasites with multiple mutations in the dihydropteroate synthase (dhps) 

and dihydrofolate reductase (dhfr) genes have reduced sensitivity to sulfadoxine and 

pyrimethamine, respectively (Cowman et al., 1988; Peterson et al., 1988; Zolg et al., 1989; 

Brooks et al., 1994; Wang et al., 1997).  The prevalence of these mutations varies greatly 

across Africa (Okell et al., 2017; ACCESS-SMC Partnership, 2020) and the relationship 

between combinations of mutations and treatment failure has been previously reported by 

multiple studies. In West Africa, a quadruple mutant parasite (with dhfr-N51I, dhfr-C59R, 

dhfr-S108N, and dhps-A437G mutations) partially resistant to SP (treatment failure: 1.3% - 

41.1% (Kublin et al., 2002; Staedke et al., 2004; Desai et al., 2016)) is highly prevalent 

(more than 70%) (ACCESS-SMC Partnership, 2020). A quintuple mutant with an additional 

mutation dhps-K540E  (treatment failure: 10% - 75% (Kublin et al., 2002; Staedke et al., 
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2004; Desai et al., 2016)) is also emerging in this region (frequency below 5%) (ACCESS-

SMC Partnership, 2020; Mahamar et al., 2022), and is already highly prevalent in East Africa 

(frequency above 50%) (Okell et al., 2017). Moreover, in East Africa, a sextuple mutant is 

emerging (Gutman et al., 2015; Bwire et al., 2020), which carries an additional mutation 

dhps-A581G with very high-grade resistance (82.2% treatment failure (Gesase et al., 2009)). 

In addition, parasites with a low degree of resistance to AQ (with mutations pfmdr1-86Y, 

pfmdr1-184Y, pfmdr1-1246Y, and pfcrt-76T) (Picot et al., 2009; Venkatesan et al., 2014; 

Arya et al., 2021) are present in multiple regions across Africa overlapping with regions of 

SP-resistance (Ehrlich et al., 2021), potentially further challenging seasonal malaria 

chemoprevention efforts. 

Massive investments are being made to develop new tools in response to gaps in the 

existing malaria prevention toolkit, as well as concerns that further acquisition of resistance 

to SP may erode the protective effectiveness of SP and SP-AQ. Novel treatment and 

preventive tools include new oral drug combinations, long-acting injectables (Burrows et al., 

2017), monoclonal antibodies (Aleshnick et al., 2022), and CSP-based malaria vaccines. 

Some of these tools – in the case of RTS,S/AS01 and R21 vaccines – are being trialed in 

combination with SMC (Datoo et al., 2021, 2024; Cairns et al., 2022). However, recent 

studies suggest that, despite a high degree of antiplasmodial resistance, chemoprevention 

programs using SP or SP-AQ are still effective in improving clinical incomes; the duration of 

protection conferred by SP against clinical malaria decreases with increasing degrees of 

resistance to SP, but some general health benefits seem to be retained even against the 

sextuple mutant (Table 1). This may be explained by the fact that the use of SP for treatment 

depends solely on the ability of SP to cure a high-density blood stage infection. In contrast, 

the use of SP for chemoprevention depends on the ability of SP to prevent health burdens. 
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 In the haste to find alternatives to SP and SP-AQ, insufficient time and resources may 

have been invested into fully understanding the way SP works to prevent health burdens. 

Here, we review literature and clinical trial data to identify the full spectrum of activity for 

SP and SP-AQ. We report substantial knowledge gaps regarding the liver and blood stage 

activity of SP, the impact of SP on malaria immunity acquisition, and the role of AQ to the 

protective effectiveness of SMC. We also discuss the role of the antimicrobial and anti-

inflammatory activity of SP, referring to the drug combination’s ability to kill or inhibit the 

growth of bacteria and reduce inflammation.  

As a result of these gaps, it is not fully known how SP and SP-AQ contribute to the 

observed clinical benefits of malaria chemoprevention in the face of resistance. As discussed 

in this paper, these knowledge gaps prevent an accurate and fair comparison between SP or 

SP-AQ and alternative chemoprevention tools, which ultimately prevents informed decisions 

to prioritize investment and anticipate when the deployment of SP or SP-AQ should be 

stopped. We have developed a roadmap for understanding the contribution of SP to malaria 

chemoprevention. We call on funders, drug developers, researchers, regulatory agencies, and 

policymakers to generate new and essential evidence for this old drug combination, which is 

a crucial step in successfully guiding the development of new malaria preventive tools. 

 

The preventive activity of sulfadoxine-pyrimethamine 

P. falciparum has a complex life cycle and tools that target this parasite within the human 

host can be divided into three categories. Anti-infective tools target sporozoites delivered by 

the mosquitoes or parasites infecting the liver. Blood-stage tools target the parasites once they 

emerge from the liver stage into the bloodstream and infect red blood cells. Here we first 

review the antiplasmodial activity of SP in these two categories. Then, we discuss how AQ 

contributes to the antiplasmodial effects of SP. We then discuss the antimicrobial and other 
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activities of both SP and AQ. Finally, we review what is known about the impact of SP and 

SP-AQ on the development of blood-stage immunity.  

 

Anti-infective activity of SP  

The anti-infective activity of SP is limited to the liver stage of P. falciparum infection. 

However, little is known about the liver stage activity of SP. An in vitro study has 

demonstrated that pyrimethamine can kill rodent malaria parasites (P. yoelii) infecting human 

hepatocyte cells (HepG2 cells) (Delves et al., 2012). Friesen and others have shown that 

mutations conferring resistance to the blood stage action of pyrimethamine also reduce the 

liver stage activity of pyrimethamine against P. berghei in mouse models (Friesen et al., 

2011). No published clinical trial has reported the action of pyrimethamine on the liver stage 

of P. falciparum in humans, estimated the duration of this effect, or explored how liver stage 

activity is affected by dhfr gene mutations. In contrast to pyrimethamine, sulfadoxine did not 

impact rodent malaria parasites (P. yoelii) infecting  HepG2 cells in vitro (Delves et al., 

2012), and thus may not affect the liver stage of P. falciparum in human. However, it is not 

known whether sulfadoxine can enhance the action of pyrimethamine on liver stage parasites. 

 

Blood stage activity of SP  

Many studies have identified pharmacokinetic (PK) properties of SP in infants (Salman et al., 

2011; de Kock et al., 2018), children (Bell et al., 2011; Tekete et al., 2011; de Kock et al., 

2018), and in pregnant women (Green et al., 2007; Karunajeewa et al., 2009; Nyunt et al., 

2010; de Kock et al., 2017). Physiologically-based pharmacokinetics (PBPK) models, which 

consider more detailed physiological information than PK models (such as organ 

characteristics), are available but have not yet been applied to support PK analyses in 

vulnerable populations, such as pregnant women (Abla et al., 2023). 
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Several studies have explored the clinical impact of SP on the blood stage of drug-

sensitive parasites and identified combinations of dhfr and dhps gene mutations that cause 

treatment failure when SP is used as a treatment (and not as a preventive tool)  (Cowman et 

al., 1988; Brooks et al., 1994; Kublin et al., 2002; Staedke et al., 2004; Gesase et al., 2009; 

Desai et al., 2016). Older studies have also identified the antiplasmodial clinical efficacy of 

sulfadoxine and pyrimethamine as treatment in monotherapy and in combination (Laing, 

1966; Hererro, 1966; Lucas et al., 1969; Snyder et al., 2007). Researchers have also 

conducted controlled human malaria infections to estimate the parasite reduction ratio and 

parasite clearance half-life of drug-sensitive parasites following treatment with SP (Marquart 

et al., 2015).  

Sulfadoxine and pyrimethamine are known to have a synergistic effect on the blood stage 

of the parasite (Hererro, 1966) when used together. In vitro studies have reported that this 

synergistic effect is retained against pyrimethamine-resistant parasites (Brockelman and Tan-

Ariya, 1982; Eastham and Rieckmann, 1983; Chulay et al., 1984). Sulfadoxine has also been 

shown to enhance the activity of pyrimethamine against the quintuple mutant (Bwijo et al., 

2003). Another study has also shown that, for parasites with the mutation combinations dhfr-

N51I/S108N/164L and dhps-A437G/A581G or dhfr-N51I/S108N/164L and dhps- 

A437G/K540E/A581G, the effect of both drugs was additive instead of synergistic (Bacon et 

al., 2009).  

However, in-vitro data reporting synergistic effects against the quadruple, quintuple, and 

sextuple mutants are limited. Thus, it is challenging to build a comprehensive PD model that 

could predict the duration of the protection conferred by SP post-treatment against each 

genotype. To the best of our knowledge, only Htay and colleagues have developed a PD 

model that considers the SP’s synergistic effect on drug-sensitive parasites (Htay et al., 

2020). This model is based on the work of Gatton and colleagues (Gatton et al., 2004), which 
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estimated the probability of parasite survival of drug-sensitive parasites at different 

concentrations of SP based on in vitro data. Gatton and colleagues (Gatton et al., 2004) also 

estimated the probability of survival for different combinations of mutations but had to 

perform some extrapolation due to the limited availability of data. Thus, additional data are 

needed to build a comprehensive PD model against each resistant genotype. 

 

Contribution of amodiaquine (AQ) in SMC with SP-AQ 

AQ is a 4-aminoquinoline active against P. falciparum blood stage infections, historically 

used as an alternative to chloroquine (Olliaro et al., 1996; White, 1996), and currently used in 

combination with artesunate for the treatment of uncomplicated malaria (World Health 

Organization, 2023). SP is combined with AQ for SMC to ensure that infections are cleared 

rapidly when SMC is deployed. AQ also provides a duration of protection against infection 

that varies from 10.2 to 18.7 days, depending on the presence of parasites with a low degree 

of resistance to AQ (Bretscher et al., 2020).  

Recent studies that have implemented SMC with SP-AQ in East Africa, where the 

quintuple mutant has a high prevalence (above 60% frequency) and parasites are sensitive to 

AQ (Molina-de la Fuente et al., 2023; Baker et al., 2024), have reported that SMC remains 

highly effective (Nuwa et al., 2023). However, it is not known whether the effectiveness of 

SMC is mainly driven by the prophylactic action of AQ or the remaining effect of SP on the 

quintuple mutant (see Table 1). Consequently, it is not known whether AQ would maintain 

the effectiveness of SMC in regions with sextuple mutants. It is also unknown how low 

adherence to the three-day AQ regimen and resistance to AQ could influence the 

effectiveness of SMC.  
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Antimicrobial and other activities of SP and AQ 

The continued benefits of SP in ITPp despite resistance may come from the antimicrobial 

action of sulfadoxine. A recent review highlighted that, in areas with a high degree of 

resistance (defined as a prevalence of the sextuple mutant above 5%), the ability of IPTp with 

SP to prevent or clear P. falciparum infection was greatly diminished (Gutman et al., 2022). 

Nevertheless, ITPp continued to reduce the risk of maternal anemia in pregnancy and to 

improve the birthweight of children (Gutman et al., 2022). Recent clinical studies have 

reinforced that SP continues to reduce the frequency of adverse pregnancy outcomes in areas 

with a high degree of resistance to SP (8-40% frequency of sextuple mutant) (Madanitsa et 

al., 2023). Studies have also indicated that the benefit provided by SP on birthweight is 

mediated by the ability of the drug combination to promote maternal weight gain during the 

second and third trimesters (Waltmann et al., 2022). This may be due to the impact of 

antimicrobial activity of sulfadoxine on the maternal gut microbiome (Waltmann et al., 

2022). Or, it could be from the ability of sulfadoxine to reduce the risk of bacterial infections, 

such as Gardnerella vaginalis, Staphylococcus aureus, Streptococcus pneumoniae (Capan et 

al., 2010). In addition, one study reported that IPTp with SP reduced the impact of sexually 

transmitted infections such as Neisseria gonorrhoeae and Chlamydia trachomatis on adverse 

birth outcomes (Chico et al., 2017). Sulfadoxine may also improve infant birth weight by 

modifying the relationship between inflammation and adverse outcomes (Cheng et al., 2024), 

thus allowing better placental vascular development (Unger et al., 2019).  

These theories are, however, complicated by the results of recent findings that assess the 

efficacy of alternative drug combinations for IPTp. One study found that the combination of 

azithromycin and chloroquine, an antibiotic and antimalarial, was not superior to SP against 

pregnancy outcomes in a multi-center study in areas with SP resistance (Kimani et al., 2016). 

A more recent study found that dihydroartemisinin-piperaquine (an antimalarial) with and 
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without azithromycin was not better than SP in reducing adverse outcomes during pregnancy 

despite a better antiplasmodial effect (Madanitsa et al., 2023). These studies suggest that SP 

has benefits beyond its antiplasmodial and antimicrobial properties.  

While these studies focus on IPTp, one can hypothesize that the additional antimicrobial 

effects of SP may also play a role in SMC and PMC. Some malarial fevers may arise only 

due to co-infections of P. falciparum with other pathogens and would not occur without co-

infections. If the other antimicrobial effects of SP reduce co-infections with other pathogens 

during SMC and PMC, SP could decrease the likelihood that a malaria infection leads to a 

malaria fever. 

Recent attention has also been drawn to novel activities for AQ. For example, AQ is 

active against autoimmune diseases, cancers, neurodegenerative diseases (Kim et al., 2017), 

and chronic inflammatory diseases (Oh et al., 2016). Little is known about whether these 

other benefits contribute to the clinical effectiveness of SMC with SP-AQ. 

 

Impact of malaria interventions on immunity acquisition 

Individuals repeatedly exposed to the parasite gradually acquire partial immunity that can 

prevent the symptoms of malaria. Immunity can be developed against parasites at the 

different stages of its cycle within the host (e.g. sporozoites, asexual blood stages, 

gametocytes). Immunity developed at the blood stage has a key role in reducing the parasite 

density and severity of the symptoms (Mandala et al., 2021).  

All interventions that prevent blood stage P. falciparum infection (such as a pre-

erythrocytic vaccine) may change the natural course of the acquisition of blood stage 

immunity to P. falciparum (Cairns et al., 2015). However, if the protective effect of SP is 

mainly driven by an imperfect liver-stage activity, some parasites may complete the liver 

stage and be released into the bloodstream. Nevertheless, the resulting blood-stage infection 

https://doi.org/10.1017/S0031182025000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182025000071


 

12 

 

may start at a lower density, which may allow more time for a boost to blood-stage immunity 

that could contribute to controlling infection and reducing symptoms. Similarly, if the 

protective effect of SP is mainly driven by an imperfect blood-stage activity that slows 

parasite growth, a similar delay may allow more time for the development of immunity. Such 

blood-stage immunity could also further prevent clinical cases during following infections 

even once SP no longer protects against infection (World Health Organization, 2022b).  

However, studies examining the impact of SP or SP-AQ on immunity acquisition 

have reached conflicting conclusions. For example, some studies have reported that children 

receiving SP-AQ through SMC develop lower concentrations of antibodies against blood 

stage malaria (Ndiaye et al., 2015; Mahamar et al., 2017), but more recent evidence reports 

an opposite trend (Mahaman Moustapha et al., 2021).  As there are as of yet no validated 

biomarkers for blood stage immunity, this represents a challenge for understanding the 

impact of SMC on the development of blood stage immunity. 

 

Knowledge gaps and their implications for developmental and regulatory approval of 

new prevention tools  

With SP or SP-AQ established as cornerstones of malaria prevention, the lack of knowledge 

regarding the full spectrum of activity of SP and SP-AQ has become critical. The review 

highlighted multiple knowledge gaps, of which five key gaps are listed in Box 1. 

These knowledge gaps in the activities of SP and SP-AQ (antiplasmodial, other 

antimicrobial activity, and impact on malaria immunity development) will continue to 

hamper progress in malaria prevention. First, this lack of understanding prevents us from 

comprehensively comparing SP or SP-AQ to new chemoprevention candidates at different 

stages of development. As discussed, there is limited in-vitro and in-vivo PD data for SP at 

the liver and blood stages. This limits the ability to build a PD model, which is needed to 
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enable assay translation and benchmarking to the standard of care for new drug candidates 

(Hughes et al., 2021).  

Second, developers of new prevention tools, including long-acting injectables, 

monoclonal antibodies, and vaccines, will need to run clinical trials that compare the 

effectiveness of their tools to SP or SP-AQ. It is thus essential to better understand the 

activity of SP and SP-AQ, to make a fair comparison between the standard of care and a new 

prevention tool. Appropriate clinical endpoints that accurately assess the ability of tools to 

prevent both malaria-specific outcomes and general health outcomes must be understood and 

agreed on. A study that only measured endpoints related to malaria health outcomes would 

miss the impact of SP on the general health benefits potentially provided by SP (such as 

through antimicrobial activity or other indirect benefits).   

Third, the lack of clarity around the antiplasmodial liver stage action and other 

antimicrobial effects of SP limits the ability to accurately parameterize the effect of SP or SP-

AQ in mathematical models. Mathematical models, which can link the characteristics of a 

particular intervention, population, or setting with the likely public health outcome, have 

been used throughout the malaria product development lifecycle. Modelling based on 

imperfect assumptions of the activity of SP (including immunity development and 

antimicrobial activity) may result in unfair comparisons to preventive interventions with 

respect to both their expected public health impact and cost-effectiveness. 

Finally, uncertainty around the actions of SP and SP-AQ limits the ability to make 

informed product prioritization and investment decisions, since we do not know yet which 

properties preventive tools need to have to perform as well as SP in terms of clinical 

outcomes. For example, without more knowledge of the liver-stage or other antimicrobial 

activities of SP, it is not known whether these mechanisms are important; it is not known if 

they should be looked for at the initial development stages of new chemoprevention tools and 

https://doi.org/10.1017/S0031182025000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182025000071


 

14 

 

captured in cost-effectiveness studies. If the antimicrobial effects are important, should SP be 

dosed in combination with Plasmodium-targeted prevention, such as with vaccines or 

monoclonal antibodies? These knowledge gaps may lead to the development of inappropriate 

drugs, missed opportunities, and a waste of resources, as we may realize that the new product 

is missing an essential property at a late stage of development.   

 

Roadmap to understanding sulfadoxine-pyrimethamine 

As investment in prevention tools increases in response to the threat of SP-resistance, the 

need for additional evidence regarding the action of SP has become urgent. Thus, Table 2 

describes the pre-clinical and clinical evidence required to better understand the full effects of 

SP and SP-AQ and fill the knowledge gaps described in Box 1. The WHO recently 

highlighted the need for additional studies to explore the effect of SP on pregnancy outcomes 

for IPTp (Gutman et al., 2022). Generating this evidence will require a commitment of 

funding, resources, and coordination. 

In order to produce the evidence required to fill the identified knowledge gaps (Table 2), 

a transparent and efficient pathway for the regulatory approval of new malaria prevention 

products should be defined now. This will require that normative agencies, regulatory 

agencies, and developers define the essential pre-clinical and clinical evidence required for 

new preventative tools where SP or SP-AQ is the standard of care. This evidence must 

consider both the antiplasmodial and other antimicrobial effects of SP and requires that 

appropriate clinical endpoints are defined to assess these effects. For policy recommendations 

for new preventive tools, consensus is also needed on when and how to evaluate the relative 

cost-effectiveness of a new intervention compared with SP- or SP-AQ. 
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Conclusion 

SP and SP-AQ remain the most cost-effective tools for malaria prevention among children 

and pregnant women. The available evidence for the full spectrum of activity of SP and SP-

AQ has been reviewed, highlighting knowledge gaps regarding the liver and blood stage 

antiplasmodial activity of SP, its other antimicrobial effects, its impact on malaria immunity 

acquisition, and the contribution of AQ to the protective effectiveness of SMC (as 

summarized in Box 1). With substantial resources being invested in developing new 

prevention tools, the need to generate evidence to address the knowledge gaps (as described 

in Table 2) is urgent. Therefore, policy decision-makers must articulate the minimum 

requirements needed for novel interventions to be recommended as a replacement or addition 

to SP or SP-AQ. Should these knowledge gaps remain, precious resources may be wasted in 

malaria prevention simply because the standard of care is not adequately understood. 
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Table 1. Summary of protective efficacy or effectiveness of SP for chemoprevention in 

infants, children, and during pregnancy 

Intervention Type of 

study 

Location of 

study 

Year of 

collection 

Key result Source 

SMC with 

SP-AQ 

Observational 

study 

Burkina 

Faso, Chad, 

The Gambia, 

Guinea, Mali, 

Niger, and 

Nigeria 

2015-

2016 

• SMC prevented a mean 88.2% 

(95% CI 78.7–93.4) of clinical 

cases over 28 days after each 

cycle of SMC 

• High prevalence (75% (95% CI 

70-79) in 2016) of quadruple 

mutant  

(ACCESS-

SMC 

Partnership, 

2020)  

SMC with 

SP-AQ 

Household-

randomized 

clinical trial 

Burkina Faso 

and Mali 

2014-

2016 
• SMC prevents 78.3% (95% CI 

76.8–79.6) of clinical cases of 

malaria in the 28 days after 

each cycle of SMC 

• High frequency (80% (95% CI 

73-79) in 2016) of quadruple 

mutant  

(Cairns et 

al., 2020) 

SMC with 

SP-AQ 

Non-

randomized 

controlled 

trial 

Uganda 2021 • SMC prevented 92% (95% CI 

90.0–94.0) of clinical cases 

among children during  the 

five-month study periodThe 

prevalence of molecular 

markers was not reported, but 

researchers assumed a high 

prevalence of quintuple 

mutants in the region 

(Nuwa et 

al., 2023)  

SMC with 

SP-AQ 

Mathematical 

modeling 

study 

Archetypal 

modelled 

setting with 

seasonal 

malaria 

transmission 

No data 

collected 

• Effectiveness of SMC with SP-

AQ will decrease with the 

spread of the quintuple mutant 

in West Africa, but 

considerable effectiveness will 

remain 

(Masserey 

et al., 

2024)  

PMC
*
 with 

SP 

Cluster-

randomized, 

placebo 

controlled 

clinical trial 

Ghana 2000-

2004 
• Post-PMC, SP provides 42 days 

of protection against clinical 

malaria in Ghana 

• Prevalence of molecular 

markers not reported but 

assumed to be low in the region 

based on other studies (e.g. see 

the study below which reported 

prevalence in Ghana) 

(Cairns et 

al., 2008) 
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PMC
*
 with 

SP 

Mathematical 

modeling 

study 

Data sourced 

from 7 

randomized 

placebo 

controlled 

trials in 

Gabon, 

Ghana, 

Mozambique, 

and Tanzania 

1999-

2008 

• Duration of protection provided 

by SP post-PMC against 

clinical malaria decreased in 

settings with higher degrees of 

resistance 

• Length of protection was equal 

to 42 days in Ghana (quintuple 

mutant absent from the 

population) and 21 days in 

Tanzania (frequency of 

quintuple mutant of 89-2%) 

(Griffin et 

al., 2010) 

IPTp with 

SP 

Prospective, 

single-arm 

clinical trial 

Burkina 

Faso, Kenya, 

Malawi, 

Mali, 

Uganda, 

Zambia 

2009-

2013 

• Median time before a pregnant 

women received ITPp and 

developed a patent blood stage 

infection was reduced in 

settings with higher degrees of 

resistance 

• Length of protection post-IPTp 

was 42 days in areas with low 

(<1%)frequency of quintuple 

mutant and 21 days in areas 

with high frequency (>95%) of 

quintuple mutant 

(Desai et 

al., 2016) 

IPTp with 

SP 

Review Multiple 

study sites 

across Africa 

1993-

2020 

• The protective effectiveness of 

SP against malaria infection 

decreases with higher degrees 

of resistance 

• In areas of high resistance 

(sextuple mutant prevalence > 

5%), SP did not seem to confer 

protection against malaria 

infection 

• SP continued to reduce the risk 

of maternal anemia (relative 

risk reduction of 8.2%) and 

improve children’s birthweight 

(relative risk reduction of 16%) 

in the highest SP resistance 

areas (sextuple mutant 

prevalence > 5%). 

(Gutman et 

al., 2022)( 

SMC with 

SP-AQ, 

PMC
*
 with 

SP, and IPTp 

with SP 

Review Multiple 

study sites 

across Africa 

and Asia 

No data 

collected 

• For SMC, evidence for reduced 

SP-AQ effectiveness with 

increasing degrees of resistance 

to SP is limited, due to the 

paucity of data 

• For PMC and IPTp, there is 

some evidence that supports a 

finding of reduced SP 

effectiveness against morbidity 

with increasing degrees of 

resistance to SP 

(Plowe, 

2022)  

*
Previously referred to as intermittent preventive treatment in infants (IPTi). AQ: amodiaquine; IPTp: 

intermittent preventive treatment in pregnancy; PMC: perennial malaria chemoprevention; SMC: seasonal 

malaria chemoprevention; SP: sulfadoxine-pyrimethamine. 
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Table 2. Pre-clinical and clinical evidence needed to better understand the effects of SP and 

SP-AQ 

Knowledge gap Intervention(s) Evidence required to address knowledge gap 

Synergistic 

antiplasmodial 

blood stage 

activity of SP  

IPTp, PMC, 

SMC 

 

In-vitro study reporting the synergetic effect of SP against quadruple, 

quintuple, and sextuple mutants. 

Blood stage challenge study assessing the prophylactic period 

conferred by SP against each mutant to elucidate how strongly the 

blood activity of SP contributes to the protective effectiveness of SP. 

Liver stage 

activity of SP  

IPTp, PMC, 

SMC 

Sporozoite challenge against sensitive and resistant parasites with an 

ultrasensitive qRT-PCR endpoint 

Impact of SP and 

SP-AQ on 

acquisition of 

blood stage 

immunity 
PMC, SMC 

 

Observational study of natural exposure to malaria: an assessment of 

entomological, parasitological, and clinical data in children of 

different age groups in different transmission intensities, including 

serological endpoints (such as concentration of antibodies against 

blood stage antigens) to assess the exposure to malaria. 

Challenge Human Malaria Infection or clinical efficacy trial that 

assesses the ability of SP/SP-AQ to prevent blood stage infection 

using ultrasensitive RT-PCR to monitor breakthrough infections 

 

Systematic review or clinical study to evaluate SP/SP-AQ 

consequences on age patterns of disease and post-intervention 

effects  such as risk of rebound 

 

Modeling studies that monitor SP/SP-AQ’s impact on immunity 

development, chemoprevention outcomes under various drug 

mechanisms of action 

Other 

antimicrobial 

effects of SP 

IPTp 
In vitro and in vivo studies of SP's impact on gestational weight gain 

and on maternal gut microbiome 

IPTp, PMC, 

SMC 

 

Systematic reviews on the impact of SP’s other antimicrobial activities 

on outcomes in IPTp, PMC, and SMC 

Clinical trial or observational study including non-parasitological and 

non-clinical malaria endpoints to capture indirect effects on both 

general and malaria health outcomes and screening for common 

bacterial pathogens 

AQ's contribution 

to SP-AQ's 

effectiveness 
SMC 

Clinical trial with comparator arms of SP-AQ, SP monotherapy, and 

AQ monotherapy in areas with a high degree of resistance to SP. Such 

a study should be run in a region that does not currently implement 

SMC to be ethical.  

SP's safety in 

pregnancy 

IPTp Systematic review of SP's safety in the first trimester of pregnancy 

SMC Define the maximum age group that can be targeted by SMC with SP-

AQ based on updated safety data 

AQ: amodiaquine; IPTp: intermittent preventive treatment in pregnancy; PMC: perennial malaria 

chemoprevention; SMC: seasonal malaria chemoprevention; SP: sulfadoxine-pyrimethamine. 
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Box 1. Knowledge gaps regarding the activity of SP and SP-AQ 

Table 2 outlines these knowledge gaps together with a list of the pre-clinical and clinical 

evidence required to better understand the effects of SP and SP-AQ. 

Knowledge gaps 

1. There are limited PD data and models available to simulate the synergic 

antiplasmodial blood stage action of SP on resistant P. falciparum parasites such as 

the quadruple, quintuple, and sextuple mutant. 

2. There is no clear understanding of SP’s action against the liver stage of P. 

falciparum, particularly for parasites with mutations in dhfr and dhps genes. 

3. Little is known about the impact of SP and SP-AQ on the acquisition of blood stage 

immunity to malaria and the extent to which this impact affects chemoprevention 

effectiveness. 

4. The extent to which the effectiveness of SP is potentially driven by its other 

antimicrobial activities is not fully understood, including its: 

a) Impact on the host microbiome. 

b) Antimicrobial activity. 

c) Impact on systemic inflammation. 

d) Indirect effects on malarial outcomes due to reductions in comorbidities, 

particularly in promoting maternal weight gain through IPTp and in clearing 

co-infections in infants and children. 

5. The extent to which AQ contributes to the benefits provided by SMC in settings 

with high SP resistance is not fully understood. 
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