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Abstract—Crystal truncation rod (CTR) X-ray diffraction is an invaluable tool for measuring mineral surface and adsorbate structures,
and has been applied to several environmentally and geochemically important systems. Traditionally, the method has been restricted to
single crystals with lateral dimensions >3 mm. Minerals that meet this size criterion represent a minute fraction of those that are relevant
to interfacial geochemistry questions, however. Crystal screening, data collection, and CTRmeasurement methods have been developed
for crystals of <0.3 mm in lateral size using the manganese oxide mineral chalcophanite (ZnMn3O7·3H2O) as a case study. This work
demonstrates the feasibility of applying the CTR technique to previously inaccessible surfaces, opening up a large suite of candidate
substrates for future study.
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INTRODUCTION

Crystal truncation rod (CTR) X-ray scattering probes atomic-
level structural details of surfaces and interfaces on single-crystal
samples (Fig. 1) (Fenter, 2002; Robinson, 1986). It takes advan-
tage of weak lines or ‘rods’ of scattered X-ray intensity between
Bragg peaks, and perpendicular to crystal surfaces, that encode
atom positions and occupancies at interfaces. The technique can
be used to determine mineral terminations, the structures of inter-
facial water layers, and the positions of adsorbates. CTRmeasure-
ments can be conducted in two geometries. Specular measure-
ments (Fig. 1a) are one-dimensional and probe only the laterally
averaged surface-normal electron density, but can determine
heights of laterally disordered structures such as layered water.
Off-specular measurements (Fig. 1b) allow for the refinement of
three-dimensional interfacial structures that are registered with
respect to the bulk crystal. Surface scattering signals are many
orders of magnitude weaker than bulk Bragg peaks, requiring the
use of synchrotron light sources. The University of Chicago
GSECARS beamlines 13-BM-C and 13-ID-C at the Advanced
Photon Source (APS) at Argonne National Laboratory have been
optimized for these experiments. The 13-BM-C beamline has a
bending magnet source that operates at fixed energy (either 15 or
28.6 keV) and provides larger blocks of beamtime than the 13-ID-
C undulator beamline. The greater accessibility to the 13-BM-C
beamline makes it an excellent resource for crystal screening and
preliminary measurements, while 13-ID-C offers tunable energy
and significantly greater X-ray flux.

To date, CTR has been applied to the surfaces of 18 minerals
including four silicates, three carbonates, three phosphates, one
sulfate, and seven (oxyhydr) oxides at GSECARS beamlines
and others (Table 1). These studies used crystals with lateral
surface dimensions typically >3mm. The CTR approach used to
measure these systems previously required large, perfect, single-
crystal substrates which intercepted the full X-ray beam footprint
at small (2–4°) incidence angle (i.e. the angle made by the
incident X-ray beam with respect to the surface of the crystal).
In a previous study of the hydrated goethite (100) surface
(Ghose et al., 2010), a rare 1 mm×1 mm crystal was measured
successfully thanks to the unique X-ray optics developed at
GSECARS. The mirrors that supply X-rays to the 13-ID-C
endstation are capable of focusing the full APS undulator beam
to ~30 μm (full width at half maximum; FWHM), correspond-
ing to a beam footprint on the sample surface of 430–840 μm at
2–4°, allowing the beam footprint to remain within the bounds
of the goethite surface. Even when the lateral size requirement is
reduced to 1 mm, however, much important science is still
inaccessible, as it is nearly impossible to find many minerals
with single-crystal surfaces this large.

The conventional constraint of preventing the X-ray beam
from overfilling the samples is imposed for two reasons: (1)
during off-specular CTR measurements the sample must rotate
azimuthally. Preventing spill-off during sample rotation keeps the
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number of surface atoms participating in the scattering constant.
(2) Photons that spill off the sample edges will be scattered by the
sample holder or other materials. When the number of photons
intercepted by the sample surface is comparable to those travers-
ing beyond the sample’s edges, the surface diffraction signal
becomes difficult to distinguish from the background scattering
produced by the sample-support structure.

The present study reports on the development of techniques
to measure CTRs from crystals with surfaces a few hundred
microns in lateral extent, of sample environments enabling
such measurements in the presence of liquids, and of methods
for screening microcrystals to identify those of sufficient qual-
ity for successful CTR experiments.

METHODS DEVELOPMENT

Methods for Measuring Microcrystals
A method has been pioneered for making CTR measure-

ments from the surfaces of crystals with lateral dimensions as
small as 100 μm – an order of magnitude smaller than most

previous studies. This is achieved by using the beamline’s X-ray
optics to adjust the beam footprint so that the entire sample
surface is illuminated (thus keeping the number of participating
surface atoms fixed). The amount of the beam which ‘spills’ off
the surface is limited to the size needed to illuminate the full
sample given eccentricity of the rotation stage, thus minimizing
the background scatter from the sample mount. During pilot
experiments, background scatter was minimized by attaching
samples via electrostatic attraction to high-symmetry, single-
crystal substrates composed of low atomic number elements,
e.g. diamond or quartz (Fig. 2). The X-ray beam is allowed to
spill off of the edges of the microcrystal onto the support crystal,
which generates far lower background than typical amorphous
or polycrystalline sample cell materials. During specular mea-
surements, the incidence angle varies, and therefore so does the
fraction of the beam that spills. Application of a geometric spill-
off correction, as is frequently performed for low-angle reflec-
tivity measurements, is relatively straightforward as the crystal
does not rotate azimuthally in this measurement mode. The use
of single crystals as low-background holders is well established

Fig. 1. a, bCrystal truncation rods (CTR) areweak lines ofX-ray intensity that are perpendicular to the surface and pass throughBragg peaks in reciprocal
space. ki = incident X-raywave vector; kf = final scatteredwave vector; Q =momentum transfer;α= angle of incidence x-ray beammakeswith surface;β
= angle of exit; HKL=Miller indices for a surface unit cell withH andK in the surface plane andL normal to it. aSpecularmeasurement geometry;α=β,
Q ┴ surface. bOff-specular geometry; α fixed, Q has both lateral and surface-normal components. c Calculated 20L CTR for chalcophanite
(ZnMn3O7·3H2O) basal plane assuming ‘bare’ surface (red), surface with Zn and water in bulk positions (green), and surface with Zn and water, as
depicted in d shifted 0.2 Å toward bulk (blue). CTR profiles are highly sensitive to crystal termination and adsorbate structures

Clays and Clay Minerals 689

https://doi.org/10.1007/s42860-021-00155-4 Published online by Cambridge University Press

https://doi.org/10.1007/s42860-021-00155-4


Table 1.Minerals investigated to date using CTR

Mineral class Mineral name Chemical formula References

Silicates Quartz SiO2 Bellucci et al. (2015),

Schlegel et al. (2002)

Park et al. (2005)

Orthoclase KAlSi3O8 Fenter et al. (2000a, 2003a, 2003b, 2008, 2010a, b,
Fenter et al., 2014),

Teng et al. (2001)

Forsterite Mg2SiO4 Yan et al. (2014)

Muscovite KAl3Si3O10(OH)2 Bourg et al. (2017)

Brugman et al. (2018, 2020)

Cheng et al. (2001)

de Poel et al. (2014a, 2014b, 2017)

Fenter et al. (2010a, b)

Hellebrandt et al. (2016)

Lee et al. (2007, 2008, 2009, 2010a, 2010b, 2011, 2012,
2013a, 2013b, 2016, 2017, 2019)

Pintea et al. (2016, 2018)

Qiu et al. (2018a)

Schlegel et al. (2006)

Schmidt et al. (2012a, 2012b, 2013, 2015)

Stubbs et al. (2019)

Yuan et al. (2019a)

Carbonates Calcite CaCO3 Callagon et al. (2014, 2017)

Chiarello and Sturchio (1995)

Fenter and Sturchio (1999, 2012)

Fenter et al. (2000b, 2013)

Geissbuhler (2004)

Heberling et al. (2011, 2014)

Hofmann et al. (2016)

Lee et al. (2016)

Magdans et al. (2006)

Dolomite CaMg(CO3)2 Callagon et al. (2017)

Fenter et al. (2007)

La Plante et al. (2018, 2019)

Rhodochrosite MnCO3 Jun et al. (2007)

Phosphates Apatite Ca5(PO4)3(OH,F,Cl) Pareek et al. (2009)

Park et al. (2004)

Archerite KH2PO4 de Vries et al. (1998, 1999)

Kaminski et al. (2005, 2006)

Reedijk et al. (2003)

Xenotime YPO4 Stack et al. (2018)

Sulfates Baryte BaSO4 Bracco et al. (2017, 2019)

Fenter et al. (2001)

Oxides Corundum Al2O3 Catalano (2010, 2011)

Catalano et al. (2005, 2006a, 2008)

Eng et al. (2000)
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in powder diffraction but has not, to the authors’ knowledge,
been extended to CTR. This method of mounting andmeasuring
small crystals enabled CTR measurements of the basal plane of
the Mn-oxide, chalcophanite (ZnMn3O7·3H2O). This sheet-
structured mineral (Fig. 1d) is a single-crystal proxy for
phyllomanganates of the birnessite group, which are important
in both energy storage and environmental applications, and are
known to sequester significant quantities of contaminant metals
from mining and smelting operations (Post & Appleman, 1988;
Morin et al., 1999; Post, 1999; Manceau et al., 2000; Hochella
et al., 2005; Shope et al., 2006; Vanek et al., 2008; Bargar et al.,
2009; Fuller & Bargar, 2014; Post & Heaney, 2014; Kimball
et al., 2016).

Chalcophanite crystals from Sterling Hill, New Jersey,
were provided by the National Museum of Natural History
(Sample C1814). The first crystals were selected on the basis
of size, morphology, and visible light surface reflectivity as
viewed with an optical microscope. Once selected, crystals
were attached by electrostatic attraction to a thin needle or
wire. A droplet of deionized water was deposited on the
diamond or quartz substrate that had been pre-mounted with
beeswax to a 3 mm brass pin (Fig. 2a), then the chalcophanite
crystal was deposited in that droplet. Excess water was wicked
away with a cotton-tipped swab. The sample assemblies were
next inserted into a holder covered with a Kapton dome
through which humid helium gas was allowed to flow during
measurements (Fig. 2c). Initial experiments revealed angular
instability of the mount that diminished over the course of

many minutes to an hour, probably resulting from the slow
evaporation of thin water layers trapped between the
chalcophanite and substrate. Subsequent samples were
allowed to dry for >30 min in a laminar flow hood prior to
measurement, eliminating this instability.

CTR data sets collected from several crystals showed ex-
cellent agreement (Fig. S1, Supplementary Material), demon-
strating the viability of the measurements, and indicating that
the chalcophanite growth face has a well-defined, consistent
surface structure. These initial, proof-of-concept measure-
ments produced exciting results but were somewhat inefficient,
due to the labor-intensive process of evaluating the
chalcophanite crystals optically, manipulating them onto dia-
monds, and screening them one-by-one at the beamline. Crys-
tals that have both bulk and surface qualities that are appropri-
ate for CTR are relatively rare and difficult to identify optically
but, once mounted, crystals can be evaluated quickly using fast
alignment scans of bulk Bragg peaks and brief snapshots of
surface X-ray scattering intensities. Thus, the rate-limiting step
is the one-by-one mounting procedure itself.

Screening Procedure
A more efficient method has been developed for semi-

automatic screening at the 13-BM-C station (Fig. 3). Numer-
ous crystals are deposited on a 30 mm×30 mm quartz wafer
(Fig. 3b). The wafer is mounted on a long travel (25 mm) x-y
sample stage with the wafer surface coincident with the dif-
fractometer’s center of rotation (Fig. 3a). Positions of

Table 1. (continued)

Mineral class Mineral name Chemical formula References

Trainor et al. (2002)

Xu et al. (2018, 2019)

Hematite Fe2O3 Catalano (2011)

Catalano et al. (2008)

Catalano et al. (2006b, 2007a, 2007b, 2009, 2010)

Lutzenkirchen et al. (2015)

McBriarty et al. (2017, 2018, 2019)

Noerpel et al. (2016)

Qiu et al. (2018b)

Tanwar et al. (2007a, 2007b, 2008, 2009)

Trainor et al. (2004)

Waychunas et al. (2005)

Magnetite Fe3O4 Petitto et al. (2010)

Periclase MgO Kim and Baik (1994)

Kim et al. (1993)

Robach et al. (1998)

Rutile TiO2 Kohli et al. (2010)

Zhang et al. (2004, 2006, 2007)

Uraninite UO2 Stubbs et al. (2015, 2017)

Oxyhydroxides Goethite FeO(OH) Ghose et al. (2010)
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individual crystals are then mapped using an optical micro-
scope that is centered and focused on the rotation center. The
in-plane positions (x, y) are determined using the microscope
crosshair (Fig. 3c), and the surface-normal height (z) is deter-
mined initially using the depth of focus of the microscope and
subsequently refined with X-rays. The sample stage setting (x,
y, z) is saved for each crystal. A specular Bragg peak is used
for initial alignment. The bulk crystal quality is assessed by
measuring the rocking curve of the Bragg peak. In this mea-
surement the crystal is rocked through an angle to determine
the width of the diffraction feature with the detector position
held fixed. Those with rocking curve FWHM < 0.3° have
their alignments refined and CTR intensities are spot-checked

at a few points along the specular rod. Crystals are ranked on
the basis of bulk and spot-checked surface quality, and those
that pass the initial tests undergo three-dimensional alignment
and additional CTR measurements. Further observations
about crystal and surface quality are recorded, and short
CTR data sets, including specular and off-specular data, are
collected from the best crystals. These data inform a second
ranking scheme that is used to identify candidates for further
measurement and experimentation. A typical user experiment
at 13-BM-C lasts 3 days, during which >100 crystals may be
screened. Roughly 10% of chalcophanite crystals examined in
this manner are suitable for further study.

Fig. 2. a Chalcophanite mounted by electrostatic attraction to diamond, which is affixed to a brass pin. b Sample crystals <300 μm are mounted
readily by this method. c Sample is covered by Kapton dome through which humidified helium is allowed to flow during measurement

Fig. 3. Crystal screening setup on the diffractometer at beamline 13-BM-C. a Samples in Kapton-covered holder are mounted on 25 mm
translation stages and viewed with microscope. b Chalcophanite crystals are distributed on quartz wafer for efficient screening. c Microscope
crosshair is used to center crystals on diffractometer rotation axis
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Ex situ Adsorption

In addition tomeasurement of the untreated growth surface,
the feasibility of adsorption experiments was also tested. Crys-
tals were exposed to a 100 mM solution of CsCl (Alfa Aesar,
Haverhill, Massachusetts, USA), wicked dry, and measured in
the same humid He environment as the untreated growth
surfaces. Modifications were observed on both specular and
off-specular rods (Fig. 4) that were reproducible across multi-
ple crystals. For changes to appear on the off-specular rods,
adsorption must occur in a manner that is laterally registered
with respect to the bulk. Upon rinsing with DI water, the off-
specular CTRs returned to their original, untreated profiles
(Fig. 4), while the specular CTR recovered partially. These
results indicated that the laterally registered Cs sorption was
reversible. They also suggested that the Cs atoms did not
replace surface Zn atoms. Had they done so, the off-specular
CTRs would not have returned to their original profiles after
rinsing. Additional crystals were exposed to solutions of ZnCl2

and Zn(NO3)2 (Alfa Aesar, Haverhill, Massachusetts, USA),
again resulting in modifications to both specular and off-
specular CTRs (Fig. S2), including regions of reciprocal space
other than those affected by CsCl. This suggests structurally
different adsorbate conformations for the Cs+ and Zn2+. In the
case of the Zn-bearing solutions, powder diffraction rings were
observed indicating the precipitation of powders on the min-
eral surface and highlighting the need for environmental cells
that retain liquid solution in contact with microcrystal surfaces
for in situ measurements.

Mounting Crystals for in situ Measurements
Static adhesion to diamond and quartz substrates is an

excellent method for mounting microcrystals for measurement
in a gas-filled environment, but cannot be used when exposure
to aqueous solutions is required, as is the case for many
geochemical investigations. While large crystals can be held
in place by the same thin Kapton membranes that are used to

Fig. 4. CTR data collected from a chalcophanite surface in a clean state (red), after dosing with 100 mM CsCl solution (green), and after rinsing
with DI water (blue). The 10L, 20L, and 11L rods experienced reversible modifications. Modifications to the 00L (specular) rod were partially
reversed upon rinsing.
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hold liquids on their surfaces (Fenter, 2002; Stubbs et al.,
2019), this strategy falls short for microcrystals, especially
when the back surface of the crystal is rough or stepped. Early
attempts using this method revealed that pulling a membrane
tightly against chalcophanite microcrystals results in signifi-
cant strain or fracture, and indicated the need for a robust, but

more gentle means of affixing a crystal that is independent of
the film that holds the liquid in place. This motivated a search
for an adhesive that can be used to mount these inherently
difficult to handle microcrystals. Thermoplastic resins such as
CrystalbondTM are used frequently in CTR measurements of
larger crystals, but their use is not feasible when the crystal

Fig. 5. Liquid cell. a Full cell with solution connections, humidity dome, lead screw, and gap-adjustment turn wheel. b PEEK sample cell, lead
screw nut, and radial bearing. c Quartz single crystal sample mount, microcrystal sample, thin flexible PEEK joint, and Kapton solution capture
membrane. d Sample cell set to a positive membrane gap so that reactions can occur under a thick layer of bulk solution. e Sample cell set to a
negative gap that traps a solution layer a few microns thick and lowers the rim of the cell below the sample surface to allow X-ray access at low
incident and scattering angles

Fig. 6. 21L and symmetry equivalent CTRs show excellent agreement. Data are from a crystal mounted on a quartz substrate using UV-cured
adhesive and measured under water in the new, in situ cell
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must be manipulated with a needle and positioned under a
microscope.

A process has been optimized for depositing 100–300 μm
crystals onto similarly sized droplets of UV-cured adhesive,
and curing with UV light from behind. Several UV adhesives
frommultiple vendors were evaluated, and the most successful
was Norland Optical Adhesives (Cranbury, New Jersey, USA)
NOA86. A UV cure box (FormCure, Formlabs, Somerville,
Massachusetts, USA) has been modified to replace the stan-
dard 405 nm wavelength LEDs with 365 nm wavelength
LEDs, and the adhesive is cured overnight at a temperature
of 60°C. It is then allowed to sit in fluorescent room light for
several days while polymerization continues. Chalcophanite
CTRs measured after UV curing by this method are very
similar to those measured before, indicating that the crystal is
undamaged and the ordered part of the surface is unchanged.

Other minerals, however, could possibly experience damage
and the method should be validated when applied to new
systems.

Quartz single crystals are highly transparent to 365 nm UV
light, aiding with adhesive curing, and are chemically inert,
making them excellent substrates for aqueous surface chemis-
try experiments. Quartz wafers oriented to the (5-1-1) surface
are commercially available as ‘no background’ holders for
powder diffraction experiments (MTI Corp., Richmond, Cali-
fornia, USA). In this orientation, the first Bragg reflection in
the specular direction is at L ~22.7 for chalcophanite, mitigat-
ing interferences between quartz Bragg peaks and the
chalcophanite specular CTR. Sometimes interferences are ob-
served between low-angle quartz reflectivity and the lowest-L
region of the specular CTR. This is usually alleviated by a
mismount or tilt of the microcrystal (due to steps or

Fig. 7. Data collected from a chalcophanite crystal affixed to quartz with UV adhesive under deionized water (blue) are qualitatively similar to
those collected from a different crystal attached by static attraction to diamond under humid helium (red). Black curves are calculated CTRs from a
model that includes a layer of Zn and water at the surface, as shown in Fig. 1d, with no roughness or relaxation of atoms from bulk positions and
occupancies
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protuberances on the back side) with respect to the quartz
surface of several tenths of a degree, which makes separation
of the two signals straightforward, and the quartz reflectivity is
simply excluded during data integration. For off-specular
CTRs, it would take an extraordinary coincidence in alignment
to produce overlap of a Bragg peak or CTR from the quartz
with a CTR from the microcrystal, although occasionally
thermal diffuse scatter from nearby quartz Bragg peaks inter-
feres over small regions of reciprocal space. These regions are
excluded from the data sets. Far from quartz Bragg peaks,
diffuse scatter arising from the quartz single crystal is weak
and broad when compared to CTRs, and is easily subtracted as
background.

In situ Sample Environment

Quartz wafers 2.5 mm thick are core drilled into cylin-
ders with 3 mm diameters, which are clamped rigidly inside
a PEEK sample cell (Fig. 5). This cell includes two ports
for solution injection and extraction, which are capped with
Luer Lock check valve fittings (Idex Health and Science,
Oak Harbor, Washington, USA) such that solution ex-
changes can be made with syringes that are disconnected
prior to measurement (Fig. 5a). The central post into which
the quartz cylinder is clamped is supported rigidly on a ½
inch - 20 lead screw, which is itself mounted rigidly on the
diffractometer. Solution is held in place by a Kapton mem-
brane that is attached to an outer ring which surrounds the
inner post (Fig. 5c, d, e). The two sections of the cell (post
and membrane support) are machined from a single piece
of PEEK, and are connected by a thin, flexible PEEK joint
(Fig. 5c). The Kapton membrane is raised and lowered with
respect to the sample surface by means of a nut that rides on
the central lead screw, flexing the thin PEEK joint. This
mechanism is hand-actuated using the gap adjustment turn
wheel (Fig. 5a). Prior to solution injection, the membrane is
raised to produce a gap between Kapton and sample (Fig.
5d), such that reactions can occur under several hundred
microns of bulk solution. Prior to measurement, solution is
extracted by closing one check valve and gently withdraw-
ing liquid through the other while lowering the membrane
ring to a height below the sample surface (negative gap),
trapping a layer of solution a few microns thick (as verified
by the appearance of visible-light interference fringes, i.e.
Newton’s rings) (Fig. 5e). To mitigate diffusion and evap-
oration of water through the Kapton membrane, humidified
helium is flowed through a domed Mylar membrane cover
(Fig. 5a). This cell design is conceptually similar to a
previous cell (Trainor et al., 2006), but offers a simplified,
easy to manufacture and customizable cell that can be
modified to match sample size. The manually driven nut
mechanism replaces an earlier motorized stage, making it
possible to produce multiple cells quickly and inexpensive-
ly. The new cell’s PEEK flexure joint between the sample
support post and membrane eliminates, from the earlier
design, a sliding O-ring seal that was often a source of
solution leaks and excess sliding friction.

Stability During in situ Measurements
The UV adhesive mounts are dimensionally stable in

the X-ray beam under dry and humid gas, and also stable
for many hours in liquid water in the absence of X-rays.
The microcrystal alignment drifts gradually over time in
the presence of both X-rays and water, however, indicat-
ing that the adhesive is sensitive to the products of X-ray-
induced water radiolysis. A software solution was devel-
oped that realigns the crystal using two Bragg peaks on
each CTR immediately prior to its measurement, enabling
automatic correction for slowly drifting alignments during
data collection. Symmetry-equivalent CTRs show excel-
lent agreement (Fig. 6), indicating that the software align-
ment correction is effective, and the practice of allowing
the beam to overfill the sample surface and spill over the
edges results in uniform illumination, even during the
azimuthal rotation required for off-specular measurements.
Data collected from chalcophanite crystals under deion-
ized water are qualitatively similar to those measured
under humid helium (Fig. 7), indicating that the beam
damage to the adhesive does not result in ordered modifi-
cation of the surface, although the deposition of disor-
dered contaminants cannot be ruled out. CTRs calculated
from a model with Zn and water molecules at the surface,
as shown in Fig. 1d (with no roughness or relaxation of
atoms from bulk positions) reproduce measured intensities
near Bragg peaks and over much of the CTRs between
them (Fig. 7). Discrepancies between the model and data
result from differences between the real interfacial struc-
ture and this simplified, idealized model. Quantitative
fitting of an atomic scale model is ongoing and will be
the subject of a separate publication. Measurements de-
signed to probe in situ adsorption and cation exchange are
also under way, using solutions containing Cs+, Zn2+, and
other cations.

DISCUSSION AND OUTLOOK

The ability to measure CTRs from crystals with lateral
dimensions as small as 100 μm, especially in the presence of
liquid water, expands significantly the range of candidate
synthetic and natural mineral surfaces that can be studied,
and represents a major advance in the technique. The next
stages of development will target even smaller crystals, which
pose challenges with respect to sample handling, adhesive
deposition, and signal-to-background ratios as the number of
surface atoms decreases.

A second set of considerations arises around the thickness
of the crystals being measured, and whether the measurement
will probe both the front and back surfaces. CTR measure-
ments are usually made at X-ray energies from 10 to 20 keV,
and off-specular data are typically collected at an X-ray inci-
dence angle, α, between 2 and 6°. At 15 keV and α = 4°, a
chalcophanite crystal would need to be >23 μm thick in order
to prevent 99% of incident X-rays from reaching the back
surface – a criterion more than sufficient to prevent scattering
from the back surface from contributing to the measurement.
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Because X-ray absorption depends on density and atomic
number in addition to incident energy and path length, the
importance of these effects varies widely for different mate-
rials. At 15 keV and α = 4°, uraninite (UO2) would require a
thickness of ~2 μm whereas quartz would require >200 μm to
satisfy the 99% absorption criterion. That criterion overesti-
mates the contribution from the back surface, as X-rays that
diffract from a back surface with sufficiently low roughness to
present a strong CTR would need to travel back through the
thickness of the crystal to be measured. Along this path these
X-rays would be subject to diffuse scattering by the bulk
microcrystal, further diminishing the CTR signal. Further-
more, some of the X-rays that reach the back surface will exit
the microcrystal and be absorbed or scattered by the quartz
substrate, and thus be unavailable for return to the front. The
contribution from the back surface can be evaluated by reduc-
ing α, thus increasing the X-ray path length through the
crystal, or by lowering X-ray energy and utilizing the inverse
energy cubed dependence of absorption. Specular CTR mea-
surements vary the incidence angle over a wide range, and
therefore require extra care in their interpretation when thin
crystals with high quality back surfaces are involved. Here
again, measurements collected at multiple energies would be
highly effective for evaluating the strength of such
contributions.

Even with the newly expanded capabilities described
here, some crystals remain too small for CTR, and other
methods must be employed. Promising among these are
those that leverage X-ray coherence, such as Bragg Coher-
ent Diffraction Imaging (BCDI) (Robinson et al., 2001;
Pfeifer et al., 2006; Williams et al., 2006). This technique
has been used to investigate morphology, defects, strain,
and structural responses to aqueous chemistry in mineral
nanoparticles including calcite (Clark et al., 2015; Ihli et al.,
2016, 2019; Liu et al., 2018) and magnetite (Yuan et al.,
2019b). Upgrades are planned or underway for a number of
synchrotron facilities, including the APS, that will increase
X-ray coherence by roughly two orders of magnitude. Such
advances will render the coherent techniques both more
powerful and more routinely available to synchrotron users,
including members of the Earth Science community.

CONCLUSIONS

Capabilities for screening, mounting, andmeasuring crystal
truncation rods from mineral crystals with lateral dimensions
of <300 μm have been developed at the University of Chicago
GSECARS beamlines located at the Advanced Photon Source.
More than 100 crystals at a time can be screened for bulk and
surface quality. The best of these are mounted using UV
adhesive onto quartz substrates and clamped in novel environ-
mental cells, enabling exposure to aqueous solutions for in-situ
mineral-water interfacial structural measurements. These new
capabilities promise to expand dramatically the list of minerals
accessible to investigation using CTR.
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