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Abstract

The complete classification of the finite simple groups that are (2, 3)-generated is a problem which is
still open only for orthogonal groups. Here, we construct (2, 3)-generators for the finite odd-dimensional
orthogonal groups Ω2k+1(q), k ≥ 4. As a byproduct, we also obtain (2, 3)-generators for Ω+4k(q) with k ≥ 3
and q odd, and for Ω±4k+2(q) with k ≥ 4 and q ≡ ±1 (mod 4).
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1. Introduction

A group is said to be (2, 3)-generated if it can be generated by an involution and an
element of order 3, equivalently if it is an epimorphic image of C2 ∗ C3 � PSL2(Z). In
1996 (see [6]), it was shown that the symplectic groups PSp4(q), with q = 2 f , 3 f , are
not (2, 3)-generated and that, apart from the members of these two infinite families and
a finite number of undetermined exceptions, the finite simple classical groups, defined
over the Galois field Fq, are (2, 3)-generated. Since then, many authors contributed to
a constructive solution of the (2, 3)-generation problem of these groups (for example,
see [13, 14]). As a consequence, the list L of the known exceptions consists now of the
following ten groups: PSL2(9), PSL3(4), PSL4(2), PSU3(32), PSU3(52), PSU4(22) �
PSp4(3), PSU4(32), PSU5(22), PΩ+8 (2) and PΩ+8 (3). This list is complete for linear,
unitary and symplectic groups, as shown in [8–10].

In [11], we proved that the finite simple 8-dimensional orthogonal groups are
(2, 3)-generated, with the exceptions of PΩ+8 (2) and PΩ+8 (3) found by Vsemirnov
[16]. In this paper, we consider orthogonal groups of dimension n ≥ 9 and prove the
following constructive result.
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[2] The (2, 3)-generation of orthogonal groups 131

THEOREM 1.1. Assume q is odd. The following orthogonal groups are (2, 3)-generated:

(i) Ω2k+1(q) with k ≥ 4;
(ii) Ω+4k(q) with k ≥ 3;
(iii) Ω+4k+2(q) with k ≥ 4 and q ≡ 1 (mod 4);
(iv) Ω−4k+2(q) with k ≥ 4 and q ≡ 3 (mod 4).

We recall that the (2, 3)-generation of Ω5(q) � PSp4(q), when gcd(q, 6) = 1, was
proved in [2] (see also [12]). Notice that the groups Ω5(3 f ) are not (2, 3)-generated,
but they are (2, 5)-generated (see [4]). In [7], it was proved that the groups Ω7(q)
are (2, 3)-generated for all odd q. As a consequence of all this, the constructive
(2, 3)-generation problem for the finite simple classical groups remains open only for
the following orthogonal groups:

(i) PΩ±2k(q) with k ≥ 5 and q even;
(ii) PΩ±10(q), PΩ±14(q), q odd;
(iii) PΩ−4k(q) with k ≥ 3 and q odd;
(iv) PΩ+4k+2(q) with k ≥ 4 and q ≡ 3 (mod 4);
(v) PΩ−4k+2(q) with k ≥ 4 and q ≡ 1 (mod 4).

In our proof of Theorem 1.1, the cases n ∈ {9, 11, 13, 17} are dealt with in Section 3,
where we use slightly different generators to make the proofs more efficient. For the
general case, the generators are given in Section 4. The corresponding proofs are in
Section 5 for n ∈ {15, 18, 19} or n ≥ 21 and in Section 6 for n ∈ {12, 16, 20}.

2. Preliminary results

Let Fq be the Galois field of order q = pf , a power of the prime p > 2, and let F be
the algebraic closure of the field Fp. We make GLn(F) act on the left on V = Fn, whose
canonical basis is C = {e1, e2, . . . , en}.

Up to isometry, there are two nondegenerate quadratic forms on Fn
q. If n is even,

these two forms are not similar: we say that the quadratic form has sign + if the
dimension of any maximal totally singular subspace is n/2; it has sign − if the
dimension of such a space is n/2 − 1. The corresponding isometry groups are denoted
by O+n (q) and O−n (q). If n is odd, the two quadratic forms are similar. Hence, the
corresponding isometry groups are isomorphic and are denoted by O◦n(q), or simply
by On(q). In short, we write Oε

n(q), where ε = ◦ if n is odd, ε = + or ε = − if n is even.
If J is the Gram matrix of the symmetric bilinear form β associated to a nondegen-

erate quadratic form Q on Fn
q,

β(v, w) = vTJw and 2Q(v) = β(v, v) for all v, w ∈ Fn
q.

In particular, since q is assumed to be odd, the form Q is determined by β, that is, by J.
When n is even, the isometry group of J is O+n (q) if either det(J) is a square in F∗q and
n(q − 1)/4 is even, or det(J) is a nonsquare and n(q − 1)/4 is odd; it is O−n (q) otherwise
(see [1, Proposition 1.5.42]).
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The group Ωεn(q) is the derived subgroup of Oε
n(q) and has index 2 in SOε

n(q),
the subgroup of Oε

n(q) consisting of matrices of determinant 1. Alternatively, Ωεn(q)
consists of the elements in SOε

n(q) with spinor norm in (F∗q)2. We recall that the
spinor norm θ : Oε

n(q)→ F∗q/(F∗q)2 is a homomorphism. For any nonsingular v ∈ Fn
q,

the reflection rv, of centre 〈v〉, acts as w 
→ w − Q(v)−1β(w, v)v for all w ∈ V . Moreover,
θ(rv) = Q(v)(F∗q)2 (see [15, pages 145, 163 and 164]).

Given an eigenvalue λ of a matrix g ∈ GLn(F), write Vλ(g) for the corresponding
eigenspace. The characteristic polynomial of g is denoted by χg(t). Let ω ∈ F be a
primitive cube root of 1.

LEMMA 2.1. Let H be a subgroup of GLn(F) and U be a proper H-invariant
subspace. Suppose that g ∈ H has the eigenvalue λ ∈ F. If the restriction g|U does
not have the eigenvalue λ, then there exists an HT-invariant subspace U, with
dim(U) = n − dim(U), such that Vλ(gT) ≤ U.

PROOF. There exists a nonsingular matrix P such that

P−1HP =
{(

Ah Bh

0 Ch

)
| h ∈ H

}
, PTHTP−T =

{(
AT

h 0
BT

h CT
h

)
| h ∈ H

}
.

Set A = Ag, B = Bg, C = Cg and k = dim(U). Under our assumption, A ∈ GLk(F) does
not have the eigenvalue λ. Hence, the same is true for AT. So, imposing(

AT 0
BT CT

) (
w
w

)
=

(
ATw

BTw + CTw

)
=

(
λw
λw

)
, w ∈ Fk, w ∈ Fn−k,

we get w = 0 and

Vλ(PTgTP−T) =

{(
0
w

)
| CTw = λw

}
≤ E = 〈ei | k + 1 ≤ i ≤ n〉.

Set U = P−TE. Since E is invariant under PTHTP−T, we get that U is HT-invariant.
From Vλ(gT) = P−TVλ(PTgTP−T), it follows that Vλ(gT) ≤ U. �

COROLLARY 2.2. Let H be a subgroup of GLn(F) and U be a proper H-invariant
subspace. Suppose that there exists J ∈ GLn(F) such that hTJh = J for all h ∈ H. If
g ∈ H has the eigenvalue λ ∈ F, then

J−1Vλ(gT) = Vλ−1 (g).

Also, if g|U does not have the eigenvalue λ, then there exists an H-invariant subspace
W, with dim(W) = n − dim(U), such that Vλ−1 (g) ≤ W.

In particular, for λ = λ−1 (that is, λ = ±1), we may assume that g|U has the
eigenvalue λ.

PROOF. From gTJg = J, we get g(J−1s) = J−1g−Ts = λ−1(J−1s) for all s ∈ Vλ(gT). It
follows that J−1Vλ(gT) ≤ Vλ−1 (g). However, take v ∈ Vλ−1 (g). Then, gTJv = Jg−1v = λJv
gives Jv ∈ Vλ(gT), whence Vλ−1 (g) ≤ J−1Vλ(gT).
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If g|U does not have the eigenvalue λ, we apply Lemma 2.1: so, there exists
an HT-invariant subspace U, with dim(U) = n − dim(U), such that Vλ(gT) ≤ U. Set
W = J−1U. For any h ∈ H, we have hW = h(J−1U) = J−1h−TU = J−1U = W. Hence,
W is H-invariant and dim(W) = dim(U) = n − dim(U). Finally, Vλ−1 (g) = J−1Vλ(gT) ≤
J−1U = W. �

To prove our Theorem 1.1, we define two elements x, y of respective orders 2 and 3,
where y ∈ Ωεn(q) and x depends on some parameter a ∈ F∗q. Our aim is to find suitable
conditions on a such that x ∈ Ωεn(q) and the subgroup H = 〈x, y〉 is not contained in
any maximal subgroup M of Ωεn(q).

The maximal subgroups of classical groups, described in [1, 5], belong to eight
classes C1,C2, . . . ,C8, and a further class S. Note that, for orthogonal groups, the class
C8 is always empty. Those which are relevant in our results can be roughly described
as follows (see [5, Table 1.2.A]):

• groups that are reducible over F (classes C1 and C3);
• imprimitive groups, that is, stabilizers of decompositions Fn

q = ⊕t
i=1Wi, where

dim(Wi) = n/t (class C2). When t = n, they are also called monomial;
• stabilizers of subfields of Fq of prime index (class C5). They are conjugate to

subgroups of GLn(q0), where q = qr
0 with r prime.

To understand these groups, it is also necessary to know the representations of
classical groups in higher dimensions, where they may fix nondegenerate forms. In
particular, we need (for instance, in Lemma 3.5) the representation ψ : GL2(q)→
GL3(q) arising from the action of GL2(q) on the space of homogeneous polynomials
of degree 2 in two variables over Fq, namely

ψ

((
b1 b2
b3 b4

))
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b2

1 b1b2 b2
2

2b1b3 b1b4 + b2b3 2b2b4
b2

3 b3b4 b2
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2-1)

Note that Im(ψ) preserves the symmetric form
(

0 0 1
0 −1/2 0
1 0 0

)
whenever b1b4 − b2b3 = ±1.

Finally, we recall some well-known facts (for example, see [5, page 185]). Let
Sym(	) be the subgroup of GL	(F) consisting of the permutation matrices. Clearly,
Sym(	) preserves the bilinear form defined by I	. Moreover, it fixes the vector
u =

∑	
i=1 ei and the subspace u⊥.

If p � 	, then u is not isotropic, whence F	 = u⊥ ⊥ 〈u〉. The restriction of Sym(	)
to the subspace u⊥ provides a representation of Sym(	) of degree 	 − 1. The Jordan
canonical form of any σ ∈ Sym(	) is obtained from the Jordan form of σ|u⊥ , adding a
unique block ( 1 ).

If p | 	, then u ∈ u⊥. Set W = 〈e1 − ei+1 | 1 ≤ i ≤ 	 − 2〉. With respect to the decom-
position u⊥ = W ⊕ 〈u〉, every σ ∈ Sym(	) has matrix⎛⎜⎜⎜⎜⎝σ|W 0

vT
σ 1

⎞⎟⎟⎟⎟⎠ , σ|W ∈ GL	−2(p), vσ ∈ F	−2
p .
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FIGURE 1. Generators of Ω9(q).

The representation σ 
→ σ|W has degree 	 − 2. For any σ of order not divisible by p,
its Jordan form is obtained from that of σ|W , adding a unique block I2.

3. The case n ∈ {9, 11, 13, 17}

In this section, we take J = diag
(
In−3,

(
0 0 1
0 1 0
1 0 0

))
of determinant −1. For any a ∈ F∗q,

we define four matrices x1, x2, y1, y2 ∈ SLn(q) with x2
i = y3

i = In as follows.

(x1) x1 acts on C = {e1, . . . , en} as:

• the identity if n = 9;
• the permutation (e1, e3)(e2, e4) if n = 11;
• the permutation (e1, e2)(e4, e5) if n = 13;
• the permutation (e1, e3)(e2, e4)(e5, e6)(e8, e9) if n = 17.

(x2) x2 = diag(In−9, x̄), where x̄ = x̄(a) is as in Figure 1.
(y1) y1 acts on C as:

• the identity if n ∈ {9, 11};
• the permutation (e2, e3, e4) if n = 13;
• the permutation (e3, e4, e5)(e6, e7, e8) if n = 17.

(y2) y2 = diag(In−9, ȳ), where ȳ is as in Figure 1.

We can see x2 as the product of an even number of transpositions and the matrix

diag(In−3, x3) with x3 =

( 0 0 2/a
0 −1 0

a/2 0 0

)
. Identifying Sym(n − 3) with the group of permu-

tation matrices fixing {ej | 1 ≤ j ≤ n − 3} and acting as the identity on 〈en−2, en−1, en〉,
the first factor of x2 viewed in Sym(n − 3) × GL3(q) is in Alt(n − 3) ≤ Ωn(q). In
particular, it is an involution and the same applies to x3. Similarly, also x1 is the
product of an even number of transpositions, so is in Alt(n − 3) ≤ Ωn(q). Moreover,
x3 ∈ Ω3(q) if and only if −a ∈ (F∗q)2. Indeed, x3 is the product of the reflections with
centres 〈aen−2 − 2en〉 and 〈en−1〉, whose spinor norms are, respectively, −2a(F∗q)2 and
1
2 (F∗q)2.
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[6] The (2, 3)-generation of orthogonal groups 135

Clearly, y1 and y2 have determinant 1. Moreover, y1 ∈ Alt(n − 9) ≤ Ωn(q) and
yT

2Jy2 = J. Since x1x2 = x2x1 and y1y2 = y2y1, we conclude that x := x1x2 and y := y1y2
have respective orders 2 and 3, and

H := 〈x, y〉 ≤ Ωn(q) when − a ∈ (F∗q)2.

We also assume that a ∈ F∗q is such that Fp[a] = Fq.
By direct computation, we see that the characteristic polynomial of xy is

χxy(t) = (t + a)(t + a−1)(tn−2 − 1) = tn + (a + a−1)tn−1 + tn−2 − t2 − (a + a−1)t − 1.

In particular, tr(xy) = −(a + a−1). Moreover, the minimal polynomial of xy is

minxy(t) =

⎧⎪⎪⎨⎪⎪⎩
(t + 1)(tn−2 − 1) if a = 1,
(t + a)(t + a−1)(tn−2 − 1) otherwise.

If a � 1, the minimal polynomial of xy coincides with its characteristic polynomial.
Hence, consideration of the canonical rational form of xy when a � 1 and direct
computation when a = 1 tell us that (xy)n−2 � In has a fixed point space of dimension
n − 2, namely it is a bireflection.

LEMMA 3.1. For 1 ≤ j, k ≤ n − 3, there exists h ∈ H such that hej = ek.

PROOF. Clearly, it is enough to show that, for k ≤ n − 3, there exists h ∈ H such
that he1 = ek. Noting that ye1 = e2, ye2 = e3, xe3 = e4, ye4 = e5 for n = 9, xe1 = e3,
ye3 = e4, ye4 = e5, xe4 = e2 for n ∈ {11, 17}, and xe1 = e2, ye2 = e3, ye3 = e4 xe4 = e5
for n = 13, our claim is true for k ≤ 5.

Now, let 5 ≤ 	 ≤ n − 3 be the largest integer for which, for all 1 ≤ i ≤ 	, there exists
hi ∈ H such that hie1 = ei. If 	 < n − 3, there exists h ∈ {x, y} such that he	 = e	+1,
which is a contradiction. �

LEMMA 3.2. Assume a2 − a − 1 � 0 if n = 9, (a − 1)(a3 + 2a2 + a + 1) � 0 if n = 11
and a4 + a2 − a + 1 � 0 if n = 17. Then, the group H is absolutely irreducible.

PROOF. Assume, for a contradiction, that U is a proper H-invariant subspace. Define

g9 = [x, y], g11 = (xy2)3xy, g13 = (xy2)2xy, g17 = (xy2)6xy.

Under our hypotheses on a, for n = 9, we have V1(g9) = 〈e1〉. By Corollary 2.2, we
may assume e1 ∈ U and hence e1, . . . , en−3 ∈ U by Lemma 3.1. Similarly, for n = 11,
we have V1(g11) = 〈e3〉, for n = 13, we have V1(g13) = 〈e2〉 and for n = 17, we have
V1(g17) = 〈e6〉. In all these cases, as above, we may assume e1, . . . , en−3 ∈ U. Noting
that yen−3 + en−3 = −2en−2, y2en−5 = en−1 and y2en−2 = − 1

2 en, we get the contradiction
U = V . �

For the following result, we need the traces of [x, y]j, j = 1, 2:

tr([x, y]) = 1 + a2 + a−2 + ςn and tr([x, y]2) = (1 + a2 + a−2)2 − 4a − κn,
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where

ςn =

⎧⎪⎪⎨⎪⎪⎩
1 if n = 9,
0 otherwise

and κn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
3 if n = 9,
2 if n = 11,
4 if n = 13, 17.

LEMMA 3.3. The group H is not contained in any maximal subgroup M in class C5 of
Ωn(q).

PROOF. Suppose the contrary. By [1, Tables 8.58 and 8.74] and [5, Proposition
4.5.8], we have either M � Ωn(q0) where q = qr

0 and r is an odd prime, or M �
SOn(q0) where q = q2

0. Thus, there exists g ∈ GLn(F) such that xg = x0, yg = y0,
with x0, y0 ∈ GLn(q0). From tr([x, y]j) = tr([xg, yg]j) = tr([x0, y0]j), j = 1, 2, it follows
that 4a + κn = (tr([x, y]) − ςn)2 − tr([x, y]2) ∈ Fq0 , whence a ∈ Fq0 . So, Fq = Fp[a] ≤
Fq0 implies q0 = q. �

LEMMA 3.4. Assume a2 − a − 1 � 0 for n = 9. If H is absolutely irreducible, then H is
not contained in any monomial subgroup of Ωn(q).

PROOF. For the sake of contradiction, suppose that H is contained in a monomial
subgroup M ∈ C2 of Ωn(q). In this case, we may assume q = p and H acts monomially
with respect to an orthonormal basis B = {v1, v2, . . . , vn}, see [5, Proposition 4.2.15].
Moreover, by [1, Tables 8.58 and 8.74] and [5, Proposition 4.5.8], the order of M
divides 2n−1|Sym(n)|. In particular, any prime divisor  of |H| should satisfy  ≤ n. If
we can show that e1 ∈ B, we easily get a contradiction. Indeed, from e1 ∈ B, it follows
that ei ∈ B for all 1 ≤ i ≤ n − 3 (see Lemma 3.1). Hence, we may assume vi = ei for
1 ≤ i ≤ n − 3. In particular, en−3 ∈ B. As yen−3 = −2en−2 − en−3 is not an element of
〈ei | 1 ≤ i ≤ n − 3〉, yen−3 should be orthogonal to vn−3 obtaining the contradiction
vT

n−3Jyen−3 = eT
n−3Jyen−3 = −1 � 0.

So, we now show that e1 ∈ B. To this purpose, note that if tr(h) � 0, then h must
fix at least one 〈vj〉. Moreover, given h ∈ H of order k, h〈vj〉 = 〈vj〉 implies hvj = λvj,
with λ = ±1. So, consider the permutation ζ induced by h on the 〈vi〉. If ζb acts as the
identity on {〈v1〉, 〈v2〉, . . . , 〈vn〉} for some b ≥ 1, then hbvi = ±vi for every i. It follows
that ζ has order k or k/2. In particular, if h has odd order, it permutes B and its cycle
structure is determined by its rational canonical form. Also, if h ∈ H does not have the
eigenvalue −1, from h〈vj〉 = 〈vj〉, we get hvj = vj. Clearly, this applies to h = y. Since
y has order 3, setting r = 0 if n = 9, r = 1 if n = 13 and r = 2 if n ∈ {11, 17}, y fixes vj

for 1 ≤ j ≤ r and permutes the remaining vectors vj in (n − r)/3 orbits of length 3.

Case n = 11, 13, 17. Call s the number of vectors uj = ej + yej + y2ej, with yej � ej,
fixed by y. Then, any v1 ∈ V1(y) can be written as

v1 =

r∑
i=1

αiei +

s∑
j=1

βjuj.
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Substituting ei by λiei and uj by μjuj if necessary, we may assume that all the
coefficients αi, βj are in {0, 1}. Since y fixes v1, by the transitivity of H on the subspaces
generated by the vectors of B, due to its irreducibility, we may also assume v3 = xv1,
v4 = yv3, v5 = yv4 and v6 = xv5. Imposing vT

1Jv3 = vT
j Jv6 = 0 for all j ∈ {1, 4, 5}, we get

v1 ∈ {e1, . . . , er}, unless n ∈ {11, 17}, q = 3 and a = −1. In these exceptional cases, by
direct computation, the order of (xy)2xy2 is divisible by a prime  ≥ 41, which is a
contradiction as  does not divide |Sym(n)|, n ≤ 17 (see the beginning of the proof).

Case n = 9. Take h = [x, y] and suppose a2 − a − 1 � 0. Then V1([x, y]) = 〈e1〉. We
have

tr(h) =
(a2 + 1)2

a2 and χh(−1) =
−8(a2 + a + 1)2

a2 .

It follows e1 ∈ B unless, possibly, when a2 + 1 = 0 or a2 + a + 1 = 0. As previously
remarked, the order of any element of M, and hence a fortiori of H, if odd must belong
to the set {1, 3, 5, 7, 9, 15}, and if prime must belong to {2, 3, 5, 7}. Assume a2 + 1 = 0.
If p � 5, we may take h = [x, y]2, as V1(h) = 〈e1〉 and tr(h) = −4a − 2 � 0. If q = 5,
then a = 2 and [x, y] has order 156 = 22 · 3 · 13, which is a contradiction. So, assume
a2 + a + 1 = 0. If p � 3, the permutation induced by xy on the 〈vi〉 has order divisible
by 21, which is a contradiction. If q = 3, then a = 1 and [x, y]3y has order 41, which is
a contradiction. �

LEMMA 3.5. Assume n = 9. If the group H is absolutely irreducible, then it is neither
contained in a maximal subgroup in class C2 of Ω9(q) nor contained in any maximal
subgroup in class C7.

PROOF. For the sake of contradiction, suppose that H is imprimitive. By Lemma
3.4, we may assume H ≤ M � Ω3(q)3.24.Sym(3), where M permutes a decompo-
sition F9

q = W1 ⊕W2 ⊕W3, with dim(Wi) = 3. Set h = (xy)7 and N = Ω3(q)3. From
dim(V1(h)) = 7, we get V1(h) ∩Wi � {0}, whence hWi = Wi for each i = 1, 2, 3. It
follows that (xy)7 ∈ N. Since 7 is coprime to the index of N in M, we get xy ∈ N.
Since y acts as a 3-cycle on {W1, W2, W3}, it follows that the elements (xy)iy, 1 ≤ i ≤ 7,
have trace equal to zero. Thus, 0 = tr(xy2) = −(a + a−1) gives the condition a2 + 1 = 0.
In this case, tr((xy)3y) = 1, which is a contradiction.

Now, suppose that H is contained in a maximal subgroup M in class C7 ofΩn(q). By
[1, Table 8.58], M � Ω3(q)2.[4]. Then, h = (xy)7 belongs to Ω3(q)2. Suppose first that
xy is semisimple. Up to conjugation, h = diag(β1, 1, β−1

1 ) ⊗ diag(β2, 1, β−1
2 ) for some

β1, β2 ∈ F∗q. In order that it has the eigenvalue 1 with multiplicity (at least) 7, we need
β1 = β2 = 1, which gives h = I9, which is a contradiction. Finally, assume that xy has
order divisible by p. Up to conjugation and because of (2.1),

h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1
0 1 2
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β 0 0
0 1 0
0 0 β−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , β ∈ F∗q.
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Hence, χh(t) = (t − 1)3(t − β)3(t − β−1)3. Since h is a bireflection (that is,
dim(V1(h)) = 7), we must have β = 1, in which case dim(V1(h)) = 3, which is a
contradiction. �

LEMMA 3.6. If H is absolutely irreducible, then the H-module V = Fn is not the deleted
permutation module of degree 	 = n + 1, n + 2.

PROOF. Assume the contrary. From what is seen at the end of Section 2, up to
conjugation, we may assume H ≤ Sym(	) ≤ GL	(p), with 	 = n + 1, n + 2.

Case 	 = n + 1. Fix h ∈ H such that dim(V1(h)) = 1 and call ζ its preimage in Sym(	) ≤
GL	(p). Then, ζ has at most two orbits. It follows that tr(ζ) = 0 if ζ is an 	-cycle or the
product of two cycles of length at least two. Otherwise, tr(ζ) = 1 and ζ is a cycle of
length 	 − 1. Note that ζ and h have the same order.

We may take h = xy, as dim(V1(xy)) = 1. Hence, tr(ζ) − 1 = tr(xy) = −(a + a−1)
gives the following two cases: if tr(ζ) = 0, then a2 − a + 1 = 0; if tr(ζ) = 1, then
a2 + 1 = 0. In the second case, the characteristic polynomial χxy(t) is divisible by
t2 + 1, and then xy has order divisible by 4. However, ζ has odd order n, being an
n-cycle, which is a contradiction.

So, assume a2 − a + 1 = 0. In this case, t2 + t + 1 divides χxy(t) and hence the order
of ζ is divisible by 3. Furthermore, (xy)n−2 has order p when n ∈ {11, 17}. For n = 11, we
get that the order of ζ is 6, 9 or 12, in contrast with (xy)9 of odd order p. For n = 17, the
order of ζ is 9, 12, 15 or 18. However, (xy)9 � I17 and the other values are in contrast
with (xy)15 of odd order p. For n ∈ {9, 13}, we apply the previous argument to other
elements h such that dim(V1(h)) = 1. For n = 9, we take h = [x, y] whose trace is equal
to 1, which is a contradiction. For n = 13, we take h = (xy2)2xy, which has trace equal
to 3. Since tr(h) = tr(ζ) − 1 ∈ {−1, 0}, we get an absurdity unless p = 3. However, in
this case, a = −1 and h8 has order 41, which is a contradiction as h8 ∈ H ≤ Sym(14).

Case 	 = n + 2. In this case, q | 	, and hence we need to consider only the following
cases: (a) (n, q) = (9, 11); (b) (n, q) = (11, 13); (c) (n, q) = (13, 3); (d) (n, q) = (13, 5);
(e) (n, q) = (17, 19). Take g = (xy)3(xy2)7 in case (a); g = xy(xy2)2 in cases (b), (c) and
(e); and g = xy(xy2)3 in case (d). By direct computation, in all these cases, the order
of g is divisible by a prime  ≥ n + 4, which is a contradiction as  should divide
|Sym(n + 2)|. �

THEOREM 3.7. Suppose n ∈ {9, 11, 13, 17} and let a ∈ F∗q be such that:

(i) Fp[a] = Fq;
(ii) −a ∈ (F∗q)2;

(iii)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a2 − a − 1 � 0 if n = 9;
(a − 1)(a3 + 2a2 + a + 1) � 0 if n = 11;
a4 + a2 − a + 1 � 0 if n = 17.

Then, H = Ωn(q). In particular, Ωn(q) is (2, 3)-generated for any odd q.
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PROOF. By condition (ii), H is a subgroup of Ωn(q). By condition (iii), Lemmas 3.2,
3.4 and 3.5, the group H is absolutely irreducible and is neither contained in a
maximal subgroup in class C2 of Ωn(q) nor contained in any maximal subgroup in
class C7. Since it contains the bireflection (xy)n−2, we can apply [3, Theorem 7.1]
which, combined with condition (i) and Lemma 3.3, gives two possibilities: (a) H
is an alternating or symmetric group of degree 	 and Fn is the deleted permutation
module of dimension 	 − 1 or 	 − 2; (b) H = Ωn(q). Case (a) is excluded by Lemma
3.6: we conclude that H = Ωn(q).

Finally, we have to prove that there exists an element a satisfying all the
requirements. If q = p, take a = −1. Suppose now q = pf with f ≥ 2, and let
N(q) be the number of elements b ∈ F∗q such that Fp[b] � Fq. By [12], we have
N(q) ≤ p(p� f /2� − 1)/(p − 1), and hence it suffices to check when (pf − 1)/2 −
p(p� f /2� − 1)/(p − 1) > 4. This condition is fulfilled unless q = 32. So, assume q = 9
and take a ∈ F∗9 whose minimal polynomial over F3 is t2 + 1. Then, F3[a] = F9 and
−a = (a + 1)2 is a square. �

4. Generators for n ∈ {12, 15, 16} and for n ≥ 18

For n ∈ {12, 15, 16} and for n ≥ 18, write n = 3m + 9 + r, with m ≥ 1 and
r ∈ {0, 1, 2}. Take the symmetric bilinear form corresponding to the Gram matrix

J =
( In−8 0 0

0 0 I4
0 I4 0

)
, having det(J) = 1. For any a ∈ F∗q, we define four matrices x1, x2, y1, y2

of GLn(q) as follows.

(x1) x1 acts on C as the product ν1ν2 of the following two disjoint permutations:

ν1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

id if r = 0 and n is odd,
(e1, e2) if r = 0 and n is even,
(e1, e2) if r = 1 and n is odd,
(e1, e2)(e3, e6) if r = 1 and n is even,
(e1, e3)(e2, e4) if r = 2 and n is odd,
(e1, e3)(e2, e4)(e7, e10) if r = 2 and n is even,

and

ν2 =

m−1∏
j=0

(e3j+r+3, e3j+r+4) = (er+3, er+4)(er+6, er+7) · · · (en−9, en−8).

(x2) x2 = diag(In−9, x̃), where x̃ = x̃(a) is as in Figure 2.
(y1) y1 acts on C as the permutation

ν3 =

m−1∏
j=0

(e3j+r+1, e3j+r+2, e3j+r+3)

= (er+1, er+2, er+3)(er+4, er+5, er+6) · · · (en−11, en−10, en−9).

(y2) y2 = diag(In−9, ỹ), where ỹ is as in Figure 2.
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FIGURE 2. Alternative generators of Ω9(q).

Let us identify Sym(n − 8) with the group of permutation matrices fixing the set
{ej | 1 ≤ j ≤ n − 8} and acting as the identity on 〈en−7, en−6, . . . , en〉. The matrix x1 is
the product of N transpositions in Sym(n − 8), where N is as follows:

r = 0 r = 1 r = 2
n even N = m + 1 N = m + 2 N = m + 3
n odd N = m N = m + 1 N = m + 2

Now, n is odd if and only if m and r have the same parity. It follows that N is
always even, whence x1 ∈ Alt(n − 8) ≤ Ωεn(q). In particular, x1 is an involution and the
same is easily verified for x2. To see that x2 ∈ Ωεn(q), note that x̃ = diag(1, h, h−T) with
h ∈ SL4(q). Since diag(1, g, g−T) ∈ SO9(q) for each g ∈ GL4(q), we conclude that x̃ is
in Ω9(q).

Clearly, y1 and y2 have order 3 and determinant 1. Moreover, y1 ∈ Alt(n − 9) ≤
Ωεn(q) and yT

2Jy2 = J. Since x1x2 = x2x1 and y1y2 = y2y1, we conclude that x = x1x2
and y = y1y2 have respective orders 2 and 3, and that

H := 〈x, y〉 ≤ Ωεn(q).

We also assume that a ∈ F∗q is such that Fp[a] = Fq.
When n � 12, we can decompose Fn

q into the direct sum of the following
[x, y]-invariant subspaces. Take

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈e1, e3, e4〉 if n = 15,
〈e1, e5〉 ⊕ 〈e2, e4〉 if n = 16,
〈e1, e2, e4, e5〉 ⊕ 〈e3, e7, e8〉 if n = 19,
〈e1, e2, e6, e8〉 ⊕ 〈e3, e4, e5, e9〉 if n = 20,
〈e1, e2, e3, e4, e5, e6, e8, e9〉 ⊕ 〈e7, e11, e12〉 if n = 23.
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Otherwise,

A =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈e1, e2, e3, e4, e6, e7〉 if r = 0,
〈e1, e2, e4, e5〉 ⊕ 〈e3, e6, e7, e8, e10, e11〉 if r = 1,
〈e1, e2, e3, e4, e5, e6, e8, e9〉 ⊕ 〈e7, e10, e11, e12, e14, e15〉 if r = 2.

Moreover,

B =
m−4−r⊕

j=0
〈e5+4r+3j, e9+4r+3j, e10+4r+3j〉,

C = 〈en−13, en−10, en−9, en−8, en−7, en−6, en−5, en−4, en−3, en−2, en−1, en〉.

LEMMA 4.1. Assume n � 12. Then, ([x, y]|A)24 = I and ([x, y]|B)3 = I.

PROOF. For n ∈ {15, 16, 19, 20, 23}, the element [x, y] acts on A as the following
permutation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(e3, e4) if n = 15,
(e1, e5)(e2, e4) if n = 16,
(e1, e5, e4, e2)(e3, e8, e7) if n = 19,
(e1, e6, e8, e2)(e3, e4, e9, e5) if n = 20,
(e1, e6, e5, e3, e4, e9, e8, e2)(e7, e12, e11) if n = 23.

Otherwise, it acts onA as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(e1, e4, e3, e2, e7, e6) if n ≡ 0 (mod 6),
(e1, e5, e4, e2)(e3, e8, e7)(e6, e11, e10) if n ≡ 1 (mod 6),
(e1, e6, e8, e2)(e3, e4, e9, e5)(e7, e12, e11, e10, e15, e14) if n ≡ 2 (mod 6),
(e2, e7, e6)(e3, e4) if n ≡ 3 (mod 6),
(e1, e5)(e2, e4)(e3, e8, e7, e6, e11, e10) if n ≡ 4 (mod 6),
(e1, e6, e5, e3, e4, e9, e8, e2)(e7, e12, e11)(e10, e15, e14) if n ≡ 5 (mod 6).

Finally, [x, y] acts on each summand of B as the cycle (e5+4r+3j, e10+4r+3j, e9+4r+3j). �

By Lemma 4.1 and direct computations (in particular, for n = 12), the element
τ = [x, y]24 has characteristic polynomial (t − 1)n. More precisely, setting
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ϑ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −4a 0 −32a2 −36a2 −8a −56a2

0 1 −4a 0 −28a2 −32a2 −8a −64a2

0 0 1 0 8a 8a 0 16a
0 0 −8a 1 −72a2 −64a2 −16a −128a2

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 4a 4a 1 8a
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
we have τ = diag(In−8,ϑ), where

ϑ = ϑ0 + 8(E1,6 + 2E2,8 + 2E4,5 − E2,5 − 2E1,8 − 2E4,6)

if n ∈ {12, 16, 20}, and ϑ = ϑ0 otherwise. Notice that the minimal polynomial of ϑ is
(t − 1)3. It follows that τ is an element of order p fixing the 9-dimensional subspace
S9 = 〈en−8, en−7, . . . , en〉. Furthermore, the fixed point space of τ|S9 has dimension 5,
unless n ∈ {12, 16, 20} and a2 = 3, in which case it has dimension 7.

5. The case n ∈ {15, 18, 19} or n ≥ 21

The subspace S9 is invariant under K = 〈y, τ〉: our first aim is to find conditions on
a ∈ F∗q so that K|S9 = Ω9(q). In the following, we identify y, τ with their restrictions
to S9.

LEMMA 5.1. The group K|S9 is absolutely irreducible.

PROOF. We apply Corollary 2.2 to g = [y, τ] and λ = 1. So, we may assume that
the eigenvector s = en−8 − en−7 is contained in U. Take the matrices M1, M2, whose
columns are the images of s under the following elements:

M1 : I9, y, y2, τy2, τ2y2, yτy2, y2τy2, yτ2y2, y2τ2y2;
M2 : I9, y, y2, τy2, τ2y2, yτy2, yτ2y2, (τy2)2, τy2τ2y2.

Then, det(M1) = −235a10(4a2 + 3) and det(M2) = −235a10(28a2 − 3). Clearly, these
two matrices cannot be both singular, whence dim(U) = 9, which is a contradiction.�

LEMMA 5.2. The group K|S9 is neither monomial nor contained in any maximal
subgroup PSL2(8), PSL2(17), Alt(10), Sym(10), Sym(11) in class S of Ω9(q).

PROOF. Recall that τ is an element of order p. Considering the order of the maximal
subgroups M described in the statement and the conditions on q given in [1, Tables
8.58 and 8.59], we may reduce to the following cases:

(i) M = 28 : Alt(9) and q ∈ {3, 5};
(ii) M = 28 : Sym(9) and q = 7;
(iii) M = Alt(10) and q ∈ {3, 7};
(iv) M = PSL2(17) and q = 9;
(v) M = Sym(11) and q = 11;
(vi) M = PSL2(8) and q = 27.
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Now, we look for an element of H whose order does not divide |M|. In particular, it
suffices to find an element of H whose order is divisible by a prime  > 17 in case (iv),
 > 11 otherwise. Define gj = yτj. If q ∈ {3, 9}, then g1 has order divisible by 41. If
q = 5, then g3 has order divisible by a prime  ≥ 13. If q = 7, take j = 2 when a = ±2,
and j = 3 when a ∈ {±1,±3}. Then, the order of gj is divisible by a prime  ≥ 43. If
q = 11, take j = 2 if a = ±5 and j = 1 otherwise. Then the order of gj is divisible by a
prime  ≥ 19. Finally, if q = 27, then g2 has order divisible by 37. In all these cases,
we easily obtain a contradiction. �

For the next lemma, we use the following traces of elements of K|S9 :

tr((yτ)2) = −2176a4 + 128a2, tr((y2τ)2) = 1920a4 + 128a2. (5-1)

LEMMA 5.3. The group K|S9 is neither contained in a maximal subgroup in class C2
of Ω9(q) nor contained in any maximal subgroup in class C7.

PROOF. By Lemma 5.2, the group K|S9 is not monomial. So, suppose that K|S9 pre-
serves a nonsingular decomposition F9

q = W1 ⊕W2 ⊕W3 with dim(Wi) = 3. Clearly,
for each k ∈ K|S9 , its cube fixes each Wi, preserving a nonsingular symmetric form.
Thus, its eigenvalues are ±1,αi,α−1

i . It follows that k3 must have the eigenvalue 1
with multiplicity at least 3, or the eigenvalue −1 with multiplicity at least 2. Assume
first p = 3. We have χ(yτ)3 (t) = (t − 1) f (t), where f (t) = t8 + t7 − (a12 + a6 − 1)t6 −
(a12 − 1)t5 − (a6 − 1)t4 − (a12 − 1)t3 − (a12 + a6 − 1)t2 + t + 1. Then, f (1) = −a12 � 0
and f (−1) = 1, which is a contradiction. Next, assume p � 3. From tr(τ) = 9 � 0, we
get that τ fixes each Wi. By the irreducibility of K|S9 , the element y acts on {W1, W2, W3}
as the 3-cycle (W1, W2, W3). In this case, both (yτ)2 and (y2τ)2 should have trace 0, in
contrast with (5.1) which gives 0 = tr((y2τ)2) − tr((yτ)2) = 212a4.

Finally, suppose that K|S9 is contained in a maximal subgroup M � Ω3(q)2.[4] ∈ C7,

and hence actually inΩ3(q)2. Up to conjugation, we may suppose τ =
(

1 1 1
0 1 2
0 0 1

)
⊗

(
1 1 1
0 1 2
0 0 1

)
.

The dimensions of the fixed point space of this tensor product and of τ are, respectively,
3 and 5, which is a contradiction. �

LEMMA 5.4. The group K|S9 is not contained in any maximal subgroup M � PSL2(q).2
or M � PSL2(q2).2 in class S of Ω9(q).

PROOF. Suppose the contrary.

Case M � PSL2(q).2. In this case, M arises from the representation Φ : GL2(q)→
GL9(q) obtained from the action of GL2(q) on the space T of homogeneous polyno-
mials of degree 8 in two variables t1, t2 over Fq. Up to conjugation in GL2(q), we may
assume

τ = Φ(I2 + E1,2) =

⎧⎪⎪⎨⎪⎪⎩
t1 
→ t1,
t2 
→ t1 + t2.

https://doi.org/10.1017/S1446788724000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000016


144 M. A. Pellegrini and M. C. Tamburini Bellani [15]

Direct computation (with respect to the basis t8
1, t7

1t2, . . . , t8
2 of T) gives that the fixed

point space of this linear transformation is generated by t8
1. So, it has dimension 1,

which is a contradiction as τ has a fixed point space of dimension 5.

Case M � PSL2(q2).2. To understand M, start from the representation ψ : GL2(q2)→
GL3(q2) described in (2.1). Next, consider the subspace W of Mat3(q2) consisting
of the matrices A such that AT = (aq

i,j) = Aσ. Clearly, W has dimension 9 over Fq

and we may consider the representation Φ : GL3(q2)→ GL9(q) induced by A 
→
(ψ(g))TA(ψ(g))σ for all g ∈ GL3(q2). The group M arises from this representa-
tion. Again, up to conjugation in GL2(q2), we may suppose τ = Φ(ψ(I2 + E1,2)) =

Φ

((
1 1 1
0 1 2
0 0 1

))
. Direct calculation gives that the fixed point space of Φ(ψ(I2 + E1,2)) on

W ≤ Mat3(q2) is generated by E2,2, E3,3, E2,3 + E3,2. Thus, it has dimension 3, which is
again a contradiction as τ has a fixed point space of dimension 5. �

PROPOSITION 5.5. Suppose that q is odd and n ∈ {15, 18, 19} or n ≥ 21. Let a ∈ F∗q be
such that Fp[a] = Fq. Then, K|S9 = Ω9(q).

PROOF. By Lemmas 5.1 and 5.3, K|S9 is absolutely irreducible, and is neither
contained in a maximal subgroup in class C2 of Ω9(q) nor contained in any maximal
subgroup in class C7. Furthermore, by Lemmas 5.2 and 5.4, either K|S9 = Ω9(q)
or K|S9 is contained in a maximal subgroup M ∈ {Ω9(q0), SO9(q0)} in class C5,
where q = qr

0 for some prime r ≥ 2. Suppose there exists g ∈ GL9(F) such that τg =

τ0, yg = y0, with τ0, y0 ∈ GL9(q0). From −2176a4 + 128a2 = tr((yτ)2) = tr((ygτg)2) =
tr((y0τ0)2), it follows that 17a4 − a2 ∈ Fq0 . Similarly, from tr((y2τ)2) = 1920a4 + 128a2,
we obtain 15a4 + a2 ∈ Fq0 . It follows that 32a4 ∈ Fq0 and then a2 ∈ Fq0 . Again,
from tr(y2τ2(yτ)2) = −49 152a6 + 16 384a5 + 3840a4 + 256a2 ∈ Fq0 , we get a ∈ Fq0 .
So, Fq = Fp[a] ≤ Fq0 implies q0 = q, which is a contradiction. We conclude that
K|S9 = Ω9(q). �

Define E0 = S0 = {0} and, for 1 ≤ 	 ≤ n,

E	 = 〈ei | 1 ≤ i ≤ 	〉 and S	 = 〈ei | n − 	 + 1 ≤ i ≤ n〉.

COROLLARY 5.6. Suppose q odd and n ∈ {15, 18, 19} or n ≥ 21. Let a ∈ F∗q be such
that Fp[a] = Fq. Then:

(i) H = Ωn(q) if n is odd;
(ii) H = Ω+n (q) if q ≡ 1 (mod 4) and n is even;
(iii) H = Ω+n (q) if q ≡ 3 (mod 4) and n ≡ 0 (mod 4);
(iv) H = Ω−n (q) if q ≡ 3 (mod 4) and n ≡ 2 (mod 4).

PROOF. By [1, Proposition 1.5.42(ii)], when n is even, we have H ≤ Ω+n (q) or
H ≤ Ω−n (q) according as n(q − 1)/4 is even or odd, respectively. Let 	 be maximal
with respect to

K	 := diag(In−	,Ωε	(q)) ≤ H,
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where ε ∈ {◦,±}. Noting that K′ = diag(In−9,Ω9(q)) by the previous proposition, we
have that 	 is at least 9 and we need to show that 	 = n. For the sake of contradiction,
assume 9 ≤ 	 < n.

Suppose first that (r, 	) � {(2, n − 2), (2, n − 1)} and (r, 	) � {(1, n − 4), (2, n − 8)}
when n is even. Then:

(a) if 	 ≡ 0 (mod 3), then x fixes the subspaces S	−1 and En−	−1, and acts as the
transposition (en−	, en−	+1) on 〈en−	, en−	+1〉;

(b) if 	 ≡ j (mod 3), with j = 1, 2, then y fixes the subspaces S	−j and En−	−3+j, and
acts as (en−	−2+j, en−	−1+j, en−	+j) on 〈en−	−2+j, en−	−1+j, en−	+j〉.

Setting g = x in case (a), and g = y in case (b), we claim that K	+1 := 〈K	, Kg
	
〉 equals

diag(In−	−1,Ωε	+1(q)), ε ∈ {◦,±}. (5-2)

Noting that g−1S	 is obtained from S	 by replacing en−	+1 by en−	, one gets 〈S	, g−1S	〉 =
S	+1. Thus, K	+1 fixes S	+1, induces the identity on En−	−1 and fixes the restriction of J
to S	+1, of determinant 1. If follows that K	+1 is contained in the group (5-2). Call ρ the
matrix in GLn(q) which acts according to en−	 
→ −en−	, en−4 
→ −2en, en 
→ − 1

2 en−4
and fixes the remaining vectors ei. Since ρ has determinant 1 and spinor norm (F∗q)2, it
belongs to Kg

	
, which induces Ωε	 on g−1S	. Now, 〈ρ, K	〉 is the stabilizer in the group

(5-2) of the nondegenerate subspace 〈en−	〉. So, it is a maximal subgroup of the group
(5-2). From K	+1 � 〈ρ, K	〉, we get the final contradiction K	+1 = diag(In−	−1,Ωε

	+1(q)).
It remains to exclude the exceptional cases: in each of them, we get the same

contradiction.

Case 1. r = 1, 	 = n − 4, n even. Let R be the stabilizer of e6 in Kn−4. Then, 〈Rx, Kn−4〉 =
Kn−3, as it fixes the vectors e1, e2, e3 and the subspace E⊥3 , inducing Ωn−3(q).

Case 2. r = 2, 	 = n − 8, n even. Let R be the stabilizer of e10 in Kn−8. Then,
〈Rx, Kn−8〉 = Kn−7, as it fixes the vectors e1, e2, . . . , e7 and the subspace E⊥7 , inducing
Ωn−7(q).

Case 3. r = 2, 	 = n − 2. Let R be the stabilizer of e3 in Kn−2. Then, 〈Rx, Kn−2〉 = Kn−1,
as it fixes e1 and E⊥1 , inducing Ωεn−1(q).

Case 4. r = 2, 	 = n − 1. Similar to the above cases. �

6. The case n ∈ {12, 16, 20}
The values n = 12, 16, 20 require some small adjustments with respect to the general

case, described in Section 5. So, in the proof of the following results, we only give the
necessary modifications.

LEMMA 6.1. Assume a2 � 2, 3. Then, the group K|S9 is absolutely irreducible.

PROOF. We have s = en−8 − en−7 by the hypothesis a2 � 3. Now, det(M1) =
−235a6(a2 − 2)(4a4 − 13a2 + 16) and det(M2) = −235a6(a2 − 2)(28a4 − 83a2 − 16).
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Since a2 � 2, the matrices M1, M2 are both singular only if p = 13 and a2 = 3, which
is excluded by hypothesis. �

LEMMA 6.2. The group K|S9 is neither monomial nor contained in any maximal
subgroup PSL2(8), PSL2(17), Alt(10), Sym(10), Sym(11) in class S of Ω9(q).

PROOF. If q ∈ {3, 5, 11} proceed as in the proof of Lemma 5.2. If q = 7, take j = 1 if
a = ±1 and j = 3 if a = ±2; take g̃ = τ2yτy if a = ±3. Then, the order of gj and the
order of g̃ are divisible by a prime  ≥ 43. If q = 9, then g1 has order divisible by 13,
a prime that does divide |PSL2(17)|; if q = 27, then g2 has order divisible by a prime
 ∈ {13, 73}. �

LEMMA 6.3. Assume a2 � 3. The group K|S9 is neither contained in a maximal
subgroup in class C2 of Ω9(q) nor contained in any maximal subgroup in class C7.

PROOF. We proceed as in the proof of Lemma 5.3, describing only the necessary
modifications to prove the primitivity of K|S9 . For p = 3, we have χ(yτ)3 (t) = (t − 1) f (t),
where f (t) = t8 − t7 − (a12 − a6 + 1)t6 − a12t5 + (a6 − 1)t4 − a12t3 − (a12 − a6 + 1)t2 −
t + 1. Also in this case, f (1) = −a12 and f (−1) = 1. If p � 3, the product yτ should
have trace 0, in contrast with tr(yτ) = −16. �

LEMMA 6.4. Assume a2 � 3. The group K|S9 is not contained in any maximal subgroup
M � PSL2(q).2 or M � PSL2(q2).2 in class S of Ω9(q).

PROPOSITION 6.5. Assume q odd and n ∈ {12, 16, 20}. Let a ∈ F∗q be such that Fp[a2] =
Fq with a2 � 2, 3. Then K|S9 = Ω9(q).

PROOF. By Lemmas 6.1 and 6.3, K|S9 is absolutely irreducible and is neither contained
in a maximal subgroup in class C2 of Ω9(q) nor contained in any maximal subgroup
in class C7. Furthermore, by Lemmas 6.2 and 6.4, either K|S9 = Ω9(q) or K|S9 is
contained in a maximal subgroup M ∈ {Ω9(q0), SO9(q0)} in class C5, where q = qr

0
for some prime r ≥ 2. Suppose there exists g ∈ GL9(F) such that τg = τ0, yg = y0, with
τ0, y0 ∈ GL9(q0). From tr((yτ)2) = −2176a4 + 6784a2 − 224 and tr((y2τ)2) = 1920a4 −
5504a2 − 288, we get that −17a4 + 53a2 and 15a4 − 43a2 belong to Fq0 , whence
64a2 ∈ Fq0 . We conclude that K|S9 = Ω9(q). �

COROLLARY 6.6. Assume q odd and n ∈ {12, 16, 20}. Let a ∈ F∗q be such that
Fp[a2] = Fq with a2 � 2, 3. Then H = Ω+n (q). In particular, Ω+n (q) is (2, 3)-generated.

PROOF. Since K|S9 = Ω9(q), we can repeat the argument of Corollary 5.6, proving that
H = Ω+n (q). For the second part of the statement, we have to prove that there exists an
element a satisfying all the hypotheses. If q = p, take a = 1. Suppose now q = pf with
f ≥ 2 and let N(q) be the number of elements b ∈ F∗q such that Fp[b2] � Fq. By [12,
Lemma 2.7], it suffices to check that the condition pf − 2p(p� f /2� − 1)/(p − 1) > 1 is
always fulfilled (the requirements a2 � 2, 3 can be dropped). �

https://doi.org/10.1017/S1446788724000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000016


[18] The (2, 3)-generation of orthogonal groups 147

7. Conclusions

We can now prove our main result.

PROOF OF THEOREM 1.1. The (2, 3)-generation of Ωn(q), nq odd, follows from
Theorem 3.7 when n ∈ {9, 11, 13, 17} and Corollary 5.6 for the other values of n.
Due to Corollaries 5.6 and 6.6, we also proved the (2, 3)-generation of the following
even-dimensional orthogonal groups: Ω+2k(q), when q ≡ 1 (mod 4) and k = 6 or k ≥ 8;
Ω+4k(q), when q ≡ 3 (mod 4) and k ≥ 3; Ω−4k+2(q), when q ≡ 3 (mod 4) and k ≥ 4. �
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